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Abstract

For cells to function, the concentrations of all proteins in the cell must be maintained at the proper levels (proteostasis). This
task – complicated by cellular stresses, protein misfolding, aggregation, and degradation – is performed by a collection of
chaperones that alter the configurational landscape of a given client protein through the formation of protein-chaperone
complexes. The set of all such complexes and the transitions between them form the proteostasis network. Recently, a
computational model was introduced (FoldEco) that synthesizes experimental data into a system-wide description of the
proteostasis network of E. coli. This model describes the concentrations over time of all the species in the system, which
include different conformations of the client protein, as well as protein-chaperone complexes. We apply to this model a
recently developed analysis tool to calculate mediation probabilities in complex networks. This allows us to determine the
probability that a given chaperone system is used to mediate transitions between client protein conformations, such as
folding, or the correction of misfolded conformations. We determine how these probabilities change both across different
proteins, as well as with system parameters, such as the synthesis rate, and in each case reveal in detail which factors control
the usage of one chaperone system over another. We find that the different chaperone systems do not operate
orthogonally and can compensate for each other when one system is disabled or overworked, and that this can complicate
the analysis of ‘‘knockout’’ experiments, where the concentration of native protein is compared both with and without the
presence of a given chaperone system. This study also gives a general recipe for conducting a transition-path–based
analysis on a network of coupled chemical reactions, which can be useful in other types of networks as well.
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Introduction

Protein homeostasis (proteostasis) is essential for the viability

of an organism. The disruption of protein homeostasis involving

the misfolding and subsequent aggregation of proteins is

implicated in many diseases, including Down’s syndrome,

type-II diabetes, Alzheimer’s, Parkinson’s and Huntington’s

disease [1–4]. In addition, inherited mutations that lead to

excessive degradation of proteins can lead to loss-of-function

diseases, such as cystic fibrosis and Gaucher disease [2,5]. Thus,

in every living cell, a system of chaperones – called the

proteostasis network – has evolved to help proteins fold, correct

or clear misfolded protein, and prevent (or even reverse) the

formation of protein aggregates.

Proteostasis networks can be broken down into chaperone

subsystems (such as the Hsp60, Hsp70 and Hsp90 systems in

eukaryotes) [4], and these systems can be studied individually.

Much work has focused on cataloguing the proteins that are clients

of these different chaperone systems, and examining their

structural features [6–9]. The molecular mechanisms of interac-

tion of chaperones with client proteins in each system has been

studied [10–15]. Data from experiment has been synthesized into

theoretical models, which describe the passage of client proteins

through a given chaperone system [16–18].

However, different chaperone systems do not operate in

isolation in vivo. Most chaperone activity relies on the consumption

of ATP, which is derived from a shared source. Also, chaperones

can have more than one function; DnaK in prokaryotes can bind

both to unfolded or misfolded protein in order to prevent

aggregation, or it can help prepare aggregates for binding to

another chaperone, ClpB, for disaggregation. Complicating

matters is that proteins are not selective in the chaperone system

to which they bind: it has been shown that there is significant

overlap in the sets of client proteins whose solubilities increase

under the action of different chaperone groups [19]. Furthermore,

experimental studies have shown the synergistic action of multiple

chaperone groups [9,19,20]. Thus, chaperones form complex

networks of interaction in the cell. This motivates a holistic,

systems-based approach, in which experimental data from a

variety of contexts is synthesized to study the proteostasis network

in its entirety.

This is precisely the goal of FoldEco [21]: a recently presented

tool that describes the proteostasis network in Escherichia coli.

FoldEco synthesizes previously established models of various

chaperone systems into a single network of reactions, whose rates

are parameterized using experimental data. Dynamics on the

FoldEco network describe the synthesis, folding, unfolding,

misfolding, aggregation and degradation of a client protein, as
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well as the passage of the client protein through three chaperone

systems, which work to correct misfolded structures, prevent

aggregation and maintain a population of functional native

protein. The FoldEco program uses a set of initial conditions

and reaction rates to propagate the concentrations of the different

species in the network forward in time. However, lost in this

approach is the ability to track the trajectories of single molecules,

which would allow us to answer fundamental questions such as:

how often is a given chaperone system used to get from one point

in the network to another?

We have developed a network analysis technique that quanti-

tatively determines mediation probabilities in complex networks

(i.e., how often a state A is found on transition paths from B to C).

This analysis was previously used to detect hub-like activity in

protein configuration space networks, and was referred to as ‘‘hub

scores’’ [22,23]. Here, we show how mediation probabilities can

be calculated from the output of the FoldEco program by

constructing transition matrices for states of the client protein. We

show that these probabilities can provide insight into proteostasis

networks by revealing how often different competing pathways,

involving different chaperone systems, are used to connect

different regions of the network, such as the misfolded and

unfolded states of the client protein. For client proteins, we choose

four characteristic biophysical protein profiles based on the Monte

Carlo results of Powers et al [21], which demonstrate a range of

characteristic behaviors. We calculate the relative probabilities of

taking transition paths through each chaperone system for the four

different protein types, and demonstrate how these probabilities

change as a function of system parameters, such as the protein

synthesis rate, and the total chaperone concentration.

Results

Four characteristic protein profiles
In the FoldEco model, there are a large number of parameters

that can be adjusted in order to more accurately describe the

activity of a particular protein. As exploring this entire parameter

space is infeasible, in Powers et al. [21] a subset of six variables

were chosen, and the resulting six-dimensional space was explored

using a large number of points chosen by Monte Carlo sampling.

