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Abstract

Hebbian changes of excitatory synapses are driven by and further enhance correlations between pre- and postsynaptic
activities. Hence, Hebbian plasticity forms a positive feedback loop that can lead to instability in simulated neural networks.
To keep activity at healthy, low levels, plasticity must therefore incorporate homeostatic control mechanisms. We find in
numerical simulations of recurrent networks with a realistic triplet-based spike-timing-dependent plasticity rule (triplet
STDP) that homeostasis has to detect rate changes on a timescale of seconds to minutes to keep the activity stable. We
confirm this result in a generic mean-field formulation of network activity and homeostatic plasticity. Our results strongly
suggest the existence of a homeostatic regulatory mechanism that reacts to firing rate changes on the order of seconds to
minutes.
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Introduction

The awake cortex is constantly active, even in the absence of

external inputs. This baseline activity, commonly referred to as the

‘‘background state’’, is characterized by low synchrony at the

population level and highly irregular firing of single neurons.

While the direct implications of the background state are presently

unknown, several neurological disorders such as Parkinson’s

disease, epilepsy or schizophrenia have been linked to various

disruptions thereof [1–5]. Theoretically, the background state is

currently understood as the asynchronous and irregular (AI) firing

regime resulting from a dynamic balance of excitation and

inhibition in recurrent neural networks [6–9]. Balanced networks

exhibit low activity and small mean pairwise correlations [7,9].

However, even small changes in the amount of excitation can

disrupt the background state [7,10]. Changes in excitation can

arise from Hebbian plasticity of excitatory synapses: Subsets of

jointly active neurons form strong connections with each other

which is thought to be the neural substrate of memory [11].

However, Hebbian plasticity has the unwanted side effect of

further increasing the excitatory synaptic drive into cells that are

already active. The emergent positive feedback loop renders this

form of plasticity unstable and makes it hard to reconcile with the

stability of the background state [12].

To stabilize neuronal activity, homeostatic control mechanisms

have been proposed theoretically [13–19] and various forms have

indeed been found experimentally [20–22]. The term homeostasis

comprises any compensatory mechanism that stabilizes neural

firing rates in the face of plasticity induced changes. This includes

compensatory changes in the overall synaptic drive (e.g. synaptic

scaling [21]), the neuronal excitability (intrinsic plasticity [23]) or

changes to the plasticity rules themselves (i.e. metaplasticity [20]).

Common to all experimentally found homeostatic mechanisms is

their relatively slow response compared to plasticity. While

synaptic weights can change on the timescale of seconds to

minutes [24–26], noticeable changes caused by homeostasis

generally take hours or even days [21,27–29]. This is thought to

be crucial since it allows neurons to detect their average firing rate

by integrating over long times. While fluctuations on short

timescales cause Hebbian learning and alter synapses in a specific

way to store information, at longer timescales homeostasis causes

non-specific changes to maintain stability [23]. The required

homeostatic rate detector acts as a low-pass filter and therefore

induces a time lag between the rate estimate and the true value of

neuronal activity. As a result, homeostatic responses based on this

detector become inert to sudden changes. The longer the filter

time constant is, the more sluggish the homeostatic response

becomes.

Here we formalize the link between stability of network activity

and the timescales involved in homeostasis in the presence of

Hebbian plasticity. We first study the stability of the background

state during long episodes of ongoing plasticity in direct numerical

simulations of large balanced networks with a metaplastic triplet

STDP rule [30] in which the timescale of homeostasis is equal to

the one of the rate detector. This allows us to determine the critical

timescale beyond which stability is lost. In a second step we reduce

the system to a generic two-dimensional mean-field model

amenable to analytical considerations. Both the numerical and

the analytical approach show that homeostasis has to react to rate

changes on a timescale of seconds to minutes. We then show
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analytically and in simulations that these stability requirements are

not specific to metaplastic triplet STDP, but generalize to the case

of triplet STDP in conjunction with synaptic scaling.

In summary we show that the stability of the background state

requires the ratio between the timescales of homeostasis and

plasticity to be smaller than a critical value tcrit which is

determined by the network properties. For realistic network and

plasticity parameters this requires the homeostatic timescale to be

short, meaning that homeostasis has to react quickly to changes in

the neuronal firing rate (on the order of seconds to minutes). Our

results suggest that plasticity must either be gated rapidly by a

third factor, or be accompanied by a yet unknown homeostatic

control mechanism that reacts on a short timescale.

Results

In the following we first discuss our results obtained from

simulating spiking neural networks in the balanced state with a

Hebbian learning rule subject to a plausible learning rate. In the

beginning we focus on a metaplastic mechanism that regulates the

amount of synaptic long term depression (LTD) homeostatically.

By systematically varying the time constant of the homeostatic rate

detector, we find that stability of the background state requires

homeostasis to act on a timescale of minutes. We then strive to

understand the underlying mechanism of the instability from a

generic mean field model, which we use to analytically confirm the

critical time constant found in the spiking network simulations.

Finally, to explore the generality of this mean field approach, we

apply the analysis to two variations of the triplet learning rule.

First, we add a slow weight decay to metaplastic triplet STDP and

second we switch from homeostatic metaplasticity to synaptic

scaling in combination with triplet STDP. In both cases we

confirm analytically and in simulations that a fast rate detector is

required to assure stability.

Simulation results
To study the stability of the background state in balanced

networks with plastic excitatory-to-excitatory (EE) synapses we

simulate networks of 25000 randomly connected integrate-and-fire

neurons (Figure 1 A). Prior to any synaptic modification by

plasticity, we set the network to the balanced state in which

membrane potentials exhibit large sub-threshold fluctuations

(Figure 1 C), giving rise to irregular activity at low rates

(&3 Hz) and asynchronous firing at the population level

(Figure 1 D). In our model more than 90% of the input to each

neuron comes from within the network, thus closely resembling

conditions found in cortex [31].

Plasticity of all recurrent EE synapses is modeled as an additive

triplet STDP rule (see [30] and Methods) which accurately

describes experimental data from visual cortex [26,30]. In this

metaplastic triplet STDP rule the amount of LTD is chosen such

that LTP and LTD cancel on average, when the pre- and

postsynaptic neurons fire with Poisson statistics at rate k~3 Hz.

Therefore, under the assumption of low spike-spike correlations

and irregular firing, k becomes a fixed point of the network

dynamics (see [32] and Methods). We begin with a fixed learning

rate g~6:25, which is chosen as a compromise between biological

plausibility and computational feasibility (Methods). To go

towards the fixed point, all neurons constantly estimate their

firing rate as the moving average �nn with exponential decay

constant t, given by

�nni(t)~
1

t

X
kDtk

i
vt

exp {
t{tk

i

t

� �
ð1Þ

where tk
i corresponds to the k-th firing time of neuron i (see also

Methods, Eq. (19)). If the rate estimate �nni of the postsynaptic

neuron i lies above (below) k, homeostasis increases (decreases) the

LTD amplitude. The homeostatic time constant t is the only free

parameter of our model.

