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Abstract

Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However,
no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic
data. This is because standard supervised learning requires ‘ground-truth’ functional annotations, which are lacking at the
isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the
transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies
the ‘responsible’ isoform(s) of a gene and generates classifying models at the isoform level instead of at the gene level.
Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the
ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified
genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the
‘responsible’ isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we
further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the
first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is
extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-
centered function prediction to isoform-level predictions.
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Introduction

Determining the functions of proteins is a central goal of

genetics, fundamental for understanding the molecular basis

of diverse genetic diseases [1–7]. During the past few decades,

significant efforts have been made to integrate and develop

diverse machine learning algorithms for gene function prediction

through large-scale genomic data integration [8–12], such as

Support Vector Machines, Bayesian classifications and Artificial

Neural Networks. Despite differences in implementation and

performance of the specific algorithms, the essence of these

methods for gene function prediction is ‘supervised learning’, in

which a model of features derived from functional genomic data

(such as microarray, protein-protein physical interactions, gene-

gene genetic interactions) is constructed to delineate a defined set

of ‘positives’ (genes annotated to the function under consideration)

and ‘negatives’ (genes without the function). These algorithms

have significantly accelerated our understanding of gene functions.

A major intellectual limitation of the current function prediction

paradigm is that it considers a gene as a single entity without

differentiating the functional diversity of alternatively spliced

isoforms. Alternative splicing is a major source of protein

molecular function diversity and regulatory diversity. In humans,

95% of multi-exon genes undergo alternative splicing, generating

proteins of potential different functions [13–21]. For example,

TRPM3, which encodes a type of cation-selective channels in

human, can be alternatively spliced into two variants targeting

different ions [22–24]. Other splice variants have been reported

with distinctly opposite functions. For example, the splice variants

of BCLX are antiapoptotic and pro-apoptotic, respectively [25].

Similarly, CASP3-L variant is pro-apoptotic while CASP3-S is

antiapoptotic [26]. Differences in function are sometimes reflected

on the regulatory level: two alternatively spliced transcripts of

OSR2 have opposite transcriptional activities, activation and

repression [26]. Attempts to capture such differential functions

are currently limited to low-throughput experimental approaches

and protein domain analysis. However, based on the protein

domain annotation we downloaded in Dec, 2012, only 34% of the

isoform pairs (of the same gene) in the NCBI database have

different domains. The majority of the isoforms of the same gene

differ in subtle ways which are not reflected by protein domains.

We expect that computational methods developed to differentiate

isoform functions through integrating functional genomic data will

assist a deeper, high-resolution understanding of gene functions.
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The key challenge facing isoform prediction is the lack of a

systematic catalog of isoform-level function annotations and large-

scale genomic data resolved at the isoform level. The latter is

resolved by the unprecedented amount of transcriptomic data

generated by next-generation sequencing [27–29]. RNA-seq

data available in public databases [30] now surpass the number

of microarray data that have been previously used to infer

functions at gene levels [31]. Algorithms have been developed to

assign isoform-level expression values [28,32–39]. They provide a

resource for isoform-level features that can be used as input data to

infer isoform functions.

However, the fundamental challenge remains: a genome-wide

set of ‘ground-truth’ annotations of functions at the isoform level is

still lacking. Isoform functions have been computationally inferred

through domains, binding regions and individual binding sites

[40–46]. In widely used databases such as Gene Ontology [47,48]

and KEGG [49], biological functions are defined at the gene level.

Under these circumstances, to predict whether a gene is related to

a specific function, supervised learning algorithms will be deployed

to derive a model from the genomic data we collect. For example,

to predict ‘mitochondria biogenesis’-related genes, we need a

‘gold standard’ set of genes known to be related to mitochondria

biogenesis, and find out how these genes differ from other genes in

their expression patterns. Without an existing and comprehensive

set of annotated isoforms, standard ‘supervised learning’ ap-

proaches are not applicable to predicting different functions for

splice isoforms.

We developed a generic framework that improves gene function

prediction and provides information for isoform-level functions.

Our framework intends to locate the ‘responsible’ set of isoform(s)

of annotated genes of a specific function, through iteratively

correcting the composition of this set to maximize its ‘discrimi-

nativity’ against the negatives. For example, for mitochondria

biogenesis, we have a set of genes G+
1, G+

2, …, G+
n annotated to

this function (positive genes). Each gene is considered as a bag of

alternatively spliced isoforms. We then try to find out which

isoform(s) of this positive set of genes can be selected to maximize

the difference between them and the negative isoforms, i.e., the

Gi
k
+, where k is the gene index, and i is the isoform index. The

isoforms in the Gi
k
+ set are iteratively updated to maximize the

similarity within them. The model derived from the Gi
k
+ set

(instead of Gk
+) is then used to classify whether an isoform has the

biological function, mitochondria biogenesis, in this example.

From this perspective, our problem is a multiple instance learning

task [50–53], in which each example considered positive with

respect to certain property contains multiple discrete elements, of

which at least one of them must be positive.

We used an iterative algorithm to approximate the solution to

the above optimization problem. We found that our algorithm can

successfully capture the differential isoform functions as evidenced

by prediction accuracy on multi-isoform genes as well as literature

and experimental validation on isoforms that are drastically

different in their assigned functions. Computationally predicting

isoform functions or differentiating functions for isoforms of the

same genes in a genome-wide manner using high-throughput

genomic data has not been done prior to our work. This

framework is also generic. It can be integrated into any basic

machine learning algorithm such as logistic regression, random

forests or deep learning, and can be readily extended to predict

isoform functions in other organisms as well as other properties of

isoforms such as phenotypes and interaction networks. Our

prediction results are available to the user community online at

http://guanlab.ccmb.med.umich.edu/isoPred/.

Results

We first established the workflow that generates isoform-level

function predictions. Then we validated our models with

computational cross validation, focusing on performance compar-

ison between multiple-isoform genes and single-isoform genes. The

predicted ‘functional’ isoform(s) are further validated using breast

cell proteomic data. Finally, through protein structure modeling

and experimental evidence, we validated our predictions for

Cdkn2a and for Anxa6, whose isoforms were predicted to be

responsible for different functions.

The isoform function prediction framework
We aim at predicting isoform functions while functional an-

notations have been based on genes. The model therefore needs to

be learned at the isoform level rather than at the gene level (see

Figure S1 for a comparison between a traditional gene function

learning problem and our isoform function prediction problem).

Our core idea is to model the common patterns of a subset of

isoforms across genes associated with a particular function, with the

requirement that at least one of the isoforms of each positive gene

must retain the common feature pattern. This is a multiple instance

problem, the aim of which is to identify the hidden labels of the

isoforms of the positively annotated genes and use these hidden

labels to construct classification models to label additional isoforms.

We used maximum margin-based classification as base-

learner in this iterative process [54], due to the success of SVM

in the protein function prediction domain [9]. Such a framework

could be integrated into any other machine learner, such as deep

learning or Bayesian classification.