The six variables comprise folding rate constants (kf and Kf ),

misfolding rate constants (km and Km), and well as two parameters

that control the aggregation propensity of the protein (Ccrit and

ka). We instead study a small number (four) of proteins in depth,

which are chosen to demonstrate a range of preferences for the

different chaperone systems. Using the results of the Monte Carlo

study, Powers et al. determined biophysical profiles of optimal

substrate proteins for the GroELS system while the KJE system is

present, and vice versa. They were chosen based on the percent

increase of native concentration upon the addition of either the

GroELS or the KJE chaperone system (in the presence of the

other). We choose parameters from the distributions of the optimal

GroELS and KJE substrates to define two of our client proteins.

As the optimal GroELS substrates characteristically showed slow

folding rates, we refer to the GroELS protein as ‘‘Slow Folder’’.

Similarly, the optimal KJE substrates characteristically show high

misfolding rates, and we refer to the KJE protein as ‘‘Bad Folder’’.

We also define a protein using the average biophysical profile of

a set of proteins that were found to aggregate at a low synthesis

rate (0:02 mM=s) [21]; we refer to this protein as ‘‘Aggregator’’.

Finally, a fourth protein is defined using values of the six

parameters that are intermediate between the three proteins

defined so far. Since these values are close to the default values

given by the FoldEco program, we refer to this protein as

‘‘Default’’. The values of these 6 parameters are given for each of

the four proteins in Table 1.

Correcting misfolded states
Using mediation probabilities, we determine how often certain

transition pathways are used between two given states in the

FoldEco network. An overview of the network is given in Figure 1,

and more information on its construction and the FoldEco model

is given in Methods. In this section, we study how the network

corrects misfolded states (M?U transitions in Figure 1). With all

three chaperone systems active, there are five distinct transition

paths possible from the misfolded state to the unfolded state. These

transitions are: direct, GroELS-mediated, KJE-mediated, B+KJE-

mediated, and degradation followed by re-synthesis. We study how

often these pathways are visited as a function of synthesis rate. As

the synthesis rate increases, correcting misfolded states becomes

increasingly important if aggregation is to be prevented. The

Table 1. Biophysical profiles of the four characteristic
proteins.

km(s{1) Km kf (s{1) Kf ka(mM{1s{1) Ccrit(mM)

Default 1 100 0.1 10000 0.1 0.1

Slow Folder 1 0.1 0.02 300000 0.4 1

Bad Folder 1 200 0.1 20000 1 2

Aggregator 10 40 0.1 20000 10 0.01

Values are chosen from distributions of optimal substrates given in Powers et al.
[21], as described in the main text. km and Km are the rate and equilibrium
constant for misfolding, respectively. Larger values of km indicate faster
misfolding (U?M), and larger values of Km indicate more stable misfolded
states. kf and Kf are the rate and equilibrium constant for folding, respectively.

Larger values of kf indicate faster folding (U?N), and larger Kf values indicate

more stable native states. ka is the aggregation rate, and Ccrit is the critical
concentration for aggregation, which controls the disaggregation rate as
kdisagg~kaCcrit . Larger values of ka indicate faster aggregation, and larger Ccrit

indicates lower stability of the aggregated states.
doi:10.1371/journal.pcbi.1003324.t001

Author Summary

To maintain proper amounts of folded, functional proteins,
cells use systems of chaperones to correct misfolded
proteins, disassemble aggregates, and provide sheltered
environments in which proteins fold to their native
structure. Typically, an individual system is studied in
isolation, and its effects on a given protein are studied
using ‘‘knockouts’’, where the amount of native protein is
compared with and without the active chaperone system.
However, when multiple chaperone systems are operating
simultaneously, knockouts can fail to reveal chaperone
activity, as different chaperone systems can compensate
for one another. We use a previously introduced compu-
tational model of chaperone systems in Escherichia coli, in
combination with our transition-path analysis methods for
networks, to analyze paths of individual proteins through
the set of possible chaperone-bound and -unbound states.
Our analysis allows us to answer questions that are
inaccessible to knockout experiments, such as: How often
will a given chaperone system be used to rescue a protein
from a misfolded state? This approach provides a clear
view of how the different systems of chaperones cooper-
ate and compete under varying conditions.

Analysis of the E. Coli Proteostasis Network
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synthesis rate is controlled through the ribosome activation rate

(rate constants si,3 and si,4 in Powers et al. [21]), which takes on the

values of 0:001,0:002,0:005 and 0:010s{1, resulting in synthesis

rates of 0:020,0:039,0:094 and 0:175 mM=s, respectively.

We initialize the simulation with no client protein, and a fixed

concentration of chaperone species (given in Table 2). The

simulation is stopped at t~10000 s and the concentrations at that

time are used to construct the rate matrix used for analysis as

described in Methods. We found that after 10000 s, the native

protein concentrations have reached equilibrium and the protein

dynamics are approximately steady state in systems that do not

feature runaway aggregation.

The relative pathway probabilities for the four characteristic

proteins are shown in Figure 2. The Default, Bad Folder, and

Aggregator proteins show similar behavior: at low synthesis rate,

the clearance of misfolded protein is mostly governed by the KJE

system, and this responsibility is shifted gradually to the B+KJE

system as the synthesis rate increases. This is expected, since the

KJE and B+KJE systems produce unfolded protein, via similar

mechanisms, from misfolded and aggregated protein, respectively.