We then explore systematically how a particular choice of t
affects the stability of the background state in the network. To

allow the moving averages to settle, we run the network for an

initial period of duration 3t, during which synaptic updates are not

carried out. After that, plasticity is switched on. To check whether

Figure 1. The balanced network model. (A) Schematic of the
network model. Recurrent synapses in the population of excitatory
neurons (*) are subject to the homeostatic triplet STDP rule. (B) Typical
magnitude and time course of a single excitatory postsynaptic potential
from rest. (C) Membrane potential trace of a cell during background
activity. (D) Histogram of single neuron firing rates (blue) and
coefficient of variation (CV ISI, red) across neurons as well as the ISI
distribution of all neurons (yellow) of the network during background
activity. Arrowheads indicate mean values.
doi:10.1371/journal.pcbi.1003330.g001

Author Summary

Learning and memory in the brain are thought to be
mediated through Hebbian plasticity. When a group of
neurons is repetitively active together, their connections
get strengthened. This can cause co-activation even in the
absence of the stimulus that triggered the change. To
avoid run-away behavior it is important to prevent
neurons from forming excessively strong connections.
This is achieved by regulatory homeostatic mechanisms
that constrain the overall activity. Here we study the
stability of background activity in a recurrent network
model with a plausible Hebbian learning rule and
homeostasis. We find that the activity in our model is
unstable unless homeostasis reacts to rate changes on a
timescale of minutes or faster. Since this timescale is
incompatible with most known forms of homeostasis, this
implies the existence of a previously unknown, rapid
homeostatic regulatory mechanism capable of either
gating the rate of plasticity, or affecting synaptic efficacies
otherwise on a short timescale.

Stable Hebbian Plasticity Needs Fast Rate Detector
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the network dynamics remain stable, simulations are run for 24 h

of biological time during which we constantly monitor the

evolution of the population firing rate (Figure 2 A). The network

is considered unstable if the mean population firing rate either

drops to zero or increases above 60 Hz which happens when run-

away potentiation occurs (Figure 2 B). By systematically varying

the time constant t in 1 s steps, we find that for the background

state to remain stable (Figure 2 C), t must be shorter than some

critical value tcrit&25 s. Moreover, we find a sharp transition to

instability when t is increased beyond tcrit. For tv3 s the network

has a tendency to fall silent (Figure 2 A, black line).

During stable simulation runs (3 svtv25 s), some synapses

grow from their initial value w0 up to the maximum allowed value

wmax, while the rest of the synapses decay to zero. The resulting

bimodal distribution of synaptic efficacies (Figure 2 F) remains

stable until the end of the run. This is a known phenomenon for

purely additive learning rules [33,34] and we will see later that

unimodal weight distributions arise by the inclusion of a weight

decay or by choosing synaptic scaling as the homeostatic

mechanism [35].

Despite the qualitative change in the weight distribution, the

inter-spike-interval (ISI) distribution remains largely unaffected,

while the coefficient of variation of the ISI distribution (CV ISI) is

shifted to slightly higher values (Figure 2 D). However, we noted

that the single-neuron average firing rates, which are widely

spread out initially, are at the end clustered slightly above the

homeostatic target rate of (k~3 Hz) with a weak dependence on

the actual value of t (Figure 2 E). This behavior is characteristic for

homeostatic firing rate control in single cells.

We conclude that metaplastic triplet STDP with a homeostatic

mechanism as presented here can lead to stable dynamics in

models of balanced networks exhibiting asynchronous irregular

background activity. However, the timescale t of the homeostatic

mechanism critically determines stability. It has to be on the order

of seconds to minutes and therefore comparable to the timescale of

plasticity itself (here tw

g ~476 s). This finding is in contrast to most

known homeostatic mechanisms that have experimentally been

found to act on effective timescales of hours or days [20,29,36,37].

Mean field model
To understand why the critical time constant tcrit above which

homeostasis cannot control plasticity is so short, we here analyze

the stability of the background state in a mean field model. In line

with the spiking network model we consider a single population of

neurons that fires with the mean population firing rate n (Figure 3

A). To find an analytic expression that characterizes the response

of the background activity to changes in the recurrent weights w

around the initial value w0, we begin with a linear neuron model

n~Hzcx ð2Þ

with the offset H and the slope parameter c. Since we are

interested in weight changes around the initial value w0, the

natural choice for x would be w
w0

. However, here we set x~ w
w0

n to

take into account the recurrent feed-back. This choice makes c
dimensionless while H is measured in units of Hz. Because weights

evolve slowly, while population dynamics are fast we can solve for

n and obtain the self-consistent solution

n~
H

1{ cw
w0

: ð3Þ

As we will show later, a better qualitative fit to the spiking model

can be achieved with this heuristic, which will facilitate finding the

right parameters H and c.

To introduce plasticity into the mean field model, we use the

corresponding rate-based plasticity rule

tw

dw

dt
~

gw0

k3
nprenpost npost{gk(�nnpost)

� �
~

gw0

k3
n2 n{gk(�nn)ð Þ

ð4Þ

Figure 2. Network stability during ongoing synaptic plasticity
depends crucially on the homeostatic time constant. (A)
Temporal evolution of the average firing rate in the excitatory
population for different homeostatic time constants t. Explosion of
firing rate indicated by dashed lines. Curves for t~3 s (dark blue),
t~10 s (light blue), and t~24 s (turquoise) overlap on the interval from
2 h to 24 h indicating stability. With t~2 s (black) we show one of the
cases with very short t where the activity spontaneously dies. (B) Spike
raster of 200 randomly selected excitatory neurons. The last two
seconds are shown before the network activity destabilizes (t~50 s).
(C) For t~20 s, the activity stays asynchronous and irregular even after
24 h hours of simulated time. (D) Firing statistics in a stable network
(t~15 s) measured after 24 h of simulated time. Histogram of single
neuron firing rates (blue) and coefficient of variation (CV ISI, red) across
neurons and the ISI distribution of all neurons (yellow). Arrowheads
indicate mean values. Black lines represent the corresponding statistics
prior to any synaptic modifications (copied from Figure 1). (E)
Population firing rate for stable simulation runs at t~24 h as a function
of the homeostatic time constant. The dashed line indicates the target
firing rate k. (F) Evolution of the synaptic weight distribution during the
first 8 hours of synaptic plasticity (t~15 s).
doi:10.1371/journal.pcbi.1003330.g002

Stable Hebbian Plasticity Needs Fast Rate Detector
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which can be directly derived from the triplet STDP rule [30] and

also can be interpreted as a BCM model [15,30,38]. Here, g is the

relative learning rate and
w0
k3 sets the scale of the system. The

second equality in Eq. (4) follows because in the recurrent model

pre- and postsynaptic rates are the same (n~npre~npost and

�nnpost~�nn). The function gk(�nn)~ �nn2

k scales the strength of LTD

relative to LTP just as in the spiking case (cf. Methods, Eq. (18)). In

the mean field model, the rate detector �nn (Eq. (1)) becomes the low

pass filtered version of the population firing rate

t
d�nn

dt
~n{�nn: ð5Þ

To link the network dynamics with synaptic plasticity we take

the derivative of Eq. (3), dn
dt

~ n2 c
H

� �
dw
dt

and combine it with Eq. (4)

to arrive at

tw

dn

dt
~

g

k3

c

H
n4 n{gk(�nn)ð Þ ð6Þ

which describes the temporal evolution of the mean firing rate as

governed by synaptic plasticity. Taken together, equations (5) and

(6) define a two-dimensional dynamical system with two fixed

points. One lies at n~�nn~0 and represents the quiescent network.

The remaining non-trivial fixed point is n~�nn~k, which we

interpret as the network in its background state.

