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Abstract: The ever-increasing ca-
pacity of biological molecular data
acquisition outpaces our ability to
understand the meaningful rela-
tionships between molecules in a
cell. Multiple databases were de-
veloped to store and organize
these molecular data. However,
emerging fundamental questions
about concerted functions of these
molecules in hierarchical cellular
networks are poorly addressed.
Here we review recent advances
in the development of publically
available databases that help us
analyze the signal integration and
processing by multilayered net-
works that specify biological re-
sponses in model organisms and
human cells.

Eukaryotic cells respond to a myriad of

external and internal cues via a multilay-

ered signaling network. At the top layer of

this network, there are plasma membrane

receptors which sense changes in the sur-

rounding environment and play important

roles in the communication between cells

and tissues. Upon activation, these recep-

tors trigger multiple interweaved signaling

pathways which operate via protein-pro-

tein interactions (PPI) and posttranslation-

al protein modifications (PTMs), such

as phosphorylation and ubiquitination,

to generate specific biological responses.

Many of these responses include changes

in gene transcription, which are controlled

throughthe modulation of transcription

factor (TF) activities. Activated TFs insti-

gate chromatin remodeling and regulate

the production of messenger RNAs (mR-

NAs), which contain the protein coding

regions of the genes. Subsequently, mR-

NAs are translated into protein molecules.

The production, degradation, and trans-

lation of mRNAs is delicately regulated by

a network of non-coding RNAs, which

include micro RNAs (miRNAs) and small

inhibitory RNAs (siRNAs). This hierarchi-

cal structure is intertwined by a plethora

of crosstalks, feedback, and feedforward

loops connecting signaling PPI and

PTM with transcriptional and translation-

al regulation [1].

Rapid Growth of Specialized
Databases

With recent, rapid advances in modern

-omics techniques, our ability to acquire

vast amounts of biological data increas-

ingly exceeds our ability to interpret these

data. However, the main advances were

made in the identification and mapping of

the components of signal transduction

networks, and these repositories have not

translated into understanding how inter-

actions between the components generate

network functions and specific outputs. It

is still poorly understood how signals are

processed and converted into physiological

or pathological responses. The prolific out-

put of the -omics technologies has been

matched by an ever-increasing number of

databases that organize data on biological

molecules and their interactions in human

cells and in model organisms, such as

yeast, E. coli, C. elegans, Drosophila, and

others. For example, IntAct, STRING,

HPRD, BioGRID, WI8, DroID, YEAS-

TRACT, and SGD [2–9] store curated

information about protein interactions;

PHOSIDA, PhosphoSitePlus, Phospho-

ELM, NetPhosK, NetworKIN, PREDI-

KIN, and Scansite [10–15] accumulate

knowledge about protein phosphorylation

and increasingly also about other PTMs;

EdgeDB, REDfly, JASPAR, ENCODE,

PAZAR, ABS, ORegAnno, and others

[16–22] provide information about tran-

scriptional regulatory interactions; miR-

Base, PutMir, Miranda, TargetScan, and

miRecords [23–27] contain information

on miRNAs and mRNA targets of miR-

NAs; and PutMir, TransmiR, and EN-

CODE [19,25,28] supply information

about TFs regulating miRNA expressions.

Many of these databases are highly com-

prehensive in their specialized areas, yet

they do not provide an integrated picture

of how multiple layers of biological regu-

lation (PPI, PTM, TF-DNA interactions,

and transcriptional and translational feed-

backs) cooperate to enable the signal inte-

gration and processing that determine

cellular responses.

To understand the coordinate action of

different types of interactions that form

multilayered signaling networks, we need

to systematically integrate heterogeneous

interaction data from the literature and

specialized databases. Pioneering efforts

have brought us the KEGG [29] and

Reactome [30] databases, where signaling

and metabolic pathways of several model

organisms are reconstructed by curating

and integrating PPIs, PTMs, and enzy-

matic reactions. In Reactome, the recon-

stituted pathways are peer reviewed by

experts in the field, which increases the

reliability of the data. The pathways are

mapped to other, less studied organisms

based on sequence similarities of corre-

sponding components. This approach has

revealed how different signaling and meta-

bolic pathways function individually and

as an integrated system by communicating
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with each other. However, the scope of

KEGG [29], Reactome [30], and the

more recent SPIKE [31] database is limit-

ed to signaling and metabolic pathways,

ignoring transcriptional and translational

regulation. Yet, many components of these

pathways control transcriptions and trans-

lation, thereby initiating new layers of

molecular interactions.

