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Abstract: A key component of
computational biology is to com-
pare the results of computer mod-
elling with experimental measure-
ments. Despite substantial progress
in the models and algorithms used
in many areas of computational
biology, such comparisons some-
times reveal that the computations
are not in quantitative agreement
with experimental data. The princi-
ple of maximum entropy is a
general procedure for constructing
probability distributions in the light
of new data, making it a natural
tool in cases when an initial model
provides results that are at odds
with experiments. The number of
maximum entropy applications in
our field has grown steadily in
recent years, in areas as diverse as
sequence analysis, structural mod-
elling, and neurobiology. In this
Perspectives article, we give a
broad introduction to the method,
in an attempt to encourage its
further adoption. The general pro-
cedure is explained in the context
of a simple example, after which
we proceed with a real-world
application in the field of molecular
simulations, where the maximum
entropy procedure has recently
provided new insight. Given the
limited accuracy of force fields,
macromolecular simulations some-
times produce results that are at
not in complete and quantitative
accordance with experiments. A
common solution to this problem
is to explicitly ensure agreement
between the two by perturbing the
potential energy function towards
the experimental data. So far, a
general consensus for how such
perturbations should be imple-
mented has been lacking. Three
very recent papers have explored
this problem using the maximum
entropy approach, providing both
new theoretical and practical in-
sights to the problem. We highlight
each of these contributions in turn
and conclude with a discussion on
remaining challenges.

Introduction

Picture this scenario: you have spent

years developing an elaborate model for a

particular scientific phenomenon. Now,

new experimental data have been mea-

sured for the same phenomenon, and the

data disagree with your model. How do

you proceed? This is a reasonable question

to pose in any scientific discipline, but

perhaps particularly in that of computa-

tional biology, where models are constant-

ly developed and refined to encompass the

ever-growing databases of biological data.

Bayesian inference is commonly put

forward as an answer to this question. It

provides a simple recipe for how to

produce a new model (posterior) by

modifying an existing model (prior) after

observing a new set of data. There are,

however, situations where the Bayesian

formalism is not easily applicable. For

instance, it is traditionally assumed that all

our prior knowledge about the measured

quantities can be expressed in terms of

probability distributions. Often, however,

we only obtain information about the

average value of these quantities from

experiments. This information must some-

how be turned into a probability distribu-

tion concerning the system under study

before we can apply the Bayesian machin-

ery, but intuitively it seems unreasonable

to assume knowledge about an entire

distribution when all we know is a single

value. It is an underdetermined problem,

in the sense that there may be an infinite

number of possible prior distributions that

are compatible with this piece of data. A

simple, but general solution to this type of

problem was provided by Jaynes in 1957,

who proposed that among all the models

fulfilling the constraints from the data, one

should select the model containing the

least amount of information [1]. This

maximum entropy principle has proven to

be extremely powerful, having applica-

tions in a wide variety of scientific

disciplines.

In computational biology, maximum

entropy approaches are also becoming

increasingly common. Examples include

the formulation of models of collective

neural stimuli [2], reconstruction of pro-

tein signaling networks [3], optimization of

force fields for molecular simulation [4],

and modelling covariation among sites in

protein sequences [5,6]. The general

applicability of the principle suggests that

there is a significant potential for other

relevant applications in this field. With this

Perspectives article, we will highlight the

approach in some detail, hopefully com-

municating the elegance of the procedure

and encouraging further work in this

direction.

As a concrete example, we will focus

our attention on a recent application in the

field of structural biology, namely, the

problem of conducting molecular simula-

tions under restraints from experimental

data. In this specific case, the force field

can be considered as the model. Decades

of research have gone into the develop-

ment and fine-tuning of these force fields,

and they have proven useful in a multitude

of applications [7]. Figure 1 Despite their

success, it is, however, still a common
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scenario that the results obtained through

simulations do not quantitatively match

those obtained from experiments. A

relevant question is then how one can

make use of additional information ob-

tained through experiments to improve

the quality of a simulation. Although

efficient algorithms exist for improving

molecular force fields based on experi-

mental data [8], a common approach is

to introduce a system-specific modifica-

tion to the energy function, and thereby

modify the structural ensemble to be-

come in agreement with the experimental

data. Various techniques for direct com-

bination of experiment and simulation

exist, but the theoretical underpinnings of

these approaches have remained elusive.