Given these choices, we now ask whether this fixed point can be

linearly stable (Methods) and find that the stability of the

background state requires

tvtcrit:
Htw

gck
: ð7Þ

For twtcrit infinitesimal excursions from the fixed point

diverge, which corresponds to run-away potentiation in this

model. We note that tcrit crucially depends on the parameters H,

c, tw, g and the target rate k. However, we can rescale the system

to natural units, by expressing firing rates in units of k and time in

units of tcrit, and plot the eigenvalues as a function of t (Figure 3

B). The fact that the fixed point of background activity loses

stability for too large values of t is in good qualitative agreement

with what we observe in the spiking model. One should further

note that Eq. (7) is independent of the power of �nn appearing in

gk(�nn), as long as the fixed point of background activity exists (�nnw1)

and under the condition that at criticality the imaginary parts of

the eigenvalues are always non-vanishing (see Methods). This

indicates the presence of oscillations which are indeed observed in

the spiking network (cf. Figure 2 A, t~26 s). The fact that the

network falls silent for very small values of t (e.g. t~2 s in Figure 2

A) is not captured by the mean field model.

We can make further use of the mean field model to

qualitatively understand the behavior of the system far from

equilibrium. Figure 3 C shows the phase plane of a network with a

stable fixed point (t~0:1tcrit). When the system is driven away

from it, and perturbations are small, the dynamics converge back

towards the fixed point. However, when excursions become too

large, the network activity diverges (compare Figure 3 C, dotted

solution) since the fixed point of background activity is only locally

stable. A numerical analysis shows that the basin of attraction is

small when t approaches tcrit from below (Figure 3 D). Hence the

system is very sensitive to perturbations which easily lead to run-

away potentiation. Although we expect the basin of attraction of

the mean-field model and the spiking model only to be

comparably where Eq. (3) describes the firing rates of the spiking

network accurately we can assume that for robust stability t%tcrit

has to be satisfied.

Model comparison
To be able to make more quantitative predictions for the spiking

network we have to choose values for the parameters on the right

Figure 3. Mean field theory predicts the stability of back-
ground activity. (A) Schematic of the mean field model. Plastic
synapses are indicated by *. (B) Eigenvalues of the Jacobian evaluated
at the non-trivial fixed point n~�nn~k. (C) Phase portrait for t~0:1tcrit, a
choice where background activity is stable. Nullclines are drawn in
black. Arrows indicate the direction of the flow. Two prototypical
trajectories starting close to D are shown. Blue line: Typical example of a
solution that returns to the stable fixed point. Solutions starting in the
shaded area, such as the red line, diverge to infinity. (D) The separatrix
for four different values of t. (E) Population firing rate of the spiking
network model (simulations: red dots) for different values of weight w
for connections from excitatory to excitatory neurons. Black line: Least-
square fit of Eq. (3) on the interval ½0:98w0,1:02w0� as indicated by the
black bar. Extracted parameters are H~(0:163+0:002) Hz and
c~(0:9476+0:0004) (cf. Eq. (3)).
doi:10.1371/journal.pcbi.1003330.g003

Stable Hebbian Plasticity Needs Fast Rate Detector
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hand side of Eq. (7). These are the effective timescale of plasticity

tw on the one hand, and H and c, which characterize the network

dynamics, on the other hand. We will now show that the latter can

be determined from the static network model, which is indepen-

dent of plasticity. Note that the parameters k and g in our mean

field model are shared with the spiking model which we will use to

quantitatively compare the two.

First, we relate the variables H and c to the response of the

spiking network when all its EE synapses are modified. Since this is

not feasible analytically, we extract the response numerically by

systematically varying the EE weights around the initial state with

w0~0:16. While doing so, plasticity is disabled and we record the

steady state population rate of the network (Figure 3 E). We then

minimize the mean square error for Eq. (3) over a small interval

½0:98w0,1:02w0� and determine the following values: H~

(0:163+0:002) Hz and c~(0:9476+0:0004). For the stability

analysis only the derivative of Eq. (3) at w0 matters. However, it is

worth noting that the response of the balanced network is well

captured by Eq. (3) over a much wider range than the one used for

the fit. This behavior is an expected consequence of the balanced

state, which is known to linearize network responses [6,39]. Our

approximation by a linear rate model breaks down for higher rates

since it does not incorporate refractory effects.

Second, under the assumption of independent and irregular

firing in the background state, the plasticity time constant tw is

fully determined by the target rate k and known parameters of the

triplet STDP model (see Methods and [30]). For k~3 Hz we find

tw~2975 s.

Using these results together with Eq. (7) we predict the critical

timescale of homeostasis for different values of g and k and

compare it to the results that we obtain as before from direct

simulations of the spiking network. Figure 4 A shows that the

dependence of tcrit on the learning rate g is remarkably well

captured by the mean field model. The fourth power dependence

on the background firing rate k is described well for

3 Hzvkv5 Hz (Figure 4 B), but the theory fails for smaller

values, where we start to observe synchronous events in the

population activity, which introduce correlations that are not

taken into account in the mean field approach. In Figure 4 C we

plot the typical lifetimes (i.e. the time when the spiking simulations

are stopped, because they either show run-away potentiation or

the maximum simulated time t~24 h is reached) as a function of

t. The figure illustrates nicely that the critical time constant tcrit

coincides with the sharp transition in lifetimes observed in the

spiking network.

When running additional simulations with smaller learning rates

(g~1 as opposed to g~ 1
w0

~6:25) we observe that the network

destabilizes occasionally for values of t smaller than tcrit, but only

after 22 h of activity (see Figure S1). We find, however, that this

‘‘late’’ instability can be avoided by either initializing the EE

weights with a weight matrix obtained from a stable run (g~6:25
at t~24 h) or by reducing the maximally allowed synaptic weight

(wmax~0:5). Since these changes do not affect the ‘‘early’’

instability (twtcrit), the ‘‘late’’ instability seems to have a different

origin and might be linked to the spontaneous emergence of

structure in the network.

Here we focus on the ‘‘early’’ instability which is seen in all

simulations that do not respect the analytical criterion tvtcrit,

after less than one hour of biological time, and therefore puts a

severe stability constraint on t. Moreover the theory is able to

quantitatively confirm the timescale tcrit emerging from the

spiking network simulations and allows us to see the detailed

parameter dependence. In particular for a background rate of

3 Hz and the learning rate g~1 we find a critical timescale of

tcrit&3 min (simulations: (166:5+0:5) s, mean field model:

170:6 s).

In summary, our mean field model discussed here makes

accurate quantitative predictions about the stability of a large

spiking network model with plastic synapses for a given timescale

of homeostasis. Furthermore it gives useful insights into parameter

dependencies which are computationally costly to obtain from

parameter sweeps in simulations of spiking networks. Our theory

confirms that metaplastic triplet STDP with biological learning

rates has to be matched by a homeostatic mechanism that acts on

a timescale of seconds to minutes. In the next sections we will show

that the mean field framework described here can be readily

extended to other forms of homeostasis.

Weight decay
The induction of synaptic plasticity is only a first step towards

the formation of long-term memory. In the absence of neuro-

modulators necessary to consolidate early LTP into late LTP,

these modifications have been found to decay away with a time

constant of td&1 h [40]. To study the effect of a slow synaptic

decay on the stability of the background state we focus on the early

phase of plasticity. In particular we neglect consolidation in the

model and introduce a slow decay term

dw(t)

dt
~

1

tw

gw0

k3
n2 n{

�nn2

k

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Homeostatic triplet

z
g

td
w0{w(t)ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Decay term

ð8Þ

where we already replaced the STDP rule by its equivalent rate

based rule (see [30] and Methods, Eq. (17)), while the effect of the

decay term can be written identically in the rate based model and

the STDP model. Note that for td?? we retrieve the model

studied in Figures 1–4. Again we determine the critical timescale

of homeostasis in numerical simulations of the spiking network by

systematically varying t for different values of g. We further find

that the slow weight decay causes the synaptic weights to stabilize

in a unimodal distribution (Figure 5 A and B) which is

fundamentally different to what we observed for the decay-free

case. However, the critical time constant of homeostasis tcrit
d is only

marginally larger than in the decay-free case (Figure 5 C).

