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Abstract

Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has
often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is
always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by
experiment remains a challenging task, due to high expense of time and resources. Many computational methods are
therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that
the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the
data in Connectivity Map (CMap). Thus, unknown ligands of a certain target can be found from the compounds showing
high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we
objectively evaluate how well each target is characterized by CMap. The results suggest that (1) some targets are better
characterized than others, so the prediction models specific to these well characterized targets would be more accurate and
reliable; (2) in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help
increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study,
CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving
data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the
success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing
research productivity towards valid drug repositioning and minimal side effects.
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Introduction

Drug promiscuity refers to the phenomenon that small

molecule drug binds to multiple protein targets. In recent years,

drug promiscuity has gained broad attention [1–3], because

unintended drugs-target interactions (DTI) are often associated

with drug repositioning [4] and side effects [5–8]. Although

biotechnology evolves and new biochemical assays arise [9,10],

it remains time-consuming and expensive nowadays to exper-

imentally discover unknown DTI, especially when multiple

compounds and proteins are simultaneously involved. This

situation therefore provides a strong incentive to develop new

computational methods, which could screen potential DTI with

high throughput and low cost.

By binding to targets with complementary structures, drug

molecules profoundly modify the behavior of downstream genes

and lead to specific reactions. Along this route of drug action,

various biological informations could be correlated to target

binding and be analyzed with computational models. For example,

methods have been established to predict DTI by ligand/protein

structures [11–16] and clinical side effects [17]. On the other

hand, although there are researches addressing drug-induced

target expression [18], it has been rarely studied that drug-induced

downstream gene-expression changes may directly indicate target

promiscuity, thus missing a possible technique of DTI discovery.

Here we suppose that drugs binding to specific target are generally

prone to influencing the target-related downstream genes [19,20],

so the pattern of gene-expression change could reflect the

characteristics of target binding (Figure 1A). One of the most

reliable and comprehensive sources of drug-induced genomic

expression data is the Connectivity Map (CMap), which includes

6100 human cell cultures (i.e. 6100 CMap ‘instances’) treated by

1309 bioactive compounds [21]. We initiatively found that drugs

interacting with the same target generally lead to similar gene-

expression profiles in CMap. This observation enlightened us to

apply CMap expression similarity as a guilt-by-association metric,
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that high similarity between different drugs may imply interactions

to the same target (Figure 1B)

However, one of the major impediments of CMap data analysis

is so-called ‘batch effect’ [22], i.e. cells under the same culture

condition lead to highly similar expression patterns, even if they

are treated by totally different compounds. In order to overcome

the batch effect and make CMap data reflect more signal than

noise, a variety of new protocols are successively developed

[18,22–24], suggesting the importance of this issue. In order to

adjust batch effect as well as keep the integrity of CMap data, we

implemented here a novel method to bridge the gap between

different batches upon homogeneous drug treatments. Comparing

adjusted data with original CMap, we saw that our adjustment

procedures lead to improved efficiency of connecting drugs with

common protein targets, which solidly facilitated the discovery of

potential DTI.

Results/Discussion

Adjusting the batch effect in CMap data
In order to accurately predict DTI with gene-expression

profiles, we primarily improved the reliability of CMap data.

Ideally, the gene-expression profile of each CMap instance should

be solely determined by the bioactivity of treating compound. But

the signal is confounded by batch variation, which makes the gene-

expression profiles of different batches much less comparable.

Iskar et al. [18] used a ‘mean-centering’ method to remedy the

batch effect, but at the cost of abandoning many instances in small

batches. To present a complete evaluation of CMap based DTI

discovery, we therefore developed a novel method that not only

overcomes batch variation but also retains all instances (Text S1,

Figure S1 and Table S1). We hypothesize that if two instances

belonging to different batches are treated by the same drug, the

drug action should be homogeneously reflected in two gene-

expression profiles, so their difference should be mainly attributed

to batch variation. Based on this hypothesis, we select the instances

treated by the same drug as ‘bridges’ between two batches, so

batch variation is estimated by the difference between bridge

instances (see Methods). If the estimated quantity of batch

variation is added to the original gene-expression profiles, two

different batches could be, in a sense, regarded as derived from the

same cell culture and merged into one (Figure 2A).

