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Abstract

A remarkable feature of the self-renewing population of embryonic stem cells (ESCs) is their phenotypic heterogeneity:
Nanog and other marker proteins of ESCs show large cell-to-cell variation in their expression level, which should significantly
influence the differentiation process of individual cells. The molecular mechanism and biological implication of this
heterogeneity, however, still remain elusive. We address this problem by constructing a model of the core gene-network of
mouse ESCs. The model takes account of processes of binding/unbinding of transcription factors, formation/dissolution of
transcription apparatus, and modification of histone code at each locus of genes in the network. These processes are
hierarchically interrelated to each other forming the dynamical feedback loops. By simulating stochastic dynamics of this
model, we show that the phenotypic heterogeneity of ESCs can be explained when the chromatin at the Nanog locus
undergoes the large scale reorganization in formation/dissolution of transcription apparatus, which should have the
timescale similar to the cell cycle period. With this slow transcriptional switching of Nanog, the simulated ESCs fluctuate
among multiple transient states, which can trigger the differentiation into the lineage-specific cell states. From the
simulated transitions among cell states, the epigenetic landscape underlying transitions is calculated. The slow Nanog
switching gives rise to the wide basin of ESC states in the landscape. The bimodal Nanog distribution arising from the
kinetic flow running through this ESC basin prevents transdifferentiation and promotes the definite decision of the cell fate.
These results show that the distribution of timescales of the regulatory processes is decisively important to characterize the
fluctuation of cells and their differentiation process. The analyses through the epigenetic landscape and the kinetic flow on
the landscape should provide a guideline to engineer cell differentiation.
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Introduction

Embryonic stem cells (ESCs) are pluripotent having the ability

to differentiate into a variety of lineages, while in suitable culture

conditions they proliferate indefinitely by maintaining pluripoten-

cy. These self-renewing ESCs are distinguished by the marker

proteins including Sox2, Oct4 and Nanog (SON) [1–4]. SON are

transcription factors (TFs) which directly or indirectly promote the

expression of themselves by constituting an overall positive

feedback network [5–10], among which Nanog is an essential

factor working as a gatekeeper for pluripotency [11,12]. Here, a

remarkable feature is the large cell-to-cell variation of the level of

Nanog in the self-renewing isogenic population of ESCs [13–15].

Since a distinct downregulation of Nanog is associated with the

differentiation of ESCs into mesendoderm or neural ectoderm

lineages [16], the heterogeneous Nanog expression can be

intimately related to the process of fate decision of individual cells

[14,17]. The molecular mechanism and biological implication of

this phenotypic fluctuation of ESCs, however, have not yet been

clarified. In this paper we address this problem by constructing a

model of the regulatory network of core genes in mouse ESCs.

One can figure out, at a glance, several scenarios which may

explain the phenotypic heterogeneity. A simple scenario relies on

the possible enhancement of fluctuation of the signal received by a

cell: Since the reception of factors such as leukemia inhibitory

factor (Lif) by a cell is stochastic, it necessarily bears fluctuation,

which might be enhanced through the signal cascade to

stochastically activate Nanog [18]. The other possible mechanism

is based on the presumed self-activation of Nanog [6,19], which

may lead to the fluctuating pulsative expression of Nanog [14,20].

With these mechanisms, however, another key factor, Oct4,

should also exhibit the large fluctuation since Oct4 is activated by

the reception of Lif and the Oct4 expression is maintained through

mutually activating interactions among SON. Contrary to this

expectation, the observed expression of Oct4 is rather homoge-

neous [14,17]. A possible resolution of this inconsistency is to

assume that some unknown factors which can bind to the Oct4

locus suppress fluctuation of the Oct4 expression [20]. There has

been, however, no direct experimental observation yet for the

existence of such regulatory factors, and therefore, in this paper we

look for the other mechanism without relying on this assumption.

For modeling the gene regulatory dynamics, not only the

topological wiring diagram among genes but also the rates of

reactions in the regulatory network should be quantified. These

estimated rates, however, have very different values depending on

the type of reactions, and hence it is strongly desired to develop the
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theoretical framework to treat effects of coexistence of the

distributed timescales [21,22]. In simple bacterial cells, for

example, the DNA-protein binding/unbinding is often much

faster than the protein-copy number change, so that the fast DNA-

state change can be regarded as equilibrated and the dynamical

interference between the fluctuation of gene switching and the

fluctuation of protein-copy number can be neglected. By

borrowing the wording from condensed-matter physics, this

separation of fast and slow processes should be referred to as the

‘‘adiabatic’’ separation. Theoretical studies have shown that when

the adiabatic limit is not the case, the kinetic flow of the coupled

stochastic dynamics of gene switching and protein-copy number

change is described as ‘‘eddy current’’ [23], which gives rise to a

variety of unexpected dynamical effects in gene regulation [23–

28]. Indeed, it has been suggested that the transition of Bacillus

subtilis into the competence period should be due to the non-

adiabatic gene switching in the excitatory self-activating gene

network [29]. In eukaryotic cells, processes of gene switching are

much more complex including the assembly of transcriptional

apparatus (TA) [30–33], the transition from the poised state of TA

to the elongation state [34], chemical modifications of nucleo-

somes [35–39], and the structural reorganization of chromosomes

[40–42]. Such epigenetic change of the gene state can be much

slower than the bacterial DNA state change, and their timescales

are often comparable with or longer than the timescale of the

protein-copy number change, so that the non-adiabatic effects

should play significant roles in eukaryotic cells.

Many marker genes of ESCs have been identified [43], among

which SON regulate many other genes, and hence, the SON

network has been regarded as the central network to maintain

pluripotency [8,9,43]. Models of the core SON network of ESCs

have been developed [14,16,20,43,44], but all of these models

have been based on the assumption that the gene state is

determined by the fast equilibrated binding/unbinding of TF to/

from the gene locus: The assumption of the adiabatic limit has

been adopted in all the previous models and the slow non-

adiabatic switching dynamics has not been explicitly taken into

account. In this paper, we discuss ESCs by focusing on the non-

adiabatic effects, the effects of slow epigenetic processes, and we

propose a hypothesis that the non-adiabatic switching in the core

gene-network explains the large fluctuation of Nanog expression.

By using the landscape picture, we discuss the roles of this non-

adiabatic switching in the cell-fate decision of ESCs.

Results

Before starting the explanation of the simulated results, we

briefly explain the interaction network among genes considered in

the present model and discuss the dynamics of each gene in the

network in subsection Gene network and epigenetic dynamics. Coexis-

tence of multiple timescales in the eukaryotic gene dynamics is the

focus of the present study.

Gene network and epigenetic dynamics
The interaction network. Interactions among genes have

been inferred from observations on how the expressions of genes

are correlated with each other and how one factor binds to the

genetic locus of the other factor. It is not straightforward, however,

to identify each elementary interaction embedded in the complex

web of regulation. Indeed, consensus has not been obtained on the

role of Nanog: Though both Sox2 and Oct4 loci have the Nanog

binding sites [6] and the assumption of positive regulation of Sox2

and Oct4 by Nanog is reasonable [5,8], the weak correlation of

levels of Sox2 and Oct4 to the heterogeneous Nanog expression

has cast doubts on the direct positive regulation by Nanog [11,45].

The network model of Fig. 1 is based on the assumptions that

Nanog directly activates Sox2 and Oct4. We show that even with

such assumptions, the weak correlation of Sox2 and Oct4 to the

heterogeneous Nanog expression can be explained when epige-

netic dynamics is considered explicitly.

In the model of Fig. 1, the representative lineage-trigger genes

are also taken into account. Mouse ESCs can directly differentiate

into either of trophectoderm, primitive endoderm, or primitive

ectoderm [10]. Though majority of ESCs differentiate into

primitive ectoderm under the condition of the minimal external

Figure 1. The network model. Interactions among marker genes of
ESCs, Sox2, Oct4, and Nanog, and lineage-specific genes, Gata6, Cdx2,
and Gcnf are shown with black lines for formation of complexes of
factors synthesized from the corresponding genes, red lines for
activating the target genes, and blue lines for repressing the target
genes. Experimental data used to infer the interactions are designated
by numbers on lines, which are explained with the corresponding
numbering in subsection Inference of the network from experimental
observations in section Methods.
doi:10.1371/journal.pcbi.1003380.g001

Author Summary

Embryonic stem cells (ESCs) can proliferate indefinitely by
keeping pluripotency, i.e., the ability to differentiate into
any cell-lineage. ESCs, therefore, have been the focus of
intense biological and medical interests. A remarkable
feature of ESCs is their phenotypic heterogeneity: ESCs
show large cell-to-cell fluctuation in the expression level of
Nanog, which is a key factor to maintain pluripotency.
Since Nanog regulates many genes in ESCs, this fluctuation
should seriously affect individual cells when they start
differentiation. In this paper we analyze this phenotypic
fluctuation by simulating the stochastic dynamics of gene
network in ESCs. The model takes account of the mutually
interrelated processes of gene regulation such as binding/
unbinding of transcription factors, formation/dissolution of
transcription apparatus, and histone-code modification.
We show the distribution of timescales of these processes
is decisively important to characterize the dynamical
behavior of the gene network, and that the slow
formation/dissolution of transcription apparatus at the
Nanog locus explains the observed large fluctuation of
ESCs. The epigenetic landscapes are calculated based on
the stochastic simulation, and the role of the phenotypic
fluctuation in the differentiation process is analyzed
through the landscape picture.