Three recent papers [9–11], have ex-

plored the assumptions underlying exist-

ing methods in the light of the maximum

entropy principle, leading to suggestions

for new avenues to optimally utilize the

complementary information available

from experiments and molecular simula-

tions. We here review these developments

and suggest areas that are in need of

further study. In particular, we discuss

the complications that may arise when

using the technique in practice, including

the fact that all experiments contain

various, sometimes unknown, sources of

noise.

Jaynes’ Principle of Maximum
Entropy

Jaynes originally proposed the maximum

entropy principle to establish a link be-

tween Shannon’s information theory [12]

and statistical mechanics [1]. The goal is to

construct the probability distribution that

best represents the state of knowledge after

observing a set of quantities of a system.

The central idea is that among all the

infinite number of distributions that are

compatible with the data, one should select

the distribution which maintains the largest

degree of uncertainty about the variables of

interest, thus ensuring that the data has

been used as conservatively as possible. The

natural quantity for expressing uncertainty

in a distribution is Shannon’s entropy [12]:

S(p)~{
Xn

i

p(xi) ln p(xi)

Finding the correct probability distribution

thus becomes a matter of maximizing this

expression under the constraint that p(x)
sums to one (i.e. it should be a probability

distribution), combined with the constraints

obtained from the observed data. Typically,

the Lagrange formalism is used to enforce

these constraints.

As an example, Box 1 contains a primer

of the basic maximum entropy procedure

on the simple problem of inferring the

probability of the different outcomes of a

(possibly biased) die, given only informa-

tion about the average observed after a

large number of throws. Following the

exact same procedure, with just a few lines

of calculation, the principle of maximum

entropy also predicts the well-known

Boltzmann distribution in statistical phys-

ics as the correct distribution reflecting

your knowledge of a system when only the

mean energy is observed [1]. In fact, one

of Jaynes’ great achievements was to

demonstrate that many results in statistical

mechanics could be derived by the simple

application of this principle.

In the scenario drawn up in the

beginning of this article, we already have

a model, and are interested in finding the

necessary modifications to make it com-

patible with the new data. In this case, it is

more convenient to consider the relative

entropy, or Kullback-Leibler divergence (DKL)

instead [13]:

S(p1jp0)~
XN

i

p1(xi) ln
p1(xi)

p0(xi)

~DKL(p1jp0)

By minimizing this expression under the

constraints from the experimental data, we

find the distribution p1 that is as close as

possible to the original distribution p0, but

is now compatible with the data. This

procedure is sometimes referred to as the

principle of minimum discrimination informa-

tion or minimum cross entropy, but can be seen

as a natural extension of the maximum

entropy approach.

There is a substantial literature on the

foundations of maximum entropy and why

it is an appropriate framework for infer-

ence [1,14–16]. Although a full treatment

is beyond the scope of this paper, one

intuitive argument for its validity comes

from combinatorics: the principle of max-

imum entropy will provide the solution

which is realizable in the most ways. For

our example, if we consider all 6N possible

outcomes of N throws of a die, only a

subset of these would be compatible with a

given model. Maximizing the entropy

ensures that this subset is as large as

possible given the observed average value,

not ruling out any more realizations than

strictly necessary. For a clear illustration of

this point, we again refer to Jaynes, who

explicitly calculates this multiplicity for

different assignments of probabilities to the

die [17].

With this brief introduction, we hope

that we have conveyed the general appli-

cability of the principle of maximum

entropy. In particular, in combination

with Bayesian inference, it is a powerful

tool for consistent reasoning in the light of

new data. For the remainder of the paper,

we focus on a particular problem in

computational biology which has recently

been the subject of substantial activity, in

the pursuit of a practically workable

maximum entropy solution to replace (or

validate) the currently used approaches.

Macromolecular Structure
Determination

Molecular simulations typically utilize

either molecular dynamics (MD) or Monte

Carlo (MC) methods to sample conforma-

tions according to an energy function,

E(x). Here, x represents the structure of a

molecule and possibly also solvent mole-

cules and other co-factors, and E repre-

sents a mathematical function that relates

the structure to the ‘‘energy’’ of the

system. In the context of physics-based

simulations, E mimics the physical ener-

gy of the system; in such cases E is

also often referred to by its derivative,

and thus called a molecular mechanics

‘‘force field’’ (herein termed EMM ).

When MD or MC methods are used

to sample protein conformations they

typically give rise to an ensemble of

conformations that are distributed ac-

cording the celebrated Boltzmann distri-

bution, P(x)~Z{1 exp ({bEMM (x)),
that relates the probability of observing

a given conformation to the energy of

that conformation. In this equation Z is

a normalization constant and b is the

Boltzmann factor.