To bridge the batch variation across all CMap instances, we

primarily selected 10 big batches (with not less than 30 instances

each) that share a variety of bridge instances (Table S2 and Table

S3). These 10 big batches are merged together, then other batches

are further merged via bridges and so on (Figure 2B and Text S2).

Finally, all 6100 instances of 302 batches are unified into an

adjusted dataset (freely available upon request).

Across different cell lines and treatment dosages, the instances

treated by the same compound are collectively considered, that the

fold changes of gene-expression are averaged to obtain a single

‘synthetic expression profile’ for each compound. To measure the

gene-expression similarity between two different compounds, we

calculated the Bridge Adjusted Expression Similarity (BAES, see

Methods) by using a protocol similar as the Gene Set Enrichment

Analysis (GSEA) algorithm described in the original CMap publica-

tion [21]. In a total, 856,086 BAES scores were calculated across all

1309 CMap compounds. In the same way, we also calculated the

gene-expression similarity for original (unadjusted) CMap data.

Figure 1. The principle of DTI prediction based on gene-
expression information. (A) Ligand-binding modifies the biological
functions of protein target, a series of target-related downstream genes
are then influenced. Thus, we suppose that variant ligands binding to
the same target should influence some downstream genes in common.
This hypothesis is corroborated by the fact that drugs sharing common
targets result in similar gene-expression profiles in CMap. (B) We
therefore applied CMap expression similarity as a guilt-by-association
indicator of potential drug-target interactions. If one compound has no
recognized interaction with one certain target but shows high
expression similarity to the ligands of that target, it may imply
undiscovered drug-target interaction.
doi:10.1371/journal.pcbi.1003315.g001

Author Summary

Small drug molecules usually bind to unintended off-
targets, leading to unexpected drug responses such as
side effects or drug repositioning opportunities. Thus,
identifying unintended drug-target interactions (DTI) is
particularly required for understanding complicated drug
actions. It remains expensive nowadays to experimentally
determine DTI, so various computational methods are
developed. In this study, we initiatively demonstrated that
target binding is directly correlated with drug induced
genomic expression profiles in Connectivity Map (CMap).
By improving data quality of CMap, we illustrated three
important facts: (1) Drugs binding to common targets
show higher gene-expression similarity than random
compounds, indicating that upstream ligand binding
could be characterized by downstream gene-expression
change. (2) It is found that some targets are better
characterized by CMap than others. To guarantee efficien-
cy of DTI discovery, prediction models should be specif-
ically built for those well characterized targets. (3) It is
broadly observed in the predicted DTI that ligands for the
same target may collectively interact with common off-
target. This observation is consistent with published
experimental evidence and can help illustrate the mech-
anisms of unexplained drug reactions. Based on CMap, our
work established an efficient pipeline of identifying
potential DTI. By extending the success in CMap to other
genomic data sources, we believe more DTI would be
discovered.

Predict Drug-Target Interactions Only via cMAP
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The correlation between DTI and gene-expression
profiles

We assess the efficacy of CMap adjustment by evaluating the

correlation between BAES and well-known drug-target interac-

tions. DrugBank database, so far, is one of the most acknowledged

sources of drug target information [25]. We therefore mapped the

drugs enrolled in DrugBank to the CMap compounds, obtaining

2084 interactions between CMap compounds and 731 DrugBank

targets.

We expect that drugs binding to common target result in higher

pairwise similarity in gene-expression profiles than random

compounds. And it is observed that the BAES significantly

outperforms the unadjusted expression similarity [26], in terms of

scoring compound pairs that share at least one target in DrugBank

(Figure 3). This test corroborates that after batch effect adjustment,

CMap expression profiles would better characterize the genomic

reactions of ligand binding. Thus, BAES could be used as a guilt-

by-association metric to detect potential drug-target interactions,

that drugs show high BAES may interact to the same target.