To elucidate our algorithm, we will use the following definitions

throughout the paper:

N A ‘bag’ refers to a gene, which consists of multiple isoforms.

N ‘Instances’ refer to individual isoforms.

N A ‘positive’ bag refers to a gene related to the specific

function under study.

N ‘Witness(es)’ refer to the isoform(s) of a positive gene related

to the specific function under study. A ‘positive’ bag has at least

one witness;

Author Summary

In mammalian genomes, a single gene can be alternatively
spliced into multiple isoforms which greatly increase the
functional diversity of the genome. In the human, more
than 95% of multi-exon genes undergo alternative
splicing. It is hard to computationally differentiate the
functions for the splice isoforms of the same gene,
because they are almost always annotated with the same
functions and share similar sequences. In this paper, we
developed a generic framework to identify the ‘responsi-
ble’ isoform(s) for each function that the gene carries out,
and therefore predict functional assignment on the
isoform level instead of on the gene level. Within this
generic framework, we implemented and evaluated
several related algorithms for isoform function prediction.
We tested these algorithms through both computational
evaluation and experimental validation of the predicted
‘responsible’ isoform(s) and the predicted disparate func-
tions of the isoforms of Cdkn2a and of Anxa6. Our
algorithm represents the first effort to predict and
differentiate isoforms through large-scale genomic data
integration.

Differentiating Functions for Isoforms
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Our algorithm aims to identify a subset of isoforms of the

positive genes that maximizes the difference between them and the

negative isoforms. Identifying the best combination of isoforms

from the positive genes is difficult. The ideal solution requires

excessive computational time. We therefore approximated the

solution with an iterative algorithm (Figure 1). For the training

set, in the first iteration, we assign every isoform of a positive gene

to be positive. We then establish a classifier, with which we can go

back to classify the training set. This classifier will assign some

isoforms of the positive gene to be positive (the ‘witnesses’), and

some to be negative, but at least one isoform of a positive gene

must be positive. This subset of ‘witnesses’ is iteratively updated to

maximize the inter-class distance. Using this assignment, a new

classifier is established, which could again be used to classify the

training set. We iterate this process to update the ‘witnesses’. This

procedure is repeated until convergence is achieved (Figure 1).

Because of the properties and relationships between genes and

isoforms, this Multiple Instance Learning (MIL) framework is

suitable for our problem. MIL assumes that there are one or more

positive instances in a positive bag, and, if we can identify these

positive instances in positive bags, we can expect to have a better

classifier by excluding remaining instances from the positive

class. Biologically, if a gene is annotated to a function, one or more

of its isoforms will be selected as witness(es) as the ones that are

related to this function, and other isoforms will be marked as

non-functional. By excluding these non-functional isoforms, the

classifier is expected to be more accurate.

Implementation and testing parameters
To generate alternatively spliced transcript-level features, we

collected transcriptomic data from public RNA-seq experiments

(Dataset S1). These RNA-seq datasets cover a wide sampling of

tissues and different experimental conditions, such as liver, brain,

muscle and testis. The ENCODE RNA-seq data covering ovary,

mammary gland, stomach, kidney, liver, lung, spleen, colon and

heart, are also included in our data. Co-expression patterns in these

data can be highly informative for co-functionality. We assigned

isoform-level expression values for each of these experiments using

the state-of-the-art tools [32,34,35] (Figure 1). Public RNA-seq

datasets came from different experimental protocols and such

information is not always recorded in databases in a standardized

way. We filtered these datasets based on their quality and coverage

(see Methods). This data collection serves as our genomic data

input. Essentially, each isoform was described by a vector of

values specifying its normalized expression value in various RNA-

seq samples. Gene Ontology is arranged in a hierarchy, where

complex relationships exist between different terms. To test

different variations of MIL and tune the parameters of our

algorithms, we focused on a list of biological process terms that

have been voted by biologists to be able to describe and cover

different biological processes that are experimentally testable [55].

This list included 99 terms, with GO term size 20–300.

Two important parameters (other than the standard SVM

parameters) in this algorithm are the proportion of positive

isoforms to be labeled as positive in each iteration, and whether we

should label the rest of isoforms in the positive bag negative or

discard them. Therefore, we tested two basic formulations of the

algorithm. The first approach tries to impute all non-witness

instances in positive bags as negative instances and then considers

the problem as a supervised learning problem. The second

approach tries to identify a single witness from each positive bag

which is responsible for the positive label. Then, a classifier is built

based on these witnesses only, while other instances are dropped.

SVM formulations of these two approaches are, respectively,

mi-SVM and MI-SVM [51]. For the first approach, we envisioned

that different ratio of instances can be retained as ‘witnesses’ and

tested three different cutoffs (Figure 2A–B).

Ideally, testing of isoform function prediction should use

isoform-level gold-standard functional annotation. However,

such comprehensive functional annotation does not exist in any

database (if they did exist, regular supervised classification would

be sufficient to predict isoform functions). Therefore, we first

evaluated the performance of our algorithms at the gene level. The

probability of each gene to be associated to a function is assigned

with the maximum value of all its instances, under the assumption

that the eventual gene function is carried out by at least one of its

isoforms. For all methods and parameters tested, the algorithm

converged within several iterations. Additionally, we found that

different thresholds or methods resulted in relatively stable per-

formance on the gene level. mi-SVM with 75% of all negative

scores as the cutoff for defining ‘witnesses’ resulted in the highest

AUC of 0.73 (Figure 2C). Therefore, we used this method for

inferring isoform functions and all the evaluation and validation

below is based on this threshold.

Cross-validation of the function prediction algo-

rithm. We adopted several lines of validation to test our

algorithm, including computational validation of multi- and single-

isoform genes, literature evidence for top predicted candidates and

experimental validation of top predictions. For all the following

evaluations, we presented 1792 biological process terms with 20 to

300 genes annotated to each. This size range was selected based on

previous statistical studies showing that GO terms of this size show

robust cross-validation behavior [56].

We first compared the performance of our algorithm in

capturing gene-level functions to a direct SVM model using the

same data input at the gene level. For each GO term, we carried

out five-fold cross-validation to evaluate our prediction results. We

partitioned the training and test groups by genes instead of

isoforms to prevent information leak in the evaluation process. We

used both the area under the ROC curve (AUC) and the area

under the precision-recall curve (AUPRC) to measure predictive

performance (complete evaluation results are included in Dataset

S2). Because GO terms of different sizes vary in terms of pre-

dictability [9], we divided all GO terms into 5 groups so that each

group contains roughly the same number of GO terms according

to GO term size. This resulted in groups of [20, 27], [27, 39], [39,

60], [60, 105] and [105, 298]. For each GO term group, we

calculated AUC, AUPRC, precision at 1% recall and precision at

10% recall (Figure 3). The median AUCs of the 5 GO term

groups are 0.66, 0.67, 0.68, 0.69, and 0.71, respectively. Strictly,

these AUC values cannot be directly compared to those reported

results in the literature because of the difference in the data used.

