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Abstract

The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using
computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in
brain networks. A macaque brain network was implemented as a communication network in which signal units flowed
between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow
on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting
that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a
‘‘rich club’’ of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each
other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a
synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the
former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic
and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions.
Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively
shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical
role of the rich club of hub nodes in dynamic aspects of global brain communication.

Citation: Mišić B, Sporns O, McIntosh AR (2014) Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks. PLoS Comput Biol 10(1):
e1003427. doi:10.1371/journal.pcbi.1003427

Editor: Danielle S. Bassett, University of California, Santa Barbara, United States of America

Received August 2, 2013; Accepted November 22, 2013; Published January 9, 2014
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Introduction

Constrained by finite resources, such as metabolism and physical

space, which place severe limits on the number and density of

synaptic connections, brain networks are an example of how

optimized topology may facilitate information flow. The structural

topology of cortical networks can be represented and formally

studied using the graph model [1–3], whereby the brain is spatially

parcellated into a set of grey matter nodes interconnected by a set of

white matter edges [4,5]. This approach has revealed several aspects

of network organization that theoretically confer an increased

capacity for information processing, including small-world connec-

tivity [6–8], the presence of hubs [9] and cores [10], cost-efficient

spatial embedding [11,12] and the coexistence of local segregation

and global integration [13].

Recent studies have also uncovered a ‘‘rich club’’ of hub nodes

that are more densely interconnected with each other than

predicted by chance [14,15] and that participate in a dispropor-

tionately high number of shortest paths in the network [16,17]. The

rich club is hypothesized to act as a central backbone for signal

traffic, allowing for rapid integration and dissemination of signal

traffic [16].

While this graph theoretic approach can articulate the diverse

properties of static neural connectivity, it does not take into

account the dynamics of information flow on that connectivity. If

information flow is introduced into the network, how does neural

connectivity influence the efficacy and speed of communication?

In other words, how does network topology enable and constrain

the capacity of brain networks to globally integrate information?

For instance, while certain areas may bridge distant communities

and potentially function as hubs by virtue of their connectivity,

other areas may be ill-suited as conduits for information transfer

because of their position in the network. Under conditions of

elevated network traffic such regions could become bottlenecks,

imposing limits on the relay of information [18].

To determine the effect of topology on inter-regional commu-

nication, we implemented a macaque anatomical brain network as

a communication system in which units of information flow

between grey matter nodes along existing anatomical paths (Fig. 1).

This allowed us to estimate several metrics of information flow in

the network, including the proportion of time a given brain region

is in use (utilization), the load on a given brain region (node

contents), the time it takes for a unit of information to travel

from its source region to its target region (transit time) and the

probability of losing information (blocking). The goal of the

present study was to use these performance metrics to address the

following questions about communication in brain networks. First,

does the unique topology of brain networks offer any particular

advantage in terms of information processing, and how do brain

networks compare to other networks with the same number of

nodes and edges, but different topologies? Second, which features

of brain network organization contribute most to its capacity for

PLOS Computational Biology | www.ploscompbiol.org 1 January 2014 | Volume 10 | Issue 1 | e1003427



efficient communication? Third, which anatomical regions and

pathways are most important for communication?

Results

Network statistics
Information flow on the network was simulated by generating

signal units with specific, randomly-selected source and destination

nodes. Each signal unit diffused to one of the neighbouring nodes,

until it reached its destination. If a signal unit arrived at a node

that was occupied, a queue was formed. A maximum buffer size

was imposed, such that a signal unit arriving at a full buffer caused

the oldest signal unit in the queue to be removed from the system.

A signal unit was removed from the network once it reached its

destination node. Simulation intensity was controlled parametri-

cally to investigate the effect of increasing load on communication

efficiency.

