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Abstract

Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human
voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational
mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3
and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are
represented in the human brain. We compare competing models of sound representations and select the model that most
accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds
entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal
resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels
and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings
suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations
throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory
regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in
anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We
propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound
processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex.
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Introduction

Understanding how natural sounds and scenes are processed in

the human auditory cortex remains a major challenge in auditory

neuroscience. Current models of auditory cortical processing

describe the sound-evoked neural response patterns at the level of

preferential regional activations for certain behavioral tasks (e.g.

localization vs recognition [1,2]), sound categories (e.g. voices,

speech [3]) and (complex) acoustic features [4,5]. However, the

computational and representational mechanisms underlying these

responses remain largely unknown. The overall aim of the present

study is to derive a computational model of how natural sounds are

encoded in the human brain by combining high-resolution fMRI

(3 and 7 Tesla) with computational modelling.

Most natural sounds are characterized by modulations of

acoustic energy in both the spectral and temporal dimensions

(Figure 1A). These modulations occur at multiple scales [6] and

are crucial for behaviorally relevant auditory processing such as

speech intelligibility [7–10]. Psychophysical investigations indicate

that humans are able to detect and discriminate modulations that

occur in one dimension alone (temporal: [11]; spectral: [12]) as

well as combined spectro-temporal modulations [9]. Similarly,

neurophysiological studies in animals and humans have revealed

neuronal tuning for temporal modulations [13–15] and spectral

modulations [16] alone, and the combination of the two [17–21].

This evidence suggests that spectral and temporal modulations are

critical stimulus dimensions for the processing of sounds in the

auditory cortex. Just as the cochlea generates multiple ‘‘views’’ of

the sound pressure wave at different frequencies, an explicit

encoding of spectral and temporal modulations would allow the

cortex generating multiple ‘‘views’’ of the sound spectrogram with

different degrees of spectral and temporal resolution [22]

(Figure 1B). Multiple simultaneous representations of the same

incoming sounds may be crucially relevant for enabling flexible

behavior, as different goal-oriented sound processing (e.g. sound

localization or identification) may benefit from different types of

representations. Furthermore, the representations of sounds at

multiple resolutions may provide the computational basis for

binding acoustic elements in sound mixtures and solve complex

auditory scenes [23].

Despite extensive investigations in a variety of experimental

settings, the specific computational mechanisms used by the
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human auditory cortex to represent energy modulations in the

spectrogram of natural sounds are still a matter of speculation.

Here, we use an fMRI ‘‘encoding’’ approach [24] to compare

competing computational models of sound representations and

select the best model as the one that can predict most accurately

fMRI response patterns to natural sounds. We focus on three well-

defined aspects of the representation of spectral and temporal

modulations: (1) dependency, (2) frequency specificity, and (3) spatial

organization.

Dependency refers to the relation between spectral and

temporal processing. The spectrogram of natural sounds is

characterized by concurrent spectral and temporal modulations

and these sound qualities might be represented jointly or

independently of each other. An independent representation implies

separate processing mechanisms for spectral and temporal

modulations, such that the response to one dimension is invariant

to a change in the other dimension. By contrast, a joint

representation relies on combined selectivity for the conjunction

of spectral and temporal modulations. The joint representation

can be modeled as an array of spectro-temporal filters that are

selective for combinations of spectral and temporal modulations

(Figure S1A), whereas the independent representation can be seen

as a bank of filters that are selective for either temporal or spectral

modulations (Figure S1B). In other words, the two models differ

with respect to the dimensions employed by the auditory cortex to

encode natural sounds (combined spectro-temporal modulations,

and spectral and temporal modulations alone, respectively).

Testing for the interdependency of spectral and temporal

modulation processing has relevant implications, as the superiority

of such a model would indicate that results obtained using sounds

that only vary along one dimension (e.g. amplitude modulated

tones or stationary ripples) cannot be generalized to mechanisms

of representation and processing of natural sounds.

Figure 1. Sound examples and multi-resolution decomposition. (A) Spectrogram of four exemplary natural sounds used in this study as
extracted by the computational model mimicking early auditory processing. Natural sounds exhibit modulations of acoustic energy along both
frequency and time. (B) Multi-resolution representation of the leftmost spectrogram of panel A. Different ‘‘views’’ are obtained as output of
modulation channels tuned to specific spectral modulation (V) and temporal modulation (v) frequencies. Each channel represents the spectrogram
with a different combination of spectral and temporal detail.
doi:10.1371/journal.pcbi.1003412.g001

Author Summary

How does the human brain analyze natural sounds?
Previous functional neuroimaging research could only
describe the response patterns that sounds evoke in the
human brain at the level of preferential regional activa-
tions. A comprehensive account of the neural basis of
human hearing, however, requires deriving computational
models that are able to provide quantitative predictions of
brain responses to natural sounds. Here, we make a
significant step in this direction by combining functional
magnetic resonance imaging (fMRI) with computational
modeling. We compare competing computational models
of sound representations and select the model that most
accurately predicts the measured fMRI response patterns.
The computational models describe the processing of
three relevant properties of natural sounds: frequency,
temporal modulations and spectral modulations. We find
that a model that represents spectral and temporal
modulations jointly and in a frequency-dependent fashion
provides the best account of fMRI responses and that the
functional specialization of auditory cortical fields can be
partially accounted for by their modulation tuning. Our
results provide insights on how natural sounds are
encoded in human auditory cortex and our methodolog-
ical approach constitutes an advance in the way this
question can be addressed in future studies.

Multi-resolution Sound Analysis in Auditory Cortex
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The analysis of the spectro-temporal modulation content of the

sound spectrogram can be global (2D Fourier transform) or

localized (e.g wavelet transform). A global representation indicates

integration along the frequency axis, while in a local analysis

spectral and temporal modulations are encoded in a frequency-

specific fashion. Frequency specific responses are ubiquitous in the

auditory cortex; yet it is not clear how this dimension is exploited

for the representation of natural sounds. Understanding the nature

of the modulation analysis performed by the human auditory

cortex can provide insights about the functional role of this

representational mechanism.