Traditional structure determination
methods

Despite recent substantial developments

in the accuracy of molecular energy

functions [18–20] it is still not possible

routinely and consistently to use molecular

simulations to predict or refine the struc-

ture of proteins [21,22]. Protein structures

are therefore typically determined through

hybrid methods that combine experiments

and simulations. The most common

technique is to combine a physical force

field, EMM with an experimentally

derived ‘‘biasing potential,’’ Eexp:

E~EMMzEexp. The function Eexp acts

to bias simulations to provide structures

that are compatible with experiments and

typically takes the form of a harmonic
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potential that penalizes protein structures

that are not in agreement with experi-

ments: Eexp(x)~k
P

j (D
exp
j {dcalc

j (x))2.

Here, D
exp
j is the set of experimental

measurements (e.g., NMR-derived NOE

intensities or structure factors from X-ray

scattering); dcalc
j (x) are the corresponding

calculated quantities calculated from the

structure, x, and k is a force constant that

provides a scale for the energetic penalty

for deviations between experimental and

calculated values. In this way, only

conformations where the back-calculated

data are close to the experimental values

will have a low overall value of Eexp.

When combined with a force field, this

produces structures that simultaneously

agree with the experimental data and

have structural features that conform to

our current understanding of the physical

principles that govern protein stability,

encoded in EMM (e.g., well-packed hydro-

phobic cores and regular secondary struc-

tural elements stabilized by hydrogen

bonds). When implemented in this fashion,

it is important to note that the simulations

Box 1. A Primer to the Principle of Maximum Entropy (Adapted from Ref. [17])

Jaynes’ die problem
A die has been tossed many times, and we are provided with the information that the average outcome was some value Sf T,
rather than the 3.5 that one would expect from a fair die. Based on this information alone, what is our estimate of the
probabilities of the different outcomes for this die?

According to the Principle of Maximum Entropy, we should maximize the entropy {
P6

i~1 pi ln(pi) of the discrete probability

distribution p1, . . . ,p6. This should be done under the constraints
P6

i~1 pi~1 and
P6

i~1 ipi~Sf T.

In general, the solution to this type of optimization problem takes the form:

pi~
1

Z
e
{
P

j
lj fj (xi ) Z~

X
i

e
{
P

j
lj fj (xi ) ð9Þ

where j runs over the number of constraints, and Z is the partition function, which ensures proper normalization. The following
identity conveniently relates the derivatives of the partition function to the observed expectation values:

L
Lli

ln(Z)~{SfiT ð10Þ

For our die problem, we have only a single constraint, and since f (xi)~i, we have:

L
Ll

ln(Z)~
1

Z

X6

i~1

{ie{li~

P6
i~1 {ie{liP6

i~1 e{li
~{Sf T ð11Þ

from which we obtain the following five-degree polynomial in e{l:

X6

i~1

(i{Sf T)(e{l)(i{1)~0 ð12Þ

Figure 1 shows the single, real-valued solution to this polynomial for various values of Sf T. Notice how the value Sf T~3:5
produces the uniform distribution as we expect, while higher or lower values produce gradually more skewed distributions.

Figure 1. Jaynes’ die problem: Maximum entropy probability distributions for a die, after observing the average outcome.
doi:10.1371/journal.pcbi.1003406.g001
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are not forced to agree perfectly with the

experimental data. Instead, the level of

agreement is now governed by the weight

of the biasing energy term. Consequently,

the experimental data is typically referred

to as restraints, rather than the term

constraints used when complete agreement

is the goal. One of the challenges associ-

ated with these hybrid energies is choosing

such weights and other parameters for the

biasing potential. Often these parameters

are tuned manually. An alternative, Bayes-

ian approach, called inferential structure

determination, however, provides an ele-

gant solution to this problem, by treating

such unknown quantities as ‘‘nuisance

parameters’’ and integrating them out

[23,24].

A direct consequence of the hybrid

energy approach described above is that

all of the sampled structures are individually

in agreement with the experimental data.

Although this superficially sounds reason-

able—indeed the idea of the biasing

potential is to bring the conformations to

be in agreement with experiments—it

brings with it some additional consequenc-

es. The basic problem arises because the

experimental data, D
exp
j , are typically

averaged over a very large number of

molecules as well as averaged over time-

scales that are long compared to those

typical of macromolecular fluctuations.

Thus, there is no reason to expect that

individual conformations should be in

exact agreement with the data as long as

the entire ensemble of conformations is

(e.g., even if a biased die produces an

average of four, one would not expect that

each throw produced this result). Thus, in

the approach outlined above for structure

determination, one is effectively making

additional assumptions about both the

structure and the conformational variabil-

ity of a protein that are neither directly

derived from the experimental data nor

from the physical force field.