More aggregated protein is present at higher synthesis rates, which

causes the fraction of misfolded protein cleared by B+KJE to

increase (Figure S1 shows native, unfolded, misfolded and

aggregated protein concentrations). We test this hypothesis by

comparing the ratio of activity of the KJE and B+KJE systems

with the ratio of the concentrations in the misfolded and

aggregated states (Figure 3). The ratio w~P(KJE)=P(BzKJE)
can be fit to the function w~mx, where x is the ratio of the

concentration of misfolded and aggregated protein. This is

consistent with the hypothesis that the relative probability of the

two pathways is governed by the relative concentrations of their

starting points. The proportionality constant, m~0:0223, indi-

cates that if the concentration ratio of misfolded to aggregate

protein is 100 : 1, then the KJE pathway (from M to U) is

preferred over the B+KJE pathway by a factor of about 2:2 : 1.

The crossover from the KJE pathway to the B+KJE pathway is

shifted to lower and lower synthesis rates as we move from Default

to Bad Folder to Aggregator. This can be explained by the ka

values of the three proteins: 0:1,1 and 10 mM{1s{1, respectively.

For a given synthesis rate, the relative population of aggregates

grows with larger ka, which would lead to increased usage of the

B+KJE system, as shown in Figure 3.

The Slow Folder protein shows markedly different behavior.

The highest probability M?U pathway is the GroELS system,

and the probabilities are roughly constant as a function of synthesis

rate. As the Slow Folder protein was chosen as the ideal client for

the GroELS system, this is not surprising, but the question remains

as to specifically why the GroELS pathway is favored. The main

entries from the misfolded state into the KJE and GroELS systems,

respectively, are the KT : M (misfolded protein associated with

ATP-bound DnaK) and GrLT : M (misfolded protein associated

with ATP-bound:GroEL) states. As such, we compare the

entrance rates into these states from the misfolded state at the

lowest synthesis rate (Figure 4a). Although the entrance rate into

the GroELS cycle is about 25% higher for Slow Folder as

compared to the others, this is not sufficient to explain the drastic

difference in path preference shown in Figure 2. Figure 4b shows

committor probabilities starting from the KT : M and GrLT : M
states. These are the probabilities of reaching the unfolded state

before the misfolded state given a starting point in either KT : M
or GrLT : M, and are computed from the TA0B0 matrices

described in the Methods section ‘‘Getting mediation probabili-

ties’’, where states A and B in this context are the misfolded and

unfolded states. For Slow Folder, transition paths from GrLT : M

have a much higher likelihood of reaching the unfolded state (92%)

as compared with the other three proteins (1{5%). This is due to

the fast M?U transitions in the GroEL cavity (the rates of which

are set to be the same in solution), equal to km=Km~0:01,0:005
and 0:25 for the Default, Bad Folder and Aggregator proteins

respectively, and km=Km~10 for the Slow Folder protein.

Figure 4b also reveals why the KJE pathway is favored for the

other proteins. Although the entrance rate into the GroELS cycle

is higher than the KJE cycle, the committor probability of

reaching the unfolded state is 3 to 14 times higher for KJE. This

underscores the importance of folding kinetics to the efficiency of

the GroELS cycle.

These results give different information than a more conven-

tional ‘‘knockout’’ analysis wherein a particular chaperone system

is disabled and the effects on a particular observable is measured –

usually either representative of the concentration of native species,

or the concentration of aggregated species. To demonstrate this we

choose a particular protein and synthesis rate for analysis that is

particularly interesting: the Default protein at a ribosome

activation rate of 0:010 s{1. As shown in Figure 2, at this

synthesis rate the Default protein uses the chaperone systems

GroELS, KJE and B+KJE with approximately equal probability.

We then study this protein with the GroELS system knocked out,

achieved by setting the initial concentration of GroEL and GroES

to zero. The native, unfolded, misfolded and total aggregate

concentrations at t~10000 s are shown in Figure 5a. We see that

the native concentration is approximately unchanged, and the

amount of aggregated species is still negligible (the percent of

insoluble protein is 0:0015% and 0:0168% with and without

GroELS, respectively), indicating that knocking out the GroELS

system would not result in a measurable change in the observables

corresponding to the native species or aggregated species

concentrations.

Figure 5b shows the contributions to the M?U flux by the

GroELS, KJE and B+KJE chaperone systems both with and

without the GroELS system present. We see that the absence of

the GroELS system is more than compensated for by an enhanced

contribution of the B+KJE system. Even though the GroELS

system is used to clear over 30% of the misfolded protein under

these conditions, its removal had no effect on the native state

concentration. This example highlights the advantages of using a

transition-path based analysis over knockout experiments when

multiple chaperone systems are present. It is also interesting to see

that the contribution along the KJE pathway also decreased as

GroELS is removed, even though the concentration of its starting

state (the misfolded state) increased. This is because the B+KJE

pathway uses the chaperones DnaK, DnaJ and GrpE, leaving a

lower concentration available for the KJE pathway.

In order to see if binding affinities can govern chaperone

preferences, we vary the binding rates to the chaperones DnaK

and GroEL and observe the impact on the relative probabilities of

each chaperone pathway. The coefficients are varied using a

multiplicative factor D. When D~1, we recover the binding rates

used above (which are 1 mM{1s{1 for X to KT : X, 10 mM{1s{1

for X to GrL:X, and 1 mM{1s{1 for X to GrLT : X, where X is

either U or M). The GroEL binding rates are multiplied by D, and

the DnaK binding rates are divided by D, which allows D to act as

a tuning variable that encourages usage of either the KJE or the

GroELS chaperone systems. In Figure 6a, we use the Default

protein at the lowest ribosome activation rate (0:001 s{1), which

has a natural preference for the KJE pathway. As D increases, the

pathway preference smoothly switches from KJE to GroELS,

crossing over between D~2 and D~5. In Figure 6b, we use the

Slow Folder protein at the lowest synthesis rate, which has a

Analysis of the E. Coli Proteostasis Network
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preference for the GroELS pathway. As D decreases (from right to

left), the KJE probability initially increases, and then decreases for

Dv0:1. This behavior is counter-intuitive: why would increasing

the DnaK binding rate discourage usage of the KJE pathway?