To assess the impact of the decay on the critical timescale, the

mean field approach, as it was derived above, can be adapted to

take into account the constant synaptic decay (Methods). Provided

the decay time constant is sufficiently long, we find the critical time

constant to be

tcrit
d ~

1

tcrit
{

1

td

� �{1

ð9Þ

which is in good agreement with the results from direct simulations

(Figure 5 C). From Eq. (9) we can further confirm that the decay

term only causes a small positive shift in the critical time constant

as it was also observed in the spiking network. Furthermore, we see

that the population firing rate settles to values closer to the actual

target rate k (Figure 5 D) than this was the case in the decay-free

scenario.

In summary, adding a slow synaptic weight decay to the

plasticity model is sufficient to cause substantial change to the

steady state weight distribution in the network. Nevertheless this

slow process does not affect the need for a rapid homeostatic

mechanism.

Stable Hebbian Plasticity Needs Fast Rate Detector
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Synaptic scaling
To test whether the previous findings are limited to our

particular choice of metaplastic homeostatic mechanism, or

whether they are also meaningful in the case of synaptic scaling

[21] we now adapt the model by van Rossum et al. [35] and

combine it with triplet STDP

dw(t)

dt
~

1

tw

gw0

k3
n2 n{kð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Triplet term

z

1

ts

g

k
k{

�nnm

km{1

� �� �
w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Scaling term

ð10Þ

where the rate of LTD is fixed in the triplet term (cf. Eq. (17)) and

synaptic scaling is the only form of homeostasis. One important

difference to the previous metaplastic STDP model is the addition

of the scaling time constant ts which controls the timescale of

synaptic scaling. In the metaplastic model we analyzed above, this

time constant is implicit since it is the same as the one of plasticity

(tw). In contrast to the original model of synaptic scaling (m~1
[35]) here we choose m~3 to avoid additional unstable fixed

points in the phase plane (Figure 6 D).

Figure 4. The mean field predictions agree with results from direct simulation of the spiking network. (A) Solid line: tcrit(g) as a function
of the learning rate g (cf. Eq. (7)), with simulation data (red points) for k~3 Hz. The arrow indicates the value used throughout the rest of this figure
(the dotted line corresponds to the learning rate g~1 as used in Figure S1). (B) Same as before but as a function of k for g~ 1

w0
~6:25 fixed. (C)

Lifetime values for the spiking network (red points) with a scaled step function as predicted by mean field theory (g~ 1
w0

~6:25 and k~3 Hz). All

error bars are smaller than the data points.
doi:10.1371/journal.pcbi.1003330.g004

Figure 5. Slow synaptic weight decay renders weight distribu-
tion unimodal, but hardly affects global stability. (A) Evolution
of the synaptic weight distribution over 8 h of background activity. (B)
Synaptic weight distribution at t~8 h. (C) Predictions for tcrit

decayof mean
field theory (solid line) and values obtained from direct simulation
(points). (D) Final population firing rate as a function of g for values of t
where the background state is a stable fixed point (dashed line: target
rate k; error bars: standard deviation over 100 bins of 1 s).
doi:10.1371/journal.pcbi.1003330.g005

Figure 6. Triplet STDP with synaptic scaling requires a fast rate
detector. (A) Black line: Eigenvalues of the Jacobian (n~�nn~k) for
different values of t (ts~2986 s). Gray curve: Values from Figure 3 B for
reference. The red line (‘‘sim’’) indicates the critical value as obtained
from simulating the full spiking network. (B) As before, but for different
values of ts (t~20 s). (C) Lifetimes of the background state in simulated
networks of spiking neurons for different values of ts (t~20 s). (D)
Phase plane with nullclines. �nn-nullcline in black; n-nullclines: dashed
(m~1), gray (m~2) and red (m~3). The latter was used in the rest of
the figure. (E) Synaptic weight distribution after t~24 h of simulation.
doi:10.1371/journal.pcbi.1003330.g006
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Bearing this in mind we move on to linearizing the system around

the fixed point of background activity (Methods). We find that for

ts&tw the eigenvalues of the linearized system qualitatively have the

same shape as for the plasticity rule with homeostatically modulated

LTD (Figure 6 A). In fact for sensible values of ts, the stability condition

is exactly the same: tvtcrit (cf. Eq. (7)). However, in the case of

synaptic scaling Eq. (7) represents a necessary, but not a sufficient

condition for stability. For too large values of ts stability is lost also in

the case of tvtcrit (Figure 6 B). On the other hand decreasing ts

indefinitely leads to oscillations without any further effect on stability

(see Methods and [35]).

To compare these findings with the equivalent STDP rule we

perform numerical simulations with the full spiking network in

which we set g~1 and choose ts on the order of tw (ts~2986 s).

By changing t systematically (Figure 6 C) we determine the critical

value to be smaller than predicted (&0:7tcrit), but within the same

order of magnitude (Figure 6 A,C). Conversely when we start with

t~20 s held fixed, we determine the critical value of ts to be on

the same order as tw (Figure 6 B). At the end of a stable simulation

run (t~24 h) we find that synaptic weights have formed a

unimodal distribution (Figure 6 E), an expected behavior of

synaptic scaling [35].

In summary we have shown here that a fast rate detector is

necessary to produce fast homeostatic responses to guarantee

stable network dynamics also for the case of synaptic scaling.

Although the quantitative agreement between the mean field

model and the full spiking simulation is less accurate than in the

case of for the metaplastic model above, both models confirm that

the rate detector has to act on a timescale of seconds to minutes.

Furthermore the time constant of the scaling term ts has to be

comparable to the time scale of plasticity (tw~2975 s) or stability

is compromised, when ts is chosen too large (and oscillations

occur, when chosen too small).

Discussion

In this paper we have shown that a realistic additive triplet

STDP rule [30] can sustain a stable background state in balanced

networks provided there is a homeostatic mechanism with a fast

rate detector that acts on a timescale of seconds to minutes. We

confirmed this result in a generic two dimensional mean field

model in which the stability of the background state is interpreted

as the linear stability of a non-zero fixed point of the system for

which the timescale of the homeostatic rate detector t plays the

role of a bifurcation parameter. These results are generic, i.e.

independent of model details. In particular, we showed that similar

results are obtained for triplet STDP with a form of metaplastic

homeostasis, where homeostasis was implemented as a modulation

of the LTD rate, or alternatively in combination with synaptic

scaling. The mean field formalism produces accurate quantitative

predictions for metaplastic triplet STDP. Although, in the case of

triplet STDP in combination with synaptic scaling, the match of

mean field model and direct simulations was less accurate, both

support the notion that a fast rate detector is required for stability.

For the case of synaptic scaling we found additionally that the

homeostatic changes have to be implemented on a timescale

comparable to the one of plasticity itself (ts&tw&1 h), which is

fast compared to most homeostatic mechanisms reported in the

experimental literature, but consistent with earlier simulation

studies that used fast homeostasis [13,16–19,35].

Homeostasis and plasticity
The fact that Hebbian learning has to be opposed by some kind

of compensatory mechanism has long been known [13–16] and

such mechanisms indeed have been found [20,36,41]. In the

following we will briefly review the different types of homeostasis

affecting synaptic weights and how they relate to what was used in

the present study.

