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Abstract

The goal of training is to produce learning for a range of activities that are typically more general than the training task
itself. Despite a century of research, predicting the scope of learning from the content of training has proven extremely
difficult, with the same task producing narrowly focused learning strategies in some cases and broadly scoped learning
strategies in others. Here we test the hypothesis that human subjects will prefer a decision strategy that maximizes
performance and reduces uncertainty given the demands of the training task and that the strategy chosen will then predict
the extent to which learning is transferable. To test this hypothesis, we trained subjects on a moving dot extrapolation task
that makes distinct predictions for two types of learning strategy: a narrow model-free strategy that learns an input-output
mapping for training stimuli, and a general model-based strategy that utilizes humans’ default predictive model for a class
of trajectories. When the number of distinct training trajectories is low, we predict better performance for the mapping
strategy, but as the number increases, a predictive model is increasingly favored. Consonant with predictions, subject
extrapolations for test trajectories were consistent with using a mapping strategy when trained on a small number of
training trajectories and a predictive model when trained on a larger number. The general framework developed here can
thus be useful both in interpreting previous patterns of task-specific versus task-general learning, as well as in building
future training paradigms with certain desired outcomes.
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Introduction

One of the core problems in learning is determining the range

of tasks and circumstances that a training paradigm will impact.

Training can produce both learning that generalizes to new tasks

and circumstances and learning that is restricted to the exact

training conditions. The difficulty is that there are many paths to

good performance in a given task – from more demanding routes

in which extensive knowledge is acquired, to special purpose

shortcuts that allow good performance with restricted knowledge.

Without knowing which of the myriad possible approaches the

subject will take during learning, there is no way to predict the

generality of the eventual learning.

Even mundane tasks like learning when it is safe to cross the

street have both narrow and general solutions. A general, and

more difficult path, requires learning internal models for car and

subject motion that can be used to look-ahead and predict future

locations. To avoid being hit, you need to estimate the distance,

speed, and direction of nearby cars and then to mentally simulate

the cars’ path through time. A similar simulation must also be run

forward for your own progression across the street. The two

simulations must be merged to determine if you are likely to be

occupying the same physical space as a car at the same point in

time (which we do not advise). While in general this works for any

configuration of cars and pedestrians, such general strategies

usually come with performance costs. Indeed, the sheer number of

pedestrians struck by cars suggests that this type of look ahead is

indeed both cognitively demanding and subject to error [1]. Even

when not hit by a car, prediction errors can make us hurry a bit

more than expected. Such errors are simply an intrinsic part of

every task that requires look-ahead. Each time a prediction is

made about a future state, some uncertainty is necessarily

associated with that prediction (Figure 1). The further ahead

you are asked to predict, the larger the accompanying uncertainty

term becomes and the more frequent and larger will be the

prediction errors you make [2]. One route to learning is improving

this look-ahead process. This may be accomplished by enhancing

the ability to estimate the initial state of the cars (distance/velocity)

or by honing the internal model that is used to predict the

progression of the cars (e.g., to gain more accurate knowledge of

possible lane changes). Critically, any solution in this family will

result in a reasonably general improvement in the probability of

successfully crossing the street. Honing the internal model will

result in benefits that do not depend on the exact set of cars,

positions, or paths.

However, there is an alternative route to successful street

crossing that does not require using (or improving) an internal

model. Prediction can be eliminated by learning to map cues in

the environment directly onto responses. The strategy of finding a

mapping between perceptual information and actions that

bypasses prediction is termed a policy in computer science. To

illustrate, a simple policy for street crossing is to wait until the walk
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sign turns green. Policies greatly decrease both the cognitive

overhead (thus freeing resources for other endeavors) and the error

rate associated with predicting car trajectories. However, efficiency

comes at a cost of inflexibility - policies are usually narrow in

scope. The benefits of using a policy often completely disappear

when various contextual changes are made to the environment

(the most obvious being if no crosswalk sign is present, if the

crosswalk sign is malfunctioning or unintelligible, etc.). We

emphasize that response policies are not the same as response

biases. Response biases correspond to systematic errors in

performance, and any number of strategies may give rise to this

behavior. Response policies are specific action selection strategies

that rely upon learned associations between stimuli and responses

as described above.

As there are clearly situations where humans do employ

predictive models [3], but also situations where human behavior is

consistent with inflexible mappings characteristic of using response

policies, is it possible to predict when one strategy will be favored

over the other? To address this question, we began with a simple

hypothesis: namely that humans will employ the strategy that

maximizes overall performance. If the demands of the task make

response policies complex and difficult to learn, we predict that

subjects will utilize predictive methods. Conversely, if the task

demands make learning policies reasonably simple, we predict that

subjects will eschew the computational costs of prediction in favor

of exploiting simple mappings.

To test our hypothesis, we chose to utilize a task in which

human subjects have been shown repeatedly to rely upon a

predictive model: visual extrapolation through occlusion. Thus, for

the purpose of this study, we have narrowed the focus to

identifying the conditions under which subjects learn to adopt a

simpler policy-based strategy that abandons predictive extrapola-

tion in favor of a direct mapping between particular stimulus

inputs and specific extrapolation endpoints. The extrapolation task

we employed was selected because it meets several key criteria.

First, we needed a task dimension, in this case training set

variability, that could be manipulated to either strongly favor a

Figure 1. Many daily tasks can require prediction. When attempting to determine whether it is safe to cross the road, one must estimate the
probability that approaching cars will be in the crosswalk at the same time as you. The uncertainty associated with this look ahead depends on both
your estimate of the current state of the car - including its present position and velocity - and your estimate of its likely progression as it approaches
the crosswalk - including possible lane changes. Errors in these estimates propagate with time, resulting in considerable uncertainty about the car’s
most likely future position. Both the cognitive demands of the prediction task and the error rate can be reduced using a simpler mapping strategy
that entails crossing only when the walk sign is lit.
doi:10.1371/journal.pcbi.1003425.g001

Author Summary

Predicting what humans will learn from a training task, in
particular, whether learning will generalize beyond the
specifics of the given experience, is of both significant
practical and theoretical interest. However, a principled
understanding of the relationship between training con-
ditions and learning generalization remains elusive. In this
paper, we develop a computational framework for
predicting which of two basic decision-making strategies
will be utilized by human subjects - 1) simple stimulus-
response mappings or 2) predictive models. Through
simulation, we show that the nature of the training
experience determines which of these categories leads to
better in-task performance; repetitive training on a small
set of examples favors simple stimulus-response map-
pings, whereas training on a large set of examples favors
predictive strategies. We then show that humans trained
under these various conditions do indeed utilize the
predicted strategy. Finally, we show that the strategies
that are utilized during training predict generalization of
learning. Those who learn simple mappings fail to
generalize their new skills, in contrast to those who use
default predictive strategies. The framework developed
here is useful both in interpreting previous patterns of
learning, as well as in building training paradigms with
given desired outcomes.

Training-Induced Strategy Selection
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predictive model or a policy-based strategy. We show that

extensive repetition of a small set of stimulus-response pairs

should strongly favor learning mappings, while fewer repetitions of

a large set of stimulus-response pairs should favor continued use of

a predictive model. The second criterion is that the task allows

subjects to freely use either type of strategy when selecting

responses. Finally, and perhaps most critically, the relative efficacy

of both strategies needs to be independently estimated. To this

end, we created a motion version of a well-studied extrapolation

paradigm (e.g., [4–5]).