Figure 6c demonstrates that even though the binding rate

increases with decreasing D, the committor probability from

KT : M to the unfolded state decreases. This is due to the

decreasing concentration of free DnaJ, which is spent by the

formation of KT : U : J2 and KD : U : J2 complexes which can

result from unproductive binding of unfolded protein to DnaK

Figure 1. Network of client states in the proteostasis network of E. coli. The size of each node is proportional to the logarithm of its
concentration after running the FoldEco model with a given set of parameters (the ‘‘Default’’ protein, at 10000 s, and a synthesis rate of 0:020 mMs{1,
see Section ‘‘Four characteristic protein profiles’’ for more information). The nodes are colored to highlight the different chaperone systems in the
network. Colons placed between two, three or four species denote complexes, and the special notation ‘‘GrLd:{X,Y}:GrS’’ denotes a protein in the X
state bound in the cis ring of the GroEL/GroES complex, and a second protein in the Y state bound in the trans ring. As these states are separated into
two, depending on whether we are tracking the X, or the Y protein (see Section ‘‘Extracting a rate matrix’’), we denote the resulting two states as
GrLd:{X,y}:GrS and GrLd:{x,Y}:GrS, with the capitol letter marking which protein molecule we are tracking. For simplicity, aggregates of all sizes are
denoted here by A, although in practice each aggregate size from 2 to 100 here is given a unique state. There are reversible transitions between
aggregates of size n and size nz1, which are not shown here. A� denotes an aggregate that has been prepared for ClpB binding, and Lon : U�

denotes that the protein is now committed to degradation.
doi:10.1371/journal.pcbi.1003324.g001

Analysis of the E. Coli Proteostasis Network
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(Figure S2). Nevertheless, substantial switching of path preferences

can again be achieved by adjusting the binding affinities by a

factor between 2 and 5. This suggests, for the M to U transition,

that relative usage of the two chaperone systems can be controlled

through modest adjustments of the relative binding affinities to the

two chaperones.

GroELS-mediated folding
We now study mediation of the U?N (or folding) transition.

This is less complicated than the M?U transition in that there

are only two possible pathways: direct and GroELS-mediated. We

construct an analytical model of GroEL-mediated folding in

supplemental file Text S1. The performance of the GroELS

chaperone system depends on both the capacity of the system

(quantified by the concentration of total GroEL and total GroES),

and the demands on the system (quantified by the concentrations

at the entry points to the GroEL system – the unfolded and

misfolded states). We study the percentage of GroELS-mediated

folding trajectories as a function of the system capacity over the set

of four proteins, each of which have different system demands.

Figures 7a–d show the pathway flux through the GroELS

system (solid bars) as well as the direct flux (transparent bars) from

the unfolded state to the folded state. The total concentrations of

GroEL and GroES are varied together by a multiplicative factor

ranging from 0:1 to 1 (plotted on the horizontal axes), where 1
results in the concentrations used in the previous section. For all

four of the proteins, both the absolute and percentage usage of the

Table 2. Chaperone concentrations.

Conc. (mM)

Ribosomes 20

Trigger factor 20

DnaK 30

DnaJ 1

GrpE 15

GroEL 42

GroES 35

Lon 0.3

ClpB 1.8

These chaperone concentrations were previously obtained by Powers et al. [21]
using geometric averaging of reported experimentally measured values. Note
that in Section ‘‘GroELS-mediated folding’’ the concentrations of GroEL and
GroES are reduced by multiplying by a factor between 0:1 and 1.
doi:10.1371/journal.pcbi.1003324.t002

Figure 2. Probability breakdowns of M?U pathways. The relative pathway probabilities are studied as a function of synthesis rate for the four
characteristic proteins examined here. ‘‘dir’’ labels the direct M?U flux, and ‘‘deg’’ labels the M?U flux occurring by degradation followed by
resynthesis. The biophysical profiles for the four proteins are given in Table 1.
doi:10.1371/journal.pcbi.1003324.g002

Analysis of the E. Coli Proteostasis Network
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GroEL-mediated folding pathway goes down with decreasing

total GroEL concentration. For three of the proteins (Default,

Slow Folder, and Bad Folder, shown in panels a, b and c,

respectively), this decrease is mostly compensated for by an

increase in usage of the direct pathway. Of these, Slow Folder

has the largest decrease in total folding flux, resulting in a

decrease in native yield of 15%, while Default and Bad Folder

have decreases in native yield of 3:4% and 3:0%, respectively.

The compensation for lack of GroEL folding flux occurs by

accumulation of unfolded protein that would otherwise enter the

GroELS system (as the direct folding flux is given by kf ½U �)
(Figure 7e). Therefore, GroEL is not needed for folding, but

these proteins will take the GroEL pathway (almost exclusively)

if it is available. As the compensation for the lack of GroELS

occurs by building up population in the unfolded state, we note

that without the GroELS system these proteins will be more

vulnerable to degradation, and we expect to see a stronger

dependence of native protein yield on GroELS at higher

concentrations of the protease Lon.