Homeostasis can be classified in two main categories. We call

models ‘‘weight homeostasis’’ if they try to keep all afferent weights

into a cell normalized [13]. Such models have been criticized

because they are non-local [15], i.e. they require cell wide spatial

averaging over synapses, which can only be achieved in a plausible

way if all synaptic weights decay at a global rate modulated by the

total afferent synaptic strength [16]. To avoid this, ‘‘rate

homeostasis’’ models have been proposed [15] which strive to

maintain a certain postsynaptic firing rate. This approach, which

we chose in the present study, has more experimental support

[28,29]. In contrast to the spatial filtering as described above, this

mechanism requires temporal filtering of the postsynaptic rate

over a given time window (represented by t in this study). We can

further distinguish between two principal types of homeostasis. A

homeostatic mechanism can either act on the synaptic weights

directly (e.g. synaptic scaling), or indirectly through metaplasticity

[20], by changing parameters of the plasticity model over time.

The former, direct form of homeostasis allows for synaptic changes

even in the absence of activity as it is seen in synaptic scaling

experiments [21] on a timescale of days. This is in contrast to

theoretical models that apply scaling by algorithmically enforcing

weight normalization [13,18] on the timescale of one or a few

simulation time-steps.

In our study we looked at both approaches. In the metaplastic

triplet STDP model homeostasis manifest itself as a shift in the

plasticity threshold between LTD and LTP [19,30,42,43]. This is

achieved by modulating the rate of LTD induction using the

temporal average of the postsynaptic firing rates over a given time

window (t). As we have shown, this average has to follow the

neuronal spiking activity very rapidly, meaning that plasticity

parameters change on a short timescale, which is comparable to

the duration of many standard STDP protocols [26]. We therefore

predict that if biological circuits rely on such a metaplastic

homeostatic mechanism, weight changes are different for cells that

are silent prior to a plasticity induction than for cells that have

been primed by postsynaptic firing (over an extended period

before the induction protocol). In Figure 7 A we demonstrate this

idea in the model of metaplastic triplet STDP (t~60 s) for a

typical LTD induction protocol (75 pairs at 5 Hz with 210 ms

spike offset). Figure 7 B shows the relative differences between

primed and unprimed experiments in dependence of the length of

the priming duration or the priming frequency respectively. Since

this plasticity rule implements homeostasis as an activity depen-

dent change of the LTD learning rate, the amount of LTD

changes dramatically while LTP is unaffected by priming.

However, we expect that the main results of our mean field

analysis also hold for cases in which LTP is affected, as long as the

net synaptic weight change decreases with the intensity of priming.

In either case the functional form of the dependence allows us to

draw conclusions on the order of magnitude of t and the exponent

of �nn appearing in A{
i (t) (cf. Eq. 18). Conversely, if homeostasis was

exclusively mediated by synaptic scaling, we would expect that it

manifests as a heterosynaptic effect. Its impact, however, would

likely be smaller than in the case of metaplastic triplet STDP,

because synaptic scaling does not have an explicit dependence on

the presynaptic firing rate.

Since stability requires t to be relatively short, it is also worth

considering the extreme case where it is on the timescale of a few

hundred milliseconds. In that case the learning rule can be

interpreted as a quadruplet STDP rule combining a triplet term
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for LTP (e.g. post-pre-post) with a quadruplet term for LTD (e.g.

post-post-post-pre). While such a choice of t would make sense

from a stability point of view, this behavior is not seen in

experiments [26].

Influence of the model design
The timescales of synaptic plasticity and the time constants

behind most homeostatic mechanisms reported in experiments are

far apart. While plasticity can cause substantial synaptic changes in

less than one minute [24–26], homeostatic responses typically

differ on the order of several magnitudes (hours or days) [29,37].

In this paper we have shown that even if homeostatic changes

manifest relatively slowly they have to be controlled by a fast rate

detector, else triplet STDP is incompatible with the low

background activity observed in cortical circuits. We argue that

this statement is likely not to be limited to our particular model,

but rather applies to an entire family of existing plasticity models.

The basic building blocks of our study were a network model

and a homeostatic plasticity rule. We used a generic balanced

network model [7,10,44–46] to mimic brain-like spiking activity in

a recurrent neural network. It is clear that the particular choice of

network model does affect our results in a quantitative way and

absolute predictions would require a more accurate and detailed

network model. Nevertheless, we expect homeostasis to have

similar timescale requirements in more detailed models as well.

Indeed, as long as a strengthening of the excitatory synapses yields

increased firing rates without a major change in the correlations,

the qualitative predictions of the mean field model hold. However,

our simulations were limited to roughly 1000 recurrent inputs per

neuron, which is presumably less than what real cortical neurons

receive [31], so that excitatory run-away could build up even more

rapidly in real networks than in our simulations.

The second building block of our model was the plasticity rule.

Here we chose triplet STDP [30] as a plasticity model that

quantitatively captures a large body of experiments [24,26]. One

key feature of this model, which is seen across a range of in-vitro

plasticity studies, is the fact that it yields LTP for high postsynaptic

firing rates. The emergence of a critical timescale for homeostasis

is mainly rooted in this fact and it is largely relaxed for pair-based

STDP, be it additive or multiplicative [12]. However, such models

do not capture experimental data as well as triplet STDP.

With the models we analyzed, namely the metaplastic triplet

STDP and triplet STDP with synaptic scaling, we combined a

realistic STDP learning rule with two quite different, but

commonly used synaptic homeostatic mechanisms [15,18,19,30,

35,38,42,43,47,48]. The fact that we were able to show in both

cases, either using a generic mean field model or numerical

simulations of large balanced networks, that a fast rate detector is

needed for stability, suggests that these results are quite general.

The argument is further strengthened by the fact that existing

computational models demonstrating stable background activity in

plastic recurrent network models either use a form of multiplica-

tive STDP which can be intrinsically stable [12], but has poor

memory retention [12,34], or rely on a fast homeostatic

mechanism [18,43]. In fact one of the first studies that illustrates

stable learning in large recurrent networks combined with long

memory retention times [43] is a model of metaplasticity built on

top of the triplet model [30]. To describe effects observed in

priming experiments [41,49,50], the authors introduce two

floating plasticity thresholds that modulate the rate of LTP and

LTD depending on the low-pass filtered neuronal activity. El

Boustani and colleagues obtain the time constants behind these

filters by fitting their model to experimental data. It is striking, and

in agreement with what we report here, that the timescales they

find are on the order of 1 s [43].

We conclude that current plasticity models that capture

experimental data well require homeostasis to be able to react

fast in order to maintain a stable background state. Likewise, if

there is no rapid homeostatic control, most current plasticity

models are probably missing a key ingredient to what makes

cortical circuits stable.

Experimental evidence
The metaplastic triplet STDP rule we used makes use of an

homeostatically modulated rate of LTD and can be mapped to a

BCM-like learning rule [30,38]. The BCM theory relies on a

plasticity rule with a neuron wide sliding threshold [15,51]. There

seems to be some experimental ground for this idea [52,53] and it

is intriguing, that the effects reported there are on the order of

30 min or less which points towards a relatively fast mechanism.