However, it is still meaningful to benchmark, at least roughly,

our results against the reported results. The work of Peña-Castillo

et al. [57] is a benchmark of the mouse gene function prediction

performance in 2008, using heterogeneous genomic data including

physical interaction, protein domain, phenotypes and expression.

Peña-Castillo et al. reported a median AUC in predicting novel

gene annotations across 72 GO biological function terms is 0.69

with a standard deviation 0.071. Thus, our algorithm achieved

satisfactory results using transcriptomic data alone; the additional

benefit of differentiating isoform functions will be detailed in the

following sections.

For some of the biological processes, interpreting data at the

isoform level can dramatically improve the prediction perfor-

mance over gene level results. These biological processes are those

likely to be affected or carried out by certain specific isoforms of

the genes. For example, for GO terms GO:0019882 (antigen

Differentiating Functions for Isoforms
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Figure 1. Overview of the computational approach for predicting functions for alternatively spliced isoforms. We collected RNA-seq
data from the sequence read archive (SRA) database and estimated isoform-level expression values using state-of-the-art software [32,34]. We then
generated a gene-level gold standard using Gene Ontology (GO) annotations. For each biological function, this gold standard contains positive genes
(annotated to the function under investigation) and negative genes (other genes). Our study contains two major parts: cross-validation for

Differentiating Functions for Isoforms
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processing and presentation), GO:0019395 (fatty acid oxidation),

GO:0031032 (actomyosin structure organization), GO:0046649

(lymphocyte activation), GO:0002252 (immune effector process),

GO:0045058 (T cell selection) (Figure S2), AUPRC increased

from 0.087 to 0.105 (20% improvement, baseline 0.0018), from

0.026 to 0.036 (36% improvement, baseline 0.0021), from 0.047 to

0.060 (28% improvement, baseline 0.0012), from 0.0414 to 0.0593

(43% improvement, baseline 0.0101), from 0.037 to 0.046 (27%

improvement, baseline is 0.0061), from 0.017 to 0.039 (137%

improvement, baseline is 0.0011) respectively using our iterative

algorithm compared to using the gene-level SVM method only.

The improvement in performance is likely due to having access to

more data and eliminating noisy, non-predictive patterns from

positive class which is achieved by the MIL formulation.

Better performance for multi-isoform genes than single-
isoform genes

The performance obtained in the previous section is a mix

between single-isoform genes and multiple-isoform genes. We

hypothesize that, if our framework does bring in discriminative

power at the isoform level, multi-isoform genes should be

predicted with better accuracy than single-isoform genes for the

same set of GO terms evaluated. Single-isoform genes include

both real ones and those that are missed in the database [58]. In

fact, although it has been estimated that 95% of the multi-exon

genes in human have multiple isoforms [13], only 13% of the

genes are documented with validated multiple isoforms in NCBI.

For these genes, the performance is expected to be poorer since the

input features for each gene approximate the average of all its

isoforms and our algorithm is not applicable to these genes in

differentiating isoform functions. Therefore, we separately evalu-

ated the performance of single-isoform genes and multiple-isoform

genes. Two-fold cross-validation was carried out to evaluate our

models to ensure there are sufficient genes in both the training and

test sets for multi- and single-isoform genes. To make the

comparison feasible, negatives in each group were randomly

chosen to ensure that the ratio of positives to negatives is the same

for multi- and single-isoform genes for the same GO term. In

doing so, the AUC, AUPRC, precision at 1% recall and precision

at 10% recall of each GO term are recalculated for both sets

separately. These results are again organized into 5 groups, based

on the number of positive genes in the test set for each GO term

(Figure 4).

We found consistently better performance for multi-isoform

genes than single-isoform genes for the same GO term evaluated

(Figure 4; complete evaluation results are included in Dataset S3).

For multi-isoform genes, we acquired median AUCs of 0.68, 0.70,

0.70, 0.73 and 0.76 for the five groups of multi-isoform genes,

performance estimation and bootstrap bagging for generating final predictions as well as performance evaluation. For cross-validation, we
partitioned the examples into a training set for model development and a test set for model validation. For generating final predictions for all
isoforms, we sampled with replacement to construct a training set, and then used this training set to construct models to assign prediction
probabilities to the out-of-bag set. The final predictions for all isoforms were made by calculating the median prediction values of all out-of-bag sets.
For each training set, a model was derived from the RNA-seq data to delineate the positives and the negatives. This model was used to classify the
training set and update the labels of the isoforms of the positive genes, under the criterion that at least one isoform of a positive gene must remain
positive. This new assignment is then used to construct the model in the next iteration. This process is iterated until the assignment of positive
isoforms no longer changes, and then the final model was used to assign a prediction value to the test or the out-of-the-bag set. Bootstrap was done
for 30 iterations and the median value for each out-of-the-bag isoform was taken as the final prediction value. The predictive performance of our
model was assessed through three approaches: (1) cross-validation of gene-level predictive performances, focusing on comparison between single-
isoform genes and multiple-isoform genes, (2) literature validation and (3) experimental validation of top predictions using proteomic data.
doi:10.1371/journal.pcbi.1003314.g001

Figure 2. Performance comparison of different formulations of the SVM-MIL algorithm in predicting isoform functions. A. The
histogram shows the score distribution of the instances in the positive bags and the negative bags in the training set. Different threshold choices in
mi-SVM are based on the distribution of scores of negative genes. The first threshold is equal to the mode of distribution of scores from negative
instances in the training set. The second threshold is equal to the 75% percentile of scores of the negative instances in the training set. The third
threshold is equal to the maximum score of negative instances in the training set. B. This panel illustrates how different thresholds and formulations
can divide the isoforms in a positive bag into positive, negative and neutral classes. Three thresholds in mi-SVM represent different degrees of
strictness for assigning labels. The first threshold is the least strict, which assigns most of the isoforms from positive genes as positive, whereas the
third threshold is the strictest, which in general leaves only one positive instance in every positive bag. For the MI-SVM formulation, only one isoform
per positive gene is assigned as positive, and other isoforms are dropped (i.e. neutral class). C. Performance comparison of three different threshold
choices for the mi-SVM formulation, the MI-SVM formulation and the MI-SVM formulation with random witness selection. This plot shows that the mi-
SVM formulation with threshold-2 performs best in terms of AUC.
doi:10.1371/journal.pcbi.1003314.g002