Capturing the Multilayered
Organization of Cellular
Networks

Recently developed databases, such as

ConsensusPathDB [32], TranscriptomeB-

rowser [33], InteractomeBrowser [33,34],

and SignaLink2 [35], aim to link signaling

pathways to downstream transcriptional

regulations by systematically integrating

protein-DNA interactions with PPI, PTM,

and enzymatic reactions. One of the first

such databases, ConsensusPathDB, assem-

bles different interaction types by compu-

tationally integrating datasets from 31

databases and by manual curation of

interactions from the literature (for further

detail see [32] and http://cpdb.molgen.

mpg.de/). In addition, ConsensusPathDB

contains drug target interactions (collected

from pharmacological databases, such as

PharmGKB [36], TTD [37–40], and

Drugbank [41]) to facilitate drug discovery

research.

Integrating large volumes of heteroge-

neous datasets from multiple sources may

decrease the overall data quality. Many

databases (e.g., PHOSIDA [10], NetPhosK

[42], and STRING [2]) store interactions

which were predicted by computational

means (e.g., by text mining) or from

noisy high-throughput datasets. These

types of interaction data are prone to

errors, and therefore quality control is

a crucial factor in data integration. A

common approach to quality control is

to assign a confidence score to each

interaction, which can be used to filter

out less reliable interactions. In Consen-

susPathDB [32], the confidence score is

calculated based on gene ontology and

pathway annotations and network topo-

logical features. The data retrieved by

ConsensusPathDB can be downloaded in

standard BioPAX [43] and PSI-MI [44]

formats and can also be imported into

network analysis and visualization tools,

such as Cytoscape [45]. However, Con-

sensusPathDB does not contain informa-

tion about posttranscriptional interactions

between miRNA and mRNA molecules.

One of the first databases that integrat-

ed transcriptional and posttranscrip-

tional (mRNA-microRNA) interactions

with other types of biochemical interac-

tions was TranscriptomeBrowser [33,34].

Although TranscriptomeBrowser was

originally designed to identify transcrip-

tional signatures of co-regulated genes

from publically available microarray data-

bases, it has a default plugin called

InteractomeBrowser [33,34] that inte-

grates heterogeneous interaction data.

Using a gene list as input InteractomeB-

rowser searches a large number of pub-

lic databases and the literature sources

and retrieves (i) computationally predicted

transcriptional interactions, (ii) potential

regulatory interactions inferred from

ChIP-seq experiments, (iii) literature-

curated transcriptional interactions, (iv)

predicted posttranscriptional regulation

by micro-RNAs, (v) phosphorylation in-

teractions, and (vi) protein binding inter-

actions. Currently, InteractomeBrowser

retrieves data from nine different databas-

es and displays it as a network (for fur-

ther details see http://tagc.univ-mrs.fr/

tbrowser/). The layout of the network is

designed to group molecules together

based on their subcellular localizations.

These interactions can be downloaded in

different formats, e.g., XML and GINML,

for further analysis. The XML format

enables the user to import downloaded

data into Cytoscape [45], and the GINML

format allows the retrieved networks to be

imported in the Boolean network simula-

tion platform GINsim [46]. Although,

TranscriptomeBrowser [33,34] encom-

passes more signaling layers than Con-

sensusPathDB [32], it uses fewer sources

(nine databases) than the latter (31 data-

bases). Additionally, it lacks a systematic

quality control measure, which prevents

users from filtering out unreliable interac-

tion data. However, the authors of Tran-

scriptomeBrowser pointed out that a new

plugin for quality control purposes will be

introduced [40].

A recent notable addition to the arsenal

of integrated databases is SignaLink2

[35], which systematically integrates PPI,

PTM, transcription regulation, and post-

transcriptional interactions in one platform.

It focuses on seven key signaling pathways,

including receptor tyrosine kinase, TGF-ß

(transforming growth factor beta), WNT/

Wingless, Hedgehog, JAK/STAT, Notch,

and NHR (nuclear hormone receptor)

pathways. SignaLink2 embarks on the

reconstruction of multilayered architectures

of these pathways in three different organ-

isms, humans, D. melanogaster, and C. elegans.

For this purpose, it implements a multilay-

ered database architecture (Figure 1) and a

promising platform for systematic data

integration. The first layer forms the core

network based on manually curated PPIs.