Simulating replicas
One intuitive strategy to overcome this

problem is to simultaneously simulate

several replicas of the system and apply

restraints on the average of the back-

calculated experimental values, rather

than on the individual structures [25].

This strategy has a long history and is

often known as ‘‘ensemble averaged re-

finement’’ in the context of NMR struc-

ture determination [26,27] or ‘‘multi-

conformer refinement’’ in X-ray

structure determination [28–30]. This

approach has, for instance, been used to

study the structural dynamics of folded

proteins [31–33], unfolded proteins [34],

membrane proteins [35], and intrinsically

disordered proteins [36].

In such ensemble simulations, the N
replicas do not physically interact, but are

coupled via the experimental data. The

total system of N conformations is gov-

erned by the energy function:

E(x1, . . . ,xN )~

XN

i

EMM (xi)zk
XM

j

(D
exp
j {SdTcalc

j )2
ð1Þ

The first term is simply the sum of

the force field energies of the replicas. The

second term acts to enforce that the

simulation is in agreement with the ex-

periments, but penalizing the entire en-

semble only when the ensemble averaged

quantities, SdTcalc
j deviate from experi-

ment. For linearly averaged quantities,

SdTcalc
j ~N{1

PN
i dcalc

j (xi). In this way,

the calculated quantities in individual

conformation (dcalc
j (xi)) may differ from

experiment as long as their ensemble

average, SdTcalc
j , matches the experiment

within a scale that is implicitly determined

by the force constant, k.

Obviously, this method introduces a

new parameter to the problem, namely the

number of parallel replicas, and it is not

immediately clear what this parameter

should be set to. One approach to explore

this problem is first to use synthetic data

that have themselves been generated from

simulations and compare the restrained

ensemble with the ensemble used to

generate the data [37,38]. With real-world

experimental data, a suitable value of N
can be determined by cross-validating with

independent data not used in the structure

determination [39]. Since k and N both

affect the level of agreement between

experiment and simulation, their optimal

values are interdependent.

One critique of the method relates to

the ratio of the number of free parameters

(atomic coordinates) to the number of

experimental data points. In ‘‘normal’’

(non-ensemble) structure determination,

there are typically fewer experimental data

than atomic positions to be determined;

the problem is underdetermined and

additional (prior) information, e.g., from

a force field, is needed to determine

structures. In ensemble refinement, the

same number of data points are available,

but now these are used to determine N
times as many atomic positions, leaving

the underdetermination even worse. Al-

though it can be argued that ensemble

simulations provide a more natural way to

match ensemble-averaged experimental

data with simulations, the lack of a clear

theoretical underpinning is problematic

and it has been argued that the method

can lead to an increased risk of drawing

erroneous conclusions [40].

Maximum entropy approach
Given the possibility of both overfitting

experimental data and underrestraining by

unfavourable data-to-parameter ratios, it

would be preferable to have a theoretically

well-founded method for combining ex-

periment and simulation. Incorporating

experimental data into a simulation is

essentially a matter of updating a proba-

bility distribution (the original Boltzmann

distribution defined by the force field) in

the light of new data. As described above,

these data are typically both time and

ensemble averages of an underlying quan-

tity, and it is therefore an obvious choice

to use the principle of maximum entropy

to infer a suitable model. Among all

possible models compatible with the new

data, this will be the one that is the least

biased. Or alternatively phrased, this will

be the model that is as close as possible to

the original distribution, while taking the

new data into account. As an important

special case, we stress that if the force field

is already compatible with the observed

data, no modifications to the distribution

are made. While this sounds like a trivial

principle, it is actually violated by many

existing methods.

Conceptually, the maximum entropy

procedure is simple, and we proceed

exactly as we did for the die example.

The probability distribution takes the form

P(x)~

1

Z
exp {bEMM (x){

X
j

ljd
calc
j (x)

 !
ð2Þ

where x is the structural state, EMM (x) is

the force field energy of this state, the dcalc
j

represent an experimental observable

back-calculated from the structure, and

lj are the corresponding Lagrange multi-

pliers, whose values should be determined

to enforce agreement between experiment

and simulations. Technical issues, howev-

er, seem to have hindered a practically

useful implementation of the method.