In the context of this task, we assess the use of two different

subject-adopted strategies: one that is model-based and one that

relies upon categorization-based stimulus-response mapping. In

two experiments, we provide clear evidence that the strategy

chosen by subjects, and thus the resulting generality/specificity,

can be predicted by computing the best strategy given the training

set they experience. The framework we develop here allows us to

successfully make an explicit a priori determination as to which

strategy would be most effective under what conditions and with

clear predictions regarding the behavioral outcomes that would be

observed in two experimental groups trained on two different sized

sets of stimulus-response pairs as described below. The framework

also provides a satisfying and parsimonious explanation for the

question of ‘‘why’’ subjects select a given learning route – they

simply choose the route that maximizes performance on the given

task.

Results

In Experiment 1, subjects watched a dot travel along a circular

trajectory before disappearing behind a stationary occluder (see

Figure 2A). After the dot’s disappearance, subjects were asked to

choose which of 20 ‘‘bins’’ (each with a span of 9u) residing at the

opposite edge of the occluder the dot would reemerge within. The

bin size was chosen to approximate subjects’ inherent reliability in

the extrapolation of curved contours using a similar stimulus [4–

5]. The basic design consisted of a pre-test, extrapolation training

with different set sizes, followed by a post-test to determine the

impact of training (Figure 2B, see Methods for a full description).

During both pre-test and post-test, circular trajectories were drawn

randomly from the full 2D space of curvature and orientation and

no feedback was given so as to discourage learning. Subjects also

completed a trajectory generation task in which they were shown

the same moving dot stimulus, but after the dot reached the

occluder the subjects were asked to use the mouse to draw the

remainder of the trajectory. The ability to perform this type of

data generation task is strongly indicative of having a predictive

model.

During training, subjects were provided feedback on their

performance. These trials comprised a subset of fixed trajectories,

which were repeated (in pseduorandom order) for a total of 200

exposures. We picked two training set sizes, ‘‘small’’ and ‘‘large’’,

with the former being predicted to favor mappings and the latter

predictive models. We generated predictions by simulating

performance by both a forward predictive model (a Kalman filter)

that provides excellent fits to pre-test data and an agent that learns

direct mappings between the visible trajectory statistics and

response bins (a model-free Q-learner; see Figure 3A, Methods

and Text S1 and Text S2 of the Supporting Information for

details). The simulations allowed us to make clear and quantitative

a priori predictions about the effect of training set size on the

performance of a predictive model strategy versus a policy-based

strategy. This analysis suggested that a training set of 4 trajectory-

response pairs would favor learning a response policy, while a

training set of 20 trajectory-response pairs would favor the

predictive model strategy, with the total number of training trials

equated across groups. These values were used in the experiment.

Subjects were randomly assigned to either a group that was

trained on only 4 of the set of possible trajectories with a

corresponding 4-bin response space (4Traj), or a second group that

was trained on 20 different trajectories corresponding to the full

20-bin response space (20Traj; see Figure 3B). Both groups

completed 5 training blocks of 80 trials each (see Methods for

more details). Therefore, within these blocks, either four trajec-

tories were presented 20 times per block (in the 4Traj group) or 20

trajectories were each presented four times each (in the 20Traj

group). The four trajectories presented to the 4Traj group were a

subset of the twenty trajectories presented to the 20Ttraj group.

To assess the effects of training, both groups underwent a post-

test identical to the pre-test (both the choice and generation tasks).

Recall that the post-test comprised a set of no-feedback trials using

trajectories that differed from the training sets. Our prediction was

that the 4Traj group would transition away from using a predictive

model and toward using a simple mapping strategy. This should

manifest in a number of ways. First, during training we expected to

see substantial gains in accuracy in the 4Traj group (far exceeding

what would be possible using a predictive model). In fact, given the

perceptual separation between the 4Traj trajectories, we expected

performance during training to approach ceiling levels. However,

at post-test, we expected that the use of the same (now

inappropriate) mapping strategy would result in markedly poorer

performance than was seen at pre-test. Again, this trade-off reflects

the very heart of learning a response policy. Bypassing the need for

a predictive model allows for extremely accurate responses to be

made on training stimuli, but provides for no flexibility to deal

with stimuli not in the training set. Conversely, we predicted that

the 20Traj–trained subjects would not change their strategy from

pre-test to post-test. In the 20Traj group, we predicted only

modest improvements in performance at best as the number of

training trials is theoretically unlikely to dramatically improve

predictive performance via either changes in the state estimate or

the internal trajectory model.

There were no significant differences in pre-test behavior

between the two groups in choice task accuracy (both groups

,25% correct (chance performance = 5%), t(15) = 0.72, p = .49;

see Figure 4A). On average, the 20Traj group had only a slight

advantage with a mean absolute distance of 1.22 bins (+/20.0753

SEM) from true over the 4Traj group’s mean absolute distance of

1.42 bins (+/20.0876; see Figure 4B). We also considered

whether subjects were biased to under- or overshoot the true

trajectories’ endpoints by taking the signed mean distance where

negative values correspond to a tendency to undershoot the

endpoint (as if underestimating curvature). There was no

systematic bias across subjects in either direction

(M20Traj = 0.0067+/20.11 bins; M4Traj = 20.16 +/20.12) Addi-

tionally, Kolmogorov-Smirnov tests failed to reject the null

hypothesis that the two group distributions did not differ from

their respective ideal choice bin distributions (D = 0.0294,

p = 0.1243 (4Traj) & D = 0.0281, p = 0.334 (20Traj) see

Figure 4B). Finally, we considered subjects’ bin choice confusa-

bility. An ideal subject accurately estimates the curvature and

orientation of the visible portion of each trajectory and extrap-

olates to the correct bin. However, due to sensory noise, actual

human subjects often misestimate the visible trajectories and

extrapolate to the wrong bin. Sensory noise also causes different

trajectories to be perceptually less discriminable and thus more

confusable. We measure subjects’ trajectory confusability by the

range or number of bins around the true bin that the subject

Training-Induced Strategy Selection
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deems acceptable – the larger the range, the greater the

confusability. At pre-test, there is no difference in confusability

across the two groups (t(15) = 1.6201, p = 0.126; Figure 4C).

Taken together, the pre-test results demonstrate that neither group

had a pre-training bias toward disproportionately choosing specific

bins.

The pre-test results also verify that subjects are employing

predictive models to arrive at their choices. In the absence of

continuous visible information (i.e., the impact of occlusion) and

the requirement that a response be made later in time and space,

subjects may either rely on an internal belief about where the dot is

going (i.e., a model-based prediction) when choosing a bin, or they

must pick one at random - our data clearly rule out the latter

strategy. How subjects learn these predictive models is beyond the

scope of this paper and will be addressed in future work.

The model simulations predicted that by the end of training,

4Traj subjects learning trajectory-to-bin mappings would achieve

near ceiling performance. This is a significant advantage over what

Figure 2. Experimental details. A. Schematic of experimental display. A dot follows a circular arc trajectory towards the midpoint of a half disk
occluder and disappears while subjects fixate the small white dot. Subjects then mouseclick the bin they believe the dot will reemerge into. B.
Schematic of the experimental sequence. Day 1 - An initial no feedback pre-test session of 320 trials with trajectories of random curvature and
orientation and 80 trials of the drawing. Day 2: a training-transfer session consisting of five blocks each comprising 80 training trials followed by 80
transfer trials. During training trials, subjects were either trained to select bins for a set of 20 specific trajectories (‘20Traj’) or a set of 4 specific
trajectories (‘4Traj’); feedback was provided. During the transfer trials, subjects selected bins for a set of 20 trajectories containing the 4Traj training
set plus non-trained trajectories; feedback was not provided. Day 3: subjects completed a post-test session that was identical to the pre-test session.
Note that the trajectory set used during the drawing generation task was identical to the transfer (‘TSF’) set.
doi:10.1371/journal.pcbi.1003425.g002
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could be expected by relying on a predictive strategy (approx-

imately 1.5 times better, see Figure 3A). Indeed, as predicted,

the 4Traj group choice accuracy improved significantly to reach

87.3% on average by the final training block (+/22% SEM;

F(1,9) = 738.04, p,0.001). The accuracy of the 20Traj group

exhibited modest, but nevertheless significant improvements

during training, with accuracy climbing to 35.2% on average

by the final training block (+/23% SEM; F(1,6) = 10.85,

p = 0.0165).