In contrast, the folding flux for the Aggregator protein is highly

dependent on the available concentration of GroEL. This is

because the GroEL system acts as a ‘‘holder’’ to keep proteins

from aggregating, and the extra unfolded protein resulting from its

removal does not accumulate, but is transferred to the misfolded

state, and subsequently aggregates. The Aggregator protein can

thus be seen as a ‘‘class-III substrate’’ in that the total folding flux

(and thus the concentration of the native state) is dependent on the

availability of GroEL [7]. The other three proteins (Slow Folder,

Default and Bad Folder) can be seen as ‘‘class-I’’ or ‘‘class-II

substrates’’ of the GroEL system (see Text S1), in that they do not

strictly require the GroELS system to fold. It is striking that the

Slow Folder protein is not a ‘‘class-III substrate’’, even though it

was parameterized to be an optimal substrate of the GroELS

system. We note that this is done using parameters at a lower

synthesis rate. At this higher synthesis rate, the GroELS system

primarily serves to rescue proteins from aggregation, as opposed to

degradation, and as such the optimal clients of the GroELS system

misfold and aggregate easily [21]. The biophysical profiles of top

GroELS substrates in the presence of KJE at this synthesis rate are

similar to that of the Aggregator protein (see Figure S4B of Powers

et al. [21]).

It is important to note that the simulations conducted here only

take into account one client protein at a time, whereas in vivo, there

are about 250 different proteins that act as GroELS substrates,

which compete to bind to a shared pool of GroELS chaperones

[7]. It is then easy to see how competition can arise between class-

I/II and class-III substrates, as strong-binding class-I/II substrates

would lower the effective concentration of total GroEL, reducing

the yield of class-III substrates without increasing their yield of

native protein. There should thus be an evolutionary drive to

increase the binding affinity of class-III substrates in comparison to

class-I/II substrates. In Text S1 we examine whether increasing

the GroEL binding affinity for the Aggregator protein can

compensate for lower concentrations of GroEL chaperone, and

we find that it cannot. This underscores the importance of

increasing binding affinity from the perspective of inter-protein

competition.

Figure 4. In-depth analysis of M to U transitions. (a) Comparison
of transition rates from the misfolded state into the KT : M state (in the
KJE system) and the GrLT : M state (in the GroELS system), for all four
model proteins. (b) Comparison of committor probabilities from the
KT : M and GrLT : M states to the unfolded state. In other words,
these are the probabilities that, starting from either KT : M or
GrLT : M, the unfolded state will be reached before the misfolded
state.
doi:10.1371/journal.pcbi.1003324.g004

Figure 3. Comparison of the ratios of populations of the KJE
and B+KJE pathways from M to U with the concentrations in
the misfolded and aggregate states. The points are computed
from all proteins at all synthesis rates for which the concentration in the
aggregate state (and hence the population of the B+KJE pathway) is
greater than zero. The solid line is the best fit to the function w~mx,
with m~0:0223+0:0004, where w~P(KJE)=P(BzKJE), and x is the
ratio of the concentration of misfolded and aggregated protein.
doi:10.1371/journal.pcbi.1003324.g003

Analysis of the E. Coli Proteostasis Network
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Discussion

We have used transition path analysis in combination with the

FoldEco program to study the proteostasis network in E. Coli. The

analysis reveals features of the network dynamics that are

undetectable by observing concentrations of network components

alone. For the misfolded to unfolded transition, we find that the

usage of the KJE vs B+KJE systems depends mostly on the relative

concentrations of the misfolded and aggregated states. We also

observe that the efficiency, and hence the pathway probability, of

the GroELS cycle depends mostly on folding kinetics of a client

protein within the GroELS cycle. If the folding kinetics within the

GroEL-GroES chaperone complex are the same as in bulk, in

order for the GroELS system to increase native yields, either the

degradation or aggregation processes need to be competitive with

folding. We have also shown that modest adjustments in the

binding affinities to the two chaperones DnaK and GroEL can

control which chaperone system is used to correct misfolded states

at a given synthesis rate.

This study serves as a proof of principle that a transition path

analysis can be applied to proteostasis-type networks with little

complication. We expect that this analysis will become more

valuable as networks become larger and more interconnected,

since the behavior of the transition paths will become less intuitive.

The computational cost of the analysis is dominated by

multiplications of matrices that are approximately size 2n by 2n,

where n is the number of states in the network. Although matrix

multiplication scales as n3, GPU architectures allow fast multipli-

cations of large matrices (a two-GPU cluster can multiply matrices

at a speed of 920 GFlop=s [24], hence matrices of size 100000 by

100000 can be multiplied on a two-GPU cluster in about

40 minutes). This would make the analysis presented here feasible

on networks up to about 50000 states with current hardware. For

larger networks, rather than multiply matrices it would be easier to

generate a large number of ‘‘psuedo-trajectories’’ using the state-

to-state transition probabilities, and calculate mediation probabil-

ities directly from the trajectories, as done in our previous work

[23].

Mediation probabilities would be extremely challenging to

measure experimentally, since they would rely on the tracking of

single molecules in vivo. For instance, to determine the relative

fraction of GroELS-, KJE- and B+KJE-mediated misfolded to

unfolded transitions, one would need to distinguish between

misfolded, unfolded, GroELS-bound, DnaK-bound and aggregat-

ed states in real time. However, even without verifying the

mediation probabilities directly, the overall proteostasis network

model can be verified by comparing the concentrations of species

in the model with those from experiment over a range of system

parameters (as is done for firefly luciferase in Powers et al. [21]).

This prescribes a complex synergy between theory and experi-

ment, where experiment is first used to parametrize the reactions,

theory is used to construct a network, experiment then used again

to validate the network, and theory used again for the network

analysis described here.