Time Scales in Epigenetic Dynamics
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stimuli [46], the core genes to guide ESCs to primitive ectoderm

are still elusive, and hence in this paper, in order to analyze the

effects of non-adiabaticity on differentiation, we focus on the rest

two routes to trophectoderm and primitive endoderm. Lineage

specific factors, Cdx2 for trophectoderm and Gata6 for primitive

endoderm, repress expression of SON [1,2,47] by their direct

binding to the enhancers [10,47] or the indirect action through

Gcnf [48], while SON repress Cdx2 and Gata6 [13,47,49]. The

network of Fig. 1 resembles those proposed in [10] and analyzed in

[50]. See subsection Inference of the network from experimental observations

in section Methods for the explanation of the experimental data

used to infer the network.

Epigenetic dynamics. Shown in Fig. 2 is a sketch of how

each gene is regulated through epigenetic dynamics in the model:

Changes in the gene activity are triggered by binding/unbinding

of TF to/from DNA. We write F
j
mi~1 (F

j
mi~0) when the j th TF is

bound on (unbound from) the regulatory region of DNA at the

locus of allele m of gene i, where each gene consists of two alleles

m~a and b. When the activator TF binds to the locus, the

subsequent assembly of other molecules should take place to form

a TA. The TA becomes ready for transcription when the

chromatin structure is altered to accommodate the assembled

factors and those factors are chemically suitably modified. For

simplicity of description, we refer to the combined multiple

processes to make TA active as ‘‘TA formation’’ and the processes

to make TA inactive as ‘‘TA dissolution’’. We write Ami~1 when

the TA is formed and becomes ready for transcription, and Ami~0

when the TA is dissolved and not ready for transcription. Changes

in Ami are regulated not only by the direct interactions among TFs

and other factors on the gene locus but also by methylation or

acetylation of nucleosomes at around mi. Since the ensemble of

nucleosomes are methylated or acetylated cooperatively to form a

bistable switch [35,39], we write the state of the ensemble of

nucleosomes, i.e., the histone code, as Hmi~1 when the histone

code promotes formation of the active TA, and Hmi~0 when it is

inhibitory from transcription. It has been recently observed that

only a single allele of Nanog is active in ESCs cultivated with Lif

though two alleles can be active for other genes [51], which

indicates that the Nanog expression is regulated through the large

scale organization of chromosome architecture. This allelic

regulation is represented in the model by fixing the values as

F
j
bi~Abi~Hbi~0 and only the dynamical change of the allele a is

considered for i~Nanog.

The rate of binding of the j th TF (the rate to turn F
j
mi from 0 to

1), h, depends on the copy number of the jth TF, N(j). The rate to

change N(j) depends on the rate of synthesis of the TF, g, the

average burst size, X (see Eq.1 for the definition of burst synthesis

of proteins), and the degradation rate of the TF, kN(j), where the

synthesis rate g depends on whether the TA is ready for

transcription (Ami~1) or not (Ami~0). Rates of the TA forma-

tion/dissolution (rates to change Ami) depend on the TF binding

status F
j
mi and the histone code Hmi, and rates to change Hmi

should depend on F
j
mi and Ami because the enzymes to rewrite the

histone code are recruited by the TF bound on the locus. In this

way, the model has the hierarchically interrelated processes to

change variables, F
j
mi, Ami, Hmi, and N(i).

These different processes should have different timescales; tN

for the protein-copy-number change, tF for binding/unbinding of

TF, tA for formation/dissolution of a TA on chromatin, and tH

for modification of the histone code. Their precise values are not

known, but the histone code is often heritable across generations of

cell cycle [35] and modification of the histone code is most

frequent at the late phase of mitosis [52,53]. Therefore, when the

DNA methylation does not inhibit the histone-code modification,

tH should be larger than or near to the period of cell cycle, tcc, as

tHwtcc&4|104 sec. When DNA is methylated, on the other

hand, the timescale to make the histone code active (the timescale

to turn Hmi from 0 to 1) could be much longer as tH&tcc, so that

in general, tH depends on the chemical state of DNA of each gene

as tH (i). Since methylation of DNA is erased after fertilization, we

can expect that DNA is not yet methylated at most of the gene loci

in the early phase of differentiation we treat in the model. After the

de novo methylation in the developmental process, the distribution

pattern of methylated regions of DNA often lasts through the

lifetime of the organism, showing its timescale is very long [54].

Figure 2. A sketch of the epigenetic switching in the model. The state of the allele m of gene i is described by F
j
mi , Ami , and Hmi . Binding of TF

(Fj
mi~1) triggers the formation of TA (Ami~1), which enables synthesis of the ith TF to increase its copy number N(i). Rates of reactions, f , h, ji , gi , ei ,

di , g, and k, are written on the corresponding arrows. ji is large when the histone code is active for transcription (Hmi~1), di is large when the bound
repressor at mi recruits the enzymes to rewrite the histone code, and ei is large when the bound activator TF recruits the necessary enzymes (red
arrows). The adiabaticity parameters are defined by vF ~f =k, vA(i)~gi=k, and vH (i)~di=k. See subsection Reactions in the model in section
Methods for the precise definition of reactions and rates and Parameters in Methods for the values of rate constants.
doi:10.1371/journal.pcbi.1003380.g002

Time Scales in Epigenetic Dynamics
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Therefore, we here do not consider the dynamics of DNA

methylation explicitly, but treat it as a given static condition in our

model.

From the observed rate of decrease of the amount of Oct4 [4] or

Nanog [16], tN can be estimated as tN&1*2|104 sec, which

indicates tNvtcc. In many eukaryotic cells, the fast binding/

unbinding of TF is necessary for cells to respond to fast

environmental fluctuations, and hence we assume that also in

ESCs its timescale tF is much shorter than the timescale of

protein-copy number change tN as tF%tNvtcc. The timescale of

TA formation/dissolution (tA) is not known but we assume that

the timescale is correlated with complexity of the process. Building

a TA with DNA looping and recruitment of molecules is more

complex than the TF binding, so that we assume tF%tAƒtcc. For

the simple cases, we expect tAvtN , but when the large scale

chromatin modification or the chromosome reorganization is

necessary for building the TA, tA may become as large as tA&tcc.

We write tA as tA(i) to emphasize its dependence on the type of

gene.

The turnover time of TF binding/unbinding is tF*1=hz1=f ,

where h is the rate of binding and f is the rate of unbinding. The

turnover time of TA formation/dissolution is tA(i)*1=jiz1gi,

where ji is the rate of formation and gi is the rate of dissolution.

The turnover time of the histone-code modification is

tH (i)*1=eiz1=di, where ei is the rate to turn the histone code

positive for transcription and di is the rate to turn the histone code

repressive for transcription. We can expect in many cases that the

balance is achieved between forward and backward processes for

the dynamically fluctuating phase of the early differentiation, or in

other words, h*f , ji*gi, and ei*di. We therefore approximate

times for turnover as tF*1=f , tA(i)*1=gi, and tH (i)*1=di. For

i~Nanog, as will be discussed later in Results section, we have

jiwgi for the parameterization quantitatively consistent with the

experimentally observed data, and hence we use the relation

tA(i)*1=jiz1=gi*1=gi also for the Nanog locus.

Here, we define ‘‘adiabaticity’’ as the ratio of the rate of the

process to the rate of protein copy-number change; adiabaticity is

larger (smaller) than 1 when the process is adiabatic (non-

adiabatic). We use three sets of adiabaticity parameters, vF , vA(i),
and vH (i). Using the rate constant of the protein degradation

k*t{1
N as a measure, the rate of unbinding of TF from DNA,

f*t{1
F , should be larger than k, so that the adiabaticity of TF

binding/unbinding is vF ~f =k*tN=tF&1. The rate to change

the histone code from active to repressive state, di*tH (i){1, leads

to the smaller adiabaticity as vH (i)~di=kv1. The rate of

dissolution of TA should depend on the gene as gi*tA(i){1.

We expect that the corresponding adiabaticity parameter is

vA(i)~gi=kw1 when the large scale reorganization of chromo-

some is not necessary, but vA(i)v1 otherwise. Thus, vA(i) is a

key parameter to determine the dynamical features of the whole

switching process of the gene.

As in the previous works [29,30], we do not explicitly consider

mRNA and treat transcription and translation as one combined

process. In the same spirit, we do not explicitly consider processes

of the post-translational modification of TF, the transport of TF,

or the actions of micro RNA. Though regulations through these

processes can indeed affect the noise level [55–57], we here focus

on the transcriptional regulations to clarify the effects of non-

adiabatic gene switching. With this simplification, the states of six

genes in Fig. 1 are described by fFj
mig, fAmig, and fHmig, and the

coupled stochastic dynamics of genes and fN(i)g is simulated by

using the Gillespie algorithm [58]. In this way, the present model

has the resolution intermediate between the simplistic Boolean

models [59] and the models which integrate the further detailed

molecular processes. Through this simplified modeling and

simulations, we propose a hypothesis that the hierarchically

designed adiabaticity, vF&vA(i)w1wvH (i) or

vF&1wvA(i)wvH (i), decisively affects the self-renewal of ESCs

and differentiation. In Parameters subsection of Methods section of

this paper, values of vF and vH (i) are estimated by referring the

experimental data, but the value of vA(i) is largely undetermined.

In the following part of Results section, we focus on the effects of

varying vA(i) on cell dynamics.

Phenotypic heterogeneity
We first discuss ESCs in media containing Lif and other agents.

Lif activates c-Myc [60], which activates SON by keeping the

histone code of lineage-specific genes repressive [34]. We simulate

this culture by adopting the null rate for turning the histone-code

active as ei~0 for i~Gata6, Cdx2 and Gcnf (See Fig. 2 and

Methods for the definition of parameters).