The second layer contains manually curat-

ed interactions involving scaffolds, endocy-

totic proteins, and the components of the

core pathways. The third layer represents

interactions that modulate pathway com-

ponents via PTMs, e.g., kinases, phos-

phatases, ubiquitin-ligases, and peptidases.

Layer four encompasses the directed PPIs

where a target protein is in the core

pathway(s), while the other protein interacts

with it. The directions of these PPIs were

inferred based on domain interaction

data [47]. The next two layers con-

tain transcriptional interactions between

TFs and DNA, and interactions involv-

ing miRNAs, such as posttranscriptional

miRNA-mRNA regulation and TF-

miRNA interactions. Additionally, a large

number of undirected PPIs acquired from

high-throughput datasets are also provided.

The multilayered representation of inter-

action data allows users to discover inter-

pathway crosstalk and feedback mecha-

nisms, which operate via transcriptional,

posttranscriptional, and translational

mechanisms.

Despite the complex and multilayered

architecture of its underlying database,

SignaLink2 provides a simple and intui-

tively clear user interface to search and

retrieve information. On the main page

(http://signalink.org), it offers a search

tool, which allows users to retrieve inter-

actions involving a gene or protein of

interest. The retrieved interactions are

organized according to their signaling

layers and are visualized as a network in

the same page. In the download page

(http://signalink.org/download), users

can retrieve entire pathways and the

crosstalk mechanisms between these path-

ways. To discover multilayered crosstalk

between two signaling pathways, the user

selects two pathways, an organism, and the

signaling layers of interest, and the database

retrieves the relevant interactions. Informa-

tion regarding two additional pathways

(NRF2 [48] and the autophagy pathway),

which are currently under development,

can be accessed from the tools page

(http://signalink.org/tools) where two se-

parate user interfaces, customized for

these pathways, are provided to facilitate

data retrieval. On the same page (http://

signalink.org/tools), SignaLink2 also pro-

vides two additional tools, PathwayLinker

and SignaLog. PathwayLinker retrieves

the first neighbor interaction network

of the queried proteins and visualizes

the pathways that involve the proteins in

the retrieved network. SignaLog predicts

novel pathway components based on

orthologue information.
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Information retrieved from the Signa-

Link2 database can be downloaded in

several file formats such as BioPAX, csv

(comma-separated values), PSI-MI (tab or

xml), Cytoscape, and SBML. The data

can also be exported to Boolean pathway

simulators, such as CellNetOptimizer [49].

As a measure of data quality, SignaLink2

provides multiple confidence scores for

each interaction. For PPIs the confidence

score is calculated from semantic similar-

ities of the Gene Ontology (GO) terms, for

TF-DNA interactions it is calculated from

the position matrix values, for human PPI

interactions it provides PRINCESS scores

[50], and for all other interactions the

original scores from source databases are

provided. How to use these scores to

control data quality is left to the user.

While this provides great flexibility for

expert users who can select the most

appropriate type of confidence score to

filter certain types of interaction data,

these choices are likely to pose difficulties

to nonexpert users. Therefore, a com-

pound confidence score that summarizes

the various confidence measures would be

a useful feature.

Using Heterogeneous
Interaction Data in Drug
Discovery

One of the main objectives behind

integrating heterogeneous interaction data

is to understand the mechanistic details of

how different pathways modulate each

other’s activities via PPI, PTM, and trans-

criptional crosstalk [51]. Such knowledge

is crucial for pharmacological research.

For instance, when cells are treated with a

drug that binds to and inhibits the function

of its target protein(s), the effect of the

treatment propagates via protein interac-

tion networks into the transcriptional and

posttranscriptional interactions. To fully

apprehend the effect of a drug, it is

necessary to understand the multilayered

architecture of biochemical networks. Fur-

thermore, the process of drug discovery and

validation is expensive and time consum-

ing. Currently, it focuses on inhibiting a

single target with the highest possible

efficacy and specificity. Network effects

are not considered. The price of this neglect

is high, often contributing to drug attrition

in later, even more expensive phases of

drug development. However, it is experi-

mentally difficult to include network effects

in the drug discovery and validation phase.

A possible solution is to simulate such

experiments computationally, rather than

performing them in wet labs. This requires

developing computational models of multi-

layered cellular networks to replicate their

response dynamics with reasonable accu-

racy. Such models will potentially be useful

not only for understanding why drugs work,

but also why they stop working, and how

drug resistance can be overcome.