Finally, the third aspect that we consider is the existence and

layout of a large-scale spatial organization of spectro-temporal

modulation tuning. Topographic maps of stimulus dimensions are

a well-established organizational principle of the auditory cortex

[25]. In humans, the primary [26] as well as the non-primary [27]

auditory cortex contain multiple topographic representations of

sound frequency (tonotopic maps). Beyond tonotopy, however, the

spatial organization of other sound features remains elusive [25].

Our methodological approach provides the possibility to obtain

maps of multiple sound features and feature-combinations from

the same set of fMRI responses and within the ecologically and

behaviorally-relevant context of natural sounds processing. Here,

we exploit this possibility to study the regional specificity and the

spatial organization of spectro-temporal modulation tuning. Such

knowledge can reveal the representational and computational

basis underlying the functional specialization of auditory cortical

subdivisions.

Our results show that the human brain forms multiple

representations of incoming natural sounds at distinct spectral

and temporal resolutions. The encoding of spectral and temporal

modulations is joint and frequency-specific and is governed by a trade-

off between spectral and temporal resolution. Regional variations

of voxels modulation preference put forward the hypothesis that

the functional specialization of auditory cortical fields can be

partially accounted for by their modulation tuning.

Results

We modeled the data from two fMRI experiments in humans (3

[27] and 7T [28,29]). In both experiments, fMRI responses were

recorded from the auditory cortex while subjects (n = 5, different

for the two experiments) listened to a large set of natural sounds,

including speech samples, music pieces, animal cries, scenes from

nature, and tool sounds (see Materials and Methods and Text S1).

Prediction accuracy of the joint frequency-specific MTF-
based model

We applied an ‘‘encoding’’ approach (see [24] and Figure S2)

and compared several computational models of auditory process-

ing. A first model we tested describes auditory cortical neurons as a

bank of frequency-localized filters with joint selectivity for spectral

and temporal modulations (see [22] and Materials and Methods).

Considering that one voxel reflects the mass activity of a great

number of neurons, we modelled each voxel’s receptive field as a

combination of modulation selective filters, each tuned to a

different spectral modulation, temporal modulation and frequency

(Figure 2, panel A). Using a subset of fMRI data (training), we

estimated a modulation transfer function (MTF, Figure 2, panel

A1) for each voxel (see Figure 3 for two MTF examples). We then

assessed the ability of this MTF-based model to accurately predict

the fMRI responses in new, independent data sets (testing). In the

3T experiment, training and testing data involved a single set of

natural sounds, whereas two completely distinct sound sets were

used for the 7T training and testing datasets. We quantified

model’s prediction accuracy by performing a sound identification

analysis [24]. Namely, we used the fMRI activity patterns

predicted by the estimated models to identify which sound had

been heard among all sounds in the test set. Each testing sound

was assigned with a score ranging between 0 and 1 and indicating

the rank of the correlation between sound’s predicted and

measured activity patterns (0 indicates that the predicted activity

pattern for a given stimulus was least similar to the measured one

among all test stimuli; 1 indicates correct identification). The

overall model’s accuracy was obtained as the average score across

all test sounds (see Materials and Methods).

For both the 3T and 7T datasets, the accuracy of the joint

frequency-specific MTF-based model was significantly higher than

chance (0.5) both at group level (3T: mean [SE] = 0.66 [0.02],

p = 0.003; 7T: mean [SE] = 0.78 [0.03], p = 0.002; two-tailed

paired t-test; Figure 4) and for each individual subject (p = 0.01 for

subject S4, p = 0.005 for all other subjects, permutation test;

Figure 5). Remarkably, for the 7T dataset the joint frequency-

specific MTF-based model was able to generalize to stimuli not

used for parameter estimation.

Comparison between joint frequency-specific MTF-based
model and tonotopy model

FMRI activity from voxels in primary and non-primary auditory

regions reflects the tonotopic organization of neural responses.

Therefore, as a control analysis we compared the prediction

accuracy of the MTF-based model against the prediction accuracy

of a tonotopy model, which incorporates the hypothesis that voxels

simply reflect information about the frequency content of the stimuli

(see Materials and Methods and Figure 2, panel C). The tonotopy

model performed above chance both at group level (3T: mean

[SE] = 0.62 [0.02], p = 0.002; 7T: mean [SE] = 0.69 [0.03],

p = 0.004; two-tailed paired t-test; Figure 4) and for each individual

subject (p = 0.015 for subject S4, p = 0.005 for all other subjects,

permutation test; Figure 5). However, the tonotopy model

performed significantly worse than the joint frequency-specific

MTF-based model (3T: p = 0.009; 7T: p = 0.007; two-tailed paired

t-test). The significant improvement of the MTF-based over the

tonotopy model indicates that a model accounting for the joint,

frequency-specific modulation content of the spectrogram is a better

representation of fMRI responses to natural sounds.

Comparison between frequency-specific and non-
specific joint MTF-based models

To assess the relevance of frequency-localization in the

encoding of joint spectro-temporal modulations, we trained a

model that represents frequency and joint modulation content

independently of each other (see Materials and Methods and

Figure 2, panel A2). The joint frequency non-specific MTF-based

model performed above chance both at group level (3T: mean

[SE] = 0.63 [0.02], p = 0.004; 7T: mean [SE] = 0.71 [0.02],

p = 0.0003; two-tailed paired t-test; Figure 4) and for each

individual subject (p = 0.02 for subject S4, p = 0.01 for subject

S6, p = 0.005 for all other subjects, permutation test). However,

the frequency non-specific model performed significantly worse

than the frequency-specific MTF-based model (3T: p = 0.002; 7T:

p = 0.021; two-tailed paired t-test).