Methods

Background: Proteostasis in E. coli
There are four main chaperone systems acting to maintain

proteostasis in E. coli. The first is the Hsp70-like system, consisting

of chaperones DnaK, DnaJ and GrpE (the KJE system). DnaK has

a hydrophobic pocket that preferentially binds to unfolded

peptides with exposed stretches of *7 hydrophobic residues

[9,12]. Bound peptides can be locked in through the motion of a

helical lid domain that is closed by the hydrolysis of bound ATP,

which is regulated by the binding of co-chaperone DnaJ. After

DnaJ unbinds, the binding of GrpE catalyzes ADP release, and

subsequent ATP rebinding results in lid opening and release of the

peptide. Because the protein is kept unfolded throughout the cycle,

the KJE system can allow misfolded, aggregation-prone proteins to

return to an unfolded state. A large part of the E. coli proteome (at

least 700 proteins) binds to DnaK [9], making the KJE system

extremely important in preventing aggregation [4,25].

The second is the Hsp60-like GroEL/GroES chaperonin system

(GroELS), which is the only chaperone system that is absolutely

necessary for the viability of an E. coli cell [26]. GroEL exists as

two stacked seven-membered rings which form a cylindrical

complex that is capable of encompassing a single protein, acting as

an infinite-dilution cage. GroES forms a single seven-membered

ring that acts as a cap to the cylinder, enclosing the protein. It has

been shown that enclosure within the GroEL:GroES complex can

increase folding rates [27], although the chaperonin system works

to prevent aggregation even when folding kinetics are unchanged.

The unbinding of the GroES cap is mediated by allosteric ATP

binding, and occurs after *10 seconds [4], which gives the

peptide time to fold in a sterically-confined environment that is

Figure 5. Effects of GroELS knockout on M to U transitions. (a) The concentration at 10000 s of the native, unfolded, misfolded and total
aggregated species both with and without the GroELS system for the Default protein at a ribosome activation rate of 0:010 s{1 . Although the
network with GroELS knocked out has higher concentrations of unfolded and misfolded protein, it keeps approximately the same native state
concentration. (b) Pathway flux from the misfolded to the unfolded state through the three chaperone systems both with and without the GroELS
system. We see that the absence of GroELS is more than made up for by enhanced usage of the B+KJE system.
doi:10.1371/journal.pcbi.1003324.g005
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isolated from other misfolded copies of the peptide that encourage

aggregation. Discharged protein that is not folded can be rapidly

rebound, and consequently many proteins are known to undergo

many GroELS cycles before folding [27–29]. GroEL binds to a

wide variety of proteins, comprising at least 10 to 15% of cytosolic

proteins under normal growth conditions [6]. An in vitro study by

Kerner et al. shows that of about 250 proteins that interact with

GroEL, about 85 are absolutely dependent on the chaperonin

system to fold [7]. However, a more recent study has shown that

only 49 of these are strictly dependent (or ‘‘obligate’’) on GroELS

in vivo [8].

The KJE system can also cooperate with the AAAz Hsp104-

like chaperone ClpB to pull monomers from amorphous

aggregates (the B+KJE system) [11,13–15,25]. ClpB is an

oligomeric, ring-like machine that uses the energy from ATP

hydrolysis to exert mechanical force on protein aggregates. Both

DnaK and DnaJ are used to prepare aggregates for ClpB which

then can extract monomers from the aggregate [30]. Two

mechanisms have been proposed for the disaggregation mecha-

nism of ClpB: one in which ClpB acts as a ‘‘crowbar’’ to break

apart an aggregate [13], the other in which ClpB threads a single

monomer through a central pore [14].

The last chaperone is trigger factor, which can bind to

translating polypeptides and protect them from aggregation

[7,19]. As trigger factor only acts as a holder chaperone, trigger-

factor–bound states cannot act as intermediates on transition paths

between the major client protein states (e.g. native, unfolded,

misfolded). We thus exclude trigger factor from our transition path

analysis, and focus on the first three chaperone systems mentioned

above.

The FoldEco model
The FoldEco program was recently introduced to study the

proteostasis of a client protein. It describes, in a holistic fashion,

the synthesis, folding, misfolding, aggregation, degradation and

recovery of misfolded and aggregated proteins through the KJE,

GroELS and B+KJE chaperone systems. It uses coupled kinetic

equations that evolve a particular set of initial conditions (which

are the concentrations of each species in the system) forward in

time, using reactions that are parameterized from in vitro

experimental data.

In Figure 1 we show the network of client protein states used

here. The nodes in the network are particular configurations of a

single protein molecule, and mostly describe the formation and

destruction of complexes with different chaperones in the

proteostasis network. This can be compared with Figure 1 of

Powers et al [21], where there is more information about the

nature of the transitions, but does not explicitly include all of the

connections between client states. We note that FoldEco also

describes reactions that do not involve the client protein, such as

the binding and unbinding of ATP from DnaK. We omit these

from Figure 1 since they are not part of the network of client states.

To simplify our analysis, we also connect the processes of

degradation and re-synthesis through a ‘‘null’’ state. This does

not affect our results, and allows us to examine the steady-state

dynamics of a single protein traversing the network.

The rate constants for the transitions between the states in this

network are determined from a large body of experimental

literature. In theory these rate constants can be tailored in a

protein-specific fashion to more accurately connect with experi-

ment, although for simplicity we fix all but six rate constants, and

the values for these fixed constants are given in Table S4 of Powers

et al [21]. The same table also describes the initial concentrations

of the chaperone species used here, which are reproduced in

Table 2.