The efficiency of CMap based prediction models
To demonstrate the genuine power of CMap based DTI

prediction, we adopted a type of naı̈ve model without any fitting

process. For a given target, its designated ligands recorded in

DrugBank are defined as ‘benchmarks’. Given the correlation

between DTI and gene-expression similarity, we expect the true

ligands to show higher BAES to benchmarks than random

compounds do. Thus, the likelihood of DTI can be measured by

the average BAES between a candidate compound and a series of

benchmark ligands (Figure 4A), that higher BAES should indicate

higher ‘likelihood of interaction’ (LOI, see Methods).

This model is applied to each human protein target, and the

performance is evaluated with leave-one-out cross validation

(LOOCV) (see Methods). Taking peroxisome proliferator-activat-

ed receptors gamma (PPAR-c, encoded by PPARG gene) as an

example, the 9 PPAR-c ligands enrolled in CMap are set as

benchmarks. All 1309 CMap compounds, including the bench-

mark ligands (positive set) and other compounds (negative set), are

ranked by LOI in LOOCV. Two criteria are used to determine

whether DTI is effectively characterized by BAES. Primarily, the

area under receiver operating characteristic (ROC) curve should

be high and robust. Additionally, the benchmark ligands should be

particularly enriched in the drugs with high LOI, thus ensuring the

practicability of detecting hidden ligands from the top-ranked

drugs. We therefore calculated the 95% confidence interval of area

under curve (AUC) [26] and the odds ratio of positive set

enrichment. In the above example of PPAR-c, we can see that

Figure 2. The rationale of batch effect adjustment. (A) The expression profile (denoted as variable E) in CMap is mainly determined by drug
action (component d) and batch effect (component b). While the cell condition may vary from batch to batch, the drug action is relatively consistent.
Thus, if batch X and Y include cell cultures treated by the same drug (e.g. drug B), these two drug B related expression profiles reflect homogenous
drug action but heterogeneous cell condition. So their difference (denoted as D) reflects the variation between batch X and Y. By adding D to
expression profiles in batch Y, the batch variation is adjusted and the two batches are merged into one. (B) Among the batches with 30 instances or
more, we find 10 of them linking to each other by various bridge drugs. Primarily, we merged these 10 batches into a new one. Then other batches
sharing bridge drugs with this new batch are further merged to form an even bigger batch. This bridging procedure is repeated until all batches are
adjusted.
doi:10.1371/journal.pcbi.1003315.g002

Predict Drug-Target Interactions Only via cMAP
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most benchmark ligands of PPAR-c show relatively high LOI,

leading to robust ROC curve and significant enrichment of

positive set (Figure 4B).

For most tested targets (72 out of 78, accounting for 92%), the

benchmark ligands are distinguished from other CMap com-

pounds (i.e. AUC.0.50), suggesting the general efficiency of

BAES model. On the other hand, examining the robustness of

ROC curve and the benchmark enrichment in top-ranked drugs,

we find that individual targets are differentially characterized by

CMap (Figure 5 and Data S1). The well characterized targets

with robust ROC curve (i.e. the lower bound of AUC

confidence interval is over 0.50) and significant benchmark

enrichment (i.e. the p-value is less than 0.05) are more likely to

be found among neurotransmitter receptors, ion channels,

nuclear receptors and cyclooxygenases. Such distinction of

performance indicates that the ligands binding of some targets,

but not others, can particularly result in extensive and intensive

changes at mRNA level, which is exactly detectable in CMap.

So instead of building a universal model to predict interactions

across all drugs and targets, we suggest that specified models

should be established for individual targets (especially the targets

well characterized by CMap), in order to increase the chance of

detecting true DTI.