Thus, both groups were able to use the feedback during training

to improve their performance. The critical test of our primary

hypothesis, however, was the strategy each training group adopted

during the post-test session. In direct contrast to pre-test, clear

differences in choice behavior were evident between the two

groups. As depicted in Figure 4A, the accuracy of the 20Traj

group remained stable as compared to pre-test performance

(F(1,6) = 0.17, p = 0.69), a result consistent with continued use of

the same type of response strategy. We note that although the

Figure 3. Simulation details. A. Illustration of response mapping and predictive model strategies. Subjects may learn response policies that map
trajectories with specific combinations of curvature and orientation to specific bins, represented by a look-up table. Alternatively, they may use an
extrapolation model that estimates the curvature and orientation of the visible portion of the trajectory and extends it through the occlusion region
towards the bins. B. Simulations of these strategies (see text for details) predicts that a response policy strategy outperforms predictive model
strategies for small sets of training trajectories but becomes dominated as the number of training trials increases. This predicts 4Traj -trained subjects
would adopt a response policy strategy after training while 20Traj -trained subjects would rely on extrapolation models in order to make their bin
selections.
doi:10.1371/journal.pcbi.1003425.g003
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20Traj group accuracy remained stable, the choice distributions

became even better aligned with the ideal (‘true’) distributions at

post-test relative to pre-test as revealed by a smaller computed

distance using the same Kolmogorov-Smirnov test (D = 0.0246,

p = 0.5045). Thus, although we did not expect a strategy shift or a

drastic improvement in performance, the 20Traj training did

provide modest benefit.

By contrast, the accuracy of the 4Traj group showed a decline

in accuracy from pre-test to post-test. At the group level, this

decline was not significant (F(1,9) = 2.59, p = 0.1423); however, as

Figure 4. Experiment 1 results. A. Bin choice accuracy. The line graph depicts mean proportion correct +/21 SEM for the 20Traj and 4Traj groups.
Both groups performed similarly and above chance (0.05) at pre-test. At post-test, the majority of the 4Traj group (7/10; dashed line) continued to use
the four trained bins. This resulted in a significant decline in accuracy. By contrast, the remaining 4Traj group subjects who returned to using the full set
of response bins (3/10; solid red line) along with the 20Traj resulted in equivalent performance. B. Bin choice histograms and corresponding error. Both
groups distributed their bin choices in a matter similar to the true distribution at pre-test. During post-test, the 20Traj group along with a subset of the
4Traj group (3/10) continued to distribute their choices in this way, whereas the remaining majority of the 4Traj group (7/10) changed their choice
behavior, primarily selecting the bins associated with the four trajectories during training. These strategies were associated with differences in amount of
error. In particular, subjects who distributed their choices at pre- and post-test were little more than 1 bin off from true on average. Those 4Traj subjects
who continued to select the four trained bins primarily at post-test saw a decline in performance to nearly 2 bins off on average. C. Bin choice
confusability. The far left panel represents how perfect performance would appear in the choice confusability matrix format – the chosen bin always
perfectly matches the correct bin. There is more mass in the middle bins simply because there are more combinations of orientation and trajectory that
terminate toward the middle of the arc than toward the ends. The middle panel shows that at pre-test both groups exhibited similar degrees of
confusability in selecting appropriate bins for the trajectories observed. At post-test, this confusability was largely unchanged for the 20Traj group,
whereas it increased for the 4Traj group who assigned the four trained bins to a broader range of trajectories. The line graph depicts mean confusability
+/21 SEM for the 20Traj, total 4Traj group, and a subset of the 4Traj group who primarily use only the four trained bins at post-test (see text).
doi:10.1371/journal.pcbi.1003425.g004
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will be discussed in detail next, seven out of ten subjects continued

to rely almost exclusively on the four trained bins at post-test while

the remaining three subjects returned to using the full set of bins.

The former group showed a significant decline in choice accuracy

relative to their pre-test performance (F(1,6) = 7.21, p = 0.036)

whereas the latter group showed no change in accuracy, like their

20Traj counterparts (F(1,3) = 0.81, p = 0.463; Figure 4A). The

decrease in accuracy for these subjects is accompanied by an

increase in mean absolute distance between their bin choices and

the true bins (see Figure 4B).

The decline in performance seen in the majority of 4Traj

subjects is consistent with the predicted impact of learning to

utilize an inflexible policy to make decisions. Moreover, the

mapping strategy should rely on the use of the same bin whenever

the input is deemed the same as one of the training inputs. As is

evident in Figures 4B & 4c, there was a large increase in the

probability of 4Traj subjects selecting one of the trained bins

associated with a significant increase in confusability

(F(1,6) = 30.91,p = 0.0014) for those subjects. That is, subjects

were willing to accept the four trained bins as appropriate

responses for a much broader range of trajectories than they were

at pre-test.

This was a pattern that emerged early in training – being

evident even in the first no-feedback transfer block – and remained

throughout in the majority (7/10) of 4Traj subjects as described

(Figure S1). We note that the key difference between the transfer

and post-test trials is that the post-test trials were randomly

sampled from the full space of possible trajectories, as opposed to

the fixed set of transfer block trajectories, which contained both

trained and untrained trajectories. Further analysis of the transfer

block data revealed that the 4Traj-trained subject bin choices were

significantly more accurate for trained trajectories versus un-

trained trajectories (t(18) = 24.5736, p,0.001). This is due largely

to the fact that the majority of these subjects continue to use the

four trained bins for all trajectories during these blocks (see Figure
S1). The 20Traj subjects also exhibit a small but non-significant

advantage for trained trajectories (t(18) = 21.8681, p.0.05).

Generally, the 20Traj group’s use of a prediction-based strategy

provides them with a performance advantage in comparison with

their 4Traj-trained counterparts who rely on a categorization-

based strategy for untrained trajectories (see Figure S2).

Finally, subject data on the generation task, in which subjects

drew the extended trajectories of the transfer trajectory set, show a

qualitative change in behavior after 4Traj training. The plots in

Figure 5 depict the sets of trajectories drawn by three 4Traj

subjects at pre-test and post-test (the first two columns; see Figure
S3 for the remaining subjects’ trajectories). For the purpose of

comparison, the bins from the bin choice task have been included

along the curved edge of the occluder with very small tickmarks,

and the black dots correspond to the four trained bins. The true

trajectory endpoint distribution is depicted by the transfer set

‘TSF’ in Figure 2B, which we note does not span the full edge of

the occluder. Of particular note is that 4Traj-trained subjects who

used only 4 bins in the choice task during transfer and post-test

showed a similar trend in the drawing data. That the drawn

trajectories show no resemblance to a circular trajectory demon-

strates that they were not using their previous predictive model,

but instead were aligning their drawn trajectories with one of the

four trained endpoint locations. Given that the drawing trajectory

set included the 4Traj training trajectories, we analyzed the data

by removing these trajectories and looking at performance on the

remaining trials. When we compare the distributions of the

subjects’ drawn endpoints with those of the true trajectory for

these diagnostic trials, we find that no 20Traj subjects deviate from

true at post-test (Kolmogorov-Smirnov tests, p.0.05; see the

drawn trajectories for the three sample 20Traj subjects depicted in

the final two columns of Figure 5 and the remaining individual

20Traj subjects in Figure S3). By contrast, half of the 4Traj

subjects deviate significantly from true at post-test (similar to the

7/10 subject count who continue to use the four trained bins

during the post-test of the choice task). For validation purposes,

none of the subjects in either group drew trajectories with

endpoints that deviate from true for the trajectories that do

terminate at the locations where the four trained bins occurred in

the choice task.