Differentiating Functions for Isoforms
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compared to median AUCs of the same groups of GO terms for

single-isoform genes, 0.62, 0.63, 0.65, 0.66 and 0.68, which

correspond to 57%, 56%, 34%, 47% and 40% improvements

against the baseline (0.5), respectively. Similar better performance

is seen for AUPRC values. We observed an increase from 0.002

to 0.006 (162% improvement, baseline is 0.0009), from 0.003

to 0.009 (168% improvement, baseline is 0.0015), from 0.005 to

0.012 (152% improvement, baseline is 0.0021), from 0.008 to 0.022

(156% improvement, baseline is 0.0034), from 0.016 to 0.042

(154% improvement, baseline is 0.0072). In fact, 71% of the 1591

GO terms with more than 20 positive genes and less than 300

positive genes have gained better performance for multi-isoform

genes. This implies that our approach is effective in capturing the

functionality of multi-isoform genes, which is robust regardless of

the metrics used to quantify performance. For example, for GO

terms GO:0000279 (M phase), GO:0006952 (defense response),

GO:0006936 (muscle contraction), GO:0007507 (heart develop-

ment), GO:0002252 (immune effector process), GO:0003002

(regionalization), precision at 10% recall increased from 0.121 to

0.571 (baseline 0.0069), from 0.051 to 0.500 (baseline is 0.0103),

from 0.052 to 0.364 (baseline is 0.0038), from 0.045 to 0.389

(baseline is 0.0097), from 0.042 to 0.750 (baseline is 0.0048), from

0.074 to 0.320 (baseline is 0.0089), respectively. (Figure S3). Such

precision improvement is robust to accuracy measurement across

the entire precision-recall spectrum and consistent across a wide

sampling of GO terms. For the five groups of GO terms, median

of precision at 1% recall increased from 0.005 to 0.014 (baseline is

0.0009), from 0.008 to 0.031 (baseline is 0.0015), from 0.011 to

0.045 (baseline is 0.0021), from 0.016 to 0.083 (baseline is 0.0034),

from 0.028 to 0.154 (baseline is 0.0072) (Figure 5). This

result indicates that our algorithm is more effective in predicting

functions for genes with multiple isoforms than single-isoform

Figure 3. Robust performance of our algorithm to predicting functions using RNA-seq data. We carried out five-fold cross validation to
test the performance of our algorithm. For each function, the prediction value for each gene is assigned the maximum prediction value of all of its
isoforms, under the assumption that at least one of its isoforms should carry out the function. Because the number of known genes of each GO term
systematically affects the prediction performance, we group these terms into 5 groups according to their GO term sizes. (A)–(D) shows the
distribution (10, 25, 50, 75, 90%) of the AUCs, the AUPRCs, the precisions at 1% recall and the precisions at 10% recall, respectively.
doi:10.1371/journal.pcbi.1003314.g003

Differentiating Functions for Isoforms
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genes, which is likely caused by the power of our algorithm in

differentiating isoform functions for the same genes.

Robustness of predictions with respect to gene
expression levels and exclusion of homolog gene pairs

We further considered two factors to validate the robustness of

our algorithm. First, because the estimated expression levels are

less reliable for genes that have low expression values, we tested

whether our algorithm can predict the functions for low-expressing

isoforms. We partitioned genes into three groups of equal numbers

- the high, the medium and the low groups - based on their

expression level averaged across all experimental conditions and

evaluated prediction results separately for these groups to see if

performance is affected by the overall expression level of genes.

We showed that prediction performance is fairly robust to the

genes’ expression levels (Figure 6A). Although the genes in

the highest expression group do show better performance

(AUC = 0.79), AUCs for the medium (0.69) and low (0.69) groups

are comparable to the global accuracy (Figure 6A), indicating

that our method is applicable to genes that have relatively low

expression levels.

Secondly, we tested whether our good performance comes from

the homolog gene pairs of which one member is grouped into the

training set and the other member is grouped into the test set. This

can potentially cause overfitting by information leak, which is a

common phenomenon in all functional prediction algorithms,

especially those based on sequence information. In order to test

robustness of our method with respect to having homolog pairs in

test and training sets, we partitioned all genes into equal size test

and training sets by putting all genes in a homolog group as

defined in Ensembl [59] together and re-evaluated the perfor-

mance. We found that the performance is comparable to the

case where paralog genes can occur in training and test sets

(Figure 6B). This suggests that our method utilizing RNA-seq

data integration is also robust to the information leak from

homologs.

Figure 4. Prediction performance comparison of single-isoform genes (green) and multi-isoform gene (blue) based on AUC (upper
panel) and AUPRC (lower panel). We separately evaluated its prediction performance for single-isoform genes and multiple-isoform genes. Two-
fold cross-validation was carried out to ensure enough examples in both groups. To ensure comparability, the negatives were randomly selected to
ensure that the ratios of positive to negative genes for the multi-isoform group and the single isoform group are the same for each GO term. GO
terms were grouped according to the number of genes in the test set. Shown in the box-plot are the AUC (A) and AUPRC (B) at 10, 25, 50, 75 and 90
percentile, respectively.
doi:10.1371/journal.pcbi.1003314.g004

Differentiating Functions for Isoforms
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Validation of predicted ‘functional’ isoform(s)
To generate the final isoform function prediction, we applied

bootstrap bagging to assign scores for each isoform (Figure 1,

http://guanlab.ccmb.med.umich.edu/isoPred/ for complete pre-

diction results). The median AUC for the bootstrap result across

all GO terms is the same as the cross-validation result, indicating

the robust performance of bootstrapping. Essentially, genes are

sampled with replacement to construct a training set, and the rest

of the examples form an ‘‘out-of-bag’’ set. This process is iterated,

and the eventual predictions are drawn from the median across all

‘‘out-of-bag’’ sets. Bootstrap bagging is suitable for our isoform

function prediction task, where the numbers of positive and

negative examples are highly imbalanced [56]. The robustness of

bootstrap bagging has been tested for positive example set sizes

ranging from less than 20 to more than 200 [56,60], which is close

to the GO term sizes for which we provide predictions in this

study.

Because each GO term has a different background probability

for a gene to be associated with it, we calculated the fold change

against background for each gene to be associated to a GO term.

Indeed, it is pervasive that isoforms of the same gene are assigned

with different confidence levels for the same function under

consideration (see Table S1 for a selection of examples and

http://guanlab.ccmb.med.umich.edu/isoPred/ for complete pre-

diction results). Because biological functions of transcripts are

eventually delivered at the protein level, we hypothesized that the

functional isoform(s) of a gene must be expressed at the protein

level in the normal physiological condition. We therefore used

splice variant protein expression data in normal mammary tissue

to validate our predictions. Using our previously developed

protocol [61], we identified genes of which only one isoform is

strongly expressed (but the other isoforms are not detected). In this

gene list, we focused on the ones that have a known specific

function (i.e., the function has less than 300 genes annotated to

them), but their isoforms are predicted with drastically different

confidence levels to carry out this function. In total this resulted in

15 isoform groups. We could then check whether the predicted

‘responsible’ isoform(s) correspond to the expressed isoforms in

normal breast tissues.