Further attempts to improve DTI prediction
Besides the well characterized targets, we found that a variety of

targets (such as some neurotransmitter receptors, several calcium

ion channels and monoamine oxidases etc.) also exhibit high odds

ratio of benchmark enrichment, but not high significance level

(Data S1). These observations could be attributed to the limited

number of enrolled benchmark ligands (i.e. a small positive set). As

a result, the power of Fisher’s exact test is impaired, due to too few

true positive and false negative samples. For example, serotonin

receptor HTR1B showed even better ROC curve than the well

characterized target HTR1A, but could not pass the significance

test (Figure S2).

This suggests that the sufficiency of benchmark ligands

information is critical to the robustness and reliability of CMap

based DTI prediction. We therefore look forward to translating

Figure 3. Receiver operating characteristic (ROC) curve is used
to evaluate the performance of BAES score and unadjusted
CMap expression similarity. For the classification between com-
pound pairs sharing target (positive set) or not (negative set), the area
under curve for BAES and unadjusted CMap is 0.66 and 0.59,
respectively. The advantage of BAES is verified with 2000 replicates of
bootstrap test, by the pROC package for R (http://cran.r-project.org/
web/packages/pROC/).
doi:10.1371/journal.pcbi.1003315.g003

Figure 4. The rationale and performance of DTI prediction model. (A) If a target has its ligand-binding well characterized by CMap, we
expect the potential ligands to show higher BAES to benchmark ligands (red colored connections) than random compounds do (grey colored
connections), i.e. the LOI of ligands should excel the overall background of CMap. (B) For the cross validation of PPAR-c, the area under ROC curve
reaches 0.86, with the 95% confidence interval (i.e. the grey colored shape) ranging from 0.74 to 0.99. The LOI corresponding to 90 percent specificity
is set as the threshold to discriminate positive and negative sets. Thus, only 10 percent of the negative set is above the threshold, i.e. there would be
130 false positive (FP) and 1170 true negative (TN) compounds. Meanwhile, 67 percent of the positive set is above the threshold, so there would be 6
true positive (TP) and 3 false negative (FN) compounds. The statistical significance of such enrichment (odds ratio = 18) is determined by Fisher’s exact
test (p = 7.3161025).
doi:10.1371/journal.pcbi.1003315.g004

Predict Drug-Target Interactions Only via cMAP
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the success in CMap into other large-scale genomic expression

data resources (such as Gene Expression Omnibus [27] built

by NCBI and classified data submitted to FDA by drug

developers [28]) or high-throughput data derived from

individual studies [29]. Since the data variation brought by

the difference of experiment conditions can be effectively

adjusted with appropriate computational methods (e.g. BAES),

we believe that many external data could turn to be

comparable to CMap profiles [30]. Then expression profiles

of additional ligands (not enrolled in CMap) can be further

used as benchmark ligands, in order to improve the DTI

prediction models.

From drug-target interactions to target-target
interactions

By using the CMap based model, the compounds showing high

LOI to particular target are identified, thus providing drug-target
pairs with potential interactions. We notice that in some cases, the
designated ligands of one certain target tend to collectively interact

with another specific off-target (Figure 6A). For instance, the
designated ligands of opioid receptor OPRD1 generally exhibit
high LOI to calcium channel CACNA1C (Figure 6B), even if

OPRD1 and CACNA1C have no DrugBank ligands in common
(i.e. they are ‘distant targets’). This phenomenon indicates that the

ligands of some targets, as a whole, are likely to share common

Figure 5. The performance of LOOCV suggests that at mRNA level, the genomic reactions of ligands binding differ dramatically
from target to target. Here all the targets are displayed in several families, according to their functional origins. The height of each bar represents
the AUC level (and 95% confidence interval). And the color of each bar indicates the significance level of benchmark ligands enrichment.
doi:10.1371/journal.pcbi.1003315.g005

Predict Drug-Target Interactions Only via cMAP
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off-targets. Upon the term of ‘drug-target interactions’, we define

such interactions between one target and a family of ligands for

another target as ‘target-target interactions’.