Comparison between joint and independent frequency-
specific MTF-based models

In order to quantify the contribution of joint selectivity to

identification performance, we trained an independent frequency-

Multi-resolution Sound Analysis in Auditory Cortex
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Figure 2. Overview of candidate encoding models. (A) Joint modulation selective filters. (A1) Joint frequency specific: the spectrogram is
filtered with a bank of modulation selective filters at different spectral modulations (V), temporal modulations (v), and direction (upwards/
downwards). The output of the filter bank is averaged across time and direction to yield a reduced representation of modulation energy as a function
of V, v, and frequency. The joint frequency-specific MTF-based model predicts that fMRI responses vary linearly with this representation, i.e. sounds
that differ with respect to any of the three dimensions will elicit different responses. (A2) Joint frequency non-specific: the 3D modulation
representation is averaged across frequency to yield a global measure of modulation energy. By concatenating modulation and frequency content
(not shown here, see tonotopy model), the joint frequency non-specific model predicts separate processing for global, joint modulations and
frequency. (B) Independent modulation selective filters. (B1) Independent frequency-specific: the spectrogram is filtered with purely spectral and
purely temporal modulation selective filters and the output is averaged over time. This yields separate representations of spectral and temporal
modulation energy as a function of frequency. The independent frequency-specific model predicts that the response of a voxel dedicated to spectral
(temporal) processing will not be affected by a change in temporal (spectral) modulation content. (B2) Independent frequency non-specific: the two

Multi-resolution Sound Analysis in Auditory Cortex
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specific MTF-based encoding model. We modelled each voxel’s

receptive field as a combination of purely temporal and purely

spectral modulation selective filters, operating in a frequency-

specific fashion (see Materials and Methods and Figure 2, panels B

and B1). The independent model performed above chance both at

group level (3T: mean [SE] = 0.63 [0.01], p = 0.001; 7T: mean

[SE] = 0.72 [0.02], p = 0.0007; two-tailed paired t-test; Figure 4)

and for each individual subject (p = 0.015 for subject S4, p = 0.01

for subject S7, p = 0.005 for all other subjects, permutation test).

However, the independent model performed significantly worse

than the joint MTF-based model (3T: p = 0.012; 7T: p = 0.011;

two-tailed paired t-test).

Comparison between joint frequency-specific and
independent frequency non-specific MTF-based models

As an additional control, we tested a model that simulates

independent selectivity for spectral modulations, temporal mod-

ulations and frequency (see Materials and Methods and Figure 2,

panel B2). The independent frequency non-specific model

performed above chance both at group level (3T: mean

[SE] = 0.63 [0.02], p = 0.002; 7T: mean [SE] = 0.71 [0.02],

p = 0.0008; two-tailed paired t-test; Figure 4) and for each

individual subject (p = 0.01 for subject S1, S4 and S9, p = 0.005

for all other subjects, permutation test). However, the independent

frequency non-specific model performed significantly worse than

the joint frequency-specific MTF-based model (3T: p = 0.011; 7T:

p = 0.016; two-tailed paired t-test).

Spatial distribution of voxels’ tuning properties
To investigate the cortical topography of voxels tuning

properties, we computed maps of voxels characteristic spectral

modulation (CSM), temporal modulation (CTM) and frequency

(CF). For each feature, the estimated MTF was marginalized

across irrelevant dimensions (i.e. spectral and temporal modula-

tions for CF) and the point of maximum of the marginal sum was

assigned as the voxel’s preferred feature value (see example in

Figure 3). We obtained maps of CSM, CTM and CF by color-

coding the voxels’ preferred values and projecting them onto an

inflated representation of the subject’s cortex (see Materials and

Methods). Maps of CF confirmed the presence of multiple

separate representations of spectral and temporal modulation energy are averaged across frequency to yield the global spectral and temporal
modulation content. This representation is concatenated with the frequency content (not shown here, see tonotopy model) to simulate separate
processing for frequency, spectral and temporal modulations. (C) Tonotopy model: the spectrogram is averaged over time and voxels are modeled as
frequency selective units, whose response varies linearly with the frequency content of the input stimuli.
doi:10.1371/journal.pcbi.1003412.g002

Figure 3. Sample MTFs, data and model prediction for two exemplary voxels (subject S10). (A–B) Left: MTFs as estimated by the joint
frequency-specific MTF-based model. The color code indicates the voxel’s sensitivity to a given combination of frequency, spectral and temporal
modulation. MTFs have been interpolated for display purposes. Middle: Marginal response profiles for temporal modulation (top), spectral
modulation (middle) and frequency (bottom). Red circles and dashed lines indicate voxels’ characteristic spectral modulation, temporal modulation
and frequency, computed as the point of maximum of the marginal profiles (see Materials and Methods). Right: Measured and predicted response to
the 24 stimuli in the test set. Responses are shown in z-score units. r indicates Pearson’s correlation coefficient.
doi:10.1371/journal.pcbi.1003412.g003

Multi-resolution Sound Analysis in Auditory Cortex
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tonotopic gradients in primary auditory regions (Heschl’s gyrus -

HG) and surrounding superior temporal cortex [27] (Figure S3

and S4). The spatial distribution of voxels CSM and CTM

appeared to be more complex and variable across subjects

(Figure 6 for the group and Figure S5 and S6 for all individual

subjects). However, the group data and the majority of the

individual subjects suggested distinct regional sensitivities to

modulation frequencies (see schematic summary in Figure 7). In

both hemispheres, clusters with a preference for fine spectral

modulations (high CSM, purple colors) were primarily and

consistently localized along the HG and anterior superior

temporal gyrus (STG) (see circles on group maps - Figure 6),

while clusters with a preference for coarse spectral modulations

(low CSM, orange color) were mostly located posterior-laterally to

HG, on the planum temporal (PT) and on STG (see squares on

group maps – Figure 6). Bilaterally, a preference for slow temporal

modulations (low CTM, orange color) was found along HG and

STG, whereas clusters with a preference for fast temporal

modulations (high CTM, purple) were observed on the PT,

posteriorly to HG and in a region medially adjacent to HG.

Supporting the spatial dissociation between spectral and temporal

modulation at map level, we found a significant negative

correlation between voxels characteristic spectral and temporal

modulation (3T: mean [SE] = 20.19 [0.01], p = 0.02; 7T: mean

[SE] = 20.11 [0.01], p = 0.01; group level random effects two-

tailed t test, see Materials and Methods).

Discussion

Mechanisms of spectral and temporal modulation
processing

Our results show that the representation of natural sounds in the

human auditory cortex relies on a frequency-specific analysis of

combined spectro-temporal modulations. By showing superior

performance of the joint MTF-based model over the independent

model, we have demonstrated that the hypothesis of independent

tuning for spectral [16] and temporal modulations [30] is

insufficient to account for the representation of natural sounds in

the human auditory cortex. Furthermore, the frequency-specificity

that we revealed indicates that the organization of the auditory

cortex according to frequency extends beyond the representation

of the spectral content of incoming sounds. We show that, at least

for spectro-temporal modulations, the integration along the whole

range of frequencies occurs at a later stage than the extraction of

the feature itself.