First simulated is the case that the formation/dissolution of TA

is adiabatic with vF&vA(i)w1 with vF ~103. As a typical value

to satisfy this inequality, we use vA(i)~10 for all i. Distributions of

the expression level of SON simulated with this parameterization

are shown in Figs. 3A and 3C. We can see that the simulated

distribution of the expression level of Nanog shows a single peak

and the simulated distributions of Sox2 and Oct4 are double

peaked at their finite values of expression level with some

additional populations at the zero expression. These features are

different from those observed in experiments: Compared are the

distributions of cell population in a culture plotted as functions of

the expression level of SON. The observed distribution of Oct4 is

single peaked (Fig. 3D) [14], the distribution of Sox2 is similar to

that of Oct4 [14], and the observed distribution of Nanog shows

two peaks (Fig. 3D) [11,14]. The observed two-peak distribution of

Nanog indicates that the fluctuation of Nanog is dominated by

transitions between two states; the high-Nanog (HN) and low-

Nanog (LN) states [11,33]. The simulated Nanog distribution with

the adiabatic TA formation/dissolution apparently disagrees with

this observed two-peaked Nanog distribution.

The assumption of the adiabatic TA formation/dissolution with

vA(Nanog)w1 used in the above simulation is questionable when

we consider the following features of Nanog expression: First, the

TA of Nanog consists of the fairly large (&160 kb) region of DNA

[61], which should make the formation/dissolution of TA a rather

complex process. Second, the allelic regulation of Nanog [51]

indicates that the chromosome organization on the nuclear scale

regulates the Nanog expression. This observation is also consistent

with the recent finding that the loci of genes of the pluripotent

factors are spatially in proximity to the Nanog locus in an ESC-

specific manner [62], indicating that the nuclear scale organization

of chromosomes is involved in the activation of Nanog in ESCs. For

such complex and spatially extended processes for TA at the Nanog

locus, it should be reasonable to assume that the timescale of TA

formation/dissolution is as long as the cell cycle period. To find

the plausible values for the rate of TA formation (ji) and the rate

of TA dissolution (gi) at the i~Nanog locus, we performed a

massive parameter search by generating more than 1,000 scattered

points on the two-dimensional plane of log10 (ji=k) and

log10 (gi=k) with i~Nanog. The score for each of generated

parameter sets was calculated by averaging 10,000 trajectories

simulated with the corresponding parameter set, where the score is

the number of the experimentally observed features that the

simulated data reproduced. The features used to count the score

include (1) bimodality of the distribution of expression level of

Nanog, (2) the ratio of the copy-number at the HN state to that at

Time Scales in Epigenetic Dynamics
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the LN state, (3) the ratio of the peak height at the HN state to that

at the LN state, (4) the single-peak distribution of expression level

of Oct4, and so on. The score calculated in this way is plotted in

Fig. 4 for 1,125 parameter sets. See Massive parameter search

subsection in Methods section for more details on the definition of

the score. Search of the other parameter set is shown in Fig.S1.

Results of Fig. 4 indicate that the normalized rate of TA

formation ji=k should be around 1vji=kv5 and the normalized

rate of TA dissolution gi=k should be 0:1vgi=kv1 for i~Nanog

to reproduce the experimentally observed heterogeneous expres-

sion levels in ESCs. Here, the result of ji=kwgi=k was needed to

reproduce the observed feature that the HN peak height is larger

than the LN peak height. Since the biologically reasonable lower

bound of gi is the frequency of cell cycle 1=tcc, we use the lowest

allowed value of vA(Nanog)~gi=k~(1=tcc)=k~0:5 in the

subsequent analyses by keeping vA(i)~10 for i~Sox2, and

Oct4. The precise values of other parameters are explained in

Parameters subsection in Methods section. The simulated distribu-

tions of SON with this non-adiabatic switching of Nanog are shown

in Figs. 3B and 3C. The simulated width of peaks is narrower than

the observed one because in simulation the extrinsic noise due to

the cell-cycle oscillation and the fluctuating reception of Lif are

neglected for simplicity. The overall features of the distributions,

however, agree well with the experimental data [14]: Nanog shows

a clear two-peak distribution and the Oct4 distribution has an

asymmetric single major peak.

Shown in Figs. 5A and 5B is the temporal change of

distributions of Nanog calculated by starting from the ensemble

Figure 3. Distributions of the expression level of SON in the isogenic population of ESCs. Distributions of the simulated copy number of
(A) Nanog (real line) and Oct4 (dashed line) with fast Nanog switching, (B) Nanog (real line) and Oct4 (dashed line) with the slow Nanog switching, and
(C) Sox2 with the slow (real line) and fast (dashed line) Nanog switching. (D) The observed population of cells in a culture as a function of their
expression level (in arbitrary units) of Nanog (real line, taken from Fig.S3 of [14]) and that of Oct4 (dashed line, modified from Fig. 6A of [14]). (A–C)
Simulated by sampling 10,000 cells during 11.5 days with vA(i)~10 for all i for the fast Nanog switching, and with vA(Nanog)~0:5 and
vA(Sox2)~vA(Oct4)~10 for the slow Nanog switching. For convenience of the graphical representation, the populations at the zero expression
level (N(i)~0) are binned with the data of N(i)~1.
doi:10.1371/journal.pcbi.1003380.g003

Figure 4. Search for a range of parameter set ji and gi for
i~Nanog. The ability of the simulated trajectories to reproduce the
experimentally observed data of distributions of the expression level of
SON is evaluated by the score S which is defined by Eq.20 in Methods
section. The score was evaluated for each of 1,125 parameter sets
scattered on the two-dimensional plane of log10 gi=k and log10 jia=k for
i~Nanog, where jia is a conditional value of ji explained in Methods
section and ji is the rate of TA formation. gi is the rate of TA dissolution,
and k is the rate coefficient of protein degradation.
doi:10.1371/journal.pcbi.1003380.g004

Time Scales in Epigenetic Dynamics
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of cells either in the HN or LN state at Day 0. Within several days,

the single-peaked distribution of cells in either of the HN or LN

state recovers the two-peak features, which reproduces the

experimentally observed temporal relaxation [11,14]. This relax-

ation indicates that ESCs show dynamical transitions between HN

and LN states with timescale of a few days. The agreement

between the observed and simulated timescales of transitions

between HN and LN states indicates the validity of the small

vA(Nanog) for the slow switching at the Nanog locus, and hence

the data in Fig. 5 should rule out the other hypothetical models

which can yield a bimodal Nanog distribution but with the large

vA(Nanog).

A possible origin of the slow non-adiabatic switching of Nanog is

the large scale chromatin reorganization in the formation/

dissolution of TA of Nanog. This assumption of slow switching

explains the observed two-peak distribution and the dynamical

transition of the expression level of Nanog, and is also consistent

with the single-peak distribution of Oct4. Thus, the assumption of

the slow non-adiabatic switching of Nanog explains the observed

phenotypic heterogeneity of ESCs.

Diagram of transitions among cell states
Given the consistent model for the heterogeneity of ESCs, it is

interesting to analyze how cells initiate differentiation. To simulate

cells that can differentiate, the rate to turn the histone-code active,

ei, is increased to have a finite value for i~Gata6 and Gcnf . ei for

i~Cdx2 is also turned finite but kept small because in embryo, the

distinct expression of Cdx2 is the event prior to the formation of

inner cell mass from which ESCs are prepared, so that it is

plausible to assume that the methylated DNA or the collective

action of regulating factors inhibits the histone code of Cdx2 from

being active in ESCs (See subsection Parameters in Methods).

Examples of trajectory simulated with this parametrization are

shown in Figs. 6A and 6B. The trajectory in Fig. 6A wanders

around several transient states but neither Cdx2 nor Gata6

dominates during this wandering: Cells are jumping among the

states by maintaining the features of ESC. In Fig. 6B, on the other

hand, the trajectory escapes from the ESC states to reach the

Gata6 dominant state which is a gateway to the primitive

endoderm lineage.

In both Figs. 6A and 6B, the trajectories are not the continuous

drifts but consist of sojourns and jumps. This feature allows us to

represent each trajectory as a sequence of transitions among ‘‘cell

states’’: Using the feature that the copy number of each factor,

N(i), shows a multiple-peak distribution (Fig.S2), we divide each

distribution into a few parts, each of which is named in an

abbreviated way as HN (high-level Nanog), MN(middle-level

Nanog), LN (low-level Nanog), S (high-level Sox2), LS (low-level

Sox2), etc. The thresholds used to divide the distributions are

summarized in Table 1. Then, cell states are defined by thus

discretized distributions and also by a set of the histone states

fHmig. The trajectory is regarded as a sequence of transitions

among those cell states. With this coarse-grained representation of

trajectories, the mean waiting time for transition from the ith to

the jth cell states can be estimated as �tti?j , and the mean transition

rate is defined by qi?j~1=�tti?j (See subsection Transition diagram in

Methods for the detailed explanation on qi?j ).

In the case that the trajectory stays for a long duration at each

cell state to erase its dynamical memory, this coarse-grained

dynamics can be regarded as Markovian, or in other words, the

transition probability from the ith to jth states is not affected by

which state the trajectory visited before reaching the ith state. It is

suggested from Figs. 6A and 6B that the trajectories stay at each

cell state long enough to show many oscillations during the stay,

but the more quantitative test should be necessary to judge

whether the coarse-grained dynamics is indeed Markovian or not.

We leave this test as a future problem and proceed further in this

paper to show how the transition diagram and the landscape view

capture the important features of transitions among cell states.

Drawn in Fig. 6C is the diagram of transitions among thus

defined cell states, where the value of qi?j is shown on the link

from the ith to jth cell states. In Fig. 6C the cell states in which all

of Sox2, Oct4, and Nanog (SON) are expressed are regarded as

the pluripotent states (or the ESC states) though the level of Nanog

fluctuates largely among these states and sometimes Cdx2 or

Gata6 coexists with SON. These ESC states are connected by

loops of transitions and hence the cells wander among ESC states

to wait for a chance to escape from the ESC states. Trajectories

that have escaped from the ESC states go through the network of

transitions among the intermediate states in which one or two of

SON are lacking. From these intermediate states, cells reach the

state in which Gata6 dominates. In some cell states, Cdx2 appears

as fluctuation but the small value of ecdx2 prevents Cdx2 from

dominating the state.