The post-test choices of the 4Traj group suggest that confusable

inputs (i.e., similar trajectories) were mapped to the trained

responses, resulting in a four-response classification. The rationale

for this idea is that the pre-test data show clear evidence of the

confusability of trajectories (recall Figure 4). The set of

trajectories that map to a bin is well-modeled by a Gaussian

distribution over trajectory orientation and curvature. Learning a

mapping with input confusability is equivalent to learning to divide

the 2D space of orientation and curvature into categories

(responses). To assess the extent to which this strategy truly

corresponded with subject behavior we simulated the performance

of two types of decision makers. One simulated decision maker

had an accurate understanding of the 20 trajectory parameter

categories corresponding to the 20 response bins (i.e., could

properly divide the 2D space of orientation and curvature into the

20 response bins), while the second divided the same space into 4

categories (see Figure 6 and Text S3 of the Supporting

Information), comprising the sets of new trajectories that are

confusable with the four trained trajectories. The subjects’ bin

choice distributions replotted in the 2D parameter space (Figure 7
and Figure S4) demonstrates that the distribution of choices at

pre-test (recall Figure 4) is consistent with 20-category based

responses for both groups, though with some blurring of the

categories. This is to be expected with non-perfect estimation and

extrapolation. To quantify our qualitative observation, we then

assessed the extent to which each of the two models correctly

predicted individual subject choice behavior at both pre- and post-

test. The Bayes factors of the four-category classifier model

performance relative to the full model for each individual subject

can be seen in Figure 8. At pre-test all subjects were better fit by

the 20-category than the 4-category model as expected. However,

at post-test, a majority of the 4Traj subjects were better fit by the

4-category model (Figure 7 and Figure S4).

Finally, in order to demonstrate that the observed behavior was

the result of a strategy shift in the service of maximizing

performance, we established that the persistence of the 4-category

response strategy into the transfer blocks was completely

dependent on a lack of feedback (thus, the subject had no error

signal that would indicate the strategy was not just as efficient as

during the training). Indeed, if subjects were provided feedback on

their performance with the post-test trajectories (which end in all

20 bins), it should be immediately apparent that the four category

mapping strategy resulted in far larger errors than would be the

case for a predictive model. Four additional subjects underwent

the same 4Traj training as described above. The only difference

was that feedback was provided for the second half of the post-test.

As can be seen in Figure 9 and Figure S5, the data from the

pre-test and the first half of the post-test closely mirror the previous

results with the subjects at pre-test responding in a manner

consistent with the 20-category model and at post-test with the 4-

category model (3/4 subjects). However, once feedback was

provided, an immediate switch back to the 20-category model was

observed. It is worth noting that this final behavior effectively rules
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out one additional alternative hypothesis – namely that the

behavior of the 4Traj subjects could be the result of combining the

results of a predictive model with a prior learned over bins.

Because the subjects experienced correct responses at only four of

the bins, the posterior over bins would thus also share that

property. Since data accumulated into a prior converges to a delta

function in the limit of infinite data assuming the identifiability of

the sufficient statistics on x, the impact of additional data on the

prior monotonically decreases as the amount of data goes to

infinity. Thus, undoing this type of learned prior could only be

accomplished via a significant amount of data, far less than

appears to be required for them to completely alter their choice

strategy after feedback is provided in the post-test. Instead, the

behavior does indeed appear to be most consistent with a shift

toward a pure categorization approach with no predictive model

being utilized.

The results of Experiment 1 suggest that human subjects rely on

contextual experience in order to determine the simplest strategy

that maximizes task performance. In the context of trajectory

extrapolation, all subjects initially relied upon a model-based

extrapolation strategy that extends the visible trajectory through

the occlusion region via a trajectory dynamics model, in this case,

one that is consistent with a parameter space partitioned into 20

categories. However, a simpler classification strategy emerges with

repetitive training on a limited set of trajectories that indicates to

the subject that only a few specific responses are needed. This

strategy remains the preferred one until new information is

provided that the context has changed, upon which subjects

rapidly switch strategies to improve performance and more

effectively meet task demands.

However, it is not clear what kind of mapping the 4Traj strategy

classification corresponds to. One possibility is that the mapping is

between trajectories and response bins - subjects may learn that

bins 1,7,13,&17 are the only appropriate responses in this

experiment. Alternatively, subjects may learn a more general

mapping between trajectories and regions of space, for example,

the regions of space indicated by the predictive model for the

trained stimuli. In other words, feedback might serve to crystalize

or reinforce particular model extrapolations, rather than particular

responses.

We tested these possibilities in a second experiment by having

subjects make their bin choices at multiple distances from the point

Figure 5. Experiment 1 drawing task results. Sample smooth drawing data for three 4Traj-trained subjects in pre-test and post-test (two left-
most columns). The four black dots correspond to the bins associated with the 4Traj training trajectories. Visible trajectories of negative curvature
(i.e., concave downward) are depicted in red, while those of positive curvature (i.e., concave upward) are depicted in blue. Thus, if the subject
properly continues the trajectories, red drawn curves should approach the bins through the occlusion region from the left and blue drawn curves
should approach the bins from the right. The upper and middle subjects persist in using the four trained bins at post-test during the bin choice task,
whereas the bottom subject appears to use a predictive extrapolation strategy during the bin choice task. Comparison of their drawn trajectories
reveals variable degrees of performance overall, with a tendency to ensure the drawn trajectories end towards the four trained bin locations
congruent with the tendency to favor those bins during the choice task. Ensuring the drawn trajectories end towards the four trained bin locations is
in conflict with accurately continuing the visible trajectory as revealed by increased numbers of curvature sign reversals (e.g., extending a concave
upward trajectory with a concave downward one) and sharp orientation changes. For comparison, the drawn trajectories for three sample 20Traj-
trained subjects are depicted in the final two columns with the same format. All individual subject data for both groups can be found in Figure S3.
doi:10.1371/journal.pcbi.1003425.g005
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of occlusion (i.e., along the curved edge of multiple sized half-disk

occluders) after training. If classifying subjects map inputs to

response bins, this manipulation should have no effect on the

persistent use of the identical four bins at post-test. If subjects map

inputs to particular model extrapolations, a new set of four should

emerge with each new occluder radius that is sensible for that

prediction distance and set of trajectories experienced during

training.

Predictions for each of the two mapping hypotheses are shown

in Figure 9a, with response mapping represented by the blue

dashed lines and extrapolation mapping represented by the green

dashed lines. A third possibility is that subjects only learn a

mapping for the specific occluder used in training—that is, only

for the mid-sized. In this case, we expect choice behavior would

revert to pre-test.

For subjects showing the response mapping strategy (7 out of 10)

we found that they used the same response bins for all three

occluder conditions (Figure 10A and Figure S6), strongly

supporting the idea that subjects are learning a response mapping.

Consistent with the results of Experiment 1 and the behavioral

predictions, the 20Traj subjects consistently performed in accor-

dance with the full model throughout the experiment (Figure 10B
and Figure S7).

We conclude from these results that 4Traj subjects who adopt a

classification response strategy at post-test use this strategy to

bypass extrapolation altogether. If they were encoding a four-bin

response strategy at a decision-level that runs the trajectory

forward through occlusion (i.e., via extrapolation), a different set of

four bins would be expected with each occluder condition because

the trained trajectories reemerge in different bins for the different

occluders. Instead, the categorizing subjects chose among the same

four trained bins for all three occluder radii. This strategy saves

computational cost as it eliminates using a forward predictive

model.