The encoding mechanism that our results support is consistent

with a recent study showing that a frequency-specific representa-

tion of combined spectro-temporal modulations allows the

accurate reconstruction of speech in the human posterior superior

temporal gyrus [31]. The present study generalizes these

observations to sounds from natural categories other than speech.

Furthermore, our results are in line with psychophysics studies

showing that tuning for combined spectro-temporal modulations

provides a better account of human behavior during the

performance of auditory tasks [32,33].

Previous neuroimaging studies had examined the processing of

spectral and temporal modulations by measuring the tuning to

synthetic stimuli with varying spectral modulation frequency,

temporal modulation frequency or the combination of the two.

This approach suffers from two main limitations. First, natural

sounds are complex stimuli with characteristic statistical regular-

ities [6,34–36] and it has been suggested that the auditory system is

adapted to such regularities in order to efficiently encode sounds in

natural settings [37]. Even the most complex synthetic stimuli lack

both the statistical structure and the behavioral relevance of

natural sounds; therefore there is not guarantee that they engage

Figure 4. Comparison between models. Bars indicate the prediction accuracy (mean 6 SEM, N = 5) for the five models in both the 3T and 7T
experiments. The joint frequency-specific MTF-based model showed significantly better prediction accuracy than all other models (see main text).
Accuracies are normalized between 0 and 1. Chance level is 0.5.
doi:10.1371/journal.pcbi.1003412.g004

Multi-resolution Sound Analysis in Auditory Cortex
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the auditory cortex in processing that is actually used during the

analysis of natural sounds. Second, tuning per se only allows

indirect inference on cortical encoding mechanisms: proofing a

general computational strategy requires building a model that is

able to predict brain responses to a broad range of natural stimuli

[38]. The approach that we followed in the present study allowed

overcoming these limitations, therefore providing direct evidence

for a specific encoding mechanism. However, two important

caveats should be mentioned. First, by estimating a linear mapping

between modulation acoustic space and fMRI responses, we only

modeled the linear response properties of voxels. One might argue

that because of the linear approximation, the use of natural sounds

provides no advantage over synthetic stimuli (e.g. dynamic ripples).

However, it has been shown that tuning properties of both

auditory [39–41] and visual [42,43] neurons differ significantly

under natural and synthetic stimulus condition and that linear

models obtained from natural stimuli predict neurons responses

significantly better. This shows that natural and synthetic stimuli

activate neurons in a different manner and that, despite being an

incomplete description, linear models estimated from responses to

natural stimuli may be more accurate. We suggest that this is true

also for models of voxels receptive fields. Second, it might be

possible that some auditory cortical locations are selective to

higher-level sound attributes (i.e. sound categories) that co-occur

with specific spectro-temporal modulations. As a consequence of

this co-occurrence, these locations would then be assigned with a

preferred temporal and spectral modulation frequency, only in

virtue of their category selectivity. To examine the role of category

selectivity on our results, we performed additional analyses on the

7T dataset and tested a model that included categorical predictors

Figure 5. Prediction accuracies for individual participants. Accuracies of the joint frequency-specific MTF-based (left) and tonotopy (right)
models are reported for the 3T (A) and 7T (B) datasets. Each panel shows the accuracy obtained with correct labels and the accuracy derived by
permuting the sound labels before training the model.
doi:10.1371/journal.pcbi.1003412.g005

Multi-resolution Sound Analysis in Auditory Cortex
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Figure 6. Group maps of CSM and CTM. Maps are displayed for the 3T (A) and 7T (B) datasets. Top: inflated representation of the group cortex.
Maps are shown in the cortical region highlighted by the black square. Middle, Bottom: purple denotes tuning for fine (fast) spectral (temporal)
structures; orange denotes tuning for coarse (slow) spectral (temporal) features. The white circle and square outline anterior/ventral and posterior/
dorsal auditory regions, respectively. The black line indicates HG.
doi:10.1371/journal.pcbi.1003412.g006

Figure 7. Summary of spatial distribution of voxels’ tuning properties. The cartoon is a schematic representation of regional preferences for
spectral modulation (left), temporal modulation (middle), and frequency (right). The schematic of spectral and temporal modulation preference
summarizes the most evident characteristics emerging from the complex spatial pattern of CSM and CTM. The cartoon of frequency preference
shows the main tonotopic gradient in regions along and surrounding HG. Cartoon clusters are superimposed over the left hemisphere of the group
cortex as derived from the experiment at 3T. The black line indicates HG.
doi:10.1371/journal.pcbi.1003412.g007

Multi-resolution Sound Analysis in Auditory Cortex
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together with the original MTF-based model (Text S1). The results

showed that predictions of new sounds do not improve with the

inclusion of categorical information (mean [SE] = 0.76 [0.03]) and

that estimated CTM and CSM maps do not change (Figure S8).

This analysis suggests that category tuning may result from

preference to specific lower level features or combination of

features. However, it would be important to further investigate this

issue and compare responses and voxels receptive fields obtained

with both natural and synthetic sounds (see [27] for a similar

comparison for frequency responses). Such an investigation is

experimentally challenging, as it would require as many stimuli

(dynamic ripples) as model parameters used in the present study.

However, it could be crucial for understanding the relation

between acoustic and perceptual levels of sound representation in

the auditory cortex.

Spatial topographies and relation to current functional
models

On the basis of positron emission tomography responses to tone

sequences that differed either in the temporal or spectral

dimension, Zatorre and Belin [44] reported a left-hemispheric

preference for rapid temporal processing and complementary

preference in the right hemisphere for fine-grained spectral

analysis. While the analyses we conducted cannot exclude that

hemispheric differences exist at regional level, our maps - obtained

at a much higher spatial resolution and with natural sounds -

suggest a more complex spatial pattern of spectral and temporal

modulation preference within each hemisphere. The most evident

characteristic is that – in both the hemispheres - regions located

posterior-laterally to HG (see squares in Figure 6 and the

schematic summary in Figure 7) preferably encode coarse spectral

information with high temporal precision while regions located

along HG or antero-ventrally (see circles in Figure 6 and the

schematic summary in Figure 7) preferably encode fine-grained

spectral information with low temporal precision. Both the two

previous human neuroimaging studies that investigated tuning for

combined spectro-temporal modulations with dynamic ripples

([20,21]) reported a role of anterior auditory regions in the analysis

of fine spectral details, which is consistent with our observations,

whereas results are less coherent for temporal modulation maps.