It should be interesting to examine the validity of these

predictions with the experimental observations: By quantifying

the expression level of important factors, we will be able to define

cell states from the experimental data. Then, we can check

Figure 5. The simulated temporal change of distributions of the expression level of Nanog. Distributions starting from (A) the ensemble
of 10,000 cells in the HN state, and (B) from those in the LN state. The distribution at the initial time (red), 1 day later (green), and 5 days later (blue).
vA(Nanog)~0:5 and vA(Sox2)~vA(Oct4)~10.
doi:10.1371/journal.pcbi.1003380.g005

Time Scales in Epigenetic Dynamics

PLOS Computational Biology | www.ploscompbiol.org 6 December 2013 | Volume 9 | Issue 12 | e1003380



whether the differentiation is the process of jumping among these

states. Though there is a global trend of kinetic flows from the

ESC states to the differentiated states, the predicted pathways are

not single but comprise the network of flows. It should be

important to compare the predicted distribution of pathways as in

Fig. 6C with the distribution of pathways experimentally observed

by following the fate of individual cells in the culture.

Epigenetic landscapes
To analyze dynamics of differentiation, the epigenetic landscape

that underlies transitions among cell states should provide a useful

perspective [63,64]. Here, the landscape is derived from the

transition diagram by using the analogy with the free energy

surface in equilibrium dynamics. In equilibrium dynamics, by

using the transition-state theory formula, the rate of transition

from i to jth states should be proportional to exp({DG
{
ij) where

DG
{
ij~G

{
ij{Gi, and Gi and G

{
ij are the dimension-less free-energy

like quantity at the ith state and at the transition state between the

i and jth states, respectively. We use this analogy to equilibrium

dynamics by fitting the calculated rates qi?j to this transition-state

theory formula to obtain the free-energy like quantity Gi and G
{
ij .

When the transition diagram has a tree-like structure without a loop,

we can determine G of each state one by one by fitting the simulated

rates to this formula. We use this analogy with equilibrium dynamics

as far as possible to draw the landscape G of non-equilibrium

transitions. This method of fitting, however, apparently breaks down

when the transition network contains one or more loops: When the

transition network contains a loop, for example, we may attempt to

determine G of states in the loop one by one by starting from the ith
state in the loop with the landscape value Gi, but at the end of

traverse along the loop, we return to the initial ith state with a

different value of G from the original Gi. In this way, the fitting to

the transition-state theory formula is inconsistent along loops. This

inconsistency can be resolved when we explicitly consider the non-

equilibrium feature of dynamics by introducing the curl flux of

transition kinetics [65–68]. Thus, the kinetic process along each loop

can be expressed by the combination of the landscape and a kinetic

flow curling along the loop. Transitions, therefore, are described by

the combined representation of landscape and non-equilibrium curl

flux. An example of a looped diagram having curl fluxes is shown in

Fig. 7. From qi?j of this diagram, the free-energy like quantity Gi at

the ith cell state and G
{
ij at the barrier between the i and jth cell

states are calculated for i~A,B,C, and D, and curl fluxes J1 and J2

are obtained simultaneously. See subsection Epigenetic landscape in

Methods for the explanation on how to calculate Gi, G
{
ij , J1 and J2

from qi?j of Fig. 7.

In Fig. 8 the landscapes and curl fluxes calculated from the

simulated qi?j in the differentiation processes are shown on the

two-dimensional plane with the coordinates of D(TE)~L(Cdx2)
zL(Gcnf){L(Sox2){L(Oct4){L(Nanog) and D(PrE)~
L(Gata6)zL(Gcnf){L(Sox2){L(Oct4){L(Nanog). Here,

L(i) is the label of the discretized expression level of the ith factor,

which is defined to have the larger value for the higher expression

Figure 6. Simulated trajectory of differentiation can be
regarded as a sequence of transitions. Example trajectories of
11.5 day length drawn with coordinates of (A) N(Nanog), N(Oct4), and
N(Sox2), and (B) N(Gata6), N(Oct4), and N(Nanog). (C) Diagram of
transitions among cell states. Cells wandering among ESC states (light
blue) start differentiation through intermediate states (pink) or the Cdx2
expressing state (light green) to reach the Gata6 dominant state
(orange), which leads to the primitive endoderm lineage. The transition
rate qi?j is written on the link connecting the ith to jth cell states in
units of 1/day. Arrows returning to the same states represent transitions
via the infrequently appearing states which are not shown in the
diagram according to the criterion described in the subsection
Transition diagram in Method section. Each state is designated by the
expressed factors; S (Sox2), LS (Low-level Sox2), O (Oct4) LO (Low-level
Oct4), HN (High-level Nanog), MN(Middle-level Nanog), LN (Low-level
Nanog), Ga (Gata6), Gc (Gcnf), and C (Cdx2). The diagram was obtained
by sampling 10,000 cells simulated during 11.5 days. Transitions
frequent more than the threshold defined in subsection Transition
diagram in section Methods are extracted from trajectories. Transitions
to/from the LS-LN-C-Gc state (dashed lines) were less frequent than the
threshold but are drawn here to show the topological connectivity of
the diagram.
doi:10.1371/journal.pcbi.1003380.g006

Table 1. Definition of cell states and their labels.

N(Sox2) 0–10 10–200 200 -

L(Sox2)* 0 2 4

N(Oct4) 0–20 20–200 200 -

L(Oct4) 0 2 4

N(Nanog) 0–40 40–400 400–4000 4000 -

L(Nanog) 0 1 2 4

N(Cdx2) 0–20 20–200 200 -

L(Cdx2) 0 2 4

N(Gata6) 0–100 100 -

L(Gata6) 0 4

N(Gcnf) 0–100 100 -

L(Gcnf) 0 4

*The values of L(i) were determined for the visibility of Fig. 8.
doi:10.1371/journal.pcbi.1003380.t001
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level. D(TE) and D(PrE), therefore, represent the degree of

closeness to the trophectoderm and primitive endoderm lineages,

respectively. The precise values of L(i) are chosen for obtaining good

visibility of Fig. 8, and are explained in Table 1. In Fig. 8, the

calculated Gi and G
{
ij are plotted by assigning D(TE) and D(PrE) for

i and ij, and Gi and G
{
ij are interpolated by a smooth surface in the

two-dimensional space of D(TE) and D(PrE).

The landscape corresponding to the diagram of Fig. 6C is

shown in Fig. 8A. We see that the ESC states distribute on a flat

basin in the region of small D(TE) and D(PrE): ESCs wander

around this basin driven by both the fluctuations satisfying the

balance between the forward and reverse transitions and the

kinetic flow of curl flux that breaks the balance. ESCs start

differentiation as they move along the valley stretching toward the

Gata6 dominant state. Transitions among intermediate states

along this valley are also accompanied by the weak non-

equilibrium curl flux.

In Figs. 8B and 8C, the artificial depletion of Oct4 is simulated

with the decreased rate of synthesis of Oct4. Since Oct4 and Cdx2

work in an antagonistic way, the depletion of Oct4 results in the

stronger expression of Cdx2, which leads ESCs to the trophec-

toderm linage: With the decrease of the rate of Oct4 synthesis to

25% (Fig. 8B) and 10% (Fig. 8C) of the value in Fig. 8A, the

landscape changes its shape by extending the valley toward the

Figure 7. An example of looped diagram among cell states, A,
B, C, and D. This diagram contains two loops. For two loops, two non-
equilibrium curl fluxes, J1 and J2 , are introduced. Calculation of the
epigenetic landscape and curl fluxes based on this diagram is explained
in subsection Epigenetic landscape in section Methods.
doi:10.1371/journal.pcbi.1003380.g007

Figure 8. Epigenetic landscapes and non-equilibrium curl fluxes derived from the transition diagrams in the differentiation
process. Contour maps of landscapes are shown on the two-dimensional plane of D(TE), the degree of closeness to the trophectoderm lineage,
and D(PrE), the degree of closeness to the primitive endoderm lineage, and curl fluxes are shown with black lines on the landscapes with the width
of lines representing the strength of fluxes; thick lines (0:1day{1

vJ), lines with the middle width (0:01day{1
vJv0:1day{1), and thin lines

(Jv0:01day{1). (A–C) For the slow Nanog switching with vA(Nanog)~0:5 and vA~10 for other genes, and (D–F) for the fast Nanog switching with
vA~10 for all genes. The rate of Oct4 synthesis is (A and D) same as other factors, and (B and E) 25% and (C and F) 10% of other factors.
doi:10.1371/journal.pcbi.1003380.g008
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Cdx2 dominant state. In Fig. 8B two valleys to primitive

endoderm and trophectoderm coexist with the curl flux on the

basin of ESC states remaining, and in Fig. 8C the valley to

trophectoderm dominates. These results are consistent with the

experimentally observed induction of the trophectoderm lineage

through the reduction of Oct4 [31].

Shown in Figs. 8D–8F are landscapes calculated with the

assumption of the fast Nanog switching: vA(Nanog)~10. With this

fast Nanog switching, the flat basin of the ESC states disappears, the

curl flux in ESC states becomes localized, and ESCs quickly

differentiate toward primitive endoderm (Fig. 8D). The curl flux

on the ESC basin, therefore, originates from the slow Nanog

switching. In other words, the eddy current associated with the

non-adiabatic switching [23] manifests itself in the curl flux on the

epigenetic landscape.