Although maximum entropy approaches

have been explored in certain aspects of

X-ray scattering data [41,42] and NMR

[43,44], applications in the context of

molecular simulation have been surpris-

ingly few. One of the main practical issues

PLOS Computational Biology | www.ploscompbiol.org 4 February 2014 | Volume 10 | Issue 2 | e1003406



is that one needs to numerically determine

the optimal values for the Lagrange

multiplier corresponding to each con-

straint. Since experimental data will

easily provide hundreds of these con-

straints, this optimization is a formidable

task.

In the last year, three papers have

brought a practical application of the

maximum entropy principle for this prob-

lem considerably closer [9–11]. Pitera and

Chodera made the intriguing observation

of a potential link between the maximum

entropy solution and the solution obtained

by the replica-averaged ensemble tech-

nique described above, suggesting that as

the number of replicas in a simulation

grows, the ensemble-restrained solution

would gradually approach that obtained

by the principle of maximum entropy [9].

The relationship between replica-based

simulations and the maximum entropy

formalism was clarified and mathemati-

cally proven in papers by Roux and Weare

[10] and Cavalli et al. [11], both of which

demonstrated that a replica-based ap-

proach is equivalent to the maximum

entropy solution. In addition to establish-

ing this link, their result provides a solution

to one of the primary problems associated

with the maximum entropy problem in

molecular simulation: the challenge of

estimating the Lagrange multipliers nu-

merically. In particular, they showed that

the maximum entropy solution appears as

a limit of the replica method when the

harmonic potential enforcing the replica-

averaged restraint becomes infinitely nar-

row. More precisely, the distribution of each

replica in a replica-averaged ensemble simulation

(Eq. 1) will approach the maximum entropy

distribution if both N?? and k??. Using

Dirac’s d-function over the averaged

restraint violations, this can be written as

P(x1, . . . ,xN )~

1

ZN

exp {b
XN

i

EMM (xi)

 !

P
j

M

d D
exp
j {SdTcalc

j

� �
ð3Þ

As above, SdTj denotes the average ensem-

ble average over the j’th restraint, and D
exp
j

is the experimentally observed data.

This result has immediate practical

applications. Rather than determining

Lagrange multipliers for all experimental

observations, it is sufficient to conduct

an ensemble-averaged simulation with

Figure 2. The effect of different methods for incorporating experimental data on a simple example consisting of a mixture of two
bivariate normal distributions. In this example, we only have experimental data regarding the y-dimension of the distribution (target value
indicated by dotted line). The top row contains the unperturbed and maximum entropy distributions. The matrix shows various combinations of
force constant (k) and number of replicas (N) when enforcing the restraint through a harmonic potential. In these calculations, N~1 corresponds to
the standard method for structure calculation, and Nw1 corresponds to ensemble refinement. In each plot we also show the mean in the y-direction
(SyT), and the entropy of the distribution (S(x,y)).
doi:10.1371/journal.pcbi.1003406.g002
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d-function constraints with a large number

of replicas. In practice, d-functions are

difficult to work with and are often

replaced with a steep potential, for in-

stance a harmonic term. Figure 2 illus-

trates the procedure on a simple 2D

bivariate Gaussian mixture model with

two components, with a single restraint in

one of the dimensions (SyT~3). The top-

left plot is the unperturbed potential, while

the top-right plot shows the maximum

entropy solution with a numerically opti-

mized Lagrange multiplier. The plots in

the matrix show the behavior of different

combinations of the force constant of the

harmonic potential and the number of

replicas used in the simulation. Note how

two opposite forces are at play: an

increase in the force constant k will pull

the distribution toward the restrained

value, while an increase in N will increase

the variance, pulling it back to the

original distribution. For sufficiently large

values of k the harmonic term mimics a d-

function and when N is increased for such

values of k the distribution converges

towards the maximum entropy solution

without explicitly determining any Lagrange

multipliers.

Remaining challenges
The replica-averaged approach de-

scribed in the previous section is a

remarkably elegant, easily implementable

technique that provides the least-biased

distribution consistent with any observed

expectation values over the data. From

our perspective, it represents a significant

step forward in our understanding of how

experimental data should be used in

molecular simulations. There are, how-

ever, still some remaining issues, which

must be resolved before we can claim a

full understanding of the problem and a

practically useful implementation. We

will highlight the most important ones

here.

Ensuring convergence. There are

some challenges involved in determining

optimal values for the number of replicas

N and the force constant k. The question

of how quickly N and k should grow with

respect to each other was investigated in

some detail for the 1D harmonic system by

Roux and Weare, who stressed the

importance of letting k?? more rapidly

then N?? [10] but also noted that the

exact details could differ for more complex

models. Ideally, k should be chosen as

large as possible, but as illustrated by

Figure 2, this will impose a requirement

for a larger number of replicas as well.