Measures of information flow on the macaque network were

compared against a spectrum of degree-matched control networks

with an equal number of nodes and edges, but systematically

altered topology. One set was comprised of randomized networks,

while the other set was comprised of latticized networks (see

Materials and Methods for more information on how surrogate

networks are generated). Under conditions of increasing load (see

SI Fig. S1), all networks experienced increased blocking and

utilization, as well as decreased throughput, thus exhibiting signs

of congestion. Mean transit times for signal units that reached their

destination also decreased with increasing load, but this counter-

intuitive observation is the result of decreased throughput. At

lower network load, more signals reach their destination but some

may take a long time to do so, which increases the mean transit

time. As the network becomes congested, many such signals may

get dropped at over-utilized nodes and never reach their

destination, and thus cannot influence the mean transit time.

The macaque network was intermediate on all information flow

statistics compared to the randomized and latticized networks. This

is consistent with the fact that the randomized and latticized

networks represent two extreme and diametrically opposite network

configurations and suggests that the organization of the macaque

network serves to strike a balance between speed, reliability,

utilization and total throughput. Compared to its randomized

control network, information flow on the macaque network was

characterized by significantly higher loss rates, faster transit times

and lower throughput (Fig. 2 top, pv0:05 for all measures, Tables

S2,3,4), suggesting that neural connectivity may be optimized for

speed rather than fidelity. In general however, the two networks

performed similarly, while the latticized control network performed

much differently, with significantly lower utilization and through-

put, shorter transit times and near total loss of information (pv0:05
for all measures).

We next sought to determine which feature of network topology

most contributed to this pattern of results. To investigate the degree

to which the existence of a rich club influences information flow, a

synthetic network containing a rich club was created, as well as a set

of degree-matched randomized and latticized surrogate networks

(Text S1, Section 7, Fig. S7). Information flow on these networks

was contrasted with a canonical small world network, which is a

ubiquitous and well-studied model for many different kinds of

information-processing networks, including neural networks [19].

The pattern of results produced by the synthetic small world and

rich club networks and their respective randomized and latticized

surrogate networks were considerably different (Fig. 2, middle and

bottom). Importantly, the system statistics associated with the rich

club network were nearly identical to the macaque network (see

Text S1, Section 4, Table S1). The results observed for the macaque

network were also similar to the canonical Watts-Strogatz small

world network [19], but to a significantly lesser extent (Text S1,

Section 4, Table S1). Overall, this suggests that the rich club is an

Author Summary

A fundamental question in systems neuroscience is how
the structural connectivity of the cerebral cortex shapes
global communication. Here, using computational model-
ing in conjunction with an anatomically realistic structural
network, we show that cortico-cortical communication is
constrained by high-level features of brain network
topology. We find that neural network topology is
configured in a way that prioritizes speed of information
flow over reliability and total throughput. The defining
characteristic of the information processing architecture of
the network is a densely interconnected rich club of hub
nodes. Namely, rich club nodes and connections between
rich club nodes absorb the greatest proportion of total
signal traffic. In addition, rich club connectivity appears to
actively shape information flow, whereby signal traffic is
biased towards some nodes and away from others. Finally,
synthetic networks containing a rich club could almost
perfectly reproduce the information flow patterns of the
real anatomical network. Altogether, our data demonstrate
that a central collective of highly interconnected hubs
serves to facilitate cortico-cortical communication. By
simulating communication on a static structural network
we have revealed a dynamic aspect of the global
information processing architecture and the critical role
played by the rich club of hub nodes.

Figure 1. Discrete-event simulation. Schematic showing the propagation of two signal units in a simple 3-node, 2-pathway network.
doi:10.1371/journal.pcbi.1003427.g001
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important topological feature for information flow in the brain, as

defined by these four statistics.

Node statistics
We now examine regional contributions of the CoCoMac

network in detail. To study the individual relevance of nodes for

information flow, three complementary node-level metrics of

congestion were used: utilization, blocking and mean node contents.