Again, a direct comparison between maps obtained with dynamic

ripples and natural sounds would be required to address this issue.

Our results of spatial topographies for CTM and CTF support

the view that the auditory cortex forms multiple (parallel)

representations of the incoming sounds at different spectro-

temporal resolutions ([45,46]). We suggest that this may be

relevant for enabling flexible behavior, as different goal-oriented

sound processing may benefit from different types of auditory

representations. Importantly, this suggestion can be tested

empirically in future experiments and studies where (natural)

sounds are presented in the context of multiple behavioral tasks.

A spectral-temporal resolution ‘‘trade-off’’ analogous to the one

reported here has previously been described for neurons in the

inferior colliculus of the cat [47,48] and is in agreement with the

low-pass behavior of the MTF of the human auditory cortex [21]

and the psychophysically derived detection thresholds for spectro-

temporal modulations [9]. Furthermore, modulation spectra of

natural sounds exhibit a similar trade-off, i.e. natural sounds rarely

present both high spectral and high temporal modulation

frequencies [6,10]. A match between stimulus statistics and

neuronal response properties is generally interpreted as an

evidence for the theory of efficient coding [19,36,37,48,49]. Thus,

our data provide further support to the idea that the auditory

system has adapted in order to efficiently encode the statistical

regularities of natural sounds.

Comparing computational models of auditory processing
with fMRI

Besides providing insights into the representation of natural

sounds in the human auditory cortex, our results pave the way to

future research aiming at testing increasingly complex encoding

models of auditory processing. The combination of fMRI and

‘‘encoding’’ techniques has proven to be a successful tool to

investigate the representation of natural images in the human

visual cortex [24,50,51], as well as to predict the brain activity

associated with the meaning of words [52]. In the auditory

domain, the application of such powerful method has lagged

behind. We have recently demonstrated that ‘‘encoding’’ makes it

possible to detect the spectral tuning of voxels in the human

auditory cortex from fMRI responses to natural sounds [27–29].

In the present study, we show that models embedding more

complex representations than frequency selectivity can be learned

from fMRI activity. The challenge for future studies is to explore

more sophisticated voxels receptive field models. Here we only

considered voxels tuning along three stimulus dimensions

(frequency, spectral modulations and temporal modulations).

However, natural sounds vary in a higher dimensional acoustic

space and interactions with parameters not considered here might

occur.

Interestingly, we consistently observed higher prediction accu-

racy for the 7T compared to the 3T dataset (Figure 4), despite the

fact that at 7T the model was trained and tested on independent

sound ensembles (while different presentations of the same sounds

were used for the 3T data set). We interpret this difference as a

result of the interplay between two important factors, namely the

number of stimuli and the functional contrast to noise ratio (CNR).

The larger amount of different sounds employed in the 7T

experiment has probably increased the variance along the

dimensions represented by the model; this, together with the

higher CNR and the higher spatial specificity achieved at 7T, has

likely led to a more accurate model estimation, which in turn has

resulted in higher prediction accuracy. These observations provide

important guidelines for the design of future experiments in this

framework.

It should be mentioned that in our study, accuracy based on

percent correct was significantly above chance ([12.5%, 12.5%,

16.7%, 20.8%, 25%] for subjects S6–S10 for the best performing

model at 7T; chance = 4.2%), but still quite small compared to the

outstanding results reported in similar encoding studies in the

visual domain (e.g. [24]). However, the distribution of ranks was

skewed towards 1 (correct identification), indicating that for most

sounds the correlation between predicted and measured response

was ranked very high (e.g. second or third). The lower percent

correct performance for sound identification can be ascribed to a

variety of reasons. It might be due to the lower functional CNR, as

BOLD responses observed in the auditory cortex are substantially

lower than those in the visual cortex, probably because of the

effects of the scanner noise [53]. Furthermore, our clustered fMRI

acquisition with a silent gap between scans limits the number of

sounds used for training/testing the model (compared e.g. to the

number of images in [24]). Finally, the model of receptive field

based on spectro-temporal modulations might be too simple for

allowing distinguishing two acoustically similar sounds (e.g. two

speech sounds).

Although the proposed combination of high field fMRI with the

encoding approach is valuable for testing well-defined hypotheses

on sound processing in the human brain, there are intrinsic
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limitations. A voxel - even at the high spatial resolution achievable

with 7T fMRI - samples a large number of neurons and the

relation between the measured BOLD signal and the neural

activation is only partly understood. Results based on BOLD

fMRI (and thus fMRI encoding) reflect a complex mixture of

neuronal (spiking and synaptic activity, excitation, inhibition) as

well as neurovascular phenomena. In particular, neural inhibition

may be associated with both positive and negative BOLD,

depending on the specific neural network configuration [54].

Understanding the neuronal dynamics underlying our fMRI

observations would thus require combining electrophysiological

(at single-cell and neuronal population level) and fMRI investiga-

tions in animal models [55] and/or humans [40].

In summary, our study represents a first demonstration of how

fMRI data and ‘‘encoding’’ techniques can be successfully

combined to test competing computational models of auditory

processing and to concurrently estimate response properties of

cortical locations along multiple dimensions within an ecologically

valid framework. Also, by using a biologically inspired computa-

tional model, we pave the way for linking electrophysiology in

animals and non-invasive research in humans.

Materials and Methods

Ethics statement
The Ethical Committee of the Faculty of Psychology and

Neuroscience at Maastricht University and the Institutional

Review Board for human subject research at the University of

Minnesota granted approval for the study at 3T and 7T

respectively.

Experimental procedure
Subjects, stimuli, experimental design, MRI parameters, and

data preprocessing have been reported in previous publications

from our group [27–29] (see Text S1). In the following, the most

relevant details of the experimental design will be briefly

described.