We should further point out, that the arguments that led us to the

critical timescale of homeostasis are not limited to a neuron wide

sliding threshold. In fact the mean field equations for a global or

Figure 7. Postsynaptic priming affects STDP protocols. Simula-
tion of the metaplastic triplet STDP rule [30]. (A) Top: Typical protocol
for the induction of LTD (75 pairs (post-pre) at 5 Hz with 210 ms spike
offset) in the triplet STDP model (t~60 s) with a postsynaptic cell which
is quiescent prior to the LTD protocol (black) compared to induction
after postsynaptic priming (blue). Top, left: Pre- and postsynaptic spikes
for priming and. Top, right: LTD induction. Middle: postsynaptic rate
estimate �nn of the postsynaptic cell. Bottom: Weight change Dw over
time. Postsynaptic priming period (duration 100 s): regular firing at
k~3 Hz terminated by one second of silence (?) to avoid triplet effects.
(B) Relative differences in final weight change between quiet (Dwq) and
primed protocol (Dwp) at the end of a LTD (gray) plasticity protocol. LTP
protocol for reference (hollow, same paring protocol, with reversed
timing, +10 ms spike offset). Left: For different durations of the priming
period and fixed priming frequency of 3 Hz. Right: Different priming
frequencies with fixed priming duration of 60 s. The black line is a RMS
fit to LTD data points of: (left) an exponential function; (right) of a
quadratic function.
doi:10.1371/journal.pcbi.1003330.g007
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local synaptic sliding threshold, or even one based on local

dendritic compartments, are identical. Therefore the arguments

we put forward also hold for the latter cases, which have

experimental support through priming experiments [41,49,50].

Priming experiments highlight changes in the induction of

plasticity which depends on the synaptic activity over some

30 min.

With synaptic scaling we studied another possibility of

introducing homeostasis into the triplet STDP model. Homeo-

static scaling of synapses has good experimental support

[21,29,37]. Although it is generally associated with long timescales

(order of days), also more rapid forms of scaling are known [54–

56] of which some indeed act on the order of minutes [57].

Further modeling is required to test the ability of these rapid forms

of homeostasis to guarantee stability in recurrent networks.

Finally one should note that the critical time scale of the rate

detector strongly depends on the firing rates of the background

state (tcrit*k{4, cf. Eq. (7) and Methods). The low firing rates

reported experimentally [58–60] are therefore potentially neces-

sary to guarantee the stability of the network. Conversely, cells or

sub-networks with higher mean firing rates should have lower

learning rates in order to be stable.

Limitations
Despite the mean field formalism being a drastic simplification

of the original spiking model, the results we were able to derive

from it were surprisingly accurate in the case of metaplastic triplet

STDP and off by a factor of two in the case of triplet STDP with

synaptic scaling. In all cases our mean field predictions overesti-

mate the critical timescale obtained from simulations. This

discrepancy has multiple potential reasons. First, in the mean

field model we completely omit the existence of noise, fluctuations,

and correlations. That these factors do play a role follows from the

observation that the spiking network does not stabilize at the target

rate k, but at higher values (cf. Figure 2 E). Although correlations

in the AI state are small, they are on average positive [9]. When

we estimated tw we explicitly ignored correlations and required

that LTD and LTP cancel at a firing rate k. Adding correlations

causes this cancellation to take place at slightly higher rates, which

reduces the effective critical time constant. In the rate formulation

of the STDP rule we make the simplifying assumption that the

synaptic traces are perfect estimates of the postsynaptic firing rates.

Indeed it can be shown that fluctuations that are present in the

rates, bias the learning rule towards LTP (see Text S1). Finally,

any deviation of the population activity from its target value, initial

or spontaneous, can be thought of as perturbations around the

fixed point of background activity in the mean field model. This

can compromise stability when the basin of attraction is small, as is

the case when t is close to criticality (Figure 3 D). Again, such

perturbations bias the critical value for the spiking network

towards lower values. All the above points concern the simplifi-

cations made when going from the spiking model to the mean field

model.

More importantly, the spiking model itself already represents a

drastic simplification of the biological reality. For instance, we did

not include neuronal firing rate adaptation or synaptic short-term

plasticity (STP) in the present model. The timescales involved in

firing rate adaptation are typically short (on the order of 100 ms)

and their effect therefore negligible at the low firing rates of

background activity [61,62]. While the time constants behind STP

can be longer than that, their stabilizing effect is somewhat less

clear since they can be facilitating and depressing [63]. Although

we do not expect STP to have a strong impact on our main results,

it would be an interesting avenue to verify this in future studies.

All our present studies were limited to spontaneous background

activity. In a more realistic scenario we would expect the network

to receive external input with spatio-temporal correlations. Such

input will generally cause synaptic weights to change, which in the

mean field model corresponds to a perturbation of the dynamical

network state around the stable fixed point. If the perturbation

leaves the system in the basin of attraction of background activity,

equilibrium will be restored over time. If, however, the perturba-

tion is strong, or perturbations are in rapid concession and start to

pile up, the system loses stability once its dynamical state reaches

the separatrix (cf. Figure 3 C,D).

Another possibility worth mentioning is homeostatic regulation

through inhibitory synaptic plasticity (ISP) [64–68]. Recent

theoretical studies [69–71] suggest that ISP could produce an

intrinsically stable feed-back system. Although we cannot exclude

ISP as an important factor in network homeostasis, we have

excluded it in the current study. It is likely that to stabilize

Hebbian plasticity at excitatory synapses, ISP has to act on a

comparable timescale [72] and it will be interesting to integrate

future experimental findings into a similar framework as presented

here.

Conclusion
In summary, homeostatic mechanisms are necessary to stabilize

the background activity in network models subject to Hebbian

plasticity. Homeostasis needs to react faster than what is

experimentally observed. This raises the important question of

how the background activity in the brain can be stable. Our results

suggest that the existence of a rapid homeostatic mechanism could

be one possible answer. That, however, would require this

mechanism to act on the same timescale as most STDP induction

protocols. This then raises the question, why it has not been

observed so far. Suitable plasticity protocols to detect such a

mechanism should be similar to priming experiments [41,49], but

on the timescale of 1 min (Figure 7). Another possibility would be,

that the plasticity rate g
tw

is not a constant after all, but subject to

some neuromodulatory change [73]. This could be possible, since

it cannot be excluded that conditions in slice preparations, like the

ones used to obtain the parameters of triplet STDP [26], are

different from in-vivo conditions. Finally, also fast forms of ISP

could play a role in network stability.

No matter whether through ISP or additional, hitherto unseen

excitatory homeostatic effects, a variation of current models of

homeostasis and plasticity seem inevitable, to achieve stability in

plastic network models whilst making them biologically plausible.

Methods

To study stability in plastic spiking recurrent networks we

simulated networks of 25000 integrate-and-fire neurons with

conductance-based synapses (Figure 1 A). The size of the network

was chosen large enough to allow for an asynchronous irregular

(AI) background state with low spiking correlations, but still small

enough to enable simulations over long periods of biological time.

Neuron model
The networks we study consist of leaky integrate-and-fire

neurons with a relative refractory mechanism connected by

conductance-based synapses [46]. The membrane voltage Ui of

neuron i evolves according to
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tm dUi

dt
~(U rest{Ui)

zgexc
i (t)(Uexc{Ui)

zginh
i (t)(U inh{Ui)

ð11Þ

A spike is triggered when Ui crosses the spiking threshold qi. After

a spike Ui is reset to U rest
i and the threshold qi is increased

qi?qspike to implement refractoriness. In the absence of spikes the

threshold relaxes back to its resting value qrest according to

tthr dqi

dt
~qrest{qi ð12Þ

with tthr~5 ms similar to [42]. Inhibitory neurons were modeled

identically except for a shorter membrane time constant tm. All

relevant parameters are summarized in Table 1.