Difference between the slow and fast Nanog switching becomes

more evident upon the reduction of Oct4 (Figs. 8E and 8F). With

the fast Nanog switching, two valleys do not represent the distinct

cell fate but they are directly connected to each other by the

frequent transdifferentiation (Fig. 8F). This obscured differentia-

tion arises from the averaged intermediate amount of Nanog

synthesis under the fast Nanog switching. With the intermediate

level of Nanog, the alleles of the lineage-specific genes tend to take

the intermediate histone code as Hai~1 and Hbi~0 or Hai~0

and Hbi~1. This intermediate level of activation of both Cdx2 and

Gata6 increases the frequency of the transdifferentiation. With the

slow Nanog switching, on the other hand, the histones of Gata6 and

Cdx2 become either active with Hai~Hbi~1 or repressive with

Hai~Hbi~0, and such a clear-cut histone switching decreases the

probability of the mixed expression of Cdx2 and Gata6. In this

way the simulated results suggest that the distinct cell fate decision

is based on the slow Nanog switching, so that the phenotypic

heterogeneity of ESCs is necessary for the stable differentiation.

The present quantification of epigenetic landscapes showed that

the model naturally reproduces the observed differentiation to

primitive endoderm [10]. The model also reproduces the induced

differentiation to trophectoderm observed when the Oct4 expres-

sion is artificially suppressed [3]. It should be interesting to further

examine possibility of the predicted transdifferentiation due to the

fast Nanog switching.

Discussion

We developed a model of epigenetic dynamics and proposed a

hypothesis that the timescale of formation/dissolution of TA

decisively affects the self-renewal and differentiation of mouse

ESCs. These effects can be checked experimentally by artificially

varying the timescale of formation/dissolution of TA. The slower

rate of formation/dissolution of TA for Oct4, for example, should

give rise to the multi-peak distribution of Oct4, which should also

affect the epigenetic landscape and non-equilibrium curl fluxes on

the landscape. Further important is the application of the present

ideas to engineering differentiation. Overexpression or repression

of specific genes should alter the epigenetic landscape and curl

fluxes, so that the calculation and observation of landscape and

curl fluxes should provide a guideline for designing the process of

cell differentiation.

An intriguing question is the effect of variation of the number of

working alleles in a cell. In the present simulation, following the

report for the single non-silenced Nanog allele in each ESC [51],

only the single Nanog locus was considered in the simulation, which

explained the bimodal Nanog distribution when the Nanog

switching was slow. Assuming that both two alleles are working

independently owing to the invalidated allelic regulation, we have

three peaks in the Nanog distribution corresponding to the ‘high-

high’, ‘high-low’ and ‘low-low’ levels of expression for two alleles of

Nanog with the slow Nanog switching as shown in Fig.S3. This

predicted three-peak distribution could be experimentally tested in

ESCs, though the more careful investigation is needed on the

possible correlation between the allelic regulation and the

regulation of the timescale of gene switching.

The core part of the network relations among genes in the

present paper was built from the experimental observations, but

there are experimental suggestions still not taken into account in

the present model. For example, a recent report suggested the

auto-repression of Nanog [45]. This suggested interaction can

affect the transition dynamics between the HN and LN states,

which should be examined by simulation. The validity of the

assumptions used in the present modeling of epigenetic dynamics

should be checked by examining how the results are modified

when the model is further extended. In the present model, three

processes having the different timescales were considered; TF

binding/unbinding, TA formation/dissolution, and the histone

code modification. Each of these processes consists of multiple sub-

processes, and therefore if the model is extended with the finer

resolution, the involved timescales should have more variety [69].

The TA formation/dissolution, for example, may involve assembly

of mediators and RNA polymerase, phosphorylation of these

factors, chromatin looping, and the large scale change in the

chromosome positioning in nucleus. In the present model, we treat

them in a coarse-grained manner by representing the TA state

with Ami which takes a value between 0 and 1. By treating these

multiple processes explicitly, we may be able to construct a more

quantitative model that can be compared with experiments in

more details, and the validity of the level of coarse-graining in the

present model could be checked through such comparison.

We should stress, however, that the main conclusions on the

importance of design of timescales of regulations and the

usefulness of combined representation of landscape and non-

equilibrium curl fluxes do not depend on the molecular details.

Indeed, the simplified mathematical or statistical physical models

to capture the essential features of landscapes and curl fluxes

should be useful. The dynamical systems models, for example,

emphasize the importance of oscillations in the gene network [70],

which conforms with the view presented here on the importance of

rotating curl fluxes.

Another important direction to improve the present model is to

take into account the core genes that guide ESCs to primitive

ectoderm which further differentiates into the primary germ

layers. To develop the reliable models, the effects of cell-cell

communication and cell cycles should be also taken into account.

Especially, the cell-cell communication should play important

roles to stabilize the cell type of colony of interacting cells [70,71].

The model developed in the present paper was based on the

assumption that the partial effect of cell-cell communication is

implicitly taken into account by the mutual inhibition between

Cdx2 and Gata6 (See Methods section). In order to analyze the

differentiation process more quantitatively, the model needs to be

extended to explicitly treat the effects of cell-cell communication.

Those more elaborate models, together with the simplified

statistical mechanical models, should reveal the rich phenomena

in ESCs and differentiation processes.

Methods

Inference of the network from experimental observations
The model consists of interactions among six genes. Those

interactions are inferred from the experimental data, which are
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complemented with various levels of assumptions as explained

below. In the following, the assumptions used are categorized into

Level A, Level B, Level C, and Others. The aim of the present

study is not to claim the validity of those assumptions, but to clarify

the mechanisms of epigenetic dynamics by using a set of

biologically consistent assumptions. The interactions considered

in Fig. 1 were inferred from the discussions below, which are

numbered in the same way as interactions designated in Fig. 1:

Level A. Microarray or other genetic experimental techniques

revealed the correlation or anti-correlation between expression

levels of two genes, and the chromatin immunoprecipitation or

other biochemical data showed the binding of one factor to the

locus of the other gene. These data support the assumption that

the transcription factor (TF) synthesized from one gene directly

regulates the other gene. The Level A assumptions give the

backbone of the present model of the regulatory network.

1. Each of Oct4, Sox2 and Nanog loci has the Oct/Sox enhancer

region [7,72], on which Oct4 and Sox2 bind together to form the

Oct4-Sox2 complex to activate Oct4, Sox2, or Nanog [4,7,72].

There are two possible ways of binding though they are not

mutually exclusive; The Oct4-Sox2 complex is formed before they

bind to DNA, or Oct4 and Sox2 bind to the adjacent sites of DNA

to form the complex after binding. These two ways of binding are

different in their cooperativity in the binding process. However,

since the cooperativity of binding is masked by the cooperative

formation/dissolution of transcription apparatus (TA) in the

present model, these two ways of binding do not give significant

difference in the switching behavior. We use, for simplicity, the

latter assumption of forming complex after binding to DNA, but

represent the effects of complex formation by assuming that the

binding of either one of Oct4 or Sox2 is not enough but the

binding of both two factors are needed for forming TA (We

assume that the formation of the Oct4-Nanog complex is another

route to form TA).

2. Gcnf binds to the Oct4 and Nanog loci to repress them [48].

3. The Oct4-Cdx2 complex represses both Oct4 and Cdx2

[47,73].

4. Nanog binds directly to the Gata6 locus to repress it [13].

5. Because the binding of Oct4 to the Nanog locus is necessary

for forming the higher order structure of chromatin at the Nanog

locus [61] and the binding site of Oct4 is adjacent to the binding

site of Nanog at the Nanog locus [6], we expect that the Oct4-

Nanog complex formed on the chromatin is necessary for building

the TA of Nanog.

6. Nanog promotes the expression of Oct4 [5] and both Nanog

and Oct4 directly bind to the Oct4 locus [6]. Because the binding

site of Oct4 is in proximity of the binding site of Nanog at the Oct4

locus [6], we assume the promotion of the formation of TA of

Oct4 through the binding of Oct4-Nanog complex on the Oct4

locus.

7. Nanog is suggested to promote expression of Sox2 [8,74] and

both Nanog and Oct4 directly bind to the Sox2 locus [6]. Because

the binding site of Oct4 is in proximity of the binding site of

Nanog at the Sox2 locus [6], we assume that the formation of TA

of Sox2 is promoted by the binding of Oct4-Nanog complex on

the Sox2 locus.

Level B. Genetic experimental data showed the correlation or

anti-correlation between expression levels of two genes, but the

direct evidence for the physical interactions between two genes are

not yet obtained. In this case, the interactions can be indirect

through the other unidentified factors. Even in that case, we may

assume the hypothetical direct interaction between two genes in

the model. Such assumption is reasonable in the coarse-grained

model, in which the multiple detailed molecular processes are

summarized into one process.

8. Excess expression of Oct4 reduces the expression level of

Nanog [75]. We assume in the model that the Nanog locus has

multiple binding sites of Oct4 and the occupation of the part of

those sites is necessary for the formation of TA, but the occupation

of all sites increases the rate for making the histone-code

repressive.

9. The Nanog-null ESCs differentiate into cells similar to those

induced by Gata6-positive cells [2,76]. Since Gata6 and Nanog

work in an antagonistic way [73,77], we assume that Gata6 and

Nanog are mutual repressors. Though it is not clear whether the

repression of Nanog by Gata6 is direct or indirect through the

other factors, we represent the interaction as a direct one by

following the spirit of the coarse-grained approximation.

10. Gcnf is positively regulated by Gata6 and Cdx2 [10]. We

assume for simplicity that Gcnf is activated directly by Gata6 and

Cdx2 in the model.