This observation suggests an iterative

approach of alternating increases of k

and N. Higher values of k will draw the

mean value closer to the restraint, while

increasing values of N will increase the

variance.

Convergence can be assessed by simul-

taneously probing the violation of the

expectation values relative to the restraints

and the entropy of the distribution (or the

entropy corresponding to the restrained

subspace). It is, however, very difficult to

get converged entropy estimates for the

high dimensional conformational space of

a molecular simulation [45]. It remains to

be seen whether this poses a significant

problem for the application of this method

in practice.

Estimating Lagrange multipliers.

Despite the convenience of the replica-

averaged method, it remains unclear

whether this method is always preferable

to an approach that estimates the

Lagrange multipliers explicitly. Although

there can be hundreds of parameters to

estimate, there are mitigating circum-

stances, such as convexity in the case of

independent restraints, which might

make the search problem less complex.

Roux and Weare point out that even

when successfully finding all Lagrange

multipliers, one still has to run an entire

simulation. Similar problems seem to

assert themselves for the replica-case,

where production runs can only be

conducted once convergence in entropy

has been ensured.

One potential compromise could be

the x2 approach described below, which

assumes that different restraints share the

same Lagrange multiplier, and therefore

requires fewer parameters to be estimat-

ed. Whether this approximation in prac-

tice proves more efficient than finding

local-optima in the full restraint Lagrange

problem remains to be seen. One direc-

tion that is worth pursuing further in this

respect is to develop a replica analogy to

the x2 approach, alleviating the need for

the numerical determination of the La-

grange multiplier.

Dealing with uncertainties. The

previous sections assumed that the

experimentally observed values were

obtained with perfect accuracy. In any

real-world scenario there will, however,

be some level of noise or uncertainty

associated with such experimental data.

As an example, consider the case of the

die in Box 1: the experiment from which

the averages are observed will always

consist of a finite number of tosses, and

the average Sf T is therefore only

determined within some uncertainty.

How should this uncertainty be taken

into account? Note that there is an

important difference between adding a

constraint on the second moment (the

variance) and incorporating knowledge

about the error of the first moment (error

of the mean). The former can easily be

dealt with using the maximum entropy

principle, while the latter is more

problematic.

One potential solution to the problem

is to replace a single, exact constraint with

two constraints that act as a lower and

upper bound, respectively [10,46]. This

solution, however, assumes that the ex-

perimental noise can be interpreted as

‘‘hard’’ limits and does not represent the

fact that the experimental measurement is

just an estimate of the underlying true

value.

As an alternative solution to this

problem, Cavalli et al. propose a combi-

nation of the maximum entropy principle

and Bayesian inference with a prior

distribution that reflects the uncertainty

of the measured quantity. We briefly

sketch the idea behind the resulting

derivation here, referring to the measured

data points as D
exp
j and the (unknown)

actual values as Dtrue
j . For compactness,

boldface is used to denote a sets of

replicas or restraints (e.g., P(x1, . . . ,
xN )~P(x)). Assuming independence be-

tween the restraints, we have:

P(x,DtruejDexp)~

P(xjDtrue,Dexp) P
M

j
P(Dtrue

j jD
exp
j )~

P(xjDtrue) P
M

j
P(Dtrue

j jD
exp
j )

ð4Þ

Assuming flat priors, we have

P(Dtrue
j DDexp

j )!P(D
exp
j DDtrue

j ), and assum-

ing independent Gaussian distributions on

the latter,

P(x,DtruejDexp)!P(xjDtrue) P
M

j
P(D

exp
j jDtrue

j )

! exp {b
XN

i

EMM (xi)

 !
P
j

d SdjTcalc{Dtrue
j

� �

exp {
XM

j

Dtrue
j {D

exp
j

s

 !2
0
@

1
A

where SdjTcalc again is the calculated

ensemble averaged quantity of data j.
Note how this is simply the product of a

noise-free maximum entropy expression

on the exact but unknown quantity Dtrue
j

and a noise term that models the

uncertainty of our observable D
exp
j . Dtrue

j

are ‘‘nuisance parameters’’ that can now

be integrated out:

(5)
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P(xjDexp)~

ð
P(x,DtruejDexp)dDtrue

!exp {b
XN

i

EMM (xi){
XM

j

SdjTcalc{D
exp
j

sj

 !2
0
@

1
A:ð6Þ

This expression now only includes Dexp,

the experimentally determined quantity

that is an estimate of the true, underlying

value. The equation above, derived by

Cavalli et al. is quite striking, in the sense

that it corresponds exactly to the form

used in classic ensemble simulations (Eq.