As a unique output of CMap based model, target-target

interactions are broadly observed across the DrugBank targets

(Figure 7A & Data S2), some of which are consistent with previous

experimental and clinical evidences. So unlike sporadic drug-

target interactions, the target-target interactions are not just

proposing individual cases of drug promiscuity, but providing

explanations as to complicated actions that prevail in a family of

drugs.

For instance, the designated ligands of neurotransmitter

receptors generally showed high LOI to the cardiac ion channels

(Figure 7B). Cardiac ion channels, present in the membranes of

cardiac cells, control the movement of ions across membranes and

determine the rate of heartbeat. Modification of these ion channels

by drugs can bring about fatal arrhythmias [31]. On the other

hand, the major ligands of neurotransmitter receptors are

antipsychotic drugs, which are intended to selectively act on

central nervous systems. However, as a whole, antipsychotics

showed profound association with risk of arrhythmias [32].

Although previous studies have found a few direct interactions

between individual antipsychotics (e.g. pimozide, haloperidol and

sertindole etc.) and several ion channels [33–35], the mechanisms

for antipsychotics induced cardiotoxicity remain unclear. Such

target-target interactions in CMap suggest that the promiscuous

interactions may not be limited to only a handful of antipsychotics

and ion channels, but prevalent across many of them. In a

systematic view [36], even moderate disturbance to multiple ion

channels can add up to fatal impact, while it can be hardly

explained by any single ion channel. Therefore, to understand the

detailed mechanisms of drug induced cardiotoxicity, the binding

affinities towards a variety of cardiac ion channels are recom-

mended to be addressed.

Another example is the target-target interactions concerning

with cyclooxygenases (PTGS1 and PTGS2, also known as COX-1

and COX-2). The ligands of cyclooxygenases are largely

nonsteroidal anti-inflammatory drugs (NSAIDs), which are

expected to relieve inflammation and pain. On the other hand,

the NSAIDs are surprisingly reported to reduce cancer risk, by

indirectly influencing carcinogenesis pathways [37]. However, the

NSAIDs exhibit high LOI to estrogen receptors (targets for breast

cancer drugs) in CMap based models (Figure 7C and Figure S3),

suggesting that the anti-cancer activity of NSAIDs may also be

attributed to direct interactions with anti-cancer drug targets.

Consistent with our discovery, a recent study has initiatively

identified an NSAID (i.e. diclofenac) targeting estrogen receptors

[15]. Thus, we expect more hidden ligands for estrogen receptors

to be found from NSAIDs, leading to a new prospective of anti-

cancer drug development.

Major discoveries and further efforts
In the present study, several important facts are initiatively

discovered. First of all, we demonstrate that drug-induced gene-

expression changes are directly correlated with ligand binding, and

can be used solely to predict drug target. By adjusting the batch

variation, CMap expression similarity can be used as the only

indicator of DTI, which provides another cost-effective way of off-

target identification. We therefore developed a prediction model,

based only on gene-expression profiles. This model is suitable for

those studies based only on limited information, such as the studies

without large-scale gene network or expensive animal model.

Secondly, we find that not all targets are equally characterized

in CMap, i.e. ligands binding to different targets would disturb the

expression of different genes. Thus, unlike many one-size-fit-all

methods interested in predicting all kinds of DTI, we prefer the

target-specific models based on benchmark ligands. Especially for

a series of well characterized targets, the ligands are proved to be

highly predictable.

Finally, besides proposing sporadic hidden ligands or off-targets,

researchers are paying more attention to integration of groups of

drugs. For example, Iorio et al. [24] have integrated drugs into

communities with similar mode of action, so as to find drugs acting

on unexpected pathways. Similarly, we used CMap based model to

specifically identify collective interactions between multiple drugs

and targets (i.e. target-target interactions). This can help explain the

reactions of not individual drugs but drug families, and increase the

productivity of studies on drug repositioning and side effects [38].