We found a strong match between the expressed splice variant

and the isoform(s) predicted to be responsible for the known

specific function of the gene (Table 1 and Dataset S4). All the

Figure 5. Prediction precision between single-isoform genes (green) with multi-isoform gene (blue). Two-fold cross-validation was
carried out to ensure that enough examples are included in both the single-isoform group and the multi-isoform group. The negatives were
randomly selected to ensure that the ratios of positive to negative genes for the multi-isoform group and the single isoform group are the same for
each GO term, so that the baseline precision for each GO term is equal for the two groups. GO terms were grouped according to the number of genes
in the test set. Each dot represents the precision value of an individual GO term. A. Precision at one percent recall. B. Precision at ten percent recall.
doi:10.1371/journal.pcbi.1003314.g005

Differentiating Functions for Isoforms

PLOS Computational Biology | www.ploscompbiol.org 8 November 2013 | Volume 9 | Issue 11 | e1003314



expressed isoforms are predicted with the highest value in at least

one of the known functions, indicating the consistency between the

predicted functional isoforms and the expressed isoform. For

example, we predicted that NM_172745.3 of Tufm is responsible

for its function translation (34 fold over background probability),

while the other isoform, NM_001163713.1, is much less likely to

be functional (3 fold over background probability). Indeed, only

NM_172745.3 is expressed in normal breast tissue. Among the six

alternatively spliced isoforms of Tardbp, we correctly predicted

that NM_145556.4 is the one responsible for its function in RNA

splicing and stabilization; this variant is the only one identified

in the proteomic sample. In fact, of the 9 functions annotated

for Tardbp, NM_145556.4 is predicted with the highest value

eight times. The majority of the exceptions occur for tissue or

developmental-stage-specific GO terms, such as GO:0007507

heart development, GO:0035051 cardiac cell differentiation

and GO: 0006936 muscle contraction. The predicted functional

isoform is not the one identified in our proteomic sample, most

likely because our sample is tissue-specific and normal and these

functions might be carried out by other isoforms in other tissues or

conditions. However, overall, the predicted functional isoforms are

consistent with the ones we identified in our proteomic data,

indicating that our algorithm can correctly identify the functional

splice variants in normal conditions.

Validation of predicted disparate functions for isoforms
of CDKN2a and of ANXA6

Our algorithm is more than just identifying the ‘functional’

isoform of a gene. The power of our algorithm to predict the

functional disparity between isoforms is further illustrated by

isoforms that carry out different aspects of gene functions. It

is relatively common that only one isoform is predicted to be

responsible for one particular function of a gene, as described in

the previous section. In this section, we focus on analyzing specific

examples in which isoforms of a single gene are assigned with

unrelated biological functions.

CDKN2a is the only known example where alternative splicing

results in different reading frames (Figure 7A). Two genes (XBP1,

GNAS1) produce alternate reading frames, but start with single

transcript and therefore do not fall into the realm of alterna-

tive splicing. We predicted that the two isoforms of CDKN2a

would carry distinct functions for the gene (Figure 7B). NM_

001040654.1 is predicted to be involved in apoptotic nuclear

changes with a probability 74 times the background probability,

while the probability for NM_009877.2 approximates back-

ground. On the other hand, NM_009877.2 is predicted to be

involved in positive regulation of the transmembrane receptor

protein serine/threonine kinase signaling pathway (3 times

background), while NM_001040654.1 is not. Because crystallized

protein structures are available for both proteins in the human

but not in the mouse, we used I-TASSER, the state-of-the-art

protein structure prediction algorithm [62], to model the 3-D

protein structures of the two isoforms (Figure 7C–D). Although

the translated products of NM_001040654.1 (168 aa) and

NM_009877.2 (169 aa) are almost the same lengths, the transcript

sequences are in different open reading frames. This resulted in

five ankyrin repeats in the NM_001040654.1 (Figure 7C),

compared to a cyclin-dependent kinase inhibitor N-terminus

domain in NM_009877.2 (Figure 7D). The drastically different

3-D structures support the potential disparate functions predicted

by our algorithm.

The function predictions for NM_009877.2 and NM_

001040654.1, which we made by mining only large-scale public

RNA-seq datasets, are consistent with the two distinct biological

roles of the two isoforms. NM_009877.2 is an inhibitor of CDK4

kinase, a member of the Ser/Thr protein kinase family, directly

supporting its role in GO:0071900, regulation of protein serine/

threonine kinase activity. NM_001040654.1 encodes an alternate

open reading frame (ARF) that generates a protein structurally

unrelated to NM_009877.2. This protein enhances p53-dependent

transactivation and apoptosis [63], supporting its role in apoptotic

nuclear changes. Interestingly, although coding for structurally

Figure 6. Robust performance of our algorithm in predicting isoform functions. A. Genes are grouped according to their expression levels
averaged across all samples in our RNA-seq data collection. The distribution of the performance in AUC across all GO terms is plotted using box-plot.
B. The performance in AUC across all GO terms by partitioning the genes according to homologous groups between the training and the test set is
compared against the performance of partitioning the genes randomly.
doi:10.1371/journal.pcbi.1003314.g006
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dissimilar proteins, both isoforms share a common functionality in

cell cycle G1 control [64]. This shared functionality is correctly

predicted by our algorithm; for regulation of G1/S transition

of mitotic cell cycle (GO:2000045): NM_001040654.1 has a

probability 3.5 times the background probability, and NM_

009877.2 has a probability 2.4 times that of background.

The CDKN2a example involves isoforms of drastically different

protein domains. We used the isoforms of ANXA6 (NM_013472.4

and NM_001110211.1) to validate our model in predicting

isoforms of very similar structure. The only difference between

the two isoforms at the protein sequence level is the presence of

six residues in the longer NM_013472.4 (‘VAAEIL’, 525–530)

which are missing in NM_001110211.1. The three-dimensional

structures of the translated sequences of these isoforms were

published by some authors of this paper [65]. Although the global

topology of the I-TASSER models for the two isoforms of ANXA6

is almost identical (with RMSD = 0.38 Å and TM-score = 0.99),

there is an obvious structural variation identified by TM-align

Table 1. Examples for predicted functional isoforms that are validated using proteomic data.