1), except that the force constant that can

normally be tuned freely is now deter-

mined uniquely by the uncertainty in the

observed experimental values.

While this expression is highly appeal-

ing, it also presents a potential complica-

tion: because the force constant is now

fixed (by the experimental uncertainty),

the replicas will decouple in the limit of

N??, and the influence of the data will

decrease as the ensemble approaches the

unperturbed distribution provided by the

force field. In the context of the example

in Figure 2, it is clear that if the force

constant is too low, such as in the first row,

increasing the number of replicas does not

lead to a distribution that mimics the

maximum entropy solution. While it is

clear that in the presence of experimental

noise one would not expect to recover the

standard maximum entropy result (which

is valid only for exactly known quantities),

one would expect that the experimental

uncertainty, s, should set the scale for how

large deviations can be tolerated between

the final ensemble and the experimental

value. The effect can also be understood in

the detailed analysis by Roux and Weare

of a 1D harmonic potential with a

harmonic restraint. In particular, their

calculations show that when the number

of replicas is increased for a fixed force

constant, the mean of the restrained

ensemble converges to that of the prior

reference distribution while the variance

increases to its correct value. In the

standard maximum entropy setting,

the problem of the mean reverting to the

reference value can be alleviated by simply

increasing the force constant. When the

force constant is determined from the

experimental noise, this is no longer

possible, suggesting that rather than the

N?? limit, an intermediate value of N
might be more appropriate in order to

provide a balance between matching the

mean and the variance. Although this

leaves open exactly which procedure is

most appropriate to determine the optimal

value of N, it does provide insight into the

problems associated with choosing a value

that is either too low or too high.

The problem of maximum entropy in

the context of noisy data has been

addressed numerous times in other fields,

leading to various forms of generalized

maximum entropy procedures [46,47]

and regularization approaches [48,49].

Unfortunately, as of yet there seems to

be no universally accepted solution to this

problem. One approach that we foresee

could be potentially useful in molecular

simulation was proposed by Gull and

Daniell in the context of image recon-

struction [50]. The idea is to replace the

many individual constraints with a single

constraint on the x2 statistic over all data,

only matching them up to their experi-

mental uncertainty:

x2~
XM

j

SdTcalc
j {D

exp
j

� �
s2

j

ð7Þ

The expectation of this statistic is the

number of data points M. Maximizing

the entropy with respect to this single

constraint we obtain:
P(x)~

1

Z
exp {bEMM (x){l

XM
j

SdTcalc
j {D

exp
j

sj

 !
dj(x)

sj

 !
ð8Þ

This approach only requires a single

Lagrange multiplier to be determined

(by matching the calculated x2 with its

expectation value) and, thus, scales con-

siderably better with the number of

observed data points. The resulting ex-

pression, however, relies on the averages

SdTcalc
j , which are not know a priori. A

possible strategy would be to estimate

SdTcalc
j and l iteratively, by repeatedly

estimating SdTcalc
j from a simulation,

adjusting l to match the calculated and

expected value for x2, and then rerunning

the simulation (or reweighting the statis-

tics from the previous one [8]). It might

also be possible to use ensemble simula-

tions to provide an initial ensemble to

help determine l. To our knowledge, this

method has not yet been applied to

molecular simulation, and the practical

applicability of the approach therefore

remains to be established.

Finally, we note that an alternative

approach has very recently been suggested

to derive structural ensembles from noisy,

ensemble-averaged experimental data

[51]. This method is an extension of the

Bayesian inferential structure determi-

nation method that includes ensemble

averaging via a hierarchical model, and

it attempts to find an ensemble that is least

biased compared to prior knowledge (e.g.,

a force field) and that simultaneously is

compatible with the experimental data.

Discussion

The three new papers highlighted in

this Perspectives article have provided

substantial new insights to the field of

molecular simulation under experimental

restraints. Of particular interest is the

result that the current common practice

of replica-averaged simulations is tightly

linked to the solution prescribed by the

maximum entropy formalism. This link

provides an attractive way forward for the

field. Replica-averaged simulations have a

substantial track record and have in many

cases been shown to improve the quality of

structural ensembles—e.g., measured

through cross-validation with unrelated

experimental data—and to provide new

biological insights. The relationship with

the maximum entropy solution suggests

that the restrained ensemble can be

regarded as the proper thermodynamic

ensemble that represents a system when

both the energy and some additional

experimental data are known. As such,

the system-specific force field correction

introduced by the restraints, when applied

appropriately, may be viewed as a natural

extension of the Boltzmann ensemble

when one is provided with additional

information beyond the energy.