Level C. No precise genetic data is available on the correlation

or anti-correlation of gene activities, but from functional or

biological observations, it is reasonable to assume the relation

between two genes. The assumed interaction on such phenome-

nological basis might be a summary of the action of the larger

network, but its representation as a single hypothetical process is

useful to make the model behavior biologically reasonable.

11. Upon the removal of Lif or other agents from the culture,

ESCs start differentiation. Then, each cluster of differentiated cells

do not return to ESCs spontaneously. This stabilization of the

differentiated cells may be enhanced by the positive feedback

among the lineage-specific genes as was assumed by [63]. This

effect of the regulatory network is represented in the model as

auto-activation of lineage-specific genes, Gata6, Cdx2 and Gcnf.

These auto-activating interactions may be phenomenological or

hypothetical interactions.

12. The cluster of cells differentiated into one lineage do not

spontaneously transdifferentiate into the other lineages. This

inhibition of transdifferentiation may arise from the reception of

the external factor that is secreted or exhibited by the neighbor

cells in the cluster. Such effect of the cell-cell communication is

phenomenologically represented in the model by the mutual

repression of genes specific to the different lineages.

Others. Other biochemical or biophysical data showed the

existence of interactions.

13. Nanog dimerization is essential for the self-renewal of ESCs

[19]. Nanog dimerization can be the faster process than its binding

to the loci, so that we assume in the model that all the interactions

between Nanog and chromatins are through the dimerized Nanog.

As assumed in the above argument, each locus of gene has

multiple binding sites of TFs. From Fig. 1 we define the binding

sites in the model as in Table 2.

Reactions in the model
The state of the allele m of gene i in the model is represented by

variables Hmi, F
j
mi, and Ami, where Hmi represents whether the

histone code is active (Hmi~1) or repressive (Hmi~0), F
j
mi

represents whether the jth TF is bound (F
j
mi~1) or unbound

(F
j
mi~0), and Ami represents whether the TA of the locus mi is

formed and ready for transcription (Ami~1) or unformed and not

ready (Ami~0). TA may be partially formed when the incomplete

number of TFs are bound on a locus, and hence we write Ami~0:5
to represent such a partially formed TA. The copy number of the

ith protein is represented by N(i). The temporal changes of Hmi,
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F
j
mi, Ami, and N(i) are numerically followed by using the Gillespie

algorithm [58], which simulates the reactions explained below.

The ith protein is synthesized from the locus mi in a burst-like

fashion with the rate g as

g

N(i) ? N(i)zn:
ð1Þ

Here, we assume that the burst size n stochastically fluctuates in

each burst with the probability of the distribution,

P(n)~(X n=n!)e{X , with X being the average burst size. Though

the distribution of the burst size was reported to obey the

geometric distribution in bacteria [78], the precise distribution of

the burst size in higher organisms is not known [79]. We here used

the Poisson distribution to highlight the effects of the burst size, but

as shown in Fig.S1, the model behavior does not sensitively

depend on the burst size X , and hence we expect that the

difference in distribution does not much affect the results. The ith

protein is degraded with the rate kN(i) as

kN(i)

N(i) ? N(i){1:
ð2Þ

From Eqs.1 and 2, we can see that the representative copy number

of each protein is 2gX=k, where the factor 2 comes from two

available alleles. The synthesized j th protein can bind to and

unbind from the i th site if the locus mi has the binding site for the j

th protein (Table 2). The binding rate, h, depends on the copy

number of the protein to be bound. We assume the simplest linear

relation by introducing a constant h0 as h~h0N(j). When the TF

cooperatively binds in a form of oligomer, the contribution of higher

orders of N(j) should be taken into account in h. However, in the

present model, unlike the bacterial cases, the modification of h with

the higher order terms of N(j) does not affect the model behaviors

significantly because the cooperativity of switching is dominated by

the formation/dissolution of TAs. We therefore assume

h0N(j)

F
j
mi~0 ? F

j
mi~1,

ð3Þ

f

F
j
mi~1 ? F

j
mi~0:

ð4Þ

We should note that for the frequent switching between F
j
mi~1 and

0 to take place, the ratio h0N(j)=f should be around 1, or

h0N(j)=f&2h0gX=(kf )&1. For j~Nanog, dimerization should

be much faster than other processes, so that we use the copy number

of Nanog dimer, N(Nanog2), as h~h0N(Nanog2) in Eq.3 instead

of the total copy number of Nanog, N(Nanog). N(Nanog2) can be

estimated from the equilibrium relation as

N(Nanog2)~
N(Nanog)

2
z

1

8K
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8K
N(Nanog)z

1

8K

� �s
, ð5Þ

where K is the equilibrium constant of dimerization. In

Eq.2, the copy number of the monomeric Nanog,

N(Nanog1)~N(Nanog){2N(Nanog2) is used to define the

degradation rate as kN(Nanog1).

The binding of activator TFs triggers the formation of TA;

starting from Ami~0 through the intermediate state Ami~0:5 to

reach Ami~1 as

ji j’i
Ami~0 ? Ami~0:5 ? Ami~1,

ð6Þ

and the TA is resolved stochastically as

g’i gi

Ami~1 ? Ami~0:5 ? Ami~0:
ð7Þ

These formation/dissolution of TA should be largely affected

by the state of histones at that locus. The change of the histone

code is simulated by switching between the active and repressive

states as

ei

Hmi~0 ? Hmi~1,
ð8Þ

di

Hmi~1 ? Hmi~0:
ð9Þ

In Eqs.6–9 the rates j, j’, g, g’, e, and d are represented with a

suffix i to emphasize their dependences on the type of gene.

We next explain how the rates defined in Eqs.1–9 depend on

the gene state, Hmi, F
j
mi, and Ami. g in Eq.1 depends on whether the

TA is formed or not, which is represented by the variable Ami . By

using constants g0w0 and aw1, we write g as

g~

0 (Ami~0)

g0 (Ami~0:5)

ag0 (Ami~1)

8><
>: ð10Þ

Notice that with this rule the protein is synthesized only when the

TA is formed at least partially as Ami§0:5.

The rates of TA formation and dissolution depend on how TFs

are bound on the locus. Since TFs can be either of repressor or

activator when they bind on the particular locus, we distinguish

the binding sites j by writing j~ja when the j th TF is an activator

of i, and j~jr when the jth TF is a repressor of i. With this

representation, the rate for the first step of TA forming, ji in Eq.6,

is represented as follows;

Table 2. The binding sites of TFs on each locus of gene in the
model.

locus activator binding site repressor binding site

1 2 3 1 2 3

Sox2 Sox2 Oct4 Nanog2 - - -

Oct4 Sox2 Oct4 Nanog2 Cdx2 Gcnf -

Nanog Sox2 Oct4 Nanog2 Oct4* Gata6 Gcnf

Cdx2 Cdx2 - - Oct4 Gata6 -

Gata6 Gata6 - - Nanog2 Cdx2 -

Gcnf Cdx2 Gata6 Gcnf - - -

*The secondary Oct4 bound on the Nanog locus works in repressive ways only
in the reactions of Eqs15 and 16.
doi:10.1371/journal.pcbi.1003380.t002
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ji~

jia (F
ja
mi~1 for Aja, F

jr
mi~0 for Vjr, and Hmi~1)

ji0 (F
ja
mi~0 for Vja, F

jr
mi~0 forVjr, and Hmi~1)

jir (F
jr
mi~1 for Ajr, and Hmi~1)

0 (Hmi~0):

8>>>><
>>>>:

ð11Þ

Notice that the TA is formed with ji=0 only when the histone

code is active (Hmi~1). Here, jia is the rate when some activator

TF is bound on the locus but there is no bound repressor, jir is the

rate when some repressor is bound on the locus, and ji0 is the rate

when no activator or repressor in the model is bound on the locus.

Even in the case there is no bound activator in the model, other

TFs which are not represented in the model may bind on the locus

to promote the TA forming, and hence we assume that the basal

background rate for the TA formation, ji0, is finite. Considering

these definitions, we expect jiawji0wjir. For the second step of

TA forming, we expect that all possible TFs should bind on the

locus to complete the TA formation, so that we have

j’i~
jia
0 (F

ja
mi~1 for Vja, F

jr
mi~0 for Vjr, and Hmi~1)

0 (Otherwise):

(
ð12Þ

For Gcnf and Sox2, we do not consider the repressor explicitly, so

the rule is simplified as

j’i~
jia
0 (F

ja
mi~1 for Vja and Hmi~1)

0 (Otherwise):

(
ð13Þ

The rates of the histone-code modification, ei in Eq.8 and di in

Eq.9, should also depend on the state of gene. We assume that the

histone code can be turned active only when enzymes to modify

the histone code are recruited by activators and are not inhibited

by repressors. Therefore, ei becomes ei=0 when the gene state is

similar to the situation for j~jia, i.e., when some activator TF

binds and no repressor binds on the locus;

ei~
ei0 (F

ja
mi~1 for Aja, and F

jr
mi~0 for Vjr)

0 (Otherwise):

(
ð14Þ

For i~Sox2, Oct4 and Nanog, the histone-code activation is

promoted by binding the Oct4-Sox2 or Oct4-Nanog complex. To

represent cooperativity due to this complex formation, we modify

the rule of Eq.14 as

ei~
ei0

F
ja
mi~1 for for ja~Oct4 and Sox2,

�
or ja~Oct4 and Nanog2, and F

jr
mi~0 for Vjr

�
0 (Otherwise):

8>>><
>>>:

ð15Þ

We assume that di becomes di=0 in the opposite situation, i.e.,

when some repressor binds and no activator binds on the locus.