Gene Name
Identified transcript in
proteomic data GO term ID GO term name

Fold change of
prediction score

Tufm NM_172745.3 GO:0006412 translation 34.10

Tardbp NM_145556.4 GO:0006396 RNA processing 10.48

Tardbp NM_145556.4 GO:0008380 RNA splicing 15.08

Tardbp NM_145556.4 GO:0016071 mRNA metabolic process 6.15

Tardbp NM_145556.4 GO:0043487 regulation of RNA stability 3.28

Tardbp NM_145556.4 GO:0043488 regulation of mRNA stability 7.00

Tardbp NM_145556.4 GO:0043489 RNA stabilization 7.50

Tardbp NM_145556.4 GO:0048255 mRNA stabilization 6.70

Tardbp NM_145556.4 GO:0051817 modification of morphology or physiology of other
organism involved in symbiotic interaction

3.08

Ola1 NM_025942.2 GO:0006163 purine nucleotide metabolic process 2.23

Ola1 NM_025942.2 GO:0006195 purine nucleotide catabolic process 2.20

Ola1 NM_025942.2 GO:0006200 ATP catabolic process 2.92

Ola1 NM_025942.2 GO:0009141 nucleoside triphosphate metabolic process 2.53

Ola1 NM_025942.2 GO:0009143 nucleoside triphosphate catabolic process 2.32

Ola1 NM_025942.2 GO:0009144 purine nucleoside triphosphate metabolic process 2.60

Ola1 NM_025942.2 GO:0009146 purine nucleoside triphosphate catabolic process 2.38

Ola1 NM_025942.2 GO:0009154 purine ribonucleotide catabolic process 2.59

Ola1 NM_025942.2 GO:0009166 nucleotide catabolic process 2.08

Ola1 NM_025942.2 GO:0009199 ribonucleoside triphosphate metabolic process 2.29

Ola1 NM_025942.2 GO:0009203 ribonucleoside triphosphate catabolic process 2.24

Ola1 NM_025942.2 GO:0009205 purine ribonucleoside triphosphate metabolic process 2.42

Ola1 NM_025942.2 GO:0009207 purine ribonucleoside triphosphate catabolic process 2.66

Ola1 NM_025942.2 GO:0046034 ATP metabolic process 3.55

Ola1 NM_025942.2 GO:0046700 heterocycle catabolic process 2.08

Ola1 NM_025942.2 GO:0072521 purine-containing compound metabolic process 2.35

Ola1 NM_025942.2 GO:0072523 purine-containing compound catabolic process 2.10

Myom1 NM_010867.2 GO:0003012 muscle system process 21.02

Lmna NM_001002011.2 GO:0007517 muscle organ development 3.04

Lmna NM_001002011.2 GO:0014706 striated muscle tissue development 4.03

Lmna NM_001002011.2 GO:0042692 muscle cell differentiation 4.69

Lmna NM_001002011.2 GO:0051146 striated muscle cell differentiation 7.05

Lmna NM_001002011.2 GO:0055001 muscle cell development 4.57

Lmna NM_001002011.2 GO:0060537 muscle tissue development 5.35

Lmna NM_001002011.2 GO:0061061 muscle structure development 4.28

Gpx3 NM_008161.2 GO:0006518 peptide metabolic process 2.16

Gpx3 NM_008161.2 GO:0006749 glutathione metabolic process 2.25

Gpx3 NM_008161.2 GO:0042743 hydrogen peroxide metabolic process 2.18

Gpx3 NM_008161.2 GO:0044106 cellular amine metabolic process 2.14

Gpx3 NM_008161.2 GO:0072593 reactive oxygen species metabolic process 2.38

doi:10.1371/journal.pcbi.1003314.t001
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[66]. The positions of Thr-535 and Ser-537 in NM_013472.4

compared to NM_001110211.1 make NM_013472.4 more likely

to undergo phosphorylation [65]. The fold changes on GO-terms

related to phosphorylation by our function prediction algorithm

supported the conclusion from the structural comparisons. The

fold change for peptidyl-serine phosphorylation for NM_013472.4

was 3.5 compared to 1.9 for NM_001110211.1. Re-searching

the mass-spectrometric data with phosphorylation on Serine

or Threonine (Phospho (S) and Phospho (T)) as potential residue

modification, yielded a peptide ‘DQAQEDAQVAAEILEIAD

TPSGDKTSLETR’ (found only in NM_013472.4) with

3281.506 daltons as the mh (calculated peptide mass plus a

proton) indicating potential phosphorylation [67]. In contrast, the

peptide that matched the spliced region in NM_001110211.1

(residues ‘VAAEIL’ are missing in this peptide) did not show any

phosphorylation. These observations further supported our

predictions. In addition, the overall function enrichment showed

the smaller isoform, NM_001110211.1 as involved in biological

processes related to cell adhesion and cell migration, whereas the

longer form is predicted to be involved in localization. It

is important to emphasize the fact that our computational

predictions based on RNA-seq data alone were able to pick up

the differences between these two isoforms with 99% sequence

identity and predict distinct functions for the isoforms. These

findings suggest that our approach can solve the pressing need of

isoform function differentiation, which would be invaluable for a

better understanding of the diversity of functions created by

alternative splicing of a limited set of genes.

Discussion

Gene functions are delivered through alternatively spliced

transcript isoforms that encode proteins of different functions. It

is highly beneficial that the investigation of functions is carried out

Figure 7. Predicted functions for isoforms of CDKN2a and their predicted protein structures. A. Gene model for NM_001040654.1 and
NM_009877.2. B. Predicted functions for NM_001040654.1 and NM_009877.2. C. The computationally modeled structure of NM_001040654.1 is
characterized by five ankryin repeats. D. The modeled structure of NM_009877.2 has a CDKN2a N-terminus domain.
doi:10.1371/journal.pcbi.1003314.g007
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at the isoform level. From this point of view, the standard gene

function prediction paradigm has a major drawback in that it

considers a gene as one single entity without differentiating its

isoforms. The availability of transcript-level expression data from

RNA-seq provides a rich resource for addressing this drawback.

However, algorithmically, any supervised learning algorithm de-

veloped for gene function prediction cannot be directly applied to

isoform function prediction because of the lack of isoform-level,

‘ground-truth’ functional annotations.

To address this challenge, we developed an iterative algorithm

that predicts functions at the individual isoform level by

conceptualizing a gene as a ‘bag’ of isoforms of potentially

different functions. Our key idea is to iteratively extract the

common pattern of a subset of isoforms across the positive genes of

the function under investigation, aiming at maximizing the

coherence within this subset of isoforms and the discriminative

power against the other ‘negative’ genes (genes not related to the

specific function under consideration).

Through experimental validation, we demonstrated that our

approach in combination with publicly available RNA-seq data is

capable of differentiating isoform functions, promising better and

deeper understanding of gene functions. RNA-seq data are the

richest resource for genome-wide, isoform-level data so far. But the

basic concept is extendable to other large-scale datasets providing

isoform-level information, such as protein domain data and post-

translational regulation datasets. These datasets are not included

in this study due to their strong overlap with the ‘Gold-Standard’

gene ontology annotations, which might lead to a circularity

problem in evaluating our algorithms. Furthermore, our study

only focuses on the base learner SVM. However, our approach is

highly extendable to other modeling methods, such as logistical

regression and random forests.