In addition to the theoretical develop-

ments highlighted in this article, an

important area for future studies is how

best to implement them in practice. In the

case of data without noise it is, for

example, not clear how many replicas

are needed in practice to recover an

ensemble that is close to the maximum

entropy solution. Another question is

related to the steepness of the potential

used to implement the restraint: how

narrow should the potential be to mimic

the appropriate d-function that will ensure

the maximum entropy correspondence?

Previous work has either found optimal

values of the number of replicas by cross-

validation, or simply chosen a sufficiently

large N to obtain convergence. As both

illustrated by theoretical results [10,11]

and our own simulations (Figure 2), it is,

however, necessary to choose the force

constant sufficiently large to converge to the

maximum entropy solution. The results

also show that that one can reach apparent

convergence at lower values of the force

constant, but that the resulting distribution

in this case will not be the maximum

(8)

(6)
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entropy solution. For these and related

problems, we also need better methods to

check for convergence, both to study the

effect of varying these restraint-parameters

and to monitor and ensure sufficient

sampling of the ensembles.

Another topic that remains incomplete-

ly understood is how best to deal with

uncertainties in the observed data. Cavalli

et al. provide a possible path in this

direction, and in this paper, we have

sketched out a few potential alternatives.

From a theoretical viewpoint, it seems

desirable to combine Bayesian inference,

which provides a robust toolbox for

dealing with noisy data, with the maxi-

mum entropy principle for deriving prob-

ability distributions in underdetermined

systems. There already exists a large

literature on these topics in other disci-

plines, but further studies and applications

on real systems are necessary to shed

further light on which methods are most

useful in biological simulations.

As we have here hinted, the problem of

uncertainties in the data appears to be

related to the problem of determining the

relative weight between force field and

restraint-potential. A relevant question in

this context is whether such a weight can

be meaningfully defined and assigned

without considering the inherent accuracy

of the force field itself. Intuitively, if the

force field in question is a preliminary

implementation, it should be weighed

lower than if it has been carefully

parameterized against a large amount of

data. This degree of trust is currently not

encoded in the force fields commonly

employed in simulations. In principle, this

information could be specified by provid-

ing distributions (or at least variances) for

all estimated parameters in the force field,

in the spirit of Bayesian inference, allowing

the inference machinery to deduce or

integrate out the relevant weights. In this

way, a force field would no longer be

characterized by a single set of parameters,

but instead as a ‘‘distribution of force

fields.’’ There are significant challenges

associated with estimating and sampling

from such models, but recent work

provides hope for the eventual feasibility

of such an approach. First, advances in

techniques for force field optimization

[8,52] allow for a Bayesian approach to

integrate experimental data and, e.g.,

quantum-level data, bringing us closer to

the ability to probe the uncertainties

associated with individual parameters.

Second, on the sampling front, inferential

structure determination has demonstrated

how (small numbers of) parameters can be

successfully integrated out during a simu-

lation [23,24,53]. Thus, we envisage that

in future applications it might be possible

to integrate out not only experimental

noise and ‘‘nuisance parameters,’’ but

potentially also the uncertainty associated

with the parameterization of a force field.

We note that distributed computing plat-

forms may be particularly well suited to

sample from such models as one might

need to perform multiple, independent

simulations that differ only slightly in the

force field used.

We also point out that ensemble

simulations inherently have more unfa-

vourable data-to-parameter ratios than

standard methods for structure determi-

nation. As such, they may in particular

benefit from improved force fields, and we

expect that as force fields continue to

improve it should become possible to study

more complex systems with less experi-

mental information. Importantly, a con-

sistent theoretical framework should allow

us to transition smoothly between tradi-

tional, mostly data-driven methods for

structure determination and molecular

simulations in the absence of any experi-

mental data.

Finally, we note that although the

developments described here have focused

on restraining molecular simulations with

experimental data, maximum entropy

methods have a broad range of applica-

tions both in biology and beyond. We

envisage that new theoretical develop-

ments, such as the link between ensemble

simulations and maximum entropy solu-

tions, can be directly applicable in other

fields. Similarly, new methods for deriv-

ing modified models in the context of

noisy data should have broad applicabil-

ity. For example, the recent advances in

predicting structural contacts from a

maximum entropy–based analysis of the

covariation of sites in a multiple sequence

alignment [6] should benefit greatly from

improved techniques for handling the

uncertainty associated with limited se-

quence numbers.
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