In addition to the elimination of drugs

from cells by export pumps, mechanisms

Figure 1. The multilayered architecture of the SignaLink2 database represents the hierarchical organization of signaling pathways.
doi:10.1371/journal.pcbi.1003385.g001
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emerging from network design features,

such as robustness and adaptation, are

now drifting into the limelight. The exact

contribution of network-based mecha-

nisms is unknown, but may be substantial

given that the network negative feedback

and crosstalk motifs, which can cause drug

resistance, are common [52,53]. Compu-

tational models of multilayered biochem-

ical networks will provide analysis tools

and new insights into how these feedback

loops and pathway crosstalk cause drug

resistance [54]. Although some databases

(SignaLink2 and ConsensusPathDB) dis-

cussed in this paper allow users to inte-

grate their data contents into simplistic

Boolean simulators, using these data for a

more detailed, mechanistic-based model-

ing approach is not straightforward. First-

ly, many databases are limited to a few

pathways and layers of signaling mecha-

nisms (see Table 1 for a detailed compar-

ison of the scopes of different databases).

Secondly, many of these databases do not

annotate different types of interactions in

sufficient detail. For instance, SignaLink2

does not differentiate between different

types of PTMs, such as phosphorylation,

dephosphorylation, ubiquitination, deubi-

quitination, glycosylation, and cleavage.

All PTMs are represented under one

category (‘‘post-translational modifica-

tion’’). The knowledge of the ‘‘type’’ of

each PTM is necessary for effectively

simulating the dynamics of a signaling

pathway using ordinary differential equa-

tions (ODEs), which allow dynamic simu-

lations of biochemical reactions and a

mechanistic analysis of signal transduction

pathways. Thirdly, data quality may be a

potential concern. Although most integrat-

ed databases implement some quality

control techniques, the effectiveness of

these techniques is yet to be tested. Finally,

the topologies of biochemical pathways

and the mechanisms by which they

communicate with each other are often

tissue specific. Currently, databases do not

allow users to retrieve tissue-specific inter-

action networks, thereby potentially limit-

ing the usefulness of the retrieved data for

mechanistic modeling.

What Next?

The above example of drug discovery is

just one of many applications where truly

integrated databases could be useful.

While there are many more biological

and biomedical questions which would

greatly benefit, two grand challenges stand

out. One is the functional interpretation of

genetic and genomic alterations. Next-

generation sequencing is now cheap and

powerful enough to make the sequencing

of human genomes a clinical routine test

[55]. Thus, while we are accumulating

genetic data at breakneck speed, we are

struggling with our limited ability to

actually understand what genetic varia-

tions and aberrations mean for the patient

and how they affect physiological and

pathological processes. This means we will

need to find new ways to study connec-

tions between the relatively static genomic

changes and their effects on biochemical

and metabolic networks that are dominat-

ed by dynamic processes that belie the

linear relationships of genetics. The other

grand challenge is to understand what we

currently call crosstalk between biological

pathways. Even in the -omics age the

functional modules of biological networks

which we call pathways are largely defined

from a historical perspective stemming

from the time where we worked on one

protein at a time (often a lifetime). As a

result the pathway concept tends to reflect

the history of their discovery more closely

than the actual functional connections.

However, what we have learned early on

is that the interaction between pathways

often produces highly nonlinear effects

leading to synergistic or antagonistic effects

of combinations of drug or growth

factors. Understanding such effects obvi-

ously could revolutionize both practical

applications as well as fundamental bio-

logical research. For instance, we could

apply this knowledge to the rational de-

sign of combination therapies or to gain

new insights into interactions between

inflammatory cytokines that can escalate

to life-threatening conditions.

At the moment we are lacking system-

atic approaches to each of these grand

challenges. Integrated databases will be a

cornerstone of developing them. How can

we achieve this goal? We will need not

only more integration between more

things, but primarily we will need more

efficient integration. Instead of just linking

data we will need to design semantics that,

like in a language, instill meaning into a

string of linked facts or words. Semantic

web tools are finding their way into

biology and hold great promise for

accomplishing data linking [56,57]. How-

ever, a critical issue is that data linking

needs to go hand-in-hand with data filter-

ing to generate useful information. In a

language the message is conveyed by the

contextual filtering of the possible mean-

ings of the assembled words rather than by

the linkage itself. Depending on what we

want to find out we apply different filters

and different combinations of filters that

dynamically change as the conversation

evolves. Thus, the ideal database will not

only perform semantic linkage, but also

dynamic semantic retrieval filtering when

queried for different purposes and in

different contexts. We basically want the

database to give us a human answer to a

human question. That is a difficult task

comparable to facial recognition, which is

routine for humans but really challenging

for computers. But that feat is only the

beginning. We also need to integrate the

databases with analysis tools. There

are rudimentary beginnings as discussed

Table 1. Comparison of different databases that integrate heterogeneous interaction data.