We used 60 (168) recordings of natural sounds for the 3T (7T)

experiment. Stimuli included human vocal sounds (both speech

and non-speech, e.g., baby cry, laughter, coughing), animal cries

(e.g., dog, cat, horse), musical instruments (e.g., piano, flute,

drums), scenes from nature (e.g., rain, wind, thunder), and tool

sounds (e.g., keys, scissors, vacuum cleaner). Sounds were sampled

at 16 kHz and their duration was cut at 1000 ms. Sound onset and

offset were ramped with a 10 ms linear slope, and their energy

(RMS) levels were equalized.

The 3T and 7T experiments consisted of 3 and 8 runs,

respectively; in the 3T (7T) experiment, each run lasted

approximately 25 (10) minutes. In the 7T experiment, data were

subdivided into six train runs and two test runs. In the train runs,

144 of the 168 stimuli were presented with 3 repetitions overall (i.e.

each sound was presented in 3 of the 6 train runs). The remaining

24 sounds were presented in the test runs and repeated 3 times per

run.

Sounds were presented in the silent gap between acquisitions

with a randomly assigned inter-stimulus interval of 2, 3, or 4 TRs -

plus an additional random jitter. Zero trials (trials where no sound

was presented; 10% of the trials in the 3T experiment; 6% (5%) of

the trials in train (test) runs in the 7T experiment), and catch trials

(trials in which the sound which was just heard was presented; 6%

of the trials in the 3T experiment; 6% (3%) of the trials in train

(test) runs in the 7T experiment) were included. Subjects

responded with a button press when a sound was repeated. Catch

trials were excluded from the analysis.

Joint frequency-specific MTF-based model
The stimulus representation in the modulation space was

obtained as the output of a biologically inspired model of auditory

processing [22], that explicitly encodes the modulation content of

a sound spectrogram. The auditory model consists of two main

components: an early stage that accounts for the transformations

that acoustic signals undergo in the early auditory system, from the

cochlea to the midbrain; and a cortical stage that simulates the

processing of the acoustic input at the level of the (primary)

auditory cortex. The spectral analysis performed by the cochlea is

mimicked by a bank of 128 overlapping bandpass filters with

constant-Q (Q10 dB = 3), equally spaced along a logarithmic

frequency axis over a range of 5.3 oct (f = 180–7040 Hz). The

output of each filter enters a hair cell stage, where it undergoes

high-pass filtering, optional non-linear compression and low-pass

filtering. A midbrain stage models the enhancement of frequency

selectivity as a first-order derivative with respect to the frequency

axis, followed by a half-wave rectification. Finally, a short-term

temporal integration (time constant t = 8 ms) accounts for the loss

of phase locking observed in the midbrain. The auditory

spectrogram generated by the early stage is further analyzed by

the cortical stage, where neurons are modeled as 2-dimensional

(2D) modulation selective filters that are tuned to a specific

combination of spectral and temporal modulations, and operate

over a limited range of frequencies along the tonotopic axis. These

filters have constant Q and are directional, i.e. they respond either

to upward or downward frequency sweeps. Computationally, the

cortical filter bank performs a complex wavelet decomposition of

the auditory spectrogram. The magnitude of such decomposition

yields a phase-invariant measure of modulation content. Ulti-

mately, the model’s output is a multi-resolution representation of

the spectrogram envelope as a function of time, frequency, spectral

and temporal modulations, and directionality.

We derived the auditory spectrogram and its modulation

content using the ‘‘NSL Tools’’ package (available at http://www.

isr.umd.edu/Labs/NSL/Software.htm) and customized Matlab

code (The MathWorks Inc.). Pilot analyses showed that model

performance was not significantly affected by changes in the

parameters of the early stage. Accordingly, parameters for the

spectrogram estimation were fixed (i.e. not estimated in the fitting

procedure) and set as described above and in [22]. The

modulation content of the auditory spectrogram was computed

through a bank of 2D modulation selective filters tuned to spectral

modulation frequencies of V = [0.5, 1, 2, 4] cyc/oct and temporal

modulation frequencies of v = [1, 3, 9, 27] Hz. The filter bank

output was computed at each frequency along the tonotopic axis

and then averaged over time. In order to avoid overfitting, a

reduced modulation representation was obtained as follows (3T: 3

tonotopic frequencies64 spectral modulations64 temporal mod-

ulations = 48 parameters to learn; 7T: 8 tonotopic frequencies64

spectral modulations64 temporal modulations = 128 parameters

to learn; note that we chose a different number of parameters for

the 3T and 7T datasets due to the different number of stimuli used

for model’s estimation - 60 and 144 stimuli, respectively). First, the

time-averaged output of the filter bank was averaged across the

upward and downward filter directions (note that this corresponds

to assuming that sweep direction does not affect voxels activation

levels). Then, we divided the tonotopic axis in ranges with constant

bandwidth in octaves and averaged the modulation energy within

each of these regions. We defined three frequency ranges in the 3T

experiment and eight in the 7T experiment. The above processing

steps were applied to all stimuli, resulting into an [S6N] feature

matrix F of average modulation energy, where S is the number of
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sounds, and N is the number of features in the reduced modulation

representation.

Tonotopy model
The stimuli representation in the frequency space was obtained

using only the input stage of the auditory model. The spectrogram

was computed at 128 logarithmically spaced frequency values

(f = 180–7040 Hz) and averaged over time. In the 3T experiment,

we generated a reduced frequency representation in order to

restrain the effects of overfitting (note that in the 7T experiment

the number of observations in the train set was already higher than

the number of parameters to estimate). We divided the tonotopic

axis in 48 bins with constant bandwidth in octaves and averaged

the frequency content within each of these regions. We chose 48

bins in order to have the same number of parameters for both the

MTF-based and the tonotopy model. The above processing steps

were applied to all stimuli, resulting into an [S6N] feature matrix

F of time-averaged frequency content, where S is the number of

sounds, and N is the number of frequency bins.

Joint frequency non-specific MTF-based model
We generated the non-localized modulation representation by

averaging the frequency-specific joint representation along both

time and frequency (this is similar to performing a 2D Fourier

transform of the spectrogram). This resulted in a representation

with 16 features (4 temporal modulations64 spectral modulations).