For all genes except Gcnf and Sox2, we have

di~
di0 F

jr
mi~1 for Ajr, F

ja
mi~0 for Vja, and Ami~0

� �
0 (Otherwise):

(
ð16Þ

No repressor is assumed to bind on the Gcnf or Sox2 locus in the

model, so that for i~Gcnf or Sox2 we have the rule,

di~
di0 (F

ja
mi~0 for Vja and Ami~0)

0 (Otherwise):

(
ð17Þ

Eqs.1–9 were simulated with the Gillespie algorithm with the

rates defined by Eqs.10–17. The simulation was started from the

following initial condition which represents the pluripotent state,

F
j
mi~0 (for Vj), Ami~0,

Hmi~1, N(i)~1|103, ð18Þ

for i~Sox2, Oct4, and Nanog and

F
j
mi~0 (for Vj), Ami~0,

Hmi~0, N(i)~0, ð19Þ

for i~Cdx2, Gata6, and Gcnf. Starting from this initial condition,

the simulation for 4|105 sec was performed by keeping ei0~0 for

i~Cdx2, Gata6, and Gcnf to reach the steady ESC state. This first

4|105 sec trajectory was discarded and the data were sampled

after that for the statistical analysis by keeping ei0~0 for i~Cdx2,

Gata6, and Gcnf to simulate ESCs or by turning ei0 to be ei0=0 for

i~Cdx2, Gata6, and Gcnf to simulate the differentiation process.

Parameters
The model has parameters, g0, a, and X for protein synthesis, k

for protein degradation, h0 and f for binding and unbinding of

TF, K for Nanog dimerization, jia, jir, ji0, j’ia, gi and g’i for

formation and dissolution of TA, and ei0 and di0 for the histone-

code modification. For simplicity of description, the suffix a of jia

and j’ia, and the suffix 0 of ei0 and di0 are suppressed in the

previous sections of Model and Results, in Fig. 2, and in Table 3.

Parameters were determined according to the following guideline:

(1) Parameter values were not tuned in a precise way but only their

orders of magnitude were taken care of. (2) The same parameter

was set to have the same value for different genes as far as possible.

In the following, in order to determine the ranges that parameters

can take with this guideline, we first discuss two basic quantities,

the period of cell cycle tcc in the following items 1 and 2, and the

typical copy number of each protein in a cell in the item 3.

1. A basic timescale for the description of cellular processes is the

period of cell cycle. The period of cell cycle of ESCs is

tcc&4|104 sec &0:5day, which is shorter than that of

somatic cells. Though the periodic modulation of cells along

the cell cycle is not explicitly treated in the present paper, tcc

can be used as a measure of timescales of other processes. The

timescale of binding/unbinding of TF should be much shorter

than tcc, or in other words, the rates of binding/unbinding of

TF should be much larger than 1=tcc. The timescale of TA

formation/dissolution should not exceed the cell cycle period,

so that the rates of TA formation/dissolution should be similar

to or larger than 1=tcc. Since the histone code is often inherited

across the cell cycle [35], the timescale of the histone-code

modification should be larger than tcc, or in other words, the

rates of histone-code modification should be smaller than 1=tcc.
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2. Though the cell cycle period is a convenient measure of

biological processes, it is not explicitly used in the model.

Alternatively, we use the lifetime of proteins, or the rate

constant of protein degradation k, as an explicit measure of

processes in the model. From the observed variation of the

copy number of Oct4 [4] and Nanog [16], we have

k&1{2|10{4sec{1, which is larger than the frequency

1=tcc of cell division of ESCs; k&2=tcc{4=tcc. In the

following, instead of 1=tcc, we use k as a measure to quantify

the other parameters and to define adiabaticity.

3. Another important quantity is the typical copy number of

proteins in a cell. It has been observed that this copy number is

*104{105 [80], which is much larger than that in bacteria

(10{103) [81] due to the much larger cell volume and the

larger number of working ribosomes in eukaryotic cells. The

copy number of TFs which concentrate in nucleus, however,

should be smaller than that of proteins working in cytosol

because the volume of nucleus is about 10% of the whole cell

volume. Therefore, by assuming that the similar concentration

to the one of cytosolic proteins is transported and accumulated

in the nucleus, the typical value of the copy number of TFs

should have the range of 103{104. Therefore, we should have

2ag0X=k&103{104.

4. The rate of TF binding/unbinding may not be much different

from that in bacteria, so that f =k*103. For the sensitive gene

switching, the probability that a TF binds to the locus should

not be so close to 1 or 0, so that h0N(i)*f . Given N(i)&103,

we have h0=k&1.

5. The Nanog dimerization constant is K~N(Nanog2)=

N(Nanog1)2. By assuming N(Nanog2)vN(Nanog1)&
103{104, we have K&10{4{10{3.

6. The rate to change the chemical state of a nucleosome may be

as large as h or f because each reaction to add (remove) the

methyl or acetyl group to (from) a nucleosome should be

catalyzed by enzymes recruited by TFs [9,10]. The chemical

state of an array of nucleosomes along each of gene loci,

however, is changed in a cooperative way and should show the

much longer lifetime. Indeed, the chemical state of nucleo-

somes, i.e., the histone code is often inherited across

generations of cell cycle, and it has been observed that the

timescale to change the histone code of Oct4 in ESCs is several

days, which is approximately 10tcc [35]. We assume, therefore,

t h e r a t e t o c h a n g e t h e h i s t o n e c o d e t o b e

ei0=k&di0=k&(10tcc){1=(2=tcc)&5|10{2.

7. The timescale of TA formation/dissolution is not known, but

we assume it to be slower than TF binding/unbinding and

faster than the cell cycle. The latter assumption of the larger

rate of TA formation/dissolution than the cell-cycle frequency

should be reasonable because the TA structure should be reset

and resolved in the large scale reorganisation of chromatin

structure at the time of cell division. The former assumption of

the slower rate than the TF binding/unbinding is also

reasonable when we consider that TA formation is the much

more complex process including assembly of many factors,

looping of chromatin, and chemical modification of RNA

polymerase. Therefore, we examined the wide range of

10wjia=k&gia=kwt{1
cc =(2=tcc)&0:5. The completion of TA

may be the similar process to the initiation of the formation of

TA, so that we assume j’ia&jia and g’i&gi. Other conditional

values of ji are defined in Eq.11 as jirvji0vjia.

From the above consideration, we can estimate the orders of

magnitude of parameters, which are summarized in Table 3. In

order to further analyze the meaning of difference in the order of

magnitude of these parameters, we define the dimension-less

parameters, adiabaticities, as measures of relative rates of

individual processes to the rate of the protein copy-number

change: We have three adiabaticities in our model of epigenetic

dynamics, vF ~f =k which measures the relative frequency of the

TF binding/unbinding, vA(i)~gi=k which measures the relative

frequency of the TA formation/dissolution, and vH (i)~di=k
which measures the relative frequency of the histone-code

modification. From the above estimation, the orders of magnitude

of adiabaticity are vF&vA(i)w1wvH (i) or

vF&1wvA(i)wvH (i). Therefore, the TF binding/unbinding is

strongly adiabatic, and the histone-code modification is non-

adiabatic. The TA formation/dissolution is adiabatic or non-

adiabatic depending on the type of gene, which characterises the

dynamic behavior of the present model.

The parameters used in Figs. 3, 5, 6, and 8 in Results section are

shown in Table 4. We can see that the values of Table 4 are within

the range shown in Table 3. In Table 4, the dependence of

parameters on the type of genes is minimized: The specific values

deviating from the most common values are ei0 for i~Cdx2, and

gi, g’i, ji, and j’i for i~Nanog. Since the differentiation to

trophectoderm takes place prior to the formation of inner cell mas

(ICM) in the early embryo and ESCs are prepared from ICM, it is

reasonable to assume that the differentiation to trophectoderm is

somehow suppressed in ESCs. We express this tendency by using

the smaller value of ei0 for i~Cdx2, the marker protein for

trophectoderm. The small value of ei0 for i~Cdx2 represents the

possible inherent effects of silencing Cdx2 in ESCs.

The smaller values of gi, g’i, ji, and j’i for i~Nanog are the

manifestation of the slow switching dynamics of the Nanog locus,

which is a main feature of the present model of epigenetic

dynamics as explained in Figs. 3B, 3C, 5, 6, and 8A–8C. To clarify

the effects of this slow switching, we also calculate for comparison

by using the same values of gi, g’i, ji, and j’i for i~Nanog as

those for Sox2 or Oct4 as shown in Figs. 3A, 3C, and 8D–8F.

Massive parameter search
From Table 3, the order of magnitude of most of parameters are

determined and their typical example values can be adopted as in

Table 4. In Table 3, however, values of some parameters are

undetermined yet. We perform a massive parameter search for

values of these parameters to find the consistent values with the

experimentally observed results.

An important undetermined set of parameters are gi and ji. We

adopt the values in Table 4 for other parameters, and as discussed

in Parameters subsection, we impose the constraints g’i~gi and

jia
0~jia. Considering the constraint of jiawji0wjir, we assume a

Table 3. Order of magnitude of parameters in the model.

2ag0X=k* 103{104 gi=k 5|10{1{10

K 10{4{10{3 g’i=k *gi=k

h0=k *1 ji=k 5|10{1{10

f =k *103 j’i=k *ji=k

di=k{ *5|10{2

ei=k *5|10{2

*k~1|10{4sec{1 .
{Subscript 0 or a in di0 , ei0 , jia , and j’ia is omitted for simplicity.
doi:10.1371/journal.pcbi.1003380.t003
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small value for jir as in Table 4 and also assume jia&2ji0. Then,

the parameters gi and jia are left undetermined. In Fis.3A, 3C,

and 8D–8F, we used the values gi=k~jia=k~10 to represent the

situation that the TA formation/dissolution is much slower than

the TF binding/unbinding but faster than the protein copy-

number change, i.e., f =k~103&gi=k&jia=kw1. This choice of

values for gi and jia, however, is not consistent with the

experimentally observed distributions of expression level of SON

as is shown in Fig. 3, and hence we examined the other values of gi

and jia for i~Nanog.