Discussion

In two experiments, we have provided clear evidence that the

strategy learning route chosen by subjects, and thus the resulting

generality/specificity of that strategy, can be predicted by

computing the best strategy given the training set they experience.

The framework that we utilized in this endeavor stands in contrast

to previous approaches that have relied on somewhat loose (and

often seemingly post-hoc) descriptions of task conditions that result

in flexible and/or inflexible learning (e.g., whether the task is

‘‘easy’’ or ‘‘hard’’ [6]). Here we were able to make an explicit a

priori determination as to which strategy would be most effective

under what conditions and thus were able to make clear

predictions regarding the behavioral outcomes that would be

observed in our 4Traj and 20Traj groups. The framework also

provides a satisfying and parsimonious explanation for the

question of why subjects select a given learning route – they

simply choose the route that maximizes performance on the given

task.

In the context of a motion extrapolation task, we assessed the

use of two different subject-adopted strategies: one that is model-

based and one based on categorization-based stimulus-response

mapping. When the training paradigm did not provide a reliable

route to bypassing model-based extrapolation, subjects continued to

use extrapolation and thus suffered no decrements in performance

at post-test. Conversely, when training provided a viable

opportunity to forego costly and error prone model-based

predictions in favor of a simpler categorization-based mapping,

subjects quickly transitioned to the less demanding approach.

While this shift in tactic provided substantial benefits on the

trained task itself (indeed, in our experiments 4Traj subjects

increased their accuracy by approximately 60%), the fact that the

categorization scheme was only truly appropriate for the training

task conditions meant that there was a significant cost to

performance when the conditions changed (i.e., at post-test). In

essence, the mapping strategy was both highly efficient and highly

inflexible - it allowed the subjects to perform the single trained task

very well, but to do little else when the context changed.

Subjects’ adoption of the categorization-based strategy revealed

two additional insights about action selection. First, adoption of

simpler, training-specific strategies did not occur at the expense of

more general abilities. That is, when subjects were provided with

feedback that the categorization strategy is not suitable for the task

at post-test, they rapidly returned to their original model-based

strategy. Therefore, task training adds to the toolbox, rather than

replaces old ones, allowing individuals to choose the best tool for

Figure 6. Bin categories within the 2D parameter space. Left:
The natural 20-category partitioning of the 2D parameter space with
each category depicted by one of 20 color + symbol combinations. For
each bin, there is a distribution of trajectories with mean curvature and
orientation that will reemerge in that bin. Note that the size of these
distributions changes with the size of the bins. Here, we used bins of
size = 9 deg. Right: The idealized 4-category partitioning of the
parameter space based on an overgeneralization of the trained bins
to the trajectory set using a ‘nearest bin’ classification. See main text
and Text S3 of the Supporting Information for more details. The gap in
the parameter space around zero curvatures corresponds to the region
omitted to avoid ‘illegal’ trajectories (see Methods for details).
doi:10.1371/journal.pcbi.1003425.g006
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the immediate task. Second, use of the simpler categorization

strategy may not actually be for the purposes of successful

extrapolation more generally per se, but instead, for the purpose of

minimizing costs associated with action planning. Not only do

subjects continue to use the categorization scheme at post-test,

they continue to use the same scheme at post-test for multiple

extrapolation distances. That is, they use the strategy to bypass

extrapolation altogether. This is the least computationally

demanding strategy supported by these subjects’ experience, as it

never requires a forward predictive model. Thus, we additionally

conclude that people exploit any shortcuts that may be revealed

through training.

It is worth noting though that there is room for improvement in

these a priori predictions. In particular, approximately 25% of the

4Traj subjects did not conform. Rather than continuing to utilize

the categorization strategy during the post-test, they immediately

switched back to using their predictive model. We could find no

particular trend in the data to allow us to predict which subjects

would be part of this 25%. Those that did switch back may have

had other knowledge or made alternative inferences regarding the

task context that we could not directly measure with the current

paradigm. According to our overarching framework, however, we

would predict that the cognitive cost associated with running the

predictive model forward should be measurably less in these

subjects. This is a hypothesis that remains to be tested in future

work.

Furthermore, subjects in the 20Traj condition learned very little

during the course of training. However, we expected the number

of trials in 20Traj training to be insufficient to learn a 20-category

strategy. This result is reasonable given that 20Traj subjects had

only 20 trials training per trajectory, rather than the 100 trials per

trajectory experienced by the 4Traj subjects. Moreover, given

trajectory confusability, the error feedback in training contained

little information that could impose changes on the model. Thus,

our 4Traj and 20Traj training conditions were designed to create

a scenario in which subjects could learn a simpler categorization

model or stick with their original predictive model. Future work

will be devoted to establishing conditions under which subjects will

be expected to learn a new predictive model, or, more likely,

improve an existing one, in order to benefit task performance.

Such work will contribute further insight into the effects of training

on action strategy learning and selection.

The distinction between flexible and inflexible learning has been

made in many distinct areas of the learning literature [7–9], but

without knowing the set of alternative strategies and the cost/

benefit ratios of those various strategies in advance, it is difficult to

predict when each will arise. Here, we show that by starting with

an inherently predictive task, training conditions can be

established that directly promote inflexible learning. Overall, the

general outcome observed in 4Traj subject performance is

consistent with the finding of inflexible (‘specific’) learning

prevalent in the perceptual learning literature. That the majority

of the 4Traj subjects were unable to adapt to the new trajectories

at posttest despite achieving near ceiling performance during

training, is analogous to typical reports of this field: substantial

improvements in performance on the trained task, but no ability to

perform new tasks (i.e., no transfer of learning) (see [10] for a

review). For instance, subjects trained to discriminate whether a

Figure 7. Subject bin choice distributions replotted within the 2D parameter space. Left column: The pre-test distributions for
representative 20Traj (top) and 4Traj (bottom) subjects are nearly identical and consistent with the natural 20-category partitioning of the space.
Right column: The post-test distributions show distinct patterns of performance. The 20Traj group (top) performance is largely unchanged as a result
of training as seen in the subject’s data shown here as well as in the remaining 20Traj subject data plotted in Figure S3A. The 4Traj group
performance tends to favor the four trained bins. Here, the four symbols corresponding to the four trained bins (compare to the inset) correspond to
nearly all of the plotted subject’s choices. This same pattern is evident in the majority of the remaining individual 4Traj subject data plotted in Figure
S3A. This four-bin response scheme is consistent with the idealized 4-category partitioning of the parameter space based on an overgeneralization of
the trained bins to the trajectory set using a ‘nearest bin’ classification (recall Figure 5).
doi:10.1371/journal.pcbi.1003425.g007
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field of moving dots was moving just barely clockwise or

counterclockwise from straight up will show a substantial

improvement in accuracy through training. However, when they

are subsequently asked to perform the same discrimination task

around a new angle (e.g., straight left), no benefits of the training

are observed [11–13]. Similarly inflexible learning has been

observed for low-level visual features such as orientation, contrast,

texture, and retinal location [14–18]. Not surprisingly, given the

results reported here, the training conditions most commonly

utilized throughout this literature are consistent with those that we

have shown promote the use of a task specific strategy – namely

large numbers of trials and very small stimulus sets. This same

basic finding has been shown in other domains as well, such as

motor and cognitive training. Similarly, the fact that only the

subjects trained with a more variable stimulus set (i.e., the 20Traj

subjects) retained the ability to generalize is also consistent with the

examples in the literature of training paradigms that produce

flexible (‘general’) learning [19–23]. In particular, these training

experiments have commonly used highly variable stimulus sets,

which prevent learning of specific strategies that are reliable.