The spike train Sj(t) of neuron j is defined as

Sj(t)~
P

k d(t{tk
j ), where the sum runs over all k corresponding

firing times tk
j of neuron j. It affects the synaptic conductances of

downstream neurons as

tgaba dginh
i

dt
~{ginh

i z
X
j[inh

wijSj(t) ð13Þ

if the index j corresponds to an inhibitory neuron or

tampa dg
ampa
i

dt
~{g

ampa
i z

X
j[exc

wijSj(t) ð14Þ

tnmda dgnmda
i

dt
~{gnmda

i zg
ampa
i ð15Þ

in the case of an excitatory cell. Here wij is the weight of the

synapse connecting neuron j with i (wij~0 if the connection does

not exists). Excitatory synapses contain a fast rising AMPA

component with exponential decay and a slowly rising NMDA

component with its respective exponential decay with time

constant 100 ms. For simplicity we implemented the NMDA

component as a low pass filtered version of the AMPA

conductance (Eq. (15)). The complete excitatory postsynaptic

potential (EPSP) is then given by a weighted sum of the AMPA

and NMDA conductances

gexc
i (t)~ag

ampa
i (t)z(1{a)gnmda

i (t) ð16Þ

With the chosen parameters (cf. Table 1), a typical EPSP has an

amplitude of about 0:7 mV, as shown in Figure 1 B. For

computational efficiency the voltage dependence of NMDA

channels was omitted.

Network model
All units (20000 excitatory and 5000 inhibitory units, see Table 2

for details) are connected randomly with a sparse connectivity of

5%. Additionally each excitatory cell receives external input from

a pool of 2500 independent Poisson processes firing at 2 Hz that

are connected with 5% probability. The relevant synaptic weight

values are summarized in Table 2. Due to the high recurrence (on

average 1000 out of 1125 connections are from within the

network) the mean firing rate and network activity are sensitive to

small changes in the recurrent synaptic strength. By appropriate

choice of the excitatory weights (w0~0:16) the network is initially

tuned to the balanced state with AI activity at a mean population

activity of approximately 3 Hz.

Plasticity model
We model synaptic plasticity after the triplet STDP model of

[30], using the minimal parameter set corresponding to in-vitro

visual cortex data [26]. Plasticity only affects the EE recurrent

connections. Weight updates Dwij act additively on the matrix

elements wij and are given by

dwij

dt
~gw0 Az zz

j (t)zslow
i (t{e)Si(t)

{gw0 A{
i (t)z{

i (t)Sj(t)

ð17Þ

where e is a small positive number and zz
n (t), z{

n (t) and zslow
n (t)

are synaptic traces of neuron n defined as dzx

dt
~{ zx

tx zSn(t) with

associated time constants tz, t{ and tslow respectively (see Table 3

and [30]). Since the original triplet model describes relative

synaptic changes, weight updates in Eq. (17) are scaled by the

factor gw0, where w0 is the initial synaptic weight and g is an

additional parameter that can be interpreted as a learning rate, or

a conversion factor between the weight scales of the model and the

true biological scale. In the model we approximate the biological

scale by choosing plausible values for w0 (cf. Figure 1 B) and

therefore expect g to be of the order of one. For a synapse with an

initial weight of w0, a value of g~1 corresponds to the learning

rate that best fits visual cortex data [30]. However, since small

values of g are computationally expensive we used g~ 1
w0

~6:25

Table 1. Neuron model and synaptic parameters.

Membrane Threshold Synapse

Uexc 0 mV tthr 5 ms tampa 5 ms

U rest 270 mV qrest 250 mV tgaba 10 ms

U inh 280 mV qspike 100 mV tnmda 100 ms

tm 20 ms
(10 ms*)

a 0.5

*) only inhibitory neurons.
doi:10.1371/journal.pcbi.1003330.t001

Table 2. Network model parameters.

Neuron groups and connectivity Synaptic weight structure

Neural population Size Connection Weight

Excitatory (E) 20000 E?E wEE~w0~0:16

Inhibitory (I) 5000 E?I wEI~w0

External Poisson (ext) 2500 at 2 Hz I?E wIE~1:00

Network connectivity 5% I?I wII~1:00

Connectivity from ext 5% ext Poisson ?E wPE~w0

doi:10.1371/journal.pcbi.1003330.t002
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in Figure 2 to ensure that a stable weight distribution can be

observed within a day of simulated biological time (*4 d of

computation time). Note that for g~1 we would expect a

comparable degree of convergence after 6.25 days of simulated

time (roughly four weeks of computation). During ongoing

plasticity the allowed weight values are limited to the interval

0vwijvwmax. Note that to avoid the creation of new synapses,

connections that have zero weight initially, remain absent (wij~0)

throughout the entire simulation.

In simulations with metaplastic triplet STDP the amount of long

term synaptic depression (LTD) A{
i (t) is varied homeostatically as

a function of the moving average �nni of the postsynaptic firing rate

[15,19,30,38] with

A{
i (t)~

Aztztslow

t{k
�nni(t)

2 ð18Þ

This choice of A{
i (t) ensures that for uncorrelated Poisson firing at

the rate k LTP and LTD cancel on average. The moving average

�nni of the firing rate of neuron i is implemented as a low pass filtered

version of its spike train

t
d�nni

dt
~{�nnizSi(t) u �nni~

1

t

X
kDtk

i
vt

exp {
t{tk

i

t

� �
ð19Þ

where t is the timescale which controls of the temporal evolution

of A{
i (t) (cf. Eq. (18)).

In simulations that require an additional slow weight decay of

the weights we approximate this exponential decay, to avoid the

costly operation of updating all weights after each time step, by

periodically (period D&10 s) multiplying all weights by the factor

exp({D=td)&0:997. Finally, simulations of synaptic scaling are

performed using a fixed value A{
i ~ Aztztslow

t{ k. The scaling of the

weights is approximated with the same approach as for weight

decay. In such cases D is adapted appropriately according to the

occurring scaling time constant ts.

The time constant of plasticity
We determine the timescale of plasticity in the mean field model

by approximating tw from the plasticity parameters of the triplet

STDP model [30]. To do so we consider the expectation value of

the mean weight update averaged over many spike pairs, and we

assume that pre- and postsynaptic firing is uncorrelated with

stationary rates nj and ni respectively. The average relative weight

change over time then reads

S
dwij

dt
T~gw0SAz zz

j (t)zslow
i (t{e)Si(t){A{

i (t)z{
i (t)Sj(t)T ð20Þ

~gw0 Aztztslownjn
2
i {t{njniSA{

i (t)T
� �

ð21Þ

~
gw0

k3
Aztztslowk3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

: 1
tw

njni ni{
�nni(t)

2

k

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

BCM like

ð22Þ

The resulting differential equation can be directly identified

with Eq. (4) to obtain the effective time constant tw~
1

Aztztslow
1

k3 &2975 s.

Numerical simulations
All differential equations were integrated using forward Euler

integration with a 0.1 ms time step. Spiking simulations were

written in C++ using Open MPI and the Boost libraries. The

sources were compiled using the GNU C compiler. Simulations

were run on 5 Linux workstations equipped with Intel(R)

Core(TM)2 Duo E8400 CPUs and 24 GB of RAM each. It took

approximately four and a half days to simulate one day of

biological time.

Numerical results for the phase plane analysis, such as the

position of the separatrix, were obtained by integrating the ODEs

of the mean field model numerically using custom-written Python

code.