Although FoldEco is a powerful tool for synthesizing experi-

mental data, there are some simplifications used by the model that

Figure 6. Switching path preferences using binding factors. A
multiplicative factor D is used to simultaneously modify GroEL and
DnaK binding rates for unfolded and misfolded protein. The GroEL-
binding rates used here are multiplied by D, and the DnaK-binding rates
are divided by D. (a) The Default protein at low synthesis rate prefers
the KJE pathway at D~1, but this preference is shifted to favor the
GroELS pathway at high D values. (b) The Slow Folder protein at low
synthesis rate prefers the GroELS pathway at D~1, and this preference
is only partially shifted to favor the KJE pathway at low D values. (c)
Although the transition rate into the KJE pathway increases with
decreasing D, the committor probability (the probability of reaching the
unfolded state before returning to the misfolded state) decreases,
causing the nonmonotonic behavior in (b).
doi:10.1371/journal.pcbi.1003324.g006
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affect our analysis. Firstly, it does not account for the effect of

bacterial growth, which would lead to the dilution of proteins as

they are being synthesized. One effect of this is that steady-states

reached by FoldEco tend to have much larger concentrations of

protein than are observed in experiment. Thus, in our analysis we

do not analyze the networks at steady-state, we instead choose a

common analysis time for each system (t~10000 s). FoldEco also

does not take into account the presence of the background

proteome, and does not describe competition for binding to

chaperones. Above, we study this competition indirectly by

Figure 7. GroELS-mediated protein folding. (a–d) The pathway flux through GroELS (solid bars) is shown as well as the direct U?N folding flux
(transparent bars), for different concentrations of GroEL chaperone. The concentration of total GroEL is varied by a multiplicative factor ranging from
0:1 to 1. ½TotalGroEL�0 , the reference value of GroEL chaperone, is equal to 42 mM, which is the value used in Section ‘‘Correcting misfolded states’’.
The concentration of GroES is varied along with GroEL by the same multiplicative factor, where ½TotalGroES�0 equals 35 mM. Panels (a–d) show data
for the Default, Slow Folder, Bad Folder and Aggregator proteins respectively, with the colors corresponding to the legend of panel (f) (e) The
concentration of unfolded protein at the evaluation time (t~10000 s). Colors for each protein correspond to those used in the above panels, and also
to the legend in panel (f). (f) Concentration of the native state for each protein. Since the Default, Slow Folder and Bad Folder proteins do not
strongly depend on the GroELS system, we call them ‘‘class-I/II substrates’’ according to the nomenclature of Kerner et al. [7]. In contrast, the
concentration of the native state for the Aggregator protein strongly depends on the concentration of total GroEL, indicating that it should be called
a ‘‘class-III’’ substrate.
doi:10.1371/journal.pcbi.1003324.g007
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lowering the concentration of GroEL and GroES that is accessible

to the client protein. We note that both of these limitations are

planned to be addressed in future versions of FoldEco [21].

Extracting a rate matrix
The kinetic equations in FoldEco are formulated as a set of

equations that describe the time evolution of the concentrations of

different client and non-client species in the system. For our

analysis, we wish to convert this into a master equation of the form

d DXT=dt~MDXT, where DXT is a vector of the concentrations of

different states in the model, and M is a time-independent rate

matrix, the elements mij of which describe the rate of transition

from state i to state j. This allows for the transitions of a single

tagged protein molecule to be tracked from state to state, and for

the analysis of its dynamical properties. The first complication to

arise is that some of the states in the network involve multiple

copies of the client protein. For instance, a GroEL-GroES

complex can accommodate two client proteins, one in the cis ring

and one in the trans ring. It is important to maintain a distinction

between proteins in the same complex if they are in different states

(e.g., one is folded and the other is unfolded). We thus artificially

separate the multi-client complex states into two states, depending

on which protein is the tagged protein. This allows us to track the

tagged protein in a continuous fashion once the complex has

dissolved.

Aggregated structures are also multi-client states, but to

rigorously keep track of a specific monomer in a large aggregate

would be unfeasible: describing aggregates up to 100 monomers in

length would require over 5000 states for each aggregate-

containing species in the network. This is because a monomer of

size n would require n{1 distinct states that distinguish the

position of the monomer within the aggregate. Furthermore, it is

not clear whether or not the order in which monomers are added

to the aggregate affects the order in which they would be removed

by ClpB. We thus assume, upon removal of a monomer from an

aggregate of size n, that the probability of the tagged protein being

removed is equal to 1=n. The assumption of the indistinguishabil-

ity of monomers is reasonable for amorphous aggregates, and

would also be reasonable for highly ordered aggregates if ClpB

could act via a ‘‘crowbar’’-type mechanism [13], allowing

monomers to be extracted from the middle of a structure. We

note that for beta amyloid, both amorphous (preamyloid) and

fibrillar aggregates can be observed in vitro, depending on the

conditions [31].

After a proper set of states is established, a second complication

arises in building the master equation, as some of the differential

equations are nonlinear (e.g., the rate of aggregation of two

monomers depends on the square of the monomer concentration),

and many of the rates depend on the concentrations of non-client

protein species, which are changing over time. We instead cast the

problem as d DXT=dt~M(t)DXT, where the elements of M(t)
depend on the average concentrations of the network components,

and thus on the time t. In principle, at long times the

concentrations of the different species in the model will reach

steady state, and the elements of M will be time-independent, but

this limit does not always exist, especially for conditions in which

runaway aggregation occurs. In order to employ the same protocol

for a broad range of simulation conditions, we instead choose an

analysis time of interest (tobs~10000 s) and use the rate matrix

calculated at that time for analysis. We then assume that the

elements of this matrix are approximately constant on the

timescale of the transition paths. This assumption is addressed in

Text S1.