We generated about 1,000 parameter sets scattered on the two-

dimensional plane of log gi and log jia. For each of these

generated parameter sets, we calculated 10,000 trajectories and

obtain the distributions of expression level of SON by averaging

over the trajectories. We then evaluated the score S as

S~T(number of Nanog peaks)z

T(positions of Nanog peaks)

zT(height of Nanog peaks)zT(zero level of Nanog)

zT(number of Sox2 peak)zT(zero level of Sox2)

zT(number of Oct4 peak)zT(position of Oct4 peak)

zT(zero level of Oct4),
ð20Þ

where each term of Eq.20 is T=0 when the simulated data agrees

with the corresponding feature of the observed data as shown in

Fig. 3D, and T~0 otherwise:

N T(number of Nanog peaks)~1 when the simulated distri-

bution of expression level of Nanog has two peaks (HN and LN

peaks).

N T(positions of Nanog peaks)~1 when the ratio of the

expression level at the HN peak to that at the LN peak,

Rposition, is 5vRpositionv50.

N T(height of Nanog peaks)~1 when the ratio of the height of

the HN peak to that of the LN peak, Rheight, is 3vRheightv4

or 6vRheightv7, and T(heightof Nanogpeaks)~2 when

4ƒRheightƒ6.

N T(zero level of Nanog)~1 when the population at the zero

expression of Nanog is less than 2%.

N T(number of Sox2(Oct4)peak)~1 when the distribution of

the expression level of Sox2 (Oct4) is single peaked.

N T(zero level of Sox2(Oct4))~1 when the population of zero

expression of Sox2 (Oct4) is less than 2%.

N T(position of Oct4 peak)~1 when the expression level at

the peak of Oct4 distribution is in between expression levels at

the HN and LN peaks.

In this way, S~10 when all the observed features of the

distributions of expression level of SON in ESCs are reproduced

by the simulated data. In Fig. 4, S for 1,125 parameter sets is

plotted on the plane of log gi and log jia with i~Nanog.

The other undetermined set of parameters in Table 3 are the

bare rate of protein synthesis, g0, the ratio of the rate of synthesis

at the completed TA to that of the partially formed TA, a, and the

average burst size, X . Since we have a constraint

2ag0X=k~103{104 as in Table 3, we fixed 2ag0X=k to the

value 2ag0X=k~8|103 as in Table 4 and searched the values of

a and X extensively by modifying g0 according to the constraint

2ag0X=k~8|103. 1,125 parameter sets were generated as

scattered points on the two-dimensional plane of log a and

log X and S were calculated by averaging over 10,000 trajectories

for each of the parameter sets. The calculated S is plotted in

Fig.S1, which shows that a should be within the range of 5vav50

Table 4. The parameter set used in Figs.3, 5, 6, and 8 in the section Results.

Sox2 Oct4 Nanog Cdx2 Gata6 Gcnf

g0=k � 2:0|10 2:0|10 2:0|10 2:0|10 2:0|10 2:0|10

a 2:0|10 2:0|10 2:0|10 2:0|10 2:0|10 2:0|10

X 10 10 10 10 10 10

K { { 2:0|10{4 { { {

h0=k 5:0 5:0 5:0 5:0 5:0 5:0

f =k 1:0|103 1:0|103 1:0|103 1:0|103 1:0|103 1:0|103

gi=k 1:0|10 1:0|10 5:0|10{1{ 1:0|10 1:0|10 1:0|10

g0i/k 1:0|10 1:0|10 5:0|10{1{ 1:0|10 1:0|10 1:0|10

jia=k 1:0|10 1:0|10 5:0{ 1:0|10 1:0|10 1:0|10

ji0=k 5:0 5:0 3:0{ 5.0 5.0 5.0

jir=k 1:0|10{1 1:0|10{1 1:0|10{1 1:0|10{1 1:0|10{1 1:0|10{1

j0ia=k 1:0|10 1:0|10 5:0{ 1:0|10 1:0|10 1:0|10

di0=k 5:0|10{2 5:0|10{2 5:0|10{2 5:0|10{2 5:0|10{2 5:0|10{2

ei0=k 5:0|10{2 5:0|10{2 5:0|10{2 2:0|10{2{ 7:0|10{2{ 7:0|10{2{

*k~1|10{4sec{1 .
{These values are turned to 0 to simulate ESCs cultivated in media that can keep cells in the self-renewing pluripotent state.
`Simulations with the fast Nanog switching were performed by making these values identical to the values for Sox2 or Oct4.
doi:10.1371/journal.pcbi.1003380.t003
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especially to satisfy T(positions of Nanog peaks)~1 and the

results are not sensitively dependent on the burst size Xw1.

Transition diagram
The total time length, ti(k), during which the kth trajectory

stayed at a certain cell state i is calculated. By sampling

N~10,000 trajectories of T~11:5 days, the averaged frequency

of the appearance of the state i, Pi, is obtained as

Pi~
1
N

PN
k~1 ti(k)=T . We can see in Fig.S4 that the small number

of states appear much more frequently than the other many states.

We disregard the rarely appearing states and draw the transition

diagrams among the states whose Pi are larger than a threshold

value Pthr
i . Here, we choose different thresholds for different

transition diagrams because the difficulty to solve simultaneous

equations for landscape and fluxes depends on the topology of the

diagram. The larger threshold makes the diagram simpler to

increase the solvability of equations, but we use the smallest

possible threshold; Pthr
i ~0:014 for Fig. 8A, 0.016 for Figs. 8B–8E,

and 0.029 for Fig. 8F.

Then, the time of the trajectory needed for the transition from the

i th to j th states is monitored and recorded as ti?j . ti?j is averaged

along the trajectory and over the ensemble of trajectories to obtain

�tti?j . The transition rate is defined by qi?j~1=�tti?j . The link i?j

between two cell states i and j is drawn in the transition diagram

when the transition i?j is observed more frequently than the

threshold times, which are 200 (Fig. 8F), 600 (Figs. 6C, 8A, 8B, and

8E), 700 (Fig. 8C), or 900 (Fig. 8D) times in the sampled ensemble of

trajectories. The transition diagram of Fig. 6C is drawn by

connecting the cell states with thus defined links of transitions.

Epigenetic landscape

The epigenetic landscape, fGig with fG{
ijg, is calculated with

the following rules:

N Given Gi at the ith state, G
{
ij at the saddle between the ith and

jth states is calculated by fitting the expression

qi?j~q0 exp½{(G
{
ij{Gi)� with q0~2=day to the simulated

rate by regarding G as a quantity analogous to free energy.

N After obtaining G
{
ij , Gj is calculated by fitting the expression

qj?i~q0 exp½{(G
{
ij{Gj)� to the simulated rate of the reverse

transition.

N When the reverse transition does not appear in the simulated

trajectories, a threshold value Gth~4:6 (exp({Gth)~0:01) is

used to represent the high enough barrier to inhibit the reverse

transition within the simulated timescale. We then have

Gj~G
{
ij{Gth.

N The above three rules can not be applied for the looped part in

the transition diagram. This problem is solved by combining

landscape and curl flux to represent the kinetic flow on the

landscape.

The last rule can be explained by using an example of Fig. 7, in

which four cell states A, B, C, and D are connected by directed

links that represent transitions among cell states. For the diagram

of Fig. 7, we should solve the following equations:

qA?B~q0 exp½{(G
{
AB{GA)�zJ1,

qB?A~q0 exp½{(G
{
AB{GB)�{J1,

qB?C~q0 exp½{(G
{
BC{GB)�zJ1zJ2,

q0 exp½{Gth�~q0 exp½{(G
{
BC{GC)�{J1{J2,

qC?A~q0 exp½{(G
{
CA{GC)�zJ1,

qA?C~q0 exp½{(G
{
CA{GA)�{J1,

qB?D~q0 exp½{(G
{
BD{GB)�{J2,

q0 exp½{Gth�~q0 exp½{(G
{
BD{GD)�zJ2,

qD?C~q0 exp½{(G
{
DC{GD)�{J2,

q0 exp½{Gth�~q0 exp½{(G
{
DC{GC)�zJ2: ð21Þ

These equations have 11 variables. When we fix Gn at a certain

state n, the relative height Gi{Gn at other three states, G
{
ij{Gn at

five saddles, and two currents J1 and J2 are obtained by solving

the above 10 equations simultaneously.

Supporting Information

Figure S1 Search for a range of parameter set a and X .
The ability of the simulated trajectories to reproduce the

experimentally observed data of distributions of the expression

level of SON is evaluated by the score S which is defined in Eq.20

in Methods section. The score was evaluated for each of 1,125

parameter sets scattered on the two-dimensional plane of log10 a
and log10 X , where a is the ratio of the rate of protein synthesis

from the fully formed TA and that from the partially formed TA,

and X is the average burst size.

(TIF)

Figure S2 Simulated distributions of the copy number
of protein factors which appeared in trajectories of the
differentiation process from the ESC states to the Gata6-
dominant state. Distributions are divided to define the cell

states by introducing thresholds designated by arrows. The

abbreviations used to refer the cell states in Fig. 6C of the main

text are written on each panel. 10,000 trajectories for 11.5 days

were used for sampling the data.

(TIF)

Figure S3 Distribution of expression level of Nanog in
the case that either of two alleles of Nanog is not silenced
through the allelic regulation. (A) vA(Nanog)~10 and (B)

vA(Nanog)~0:5. Other parameters are the same as those used in

Fig. 3 of the main text.

(TIF)

Figure S4 Probability Pi of the appearance of the cell
state i in the 10,000 simulated trajectories are shown in
the rank order of Pi.

(TIF)
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