Although our task does differ from these and other classic

learning tasks in a number of potentially key ways, the parallels

between our findings and those of other learning domains suggests

important links can be made. We believe that our findings and

framework offer insight into general principles of learning, beyond

any specific learning context. For example, the notion of

‘overfitting’ (see [10] for a review) in perceptual learning can be

operationalized as policy learning, as described above. Neverthe-

less, it will be left to future work to determine whether the

framework we put forth here can directly account for the results in

more ‘classic’ learning tasks.

Outside of the domain of perceptual learning, policy learning,

or learning a direct mapping between a condition and a response,

is implicated as a major hypothesis for habit-based learning. A

Figure 8. Bayes factors for all 17 subjects who participated in experiment 1. Red bars correspond to the (log) Bayes factors for pre-test and
blue bars correspond to the (log) Bayes Factors for posttest. Positive values correspond to a better fit by the 4-category classifier; negative values
correspond to a better fit by the full 20-category extrapolation model. As expected, all subject performance is better accounted for by the full 20-
category extrapolation model. At post-test, 7 of the 10 4Traj subjects’ data are better accounted for by the 4-category classifier. The performance of
the remaining 3 4Traj subjects and all 20Traj subjects remains better accounted for by the full 20-category model. All Bayes factors are significant.
doi:10.1371/journal.pcbi.1003425.g008
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similar prediction of habit-based dominance was put forward by

[24]. In their work, the reliability of performance determines

whether a model-based strategy is adopted versus a simpler model-

free strategy. Other domains also describe the phenomenon of

automaticity. For instance, when subjects are asked to simulate

how they would move the steering wheel of a car to make a lane

change to the left, most fail somewhat dramatically [25], moving

the wheel to the left and then straightening (which would very

quickly see them go off the left side of the road), rather than

moving the wheel to the left and then back to the right. In other

words, removing the input breaks the trained or automatic

habitual response. In essence, these subjects can initiate a lane-

change but lack a method of predicting what the next motor action

should be and thus they cannot run this seemingly simple process

forward for the two seconds that it would take to change lanes.

Instead, subjects appear to rely entirely on a set of automatically

executed mappings between cues in the environment and actions

they should take (e.g., if the car is going off toward the left side of

the road, turn the steering wheel back right). Similar automaticity

is observed in other domains, such as in catching fly balls in

baseball. This is a clear situation where one could, in principle,

perform an extensive look ahead when the ball is struck. This

would allow the fielder to run directly to the most likely landing

location (which would be constantly updated as more and more of

the trajectory was observed). However, in practice, human fielders

appear to execute a series of automatic responses based on the

flight of the ball (e.g., to run in such a way as to cancel the vertical

acceleration of the image of the ball on the retina; [26–28]).

Our results also bear similarity to findings in the statistical

learning literature. For example, Chalk et al [29] provide evidence

that subjects develop biases to report perceived motion direction

consistent with the motion distribution of the training stimuli. Our

subjects similarly exhibit a change in their responses whereby the

choices are consistent with the distribution of responses used

during training. However, unlike previous authors who conclude

that the statistical learning biases perception of the stimuli, we

conclude that learning biases the responses made. This is

supported by the fact that subjects immediately switch strategies

when they are explicitly signaled that the task context has changed;

that is, we have no evidence that our subjects perceive the stimulus

differently, nor evidence to suggest that our subjects are using

fundamentally different perceptual information in the categoriza-

tion and the extrapolation cases.

In sum, our primary goal is to contribute new understanding

about the mechanisms underlying training-based changes in task

performance. Towards that end, we establish a new approach

towards predicting and training the learning of different action

strategies. We also provide results that span accounts from several

literatures. Specifically, the categorization-based responses of our

4Traj subjects link these literatures, as the responses embody the

characteristics of inflexible (non-generalizable) learning of model-

free policies that map trajectories directly to specific responses,

with little sensitivity to changes in context (i.e., significant failures

once removed from the trained scenario). Finally, we provide clear

evidence that learning is the direct result of the training paradigm,

establishing perceptual learning as one potential future avenue of

Figure 9. 4Traj group receiving feedback halfway through post-test (n = 4). These subjects behave identically to the original 4Traj group at
pre-test and during the first half of posttest (3 out of 4 exhibit classification behavior; see Figure S4 for remaining 3 subjects’ choices). Once feedback
is reinitiated during the second half of post-test, which signals that the predominant use of the four trained bins is no longer sufficient, the
categorizing subjects rapidly transition back to an extrapolation strategy to improve their accuracy.
doi:10.1371/journal.pcbi.1003425.g009
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research. The importance of the goal of training must be reflected

in the design of any training paradigm. If the goal is to produce a

large amount of learning on only a specific task, with no need for

generalization, then the best route is large numbers of training

trials on only that task. However, if the goal is to produce learning

that generalizes beyond the specifics of the training task, it is

essential to ensure that the parameters of the task provide no

feasible option to transition to a computationally simpler mapping

strategy.

Methods

Ethics Statement
All research was carried out with approval by the University of

Minnesota IRB, protocol number: 0201M16281 and Assurance of

Compliance number: FWA00000312.

Model Simulations
The goal of the model simulations was to assess the relative

efficacy of a mapping strategy versus a predictive model strategy

(given a human-like ability to estimate trajectory parameters such

as curvature and orientation) as a function of the number of

trajectory-response pairs that needed to be learned. More

specifically, we wished to identify conditions that strongly favored

one strategy over the other, which could then be used in an

experiment with human subjects. We believe this provides a

significant advance in the study of conditions that result in flexible

versus rigid learning.

To evaluate the effectiveness of utilizing a predictive model on

the task, we used a linear state space model, often termed a

Kalman filter, a standard algorithm used in modeling trajectory

estimation [30–33]. At each time step, the Kalman filter maintains

an internal representation of the dot’s state – its position, velocity,

and acceleration. During the visible portion of the trajectory, the

Kalman filter repeatedly runs through a cycle of prediction,

observation, and correction. It applies its internal model to the

dot’s state to make a prediction about the dot’s state at the next

time step. Then it observes the actual position at the next time step

(corrupted slightly by noise), and corrects its estimate based on this

new observation for each time step where the dot is observable.

Figure 10. Post-test bin choice distributions for experiment 2. A. Choice histograms and bin choice parameter space plots. The blue dashed
lines correspond to the predicted classifier strategy that uses the same four numbered bins regardless of occluder size. The green dashed lines
correspond to the predicted classifier strategy that uses a logical four-bin set dependent upon occluder size. The red choice histograms correspond
to the grouped subject data. The histograms reveal that the 4Traj group exhibits the same classifying behavior as in Experiment 1 for all three
occluder radii, whereby the peaks in the choice histograms coincide with the blue dashed lines of the predicted classifier histogram. Additionally, the
4Traj subject choices (a representative subject, S10, is shown here while all are shown in Figure S6) are sensible given trajectory dynamics, revealing
that subjects do in fact overgeneralize the four trained bins using them in a ‘nearest neighbor’ way as demonstrated by the same four color-symbol
combinations in each of the three parameter space plots. This reveals subjects adopt the simplest strategy supported by their experience. B. Same
format as A. The 20Traj group consistently performs in accordance with a predictive strategy throughout the experiment, as predicted and revealed
by both the choice histograms and the bin choice parameter space plots (a representative subject, S7, is shown here while all are shown in Figure
S7).
doi:10.1371/journal.pcbi.1003425.g010

Training-Induced Strategy Selection

PLOS Computational Biology | www.ploscompbiol.org 13 January 2014 | Volume 10 | Issue 1 | e1003425



When the dot hits the occluder, the Kalman filter continues its

predictions through the duration of occlusion without observa-

tion/correction steps (see Text S2 of the Supporting Information

for further details). The total number of trials was set to 2000 and

simulated for 4,8,12,16, and 20 trajectories.