Figure 6. Identifying of target-target interactions by gene-expression similarity. (A) In some cases, the ligands of one target may generally
show high LOI to another distant target. (B) The OPRD1 ligands (positive set) collectively show higher LOI to CACNA1C than other compounds
(negative set). Setting the LOI corresponding to 90 percent specificity as threshold, we find that all OPRM1 ligands are above the threshold
(p = 1.0861025).
doi:10.1371/journal.pcbi.1003315.g006

Predict Drug-Target Interactions Only via cMAP
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Meanwhile, we are acutely aware that more effort should be

made by learning from other CMap based studies related to the

DTI issue. Primarily, DTI discovery is a very complicated problem

that requires analyses of various types of information. In a recent

study, Iskar et al. [39] have successfully identified a series of

transcriptional modules by combining CMap with microarray

data of rat models. These transcriptional modules then contribute

to a better understanding of drug repositioning and identification

of therapeutic targets. Following this example, we plan to further

combine our model with other drug-related information (e.g.

chemical-protein interactome [8,40]), thus improving the power

of CMap and the efficiency of DTI prediction. In addition,

although our current work is focused on drug-target binding, it is

well known that the impact of DTI has to be carried out through

downstream biological pathways. As an example, Iorio et al. [24]

have used CMap expression profiles to identify drugs acting on

unexpected pathways. Enlightened by this study, we would

extend our target prediction model to the level of downstream

pathways, so as to better understand the biological implications of

off-targets.

Figure 7. A summary of the highlighted potential target-target interactions. (A) The profile of target-target interaction is visualized with a
matrix, in which each row and column represents a target and a family of ligands, respectively. The color of each cell represents the significance level
of related target-target interaction. If a pair of targets are known to share ligands in DrugBank, their interaction (grey colored) would not be
considered. (B) Potential interactions are broadly observed between antipsychotic drugs and cardiac ion channels. (C) & (D) The ligands of COX-1
(p = 3.0861023) and COX-2 (p = 1.0261023) generally show high LOI to estrogen receptor beta (i.e. ERb).
doi:10.1371/journal.pcbi.1003315.g007

Predict Drug-Target Interactions Only via cMAP
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Taken together, we expect our model, along with other related

works, can provide a full range of solutions to transcriptomic data

analysis for researchers with different interests. By activating

CMap and other transcriptomic data sources, gene-expression

information would be readily integrated into DTI discovery

pipelines in subsequent studies.

Methods

Normalization of batch variation in CMap expression
profiles

The raw data of expression change fold in CMap is downloaded

from CMap website (http://www.broadinstitute.org/cmap/). Sup-

pose two different batches (say batch A and B) have n (n.0) pairs of

instances treated by the same drug (i.e. bridges). For one certain

gene, the expression change fold in the i-th bridge is designated as

E(A,i) and E(B,i) in two batches, respectively. Taking all n pairs into

consideration, we calculated the average variation of gene-

expression profile between two batches in the logarithm form as

D~

Pn

i~1

½log2(E(A,i)){log2(E(B,i))�

n

According to this quantified variation value, the expression of all

instances (not limited to bridge instances) in batch B are

transferred into

ET
(B,i)~2 ^ ½Dzlog2(E(B,i))�

which approximates the change fold as if the instances are derived

from cell cultures in batch A. And for all the 22,283 genes

quantified by CMap microarray platform, the batch variation is

bridged one gene after another, following the above procedures.