However, frequency specific information is indeed reflected in

voxels’ activity [26,27]; therefore, we concatenated the modulation

representation with a tonotopic representation obtained as

described above for the tonotopy model. We employed 32

frequency bins for the 3T dataset and 112 for the 7T dataset,

resulting in a final representation with 48 and 128 features,

respectively.

Independent frequency-specific MTF-based model
We generated the independent modulation representation by

filtering the auditory spectrogram with one-dimensional purely

spectral and purely temporal modulation filters. Filters were tuned

to spectral modulation frequencies of V = [0.5, 1, 2, 4] cyc/oct and

temporal modulation frequencies of v = [1, 3, 9, 27] Hz. The

output of each filter bank was averaged over time and within

frequency ranges with constant bandwidth in octaves. In order to

have a representation with the same number of features as for the

joint model, we defined 6 frequency ranges in the 3T experiment

and 16 in the 7T experiment. Finally, the outputs of the purely

spectral and purely temporal filter banks were concatenated,

resulting in a representation with 48 features for the 3T dataset (6

tonotopic frequencies64 temporal modulations+6 tonotopic fre-

quencies64 spectral modulations) and 128 for the 7T dataset (16

tonotopic frequencies64 temporal modulations+16 tonotopic

frequencies64 spectral modulations). The above processing steps

were applied to all stimuli, producing an [S6N] feature matrix F of

average modulation energy, where S is the number of sounds, and

N is the number of features.

Independent frequency non-specific MTF-based model
We generated the non-localized independent representation by

averaging across frequency the frequency-specific independent

representation. This resulted in a representation with 8 features (4

temporal modulations+4 spectral modulations). The final model

was obtained by concatenating the modulation representation with

a tonotopic representation obtained as described above for the

tonotopy model. We employed 40 frequency bins for the 3T

dataset and 120 for the 7T dataset, resulting in a final

representation with 48 and 128 features, respectively.

Model estimation and evaluation
In the 7T experiment, independent train and test runs involving

two completely distinct sound sets were used to train and assess the

model, whereas leave run out cross-validation was performed for

the 3T dataset (the final model parameters and the overall

prediction accuracy were computed as the average across cross

validations).

Estimation of fMRI responses to natural sounds
For each voxel i, the response vector Yi [(S61), S = number of

sounds] was obtained in two steps. First, a deconvolution analysis

with all stimuli treated as a single condition was used to estimate

the hemodynamic response function (HRF) common to all stimuli.

Then, using this HRF and one predictor per sound, we computed

the beta weight of each sound [56]. Further analyses were

performed on voxels with a significant response to the sounds

(p,.05, uncorrected in order not to be too stringent at this stage of

the process) within an anatomically defined mask, which included

HG, HS, PT, PP, and STG.

Estimation of model parameters
The fMRI activity Yi [Strain61] at voxel i was modeled as a

linear transformation of the feature matrix Ftrain [Strain6N] plus a

noise term n [Strain61] as follows:

Yi~FtrainCizn ð1Þ

where Strain is the number of sounds in the training set, and Ci is an

[N61] vector of model parameters, whose elements cij quantify the

contribution of feature j to the overall response of voxel i. Note

that Equation 1 does not include a constant term as columns of

matrices Ftrain and Yi were converted to standardized z-scores. Z-

scoring of the features and responses does not affect the expressive

capacity of the linear regression model. However, in a regularized

regression framework like ridge regression (see below), z-scoring

does affect the estimated model parameters (weights). In the

present study, z-score was performed because the energy content

of natural sounds varies on different scales across frequencies and

modulations. As a consequence, the estimated model parameters

would not be comparable without performing the z-score

normalization.

The solution to Equation 1 was computed using ridge regression

[57]. The regularization parameter l was determined indepen-

dently for each voxel by automatically inspecting the stability of

the ridge trace, that is changes in the parameter estimates as a

function of l [58]. Namely, parameter estimates ~ccij(l) were

obtained for a range of increasing l values [l1, l2, …, lp], and the

regularization parameter was set at the value l* where all

parameter estimates consistently changed less than 20% of their

initial value ~ccij(l1):

l�~l :
L~ccij(l)

Ll
v0:2~ccij(l1) V l§l�,V~ccij(l) ð2Þ

The inspection of the ridge trace represented an advantage in

terms of trade-off between accurate model estimation and

computational load. Namely, we observed that the selection of

the regularization parameter via cross validation was computa-

tionally slower, while not yielding any significant improvement on

models performance.
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Model evaluation
We quantified model’s prediction accuracy by performing a

sound identification analysis [24]. Namely, we used the fMRI

activity patterns predicted by the estimated models to identify

which sound had been heard among all sounds in the test

set.

Because model parameters were estimated in z-score units, we

converted to standardized z-score the columns of the feature and

response matrices for the stimuli in the test set. Given the trained

model ~CC [N6V] (where V is the number of voxels), and the feature

matrix Ftest [Stest6N] for the test set, the predicted fMRI activity

ŶYtest [Stest6V] for the test sounds was obtained as follows:

ŶYtest~Ftest
~CC ð3Þ

Then, for each stimulus si we computed the correlation between its

predicted fMRI activity ŶYtest(si) [16V] and all measured fMRI

responses Ytest(sj) [16V], j = 1, 2, …, S. The rank of the

correlation between predicted and observed activity for stimulus si

was selected as a measure of the model’s ability to correctly match

Ytest(si) with its prediction ŶYtest(si). The matching score m for

stimulus si was obtained by normalizing the computed rank

between 0 and 1 as follows (m = 1 indicates correct match; m = 0

indicates predicted activity pattern for stimulus si was least similar

to the measured one among all stimuli):

m(si)~1{
rank(si){1

Stest{1
ð4Þ

Normalized ranks were computed for all stimuli in the test set, and

the overall model’s accuracy was obtained as the mean of the

matching scores across stimuli. Note that the metric we used (Eq.

4) generalizes the more straightforward percent correct, a rank-

based metric that considers only stimuli that are ranked first, i.e.

stimuli that are correctly identified. Percent correct is a

comprehensive metric when models identify new stimuli with

high accuracies (close to 100%). As this was not the case in our

data (see Discussion), it is informative to look at the whole

distribution to assess the degree of incorrect identification.