Databases PTM PPI Metabolic TF-DNA miRNA-mRNA Drug Target No. of Species Scope

Reactome Yes Yes Yes No No No 49 Genomewide

KEGG Yes Yes Yes No No Yes 2,675 Genomewide

SPIKE Yes Yes No No No No 1 28 pathways

CPDB Yes Yes Yes Yes No Yes 3 Genomewide

IBR Yes Yes No Yes Yes No 1 Genomewide

SIGLK2 Yes Yes No Yes Yes No 3 7 pathways

CPDB, IBR, and SGLK2 represent ConsensusPathDB, InteractomeBrowser, and Signalink2, respectively. ‘‘Yes’’ indicates that a database includes a certain interaction, and
‘‘No’’ indicates that it does not. Note that the Reactome and KEGG databases contain mostly human and E. coli (in the case of KEGG) interaction data and map these
interactions in other species based on gene orthology.
doi:10.1371/journal.pcbi.1003385.t001
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above. Ideally, we would like to seamlessly

plug data retrieved from an integrated

database directly into various analysis ma-

chines that calculate enzymatic reactions,

reconstruct networks, map sensitive nodes

or control points, etc. Thus, we are still far

from true integration, but at least we are

settings beacons of where to go.

As fully integrated databases have only

started to be built, time will show how

these databases will change the research

and computational modeling landscape.

To facilitate computational modeling, inte-

grated databases need to provide dynamic

linkage to specialized databases that store

quantitative kinetic data on the time

course of phosphorylation or other pro-

tein modifications for multiple different

sites of signaling proteins and enzymes.

Then, using semantic and other links

between databases, mathematical models

can be properly calibrated, and predic-

tive computer simulations would allow us

to find the routes and relative intensities

of signal flows following a variety of ex-

ternal cues processed by cell surface

receptors. This will help us understand

cellular responses and phenotypic behav-

ior. A largely understudied problem is

the combinatorial complexity of signaling

by multi-domain proteins and protein

complexes [58–60]. Different domains on

the same protein can initiate signaling

pathways that propagate distinct cellular

responses. Owing to the multiplication

of different possibilities, interactions be-

tween domains, proteins, and protein

complexes generate myriads of feasible

molecular species, which no database can

account for. Yet, integrated databases

can tell us whether protein interactions

are competing or independent, and how

these interactions depend on posttransla-

tional modifications of interacting pro-

teins. As such data are becoming avail-

able, integrating this information with

interaction data can help us formulate

the rules of biochemical interactions.

These rules will describe both feasible

and improbable classes of interactions

to allow rule-based representations and

computational modeling of cellular sig-

naling networks. These rule-based models

incorporate individual phosphorylation

sites on multiple proteins, enabling mech-

anistic explanation of temporal phospho-

proteomic data in the foreseeable future

[60–63].

Conclusion

Overall, integrated databases such as

ConsensusPathDB, InteractomeBrowser,

and SignaLink2 are noteworthy initiatives

in reconstructing a global multilayered

picture of cellular signaling systems by

integrating heterogeneous interaction data

from multiple sources. However, integrat-

ed databases have a long way to come

from their current state, before we can

effectively use them to develop a quanti-

tative, mechanistic understanding of mul-

tilayered cellular networks at realistic

complexity. In particular, integrated data-

bases should include more of already

available information. For example, none

of the databases named above integrate

epigenetic regulations (such as modulation

of gene regulation via chromatin remod-

eling) and mutation data, although this

information is increasingly available from

such sources as the ENCODE [19] and

COSMIC [64] projects. Moreover, inte-

grated databases need to keep up with our

requirements to mechanistically under-

stand biochemical networks and their mul-

tilayered organization. Although our state

of knowledge is incomplete, it is rapidly

evolving with the acquisition of new

information. It seems appropriate to con-

clude with a Winston Churchill quote:

‘‘Now this is not the end. It is not even the

beginning of the end. But it is, perhaps,

the end of the beginning.’’

Acknowledgments

We thank Tamas Korcsmaros for inspiring

discussions.

References

1. Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N,

Ide K, et al. (2010) Ligand-specific c-Fos

expression emerges from the spatiotemporal

control of ErbB network dynamics. Cell 141:

884–896.