As two different batches are merged into one, the merged new

batch is again bridged with other batches and so on, until all

CMap batches are adjusted. The data after adjustment as well as

the R code can be downloaded at http://cpi.bio-x.cn/cmap/

adjusted.zip

BAES score calculation
By merging batches and combining instances treated by the

same compound, we obtained a synthetic expression profile for

each of the CMap compounds. The 22,283 genes are then ranked

by fold change, that the most up-regulated genes are ranked at top

and down-regulated at bottom. Every compound is in turn

selected as reference, whose top and bottom ranked 250 genes are

used as signature to query all compounds by GSEA algorithm. A

pair of drugs, say drug A and B, could have two similarity scores,

one score by querying B with A’s signature and the other score in

opposite. The BAES is defined as the average value of these two

scores. Following the same procedure, we also calculated the

similarity score with the original unadjusted CMap data to make a

comparison.

Naı̈ve model measuring the likelihood of potential drug-
target interactions

Given the direct correlation between drug-target binding and

BAES score, we assume that the likelihood of a candidate

compound (symbolized as C) binding to a specific target

(symbolized as T) can be reflected by the overall expression

similarity between the compound C and designated ligands of the

target T. Suppose target T has N ligands enrolled in CMap, the

likelihood of C interacting with T is estimated as follows

LOI~

PN

i~1

BAESi

N

where BAESi represents the BAES score between the compound C

and the i-th designated ligand of target T.

Performance of leave-one-out cross validation
We perform leave-one-out cross validation to evaluate how well

each target is characterized by CMap. Each CMap compound,

including benchmark ligands and background drugs, serves as test set

in turn, and all other compounds as training set. The LOI of the

compound in test set is determined by its average BAES score to the

benchmark ligands in training set. Then the benchmark ligands

(positive compounds) and other CMap compounds (negative com-

pounds) are classified by LOI, whose performance is illustrated with

ROC curve. The 95% confidence interval of area under ROC curve is

computed by the pROC package [26] for R environment (http://

www.r-project.org/), with 2000 replicates of bootstrap test. The LOI

corresponding to 90 percent specificity is set as the threshold to

discriminate positive and negative compounds. The enrichment for

benchmark ligands above threshold is calculated as an odds ratio (OR):

OR~(TP|TN)=(FP|FN)

in which TP, TN, FP and FN represent true positive, true

negative, false positive and false negative samples, respectively.

To assess the statistical significance of enrichment, we performed

Fisher’s exact test based on the 2 by 2 contingency table

corresponding to the four factors of odds ratio. To ensure the

efficiency of bootstrapping and statistical test, the evaluation is

confined to a total of 78 DrugBank human protein targets with at

least 5 designated ligands enrolled in CMap.
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Figure S1 BAES and DIPS for drug pairs sharing ATC code.

(DOC)

Figure S2 (A) HTR1A and HTR1B corresponds to 23 and 10

ligands enrolled in CMap, respectively. As 9 ligands are shared by

both targets, the HTR1B ligands can almost be regarded as a subset

of HTR1A ligands. (B) HTR1B shows not only better area under

ROC curve (AUC), but also better enrichment odds ratio (OR) than

HTR1A. However, due to the limited number of designated ligands

for HTR1B, the statistical power of Fisher’s exact test is impaired

and the significance of enrichment could not be confirmed.

(DOC)

Figure S3 Besides estrogen receptor beta, the ligands of COX-1

(A) and COX-2 (B) also show significantly high LOI to estrogen

receptor alpha (i.e. ERa), although ERa has not been confirmed

as a well characterized target in CMap.

(DOC)

Table S1 The comparison between BAES and DIPS.

(DOC)

Table S2 The 302 CMap batches are merged in 6 stages.

(DOC)

Table S3 The bridge drugs shared by 10 big batches. If a bridge

drug is used in multiple treatments (e.g. tanespimycin corresponds
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to 4 instances in all 10 batches), all possible instances-instance pairs

are used as bridge to calculation batch variation.

(DOC)

Text S1 The difference between BAES and DIPS.

(DOC)

Text S2 The scenario of CMap batch bridging.

(DOC)

Data S1 Cross validation performance of individual targets.

(XLS)

Data S2 Target-target interactions measured by the significance

level of ligands enrichment. Target pairs known to share ligands in

DrugBank are marked with dash (–)

(XLS)
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