Our study is limited to the incomplete isoform catalog

maintained by NCBI, but it can be readily updated whenever

the genome annotation of isoforms is updated. Additionally,

alternatively spliced isoforms often show tissue-specific expression

and functions [23,27,68–71]. Our generic algorithm does not yet

take the tissue-specific functionality into consideration. We expect

that more accurate and biologically meaningful isoform function

prediction could be achieved if tissue specificity were taken into

account. As a result, our validation carried out in breast tissue is

only used to validate the ‘generic’ functions of the isoforms. Recent

studies found that the same principal isoform is often present in

different tissues [72–75]. We expect that tissue-specific functions

can be validated in corresponding tissues when these tissue-specific

predictions can be made. Our study is further limited by the

current technology to assign isoform-level expression values, as

well as the differential capability between platforms for capturing

isoform-specific expression. We used Cufflinks in the Tuxedo suite

[32], one of the state-of-the-art algorithms, to estimate the isoform-

level read counts and achieved good performance. However, if

more advanced algorithms are developed, our algorithm could

directly utilize the estimates from those algorithms and generate

isoform function predictions.

Our approach represents a novel and generic strategy to look at

gene functions at a higher resolution. Cross-validation, literature,

and experimental analysis of proteomic data provided evidence

that our algorithm is powerful in differentiating isoform functions.

Broadly speaking, the genomic data integration field typically

relies on the supervised learning concept, which cannot generate

predictions for spliced isoforms, e.g., predicting gene-disease

association and gene regulatory networks. We envision that

similar concepts will be developed for generating isoform-level

models for these prediction tasks.

Methods

Pre-processing public RNA-seq datasets
We downloaded 811 RNA-seq experiments for the mouse from

the NCBI sequence read archive (SRA) database as of May 1,

2012 [30]. These datasets represent different conditions and

tissues. Heterogeneity of the datasets allowed us to look at the

isoform expression variations across different conditions and

tissues. Because datasets are heterogeneous in terms of library

preparation procedures and sequencing platform (Dataset S1), we

adopted the following processing and filtering pipeline to ensure

that all datasets included in the final predictions have sufficient

coverage. NCBI build 37.2 reference genome was downloaded

from the TopHat homepage, and BOWTIE2 [76] index files were

created by bowtie2-build software. For each RNA-seq dataset,

short reads were aligned against the NCBI Mus musculus reference

genome (Build 37.2) using TopHat v2.0.051 [32,34]. The

reference GTF annotation file from NCBI (build 37.2, download-

ed from TopHat homepage) was given to TopHat and the no-

novel-juncs option was used. With this option, TopHat creates a

database of splice junctions indicated in the supplied GTF file and

maps the previously unmapped reads against the database of these

junctions to create an estimate of isoform expression levels. Then

we used Cufflinks v2.0.0 [32] to measure the relative abundances

of the transcripts using normalized RNA-seq fragment counts

[32,35]. The unit of expression levels is Fragments Per Kilobase of

exon per Million fragments mapped (FPKM). To ensure data

quality and overall coverage, we removed those experiments with

less than 10 million reads or with less than 50% reads being

successfully mapped to the genome. The above procedure resulted

in 365 experiments used in our study. Genes detected in less than

half of the experiments were removed. After filtering these poorly-

covered genes, there are 19209 genes left with a total of 24274

isoforms. Distribution of the number of isoforms per gene is

included in Figure S4. FPKM values were log2-transformed;

missing values were approximated with a value of ‘‘-15’’.

Assembling gene-level gold standard functional
annotations

We constructed gold standard gene functions using the Gene

Ontology (GO) database [48,77]. For each biological process term,

we treated the genes which are annotated to that GO term and any

of its descendent terms as positives and others as negatives. We

maintained all GO evidence codes. The sources of these annotations

include (1) hand annotation from primary literature, (2) electronic

annotation based on gene name and symbols, (3) annotation from

SwissProt keywords and (4) Enzyme Commision (EC) numbers [78].

These annotation sources are reasonably accurate for our analysis.

Mathematical definition and solution of the isoform
function prediction problem

As stated in the Results section, the isoform function prediction

problem is a Multiple Instance Learning problem. Since the

introduction of MIL by [79] for the drug activity prediction,

several methods to solve this problem have been proposed in the

literature. In [80], the authors introduced the concept of Diversity

Density, whose aim is to find a point in feature space that has a

high Diverse Density. This means high density of instances from

positive bags and low density of instances from negative bags.

Additionally, Ray and Page [81] proposed the method multiple-

instance regression. Their algorithm assumed that each bag has a

witness instance and treated it as a missing value; then the EM

(Expectation-Maximization) method was used to learn the witness

instances and do the regression simultaneously. Ramon et al. [82]
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utilized the Neural Network technique on Multiple Instance

Learning and proposed the Multiple Instance Neural Network.

Finally, Andrews et al. [51] applied the Support Vector Machines

to Multiple Instance Learning.

In this paper, we chose to use a method that utilizes the Support

Vector Machine. Two different approaches have been proposed to

solve the MIL problem using SVM. The first tries to impute all

non-witness instances in positive bags as negative examples and

then considers the problem as a supervised learning problem. The

second tries to identify a single witness from each positive bag

which is responsible for positive label. Then, a classifier is built

based on these witnesses only, while other instances are dropped

out of the classification process. SVM formulations of these two

approaches are labeled mi-SVM and MI-SVM by Andrews et al.

[51]; we implemented and tested several alternatives of these

algorithms.

Without loss of generality, we assume that the ith gene with m

isoforms is denoted as Xi~fxi1,xi2,:::,ximg,xij[X~Rd . The

corresponding class label yi is set to 1 if the gene is annotated to

the function under consideration and 0 if not. For each gene, we

hypothesize that if a gene is annotated to a function, at least one of

its isoforms should be annotated to the function; if a gene is a

negative example used in training, none of its isoforms can be

annotated to the function, i.e.,

yi~
1 , if Aj s:t: yij~1

0 , if for Vj yij~0

�
ð1Þ

Then, the mi-SVM formulation of MIL can be written as

follows

Subject to :

min
fyijg

min
w,b,j

1
2

wk k2
zc

P
i,j

jij

Sw,xijTzb
� �

§ 1{jij , Vi if yij~1

Sw,xijTzb
� �

ƒ{1zjij , Vi if yij~0

jijw0

ð2Þ

In the standard classification setting, the labels yij of the isoform xij

would be given; however, in equation (2) labels of isoforms that belong

to a positive gene are treated as unobserved hidden integer variables.

Therefore, the soft-margin criterion is maximized jointly over

hyperplanes and over all possible label assignments. The algorithm

is looking for a separating hyperplane such that all isoforms of negative

genes are in the negative half-space, whereas there is at least one

isoform from every positive gene in the positive half-space. Meantime,

the margin is maximized with respect to the selected labels.

Alternatively, in the MI-SVM formulation, the definition of

margins is extended to bag-level. Margin of a bag with respect to a

separating hyperplane can be defined as the maximum margin of its

instances. In the case of positive bags, bag margin is defined by the

most positive instance, whereas, for negative bags, the bag margin is

defined by the least negative instance. Using this definition of bag

margin, the MI-SVM formulation can be written as follows:

Subject to :

min
s(i)

min
w,b,j

1
2

wk k2
zc

P
i,j

jij

Sw,xis(i)Tzb
� �

§ 1{jij , Vi if yij~1

Sw,xijTzb
� �

ƒ{1zjij , Vi if yij~0

jijw0

ð3Þ

where yi takes the form yi~sgn max
j

Sw,xijTzb
� �

and s(i) is the

selector variable that denotes the isoform selected as witness

from each positive gene. Note that, for the mi-SVM formulation,

every instance in a positive bag has an effect on the margin

maximization equation, whereas, in the MI-SVM formulation, only

one instance per positive bag is taken into account, because this

instance alone will determine the margin of the bag.