To evaluate the effectiveness of learning mappings, we

simulated Q-learning [34–36], a standard iterative learning

approach used in the reinforcement learning literature to learn a

response mapping (see Text S1 of the Supporting Information for

details). Briefly, the agent learns an action-value function that gives

the expected value, in terms of performance of each response in a

given state – the trajectory. Actions-values are learned via

experience – for each trajectory, the agent makes a response and

tabulates its performance feedback for this trajectory-response

pair. The agent’s ‘‘knowledge’’ is thus represented by a look-up

table, Q, in which each row corresponds to a specific trajectory,

and each column corresponds to one of the possible choice bins.

We performed five separate Q-learning simulations. We simulated

performance after learning under the same conditions as above

(2000 trials each for training sets 4,8,12,16, & 20 trajectories).

Because there are more repetitions of individual trajectories for

small set sizes, mapping performance will degrade with training set

size.

Relative model performance was quantified as the log ratio of

percent correct choices. Figure 2C shows that the mapping

strategy outperformed the predictive model strategy for training

sets less than 10, after which the performance reversed. We chose

to test subjects on set sizes of 4 and 20 as these conditions strongly

favored one of the strategies.

Human Behavior
Experiment 1. 17 members of the University of Minnesota

community participated in exchange for course credit or monetary

compensation. Ten were randomly assigned to the 4Traj group,

and seven to the 20Traj group. Four additional subjects

participated in the 4Traj version of the experiment with a

modified post-test task (details will be described below). All were

unaware of the purpose of the study and had normal or corrected-

to-normal vision.

The pre-test and post-test extrapolation stimuli consisted of

displays similar to that depicted in Figure 2A, which contained a

dot (0.25u radius) that traveled continuously along a circular arc.

The space of possible trajectories consists of the curvature ranges:

{+0.0016:+0.0079} & {20.0016:20.0079}, where curvature is

defined as the inverse of the radius of the circle from which the

trajectory was drawn, and orientation ranging between +60u and

260u. These ranges were chosen because they prevent ‘‘illegal’’

trajectories (i.e., ones that curve back towards the point of

occlusion before reaching the curved edge of the occluder) as well

as straight lines (curvature = 0). The dot traveled rightward along

its trajectory of length 4u at a constant velocity of 12u/sec. When it

reached the center of the screen, it disappeared behind the

midpoint of the straight edge of a half-disk shaped occluder with

radius 4u. On the opposite, curved edge of the occluder resided 20

bins demarcated by black straight lines and numbered in a

clockwise fashion from top (290u) to bottom (+90u). The lines

flanking the subject’s choice bin turned white at the end of each

trial. The pre- and post-test trajectory set contained 320 paths

chosen randomly from the full space of curvatures and orienta-

tions, with 80 coming from each quadrant (all four combination of

+/2 curvature, +/2 orientation) – this ensured subjects did not

develop specific expectations about the types of trajectories they

might encounter during these sessions. Subjects viewed each

moving dot stimulus and after the dot moved behind the occluder,

they used the mouse to click one of the 20 bins indicating where

they believed that the dot would reemerge from occlusion. No

feedback was given so as to reduce learning effects during these test

sessions. Subjects also participated in an extrapolation/generation

task in which they drew the extrapolated trajectory through the

occlusion region on the screen with the mouse. The display during

drawing was similar to that during extrapolation except the bins

were omitted. The block consisted of 80 trials: the transfer

trajectory set (see below), presented four times each. Following

pre-test subjects were randomly assigned to either the 4Traj or a

20Traj training group (see below).

The stimulus display during training was similar to that used

during pre-test and post-test with the two key differences. First,

training consisted of 5 blocks of 80 trials per block. Within these

blocks either four trajectories were presented 20 times per block (in

the 4Traj group) or 20 trajectories were each presented four times

each (in the 20Traj group). The four trajectories presented to the

4Traj group were a subset of the twenty trajectories presented to

the 20Traj group. Second, feedback was given after each trial both

in the form of a color cue (if the subject was correct the lines

around the chosen bin turned green, otherwise the lines around

the chosen bin turned red) and in the form of the dot reemerging

from occlusion (i.e., if the subject chosen the wrong bin they not

only knew that they were incorrect, but they also knew what the

correct choice would have been).

Interleaved among training blocks were no-feedback transfer

blocks. Each transfer block consisted of 80 trials: 20 total

trajectories consisting of the four from 4Traj training, four more

from 20Traj training, and eight new trajectories from the overall

parameter space were each presented four times.

In all experimental sessions, the stimuli were presented on a

19.5-in. monitor with 128061024 resolution with a vertical refresh

rate of 75 Hz. Subjects viewed the display from a distance of

52 cm, such that one pixel corresponded to 0.032 degrees of visual

angle (DVA). The stimuli were viewed under conditions of low

ambient illumination with subjects’ heads fixed by means of a chin

rest.

Experiment 2. 17 new members of the University of

Minnesota community participated in the experiment, which

comprised three sessions (pre-test, training, post-test) on consec-

utive days in exchange for course credit or monetary compensa-

tion. As in Experiment 1, ten were randomly assigned to the 4Traj

group and seven to the 20Traj group. All were unaware of the

purpose of the study and had normal or corrected-to-normal

vision.

The pre-test and post-test extrapolation stimuli were similar to

those of Experiment 1, however, three occluder radii were used:

2.8, 4, & 5.2 DVA. The mid-sized occluder corresponds to that

used in Experiment 1. With the addition of the larger occluder, the

space of possible trajectories is slightly reduced with the curvature

ranges: {+0.0016:+0.0044} & {20.0016:20.0044}. This was to

ensure once again that none of the trajectories, namely those with

larger curvatures, circled back towards the point of occlusion

before reaching the edge of all three occluders. Trajectory

orientation continued to range between 260 and +60 deg.

The pre- and post-test sessions consisted of 600 trials each, 3

radii6200 trajectories selected from the full space. Unlike in

Experiment 1, this trajectory set was specifically chosen so that 2/3

would reach a different bin for each radius while 1/3 did not need

to meet this requirement. This resulted in all subjects receiving the

identical trajectory sets, with randomized presentation.

The stimulus display during training was identical to that during

the training session of Experiment 1, using only the mid-sized

occluder. As before, training consisted of 5 blocks of 80 trials:
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either four trajectories (this time reemerging in bins 3,8,12,&18)

were presented 20 times per block (4Traj) or 20 trajectories were

each presented four times (20Traj), according to the group

assignment. The four trajectories were a subset of the twenty

trajectories.

Interleaved among training blocks were no-feedback transfer

blocks. The stimulus display during the transfer blocks was

identical to that used in pre- and post-test. Each block also

consisted of 80 trials: 20 total trajectories consisting of the four

from 4Traj training, plus 16 new trajectories from the parameter

space, each presented four times.

All other methodological details were identical to Experiment 1.

Supporting Information

Figure S1 Individual 4Traj subject performance during the no-

feedback transfer portion of the training-transfer session. Note that

each transfer block was preceded by an 80-trial training block with

feedback (recall Figure 2B in the main text). By the end of the

first block, many subjects already show a tendency to choose the

four bins that are matched to the four training trajectories. This

choice distribution is inconsistent with the true distribution of bins

matched to the transfer trajectory set (set inset). However, some

subjects never adopt this strategy (e.g., S9 & S10) and instead show

extrapolation-like behavior during all no-feedback sessions (i.e.,

pre-test, transfer, and post-test). These subjects who do not adopt

the four-bin selection strategy do, however, learn to properly

choose the four bins during the feedback training trials.