2. Szklarczyk D, Franceschini A, Kuhn M, Simo-

novic M, Roth A, et al. (2011) The STRING

database in 2011: functional interaction networks

of proteins, globally integrated and scored.

Nucleic Acids Res 39: D561–568.

3. Keshava Prasad TS, Goel R, Kandasamy K,

Keerthikumar S, Kumar S, et al. (2009) Human

Protein Reference Database–2009 update. Nu-

cleic Acids Res 37: D767–772.

4. Mishra GR, Suresh M, Kumaran K, Kannabiran

N, Suresh S, et al. (2006) Human protein

reference database–2006 update. Nucleic Acids

Res 34: D411–414.

5. Stark C, Breitkreutz B-J, Chatr-Aryamontri A,

Boucher L, Oughtred R, et al. (2011) The

BioGRID Interaction Database: 2011 update.

Nucleic Acids Res 39: D698–704.

6. Simonis N, Rual J-F, Carvunis A-R, Tasan M,

Lemmens I, et al. (2009) Empirically controlled

mapping of the Caenorhabditis elegans protein-

protein interactome network. Nat Methods 6: 47–

54.

7. Yu J, Pacifico S, Liu G, Finley RL (2008) DroID:

the Drosophila Interactions Database, a compre-

hensive resource for annotated gene and protein

interactions. BMC Genomics 9: 461.

8. Abdulrehman D, Monteiro PT, Teixeira MC,

Mira NP, Lourenco AB, et al. (2011) YEAS-

TRACT: providing a programmatic access to

curated transcriptional regulatory associations in

Saccharomyces cerevisiae through a web services

interface. Nucleic Acids Res 39: D136–D140.

9. Kerrien S, Aranda B, Breuza L, Bridge A,

Broackes-Carter F, et al. (2012) The IntAct

molecular interaction database in 2012. Nucleic

Acids Res 40: D841–846.

10. Gnad F, Gunawardena J, Mann M (2011)

PHOSIDA 2011: the posttranslational modifica-

tion database. Nucleic Acids Res 39: D253–260.

11. Hornbeck PV, Kornhauser JM, Tkachev S,

Zhang B, Skrzypek E, et al. (2012) PhosphoSite-

Plus: a comprehensive resource for investigating

the structure and function of experimentally

determined post-translational modifications in

man and mouse. Nucleic Acids Res 40: D261–

270.

12. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ,

et al. (2011) Phospho.ELM: a database of

phosphorylation sites–update 2011. Nucleic Acids

Res 39: D261–267.

13. Linding R, Jensen LJ, Ostheimer GJ, van Vugt

MATM, Jørgensen C, et al. (2007) Systematic

discovery of in vivo phosphorylation networks.

Cell 129: 1415–1426.

14. Saunders NFW, Brinkworth RI, Huber T, Kemp

BE, Kobe B (2008) Predikin and PredikinDB: a

computational framework for the prediction of

protein kinase peptide specificity and an associ-

ated database of phosphorylation sites. BMC

Bioinformatics 9: 245.

15. Obenauer JC, Cantley LC, Yaffe MB (2003)

Scansite 2.0: Proteome-wide prediction of cell

signaling interactions using short sequence motifs.

Nucleic Acids Res 31: 3635–3641.

16. Barrasa MI, Vaglio P, Cavasino F, Jacotot L,

Walhout AJM (2007) EDGEdb: a transcription

factor-DNA interaction database for the analysis

of C. elegans differential gene expression. BMC

Genomics 8: 21.

17. Gallo SM, Gerrard DT, Miner D, Simich M, Des

Soye B, et al. (2011) REDfly v3.0: toward a

comprehensive database of transcriptional regu-

latory elements in Drosophila. Nucleic Acids Res

39: D118–123.

18. Portales-Casamar E, Thongjuea S, Kwon AT,

Arenillas D, Zhao X, et al. (2010) JASPAR 2010:

the greatly expanded open-access database of

transcription factor binding profiles. Nucleic

Acids Res 38: D105–110.

19. Gerstein MB, Kundaje A, Hariharan M, Landt

SG, Yan K-K, et al. (2012) Architecture of the

human regulatory network derived from EN-

CODE data. Nature 489: 91–100.

20. Portales-Casamar E, Kirov S, Lim J, Lithwick S,

Swanson MI, et al. (2007) PAZAR: a framework

for collection and dissemination of cis-regulatory

sequence annotation. Genome Biol 8: R207.
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