Finding the optimum solution to (2) and (3) is a combinatorial

optimization problem, which cannot be found efficiently with the

state-of-the-art tools. Therefore, we approximated the solution by

using the following optimization heuristics which is proposed by

Andrews et al. [51]. Both formulations of MIL explained above can be

considered as mixed-integer problems. In the mi-SVM formulation,

instance margin is maximized over hidden labels of instances in

positive bags, whereas, in the MI-SVM formulation, bag margin is

maximized over selector variable, which selects a single witness from

every positive bag. Optimization heuristic uses the fact that, given

these integer variables, the problem reduces to a quadratic

programming problem which can be solved exactly. The optimiza-

tion heuristic includes two steps: (i) for a set of given integer variables

(i.e. hidden labels in mi-SVM and selector variable in MI-SVM),

solve the soft-margin maximization problem and find the optimal

separating hyper-plane, (ii) for a given separating hyper-plane, update

all integer variables so that they maximize the objective locally. These

two steps are run iteratively until integer variables are not updated

anymore in step (ii). The following workflow explains this optimiza-

tion heuristic further in detail for both formulations.

(1) Initialization: Initially, we assign all instances (isoforms) in

positive bags (genes) as positives, i.e.,

yij~
1 , if yi~1

0 , if yi~0

�
ð4Þ

where yi = 1 if the gene is annotated to the function under

consideration, and yi = 0 if otherwise.

(2) Loop:

(2.1)(2.1) Model building: construct a maximum margin classifi-

cation model using positive and negative instances. Using this

model, we calculate a prediction score for all instances

(including those instances in positive bags which are not

‘‘witnesses’’) in the training set.

(2.2)(2.2) Integer variable updating:

In the mi-SVM formulation, instances in each positive bag are

assigned to a label based on prediction score calculated in the

previous step. One can choose different thresholds for scores

to partition instances into positive and negative classes. Here,

we investigated following three thresholds and chose the

second threshold, since it gave the best performance

(Figure 2)

(i) (i) The first threshold is equal to the mode of the distribution

of scores from negative instances in training set.

(ii) (ii) The second threshold is equal to the 75% percentile of

scores of all negative instances in training set.

(iii) (iii) The third threshold is equal to the maximum score of

negative instances in the training set.

These three thresholds represent different degrees of strictness

for assigning labels. The first threshold is the least strict; it

assigns most of the instances from positive bags as positive,
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whereas the third threshold is the most strict, generally leaving

only one positive instance in every positive bag.

In the MI-SVM formulation, we chose only the instance with

the maximum score in each positive bag as the ‘‘witness’’; the

remaining instances from this bag are not assigned to any

class. (i.e. dropped out of the margin calculation).

Note that in mi-SVM every instance in positive bags is

assigned to either positive or negative, but in MI-SVM only

one instance per positive bag is assigned positive and other

instances from the same bag are discarded.

(2.3)(2.3) Stop criterion checking: When the assignment of integer

variables does not change anymore (i.e. label assignments

of instances in positive bags for mi-SVM, witness selector

variable for MI-SVM), or the assignment of integer variables

reverts to one of the assignments in previous iterations, go to

Step (3); otherwise go back to step (2.1).

(3) Ending iteration: use the model built in the last iteration to

predict all instances. At the gene level, the score of each gene

is assigned as the maximum score of all its isoforms.

Estimation of probability score for isoforms using
bootstrap bagging

For every function, we need to assign each isoform a score no

matter whether the gene that the isoform belongs to has an

annotation or not. We therefore used bootstrap bagging to estimate

the probability that an isoform is associated with a specific biological

process. Essentially all genes are sampled with replacement (0.632

bootstrap) to construct a training set. The scores of the held-out set

are recorded and the process is iterated 30 times. For each isoform,

the final score is assigned with the median across all iterations.

Proteomic data processing
Functions of splice variants must eventually be delivered at that

protein level. To test whether the predicted differential functions

are correct, we compiled the data from LC-MS/MS of normal

mammary tissue [83]. The original study reported that normal

tissues were harvested from 5 normal mice, processed into tissue

lysates and pooled. The pooled sample was digested by trypsin for

mass spectrometric analysis. The mzXML files were searched

against our modified ECgene database for alternative splice

variant analysis using X!Tandem [84].

Web implementation
All prediction results are stored in MySQL databases and

delivered through a searchable website: http://guanlab.ccmb.

med.umich.edu/isoPred.

Supporting Information

Dataset S1 Input RNA-seq dataset description.
(XLSX)

Dataset S2 Five-fold cross-validation results.
(TXT)

Dataset S3 Separated evaluation for genes annotated
with multiple isoforms and a single isoform.

(TXT)

Dataset S4 Comparison between expressed splice var-
iant in the normal breast cell sample and predicted
‘functional’ isoforms.

(XLSX)

Figure S1 Differences between the traditional gene
function prediction problem and the isoform function
prediction problem. We use maximum margin as a base

learner to illustrate the differences between a traditional

classification problem for gene function prediction and our

scheme for predicting isoform functions. A. Traditionally, a gene

is treated as one single entity. The positive examples, defined as

genes annotated to a specific function, are separated from the

negative examples (other genes) by an SVM classifier. B. A single

gene may contain several isoforms of which only some carry out

the function under investigation. Genes here are considered as

‘bags’, each of which may contain one to several isoforms, defined

as ‘instances’. A positive gene must have at least one of its isoforms

carrying out the function under consideration. None of the

isoforms of a negative gene can carry out the function under study.

The hyperplane trained to separate the positive isoforms and

negative isoforms must satisfy the above criteria.

(TIF)

Figure S2 Comparison of gene-level prediction perfor-
mance resulting from gene expression data (dashed
green) and isoform expression data (solid blue). For each

GO term-specific gold standard, we developed models using gene-

expression data with standard SVM and isoform-expression data

with our prediction framework, respectively, and compared their

precision recall curves. Shown here are six representative

examples, where significant improvements were achieved when

using isoform-expression data and our iterative learning strategy.

(TIF)

Figure S3 Precision recall curve comparison between
single-isoform genes (dashed green) and multiple-iso-
form genes (solid blue) for some GO terms.

(TIF)

Figure S4 Histogram of number of isoforms per gene
according to NCBI annotation file (build 37.2). This figure

shows only multi-isoform genes, single-isoform genes are excluded.

(TIF)

Table S1 Example isoform groups that are predicted
with differential functions.

(DOCX)
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