Statistical significance of the observed accuracy was assessed

with permutation testing. Specifically, the empirical null-distribu-

tion of accuracies was obtained by randomly permuting (P = 200

permutations) the stimulus labels (i.e. S in matrix Y) and repeating

the training and testing procedures. In order to preserve the spatial

correlations among cortical locations, the same permutations were

applied to all voxels. The regularization parameter was constant

across permutations and was set to the value derived when the

model was estimated on the unpermuted set of responses. When

compared by means of t-test, accuracies were converted to z-scores

via Fisher’s transformation in order to reduce deviations from

normality.

Topographic maps of temporal modulation, spectral
modulation, and frequency preference

For all voxels, response profiles for temporal modulation,

spectral modulation and frequency were computed as marginal

sums of the estimated stimulus-activity mapping function C of the

joint frequency-specific MTF-based model, as follows:

tMTF (v)~
X

f

X

V

C(v,V,f ) ð5Þ

sMTF (V)~
X

f

X

v

C(v,V,f ) ð6Þ

fTF (f )~
X

v

X

V

C(v,V,f ) ð7Þ

where tMTF and sMTF are the temporal and spectral modulation

transfer functions, respectively, and fTF is the frequency transfer

function. Voxels characteristic values (CTM, CSM, CF) were

defined as the point of maximum of the tMTF, sMTF and fTF,

respectively. A continuous representation of preferred values was

obtained by spatial smoothing using a 2-neighbor (3-neighbor)

voxels filter for the 3T (7T) dataset. Cortical maps were generated

by color-coding the voxels’ preferred values and projecting them

onto an inflated representation of the subject’s cortex. Individual

maps were subsequently transformed to functional cortex based

aligned (fCBA) space (see below) where group maps were obtained

as the mean across subjects. Only voxels that had been included in

the analysis of at least 3 out of the 5 subjects were considered when

computing group maps.

To assess the reliability of the estimated voxels tuning

preference, we computed the signal-to-noise ratio (SNR) of the

MTFs estimates via a bootstrap resampling procedure applied to

all individual subjects (see Text S1 and Figure S7).

Relation between voxels characteristic spectral and
temporal modulation

For each subject, we computed the Spearman’s rank correlation

coefficient between voxels characteristics CSM and CTM (prior to

spatial smoothing). In order to take into account any possible bias

introduced by the model’s estimation procedure, we derived the

empirical expected value of no correlation by computing the

correlation coefficient between voxels CSM and CTM as obtained

after permuting the stimulus labels (see above). Statistical

significance of the Fisher-transformed correlation coefficients was

assessed via a group level random effect two-tailed t test.

Functional cortex based alignment
Additionally to the main experiments, localizer data were

collected as responses to amplitude modulated tones (see Text S1).

Tonotopy maps were computed with best-frequency mapping

[26], and resulting maps were used for fCBA [59] as follows. In

each subject and hemisphere, we delineated the low frequency

region consistently present in the vicinity of Heschl’s gyrus as

region of interest. FCBA was partially driven by this functional

region (weighting decreased over iterations), and partially by

anatomical information (weighting increased over iterations; [60]).

The resulting alignment information was used for calculating and

displaying group cortical maps.

Supporting Information

Figure S1 Joint and independent modulation representations.

Spectrograms illustrate a schematic of channels in a modulation

filter bank. Vertical and horizontal spacing between bars indicate

channels preferred spectral (V) and temporal modulation frequen-

cies (v), respectively. (A) In the joint representation, the conjunction

of spectral and temporal modulations is analyzed by spectro-

temporal channels tuned to specific combinations of spectral and

temporal modulation frequencies. Direction of bar tilt indicates

tuning for upward or downward modulations. (B) In the independent
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representation, spectral and temporal modulations are indepen-

dently encoded by separate spectral (top) and temporal (bottom)

channels.

(TIF)

Figure S2 Schematic of model estimation and evaluation. (A)

FMRI responses to a wide variety of natural sounds are used to

estimate an encoding model for each voxel. The model projects

the stimuli into an N-dimensional feature space and voxels are

described as linear combinations of these features. By applying

regularized regression, a vector of model’s weights is estimated for

each voxel. The feature yielding the highest weight is assigned as

voxel’s characteristic value. (B) Model performance is evaluated by

assessing its ability to accurately predict fMRI responses to natural

sounds in a new dataset. (S = number of sounds; N = number of

features).

(TIF)

Figure S3 Group tonotopic maps. Group maps for the 3T (A)

and 7T (B) datasets are displayed on an inflated representation of

the group cortex. Maps are shown in the cortical region

highlighted by the black square. Group maps are computed as

the mean across participants for those voxels that are included in

at least 3 individual maps. The black line indicates HG.

(TIF)

Figure S4 Individual tonotopic maps. Individual maps of

tonotopy are shown for the 3T (A) and 7T (B) datasets. The

black line indicates HG.

(TIF)

Figure S5 Individual topographic maps. Maps of CSM (left) and

CTM (right) for all participants in the 3T experiments. Left:

purple and orange denote tuning for fine and coarse spectral

structures respectively. Right: purple and orange denote tuning for

fast and slow temporal variations respectively. The black line

indicates HG.

(TIF)

Figure S6 Individual topographic maps. Maps of CSM (left) and

CTM (right) for all participants in the 7T experiments. Left:

purple and orange denote tuning for fine and coarse spectral

structures respectively. Right: purple and orange denote tuning for

fast and slow temporal variations respectively. The black line

indicates HG.

(TIF)

Figure S7 Stability of MTFs estimates across bootstraps. Single

subjects maps of SNR of voxels MTFs as estimated by the joint

frequency-specific MTF-based model at 3T (A) and 7T (B). High

values of SNR (bright colors) indicate that the estimated MTF is

consistent across bootstraps. The black line outlines HG.

(TIF)

Figure S8 Unbiased topographic maps for the 7T dataset.

Group maps of CSM, CTM and CF as derived from the joint

frequency-specific MTF-based model while explicitly accounting

for the effect of sound categories. The black line indicates HG.

(TIF)

Text S1 Supplementary methods and references.

(DOCX)
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