(TIFF)

Figure S2 Transfer block performance broken down by trained

and untrained trajectories for the two training groups. For the

4Traj-trained subjects, there is a significant advantage for trained

trajectories versus untrained trajectories. This is due largely to the

fact that the majority of these subjects continue to use the four

trained bins for all trajectories during these blocks (see Figure S1).

The 20Traj subjects also exhibit a small but non-significant

advantage for trained trajectories. Generally, the 20Traj’s group

use of a prediction-based strategy provides them with a

performance advantage in comparison with their 4Traj-trained

counterparts who rely on a categorization-based strategy for

untrained trajectories.

(TIFF)

Figure S3 Individual subject performance on the drawing task

for all subjects who participated in Experiment 1 with the same

format as Figure 4 in the main text. The set of trajectories

presented to subjects during the drawing task was the same as the

set of trajectories tested during the transfer blocks of the main bin

choice task experiment (see Figure 2B).

(TIFF)

Figure S4 A. Pre- and posttest choice distributions for all seven

individual 20Traj subjects. B. Pre- and posttest choice distribu-

tions for all ten individual 4Traj subjects plotted in the same

format as in A in which the top row for each subset of subjects

corresponds to pretest choices and the bottom row corresponds to

the posttest choices.

(TIFF)

Figure S5 Pre- and post-test choice distributions for all four

individual 4Traj subjects who received feedback halfway through

post-test.

(TIFF)

Figure S6 Post-test choice distributions for all individual 4Traj

subjects who participated in Experiment 2.

(TIFF)

Figure S7 Post-test choice distributions for all individual 20Traj

subjects who participated in Experiment 2 in the same format as

Figure S6.

(TIFF)

Text S1 Description of model-free (Q-learning) simulations.

(DOCX)

Text S2 Description of extrapolation model-based (Kalman

filter) simulations.

(DOCX)

Text S3 Description of training-induced classification strategy

simulation and data analysis.

(DOCX)

Author Contributions

Conceived and designed the experiments: JMF CSG PRS. Performed the

experiments: JMF. Analyzed the data: JMF CSG PRS. Contributed

reagents/materials/analysis tools: JMF PRS. Wrote the paper: JMF CSG

PRS.

References

1. Oudejans RR, Michaels CF, van Dort, B Frissen, EJ (1996) To cross or not to

cross: The effect of locomotion on street-crossing behavior. Ecol Psychol 8: 259–

267.

2. Kalman R (1960) A new approach to linear filtering and prediction problems.

J Basic Eng 82: 35–45.

3. Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning the

value of information in an uncertain world. Nat Neurosci 10: 1214–1221.

4. Singh M, Fulvio JM (2005) Visual extrapolation of contour geometry. Proc Natl

Acad Sci U S A 102: 939–944.

5. Singh M, Fulvio JM (2007) Bayesian contour extrapolation: Geometric

determinants of good continuation. Vis Res 47: 783–798.

6. Ahissar M, Hochstein S (1997) Task difficulty and the specificity of perceptual

learning. Nature 387: 401–406.

7. Smith SF (1983) Flexible learning of problem solving heuristics through adaptive

search. IJCAI (U S) 1: 422–425.

8. Packard MG (1999) Glutamate infused posttraining into the hippocampus or

caudate-putamen differentially strengthens place and response learning. Proc

Natl Acad Sci U S A 96: 12881–12886.

9. Tomiczek C, Burke D (2008) Is implicit learning perceptually inflexible? New

evidence using a simple cued reaction-time task. Learn Motiv 39: 95–113.

10. Sagi D (2011) Perceptual learning in Vision Research. Vis Res 51: 1552–1566.

11. Ball K, Sekuler R (1982) A specific and enduring improvement in visual motion

discrimination. Science 218: 697–698.

12. Ball K, Sekuler R (1987) Direction-specific improvement in motion discrimi-

nation. Vis Res 27: 953–965.

13. Saffell T, Matthews N (2003) Task-specific perceptual learning on speed and

direction discrimination. Vis Res 43: 1365–1374.

14. Ramachandran VS, Braddick O (1973) Orientation-specific learning in

stereopsis. Perception 2: 371–376.

15. Fiorentini A, Berardi N (1980) Perceptual learning specific for orientation and

spatial frequency. Nature 287: 43–44.

16. Karni A, Sagi D (1991) Where practice makes perfect in texture discrimination:

Evidence for primary visual cortex plasticity. Proc Natl Acad Sci U S A 88: 4966–4970.

17. Crist RE, Kapadia MK, Westheimer G, Gilbert CD (1997) Perceptual learning

of spatial localization: Specificity for orientation, position, and context.

J Neurophysiol 78: 2889–2894.

18. Sowden PT, Rose D, Davies IR (2002) Perceptual learning of luminance

contrast detection: Specific for spatial frequency and retinal location but not

orientation. Vis Res 42: 1249–1258.

19. Green CS, Bavelier D (2003) Action video game modifies visual selection

attention. Nature 423: 534–537.

20. Webb BS, Roach NW, McGraw PV (2007) Perceptual learning in the absence of

task or stimulus specificity. PLoS One 2: e1323.

21. Xiao LQ, Zhang JY, Wang R, Klein SA, Levi DM, et al. (2008) Complete

transfer of perceptual learning across retinal locations enabled by double

training. Curr Bio 18: 1922–1926.

22. Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation

induces structural learning. Curr Bio 19: 352–357.

23. Jeter PE, Dosher BA, Petrov A, Lu ZL (2009) Task precision at transfer

determines specificity of perceptual learning. J Vis 9: 1–13.

Training-Induced Strategy Selection

PLOS Computational Biology | www.ploscompbiol.org 15 January 2014 | Volume 10 | Issue 1 | e1003425



24. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between

prefrontal and dorsolateral striatal systems for behavioral control. Nat Neuro 8:
1704–1711.

25. Wallis GM, Chatziastros A, Bülthoff HH (2002) An unexpected role for visual

feedback in vehicle steering control. Curr Bio 12: 295–299.
26. Chapman S (1968) Catching a baseball. Am J Phys 36: 868–870.

27. Michaels CF, Oudejans RRD (1992) The optics and actions of catching fly balls:
Zeroing out optical acceleration. Ecol Psychol 4: 199–222.

28. Fajen BR, Warren WH (2004) Visual guidance of intercepting a moving target

on foot. Perception 33: 689–715.
29. Chalk M, Seitz AR, Series P (2010) Rapidly learned stimulus expectations alter

perception of motion. J Vis 10: 1–18.
30. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for

sensorimotor integration. Science 269: 1880–1882.

31. Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, et al. (2007)

Causal inference in multisensory perception. PLoS One 2: e943.

32. Izawa J, Shadmehr R (2008) On-line processing of uncertain information in

visuomotor control. J Neurosci 28: 11360–11368.

33. Vijayakumar S, Hospedales T, Haith A (2011) Generative probabilistic

modeling: understanding causal sensorimotor integration. Sensory Cue Integra-

tion 63–81.

34. Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8: 279–292.

35. Strehl AL, Li L, Wiewiora E, Langford J, Littman ML (2006) PAC model-free

reinforcement learning. Proc Int Conf Mach Learn 881–888.

36. Thrun SB (1992) Efficient exploration in reinforcement learning. Technical

Report. Carnegie Mellon Univ., Pittsburgh, PA, USA.

Training-Induced Strategy Selection

PLOS Computational Biology | www.ploscompbiol.org 16 January 2014 | Volume 10 | Issue 1 | e1003425