Getting mediation probabilities
Once we have obtained the rate matrix as calculated at the

observation time, we use a method similar to that proposed in our

previous work [22] to obtain mediation probabilities. Previously,

modified rate matrices were diagonalized in order to determine

infinite-time behavior. As we have found some of the matrices here

to be unstable to diagonalization, we instead use a slightly

modified approach. Firstly, the rate matrix is converted into a

transition probability matrix, in which the elements are equal to

the probabilities of transition between states in a given amount of

time, dt. To find an appropriate dt we find the fastest rate in the

system (rf ), and then set dt~(10rf ){1. The equation

d DXT=dt~RDXT, yields, for small dt

DXTtzdt~ IzdtRð ÞDXTt~TDXTt, ð1Þ

where I is the identity matrix, and DXTt denotes the value of the

vector DXT at time t. The nondiagonal elements of the transition

matrix T are then equal to tij~dtrij , and the diagonal ones to

tii~1zdtrii.

This transition matrix is then modified in the same manner as in

our previous work [22]. Here we describe the method in brief,

focusing on the parts that differ from our previous implementa-

tion. Consider a modified transition probability matrix with

‘‘sinks’’ at two states A and B, created by setting the nondiagonal

elements in columns A and B uniformly to zero, and setting the

diagonal elements to 1. The long-time dynamics using this new

matrix, TA0B0, reveals committor probabilities for each state

i=A,B as follows:

qA
i ~ lim

n??
SAD(TA0B0)nDiT, ð2Þ

where qA
i is the probability of reaching A before B, given starting

in state i, and qA
i zqB

i ~1.

In order to determine mediation probabilities, we calculate

‘‘conditional committors’’, such as qABCz

i , which is the

probability, when starting in i, of reaching B before A, having

gone through a third state, C. The probability of reaching B

before A having not gone through C is denoted qABC{

i .

Conservation of probability now gives the equality

qABCz

i zqABC{

i zqBACz

i zqBAC{

i ~1. These conditional com-

mittors are computed using an extended probability matrix,

where two ensembles of states are used: one in which C has

been visited so far along the trajectory, the other in which C has

not been visited. Sinks are put into the matrix at A and B, in

both ensembles, and conditional committors are determined

using the elements of the infinite-time extended probability

matrix, in a manner similar to Equation 2. In practice,

limn?? Tn is computed by iteratively squaring the matrix T

until the probability in the non-sink states is less than 10{10.

The number of iterations required is less than or equal to 40 for

all matrices used here.

Supporting Information

Figure S1 Concentrations of protein species. The con-

centration of native, unfolded, misfolded and aggregated species

for each of the four characteristic proteins at all of the synthesis

rates examined in Figure 2. The concentration of aggregated

protein shown here was calculated by counting the total number of

monomers present in aggregates of every size.

(EPS)
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Figure S2 Concentrations of DnaJ-containing species
for the Slow Folder protein at low binding factors. The

concentration of free dimeric DnaJ (J2), and dimeric DnaJ bound

in a ternary complex with unfolded protein and ATP-bound

DnaK (KT : U : J2) or ADP-bound DnaK (KD : U : J2) over the

range of binding factor (D) examined in Figure 6b. As D decreases,

the rate constant for binding of DnaK to unfolded or misfolded

protein increases. For low D, this causes an increase in the

concentration of the ternary unfolded protein-DnaJ-DnaK

complexes, which reduces the concentration of free DnaJ dimers,

which in turn decreases the efficiency of the KJE cycle.

(EPS)

Figure S3 Checking the constant rate matrix assump-
tion. The absolute value of the difference between pathway

probabilities computed using transition probability matrices

evaluated at t~10000 s and t~11700 s is shown. The largest

difference between the pathway probabilities is less than 0:012 for

the KJE pathway at a ribosome activation rate of 10{2 s{1.

(EPS)

Figure S4 Error check at steady state. A comparison of

weights calculated from the rate matrix with weights obtained by

normalizing the steady state concentration for the Default protein

at a synthesis rate of 0:020 mMs{1. The line y~x is shown for

comparison. Agreement starts to break down for weights less than

10{18 due to computational rounding errors (not shown).

(EPS)

Figure S5 GroEL-mediated folding as a function of free
ATP-bound GroEL. The ratio of GroEL-mediated flux (wG )

over direct folding flux (wD) is plotted against the concentration of

free ATP-bound GroEL, for the GroELS mediation data in

Section ‘‘GroELS-mediated folding’’ (four proteins at four

concentrations of total GroEL). The data for each protein is

shown as points, and the fit to wG=wD~m½GrLT� is shown. The

fitting parameter m is seen as the y-intercept (or the height of the

line) on the log-log plot.

(EPS)

Figure S6 Native protein yields as a function of GroEL
binding affinity. The yield of native protein in mM is shown for

a broad range of relative GroEL binding affinities. The latter is a

multiplicative factor that adjusts the binding rates of unfolded and

misfolded protein to GroEL complexes. Curves are shown for the

four different total concentrations of GroEL/GroES used in

Figure 7.

(EPS)

Text S1 Section I: Verifying the constant rate matrix
assumption. Section II: Error check at steady state. Section III:

An analytical description of the percentage of GroELS-mediated

folding. Section IV: Classifying the proteins using the scheme of

Kerner et al. Section V: Examining the effect of altering GroEL

binding affinity.

(PDF)
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