Derivation of the stability condition in the mean field
model

To analyze the stability of the fixed point of background activity

(n~�nn~k) in the case of the metaplastic triplet STDP rule, we

consider the Jacobian J of the two dimensional system (cf. Eqs.

(5),(6)) in the general case of gk(�nn)~ �nnn

kn{1 for nw1.

J~
D 5n4{4n3 �nnn

kn{1

� �
{nDn4 �nnn{1

kn{1

� �
1
t { 1

t

0
B@

1
CA ð23Þ

where we introduced the auxiliary variable D: 1
tw

g

k3
c
H. When

evaluated at the fixed point J reduces to

J Dn~�nn~k~
Dk4 {nDk4

1
t { 1

t

 !
ð24Þ

with characteristic polynomial

ðDk4{lÞ {
1

t
{l

� �
z

nDk4

t

~l2{l Dk4{
1

t

� �
z

(n{1)Dk4

t

ð25Þ

which determines the eigenvalues to be of the linearized system at

the fixed point of background activity

Table 3. Plasticity model parameters.

Plasticity window Az 6:5|10{3

tz 16.8 ms

t{ 33.7 ms

tslow 114 ms

Initial weight w0 0.16

Weight limits wmin 0

wmax 1

Target firing rate k 3 Hz

Rel. learning rate g 1
w0

~6:25*

g 1 (Figure S1)

*) As used in Figures 2 and 4 B,C.
doi:10.1371/journal.pcbi.1003330.t003
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l1,2~
1

2
Dk4{

1

t

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Dk4{

1

t

� �2

{
n{1ð ÞDk4

t

s
: ð26Þ

Stability of the fixed point requires all eigenvalues to have

negative real parts (e.g. [74]). We now prove that the real part of

both eigenvalues is negative if and only if tv 1
Dk4. The square root

in Eq. (26) is either purely imaginary, in which case tv 1
Dk4 follows

directly. For the case in which the square root is real we can

express the larger of the two eigenvalues as

2l1~ Dk4{
1

t

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk4{

1

t

� �2

1{
4(n{1)Dk4

t Dk4{ 1
t

� �2

" #vuut ð27Þ

~ Dk4{
1

t

� �
zDDk4{

1

t
D
ffiffiffi
c
p

ð28Þ

where we introduced the variable c for the term in the

square brackets (Eq. (27)). If Dk4
w

1

t
then l1~

1

2
Dk4{

1

t

� �
ð1z

ffiffiffi
c
p Þw0 and the fixed point is unstable. If,

however, Dk4
v

1
t then we know

2l1~ Dk4{
1

t

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk4{

1

t

� �2

{
4 n{1ð ÞDk4

t

s
ð29Þ

v Dk4{
1

t

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk4{

1

t

� �2
s

ð30Þ

~0: ð31Þ
Here, we used the fact that all occurring constants are positive,

nw1 and the argument in the square root is positive as well.

Finally we can conclude the fixed point is stable if

tv
1

Dk4
~

Htw

gck
:tcrit. This identifies tcrit as an important

limiting case for the stability of the fixed point. It is interesting

to note that tcrit is independent of n.

Stability condition for weight decay. If we are to include

an additional weight decay in the above model we replace Eq. (6)

by

tw

dw

dt
~

gw0

k3
n2 n{

�nnn

kn{1

� �
z

g

td
w0{wð Þ ð32Þ

and proceed similarly as before by replacing all occurrences of w.

In the decay term we can use the identities w~
w0
c 1{H

n

� �
and

since c~1{H
k (cf. Eq. (3)) to rewrite

g

td

c

H
n2 1{

w

w0

� �
~

g

td

n

k
k{nð Þ: ð33Þ

We use this expression together with our results from Eq. (23) and

the abbreviation D:
1

tw

g

k3

c

H
, to arrive at

dv

dt
~D n4 n{

�nnn

kn{1

� �
z

g

td
n 1{

n

k

� 	
ð34Þ

which leads to the following Jacobian at the fixed point

J Dn~�nn~k~
Dk4{ g

td
{nDk4

1
t { 1

t

 !
: ð35Þ

The corresponding eigenvalues are given by

l1=2~
1

2
Dk4{

g

td
{

1

t

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Dk4{

g

td

{
1

t

� �2

{
D n{1ð Þk4

t
z

g

ttd

� �s
:

ð36Þ

As we have seen earlier the stability is determined by the first

term since the square root is purely imaginary around criticality.

This leads us to the relaxed stability condition tv Dk4{
g

td

� �{1

and therefore with g~1 and tcrit~
Htw

gck
we get tv

1

tcrit
{

1

td

� �{1

.

Stability condition for synaptic scaling. Here we will

derive the critical time constant tcrit for yet another variation of

the triplet rule

dw

dt
~

1

tw

gw0

k3
n2 n{kð Þz 1

ts

g

k
k{

�nnm

km{1

� �� �
w ð37Þ

which uses synaptic scaling to achieve the target rate k (cf. [35]).

With the same transformations as before (i.e. w~
w0
c 1{H

n

� �
) we

can bring Eq. (37) to the form

dn

dt
~

1

tw

gc

k3H|fflfflffl{zfflfflffl}
:D

n4 n{kð Þz

1

ts

g

H|{z}
:J

n2 1{
�nn

k

� �m� �
1{

H

n

� � ð38Þ

which taken together with Eq. (5) yields the following Jacobian at

the fixed point

J Dn~�nn~k~
Dk4 {J k{Hð Þm

1
t { 1

t

 !
ð39Þ

with associated eigenvalues

l1=2~
1

2
Dk4{

1

t

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Dk4{

1

t

� �2

{
J

t
k{Hð Þmz

Dk4

t

s
:ð40Þ

We can appreciate directly from Eq. (40) that the real part of the

largest eigenvalue is lower bounded Re l1ð Þ§ 1
2

Dk4{
1

t

� �
and
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therefore we find that stability requires tv 1
Dk4 ~tcrit, which is the

same condition as above for the case of metaplastic triplet STDP.

However, in the case of synaptic scaling this stability condition is

necessary, but not sufficient. This we can see in Eq. (40) for given

n, when J becomes sufficiently small (ts sufficiently large)

eventually we get Re l1ð Þw0, where the background state loses

stability (cf. Figure 6 B). Hence, in addition to tvtcrit there is also

a critical value for ts which can be on a comparable scale like tw,

but not arbitrarily large.

Supporting Information

Figure S1 Evolution of the population rate for meta-
plastic triplet STDP model. (A) Temporal evolution of mean

population rate for different values of t (g~1). While the change

in stability in the vicinity of tcrit~166 s can be understood from

the mean field theory, which also predicts the observed oscillations

at criticality, the late destabilization of the curve t~150 s is not

captured by the theory. (B) Evolution of mean population rate for

g~1. Black: t~150 s and weights are initialized with the weights

from a stable run (g~6:25, t~10 s) at t~24 h. Cyan: Same, but

with t~500 s. Dark blue: t~150 s, weight initialization as in (A),

but maximally allowed weights limited to wmax~0:5. Light blue:

t~500 s, network falls silent at t&10 h. Purple: t~500 s, with

w0~0:158 (the learning rate was unchanged), which reduces the

initial excursion to low rates.

(PDF)

Text S1 Rate fluctuations. Mean field solutions ignore the

effect of fluctuations in the postsynaptic firing rate.

(PDF)
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42. Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-

consolidation: A model of early and late long-term-potentiation and depression.

PLoS Comput Biol 4: e1000248.
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