Information flow was highly heterogeneous across the network,

with some nodes vulnerable to overwhelming influx, while others

experienced only occasional traffic (Fig. 3). To a large extent

congestion at a given node was predicted by the number of afferent

projections to that node (in-degree, r2~0:83,0:15,0:45 and

p~1:2|10{93, 2:0|10{11,1:8|10{33 for utilization, blocking

and node contents, respectively) and this is expected given the fact

that in the present model information flow is implemented as an

interactive random walk [2,20,21]. With the exception of CA1, all

nodes with the largest average contents were previously identified as

part of the rich club [17](Fig. S2), indicating that membership in this

densely inter-connected subgraph entails a heavy workload. Much

of the congestion appears to be concentrated at three distinct sites,

mainly along the medial surface, roughly corresponding to medial

prefrontal cortex, medial/inferior temporal cortex and precuneus/

posterior cingulate cortex.

To determine the extent to which these congestion metrics

depend on topology rather than degree sequence, we statistically

compared them to a set of metrics from simulations run on a

population of randomized control networks for which the topology

had been altered while preserving degree sequence [22]. Fig. 4A

shows the ‘‘raw’’ mean differences between the two networks for

the contents of each node, while Fig. 4B shows the spatial

distribution of these differences. Due to the high level of con-

sistency between the three metrics of congestion (utilization,

blocking and contents), only the results for node contents are

shown. Nodes with contents that are significantly different

(pv0:05, controlled for multiple comparisons using false-discovery

rate correction) for the two sets of the networks are labeled.

Interestingly, while the majority of these nodes are part of the rich

club, nearly half experience greater congestion in the macaque

network, while half experience greater congestion in the random-

ized networks. This suggests that macaque cortical connectivity

imposes a characteristic set of traffic patterns, such that signal

traffic is directed towards some nodes and away from others, in

contrast to what would be expected based only on the degree of

these nodes.

Edge statistics
We next consider information flow with respect to specific edges.

Given the relevance of the rich club in the macaque net-

work [17], we classified edges according to whether they connect

rich club nodes [16]. Edges connecting two non-rich club nodes

were classified as (L)ocal, those connecting a non-rich club and a

Figure 2. System-level statistics. Simulations were run for three different scenarios: CoCoMac brain (top), small-world network (middle) and rich-
club network (bottom) and their respective randomized (green) and latticized (red) control networks. For each network, the mean transit time,
utilization, blocking probability and throughput are plotted at four different intensities. For the starting networks in each scenario (CoCoMac, lattice
and rich-club), the curves represent the average over 100 simulations. For the randomized/latticized versions of each network, the curves represent
the average across 100 simulations on 100 realizations of each network.
doi:10.1371/journal.pcbi.1003427.g002
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rich club node as (F)eeder and those connecting two rich club nodes

as (R)ich club. Moreover, these classifications were made with

respect to two rich club levels, RC1 and RC2, which represent a

more conservative and a more liberal definition of the rich club [17].

An initial observation is that this stratification of edges closely

resembles the patterns of edge throughputs. In particular, projec-

tions with greater throughput appear more likely to be those

connected to at least one rich club node, i.e. Rich Club or Feeder.

Despite the fact that the vast majority of edges in the macaque

network are Local, followed by Feeder and then Rich Club [17], the

mean throughput per edge is greatest for Rich Club edges, followed

by Feeder and Local (Fig. 5B). In other words, traffic tends to

concentrate not just at rich club nodes, but also at the edges around

them, effectively encompassing their local neighborhoods.

Path statistics
Finally, we investigate information flow with respect to every

possible pair of source and target nodes. For each pair, all

completed trajectories are compiled in order to compute the total

number of deliveries (throughput), as well as their mean transit

time or delay. For both the throughput and transit time statistics,

taking the mean across sources results in greater variance than

taking the mean across targets (Fig. 6A,B). For the target nodes,

both statistics showed substantial association with in-degree

(r2~0:25, 0:86, p~6:1|10{21,7:8|10{106 for transit time and

throughput, respectively). In other words, the mean throughput

and transit time were much more dependent on the destination,

rather than the source, indicating that some nodes in the network

are intrinsically easy to reach, while others are intrinsically

difficult.

A non-monotonic relationship emerges when comparing the

mean throughput and the mean transit time across target nodes

(Fig. 6C, dark grey). When the total throughput is low, any increase

in throughput results in slower transit times. However, for a subset

of nodes with a high throughput this relationship does not hold and

these nodes tend to receive information much faster than would be

Figure 3. Node-level statistics. Top: Utilization, blocking probability, node contents and in-degree are shown for each of the 242 nodes on the
CoCoMac network, averaged over 500 simulations (l~0:01, H~20, m~0:02). For illustrative purposes, nine nodes with the highest node contents
are labeled. Bottom: Inflated surface renderings showing the anatomical distribution of each statistic, for the medial and lateral surfaces.
doi:10.1371/journal.pcbi.1003427.g003
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expected. Most of these nodes belong to the rich club (RC2),

indicating that rich club nodes receive more information than other

nodes in the network, and do so with a disproportionately faster

latency. A similar relationship is observed for degree-preserving

randomized controls (Fig. 6C, light grey), indicating that the effect is

largely due to the high degrees of rich club nodes. Rich club

connectivity enhanced the effect. As expected from Fig. 2, the

randomized controls generally have slightly higher throughput, but

also longer transit times. This was particularly true for rich club

nodes, which received significantly fewer signal units when

embedded in the macaque than in randomized networks (pv0:05
for RC1 and RC2), but did so with significantly faster transit times

(pv0:05 for RC1 and RC2).

Discussion

The complex anatomical connectivity of the central nervous

system suggests that inter-regional communication is important for

the functioning of the brain, and in the present report we

systematically investigated the effect of network topology on

communication. Utilizing a modeling paradigm from telecommu-

nications and statistical physics [2,21], we superimposed a

communication system on an empirically derived network

describing macaque cerebral cortex. Our results highlight multiple

ways in which structural connectivity has the potential to exert

considerable influence on information flow in brain networks.

In terms of global information flow statistics, the macaque

network was found to be intermediate to its latticized and

randomized reference networks, mirroring the notion that the

complex topology of structural networks represents a trade-off

between wiring cost and communication efficiency for integrative

processing [11,12,23]. In particular, the macaque network

exhibited an economic balance between speed, fidelity, utilization

and sheer volume of transmission. Compared to degree-matched

random networks, the macaque network appeared to prioritize

speed of transmission over throughput and reliability.

Although many studies have reported evidence of small world

organization in structural [6–8] and functional networks [24,25], a

canonical small world model by itself could not account for the

information processing characteristics observed in the macaque

network. However, the added presence of a rich club largely

replicated the information flow signature of the macaque network.

Therefore, our data suggest that the small world property (in

the Watts-Strogatz sense [19]), together with the rich club, is

necessary to produce the macaque-like pattern, but by itself is not

sufficient. Several recent studies have postulated that a densely

Figure 4. Node contents for the CoCoMac and randomized
control networks. (A) The mean differences in node contents
between 100 simulations based on the CoCoMac network, and 100
simulations on 100 randomized networks (l~0:01, H~20, m~0:02).
Nodes with statistically significant differences are labeled. (B) Surface
renderings of the mean differences in node contents.
doi:10.1371/journal.pcbi.1003427.g004

Figure 5. Edge throughput. The mean number of signal units carried
by each edge. Edges are classified as Rich Club (R), Feeder (F) or Local
(L). Results are shown for 500 simulations (l~0:01, H~20, m~0:02) on
the CoCoMac network.
doi:10.1371/journal.pcbi.1003427.g005
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interconnected rich club has the potential to facilitate global

integration by providing an easily accessible high-capacity back-

bone that serves to attract and disseminate interregional signal

traffic [14–17,26]. By demonstrating that the rich club is a

principal topological feature with respect to communication

dynamics, our model lends further support to this notion.

Forming a triangle spanning frontal cortex, posterior cingulate

cortex/precuneus and medial temporal cortex, the rich club

subgraph proved to be a prominent axis in the information

processing architecture of the network. Rich club nodes, as well as

connections involving rich club nodes, absorbed the greatest signal

traffic, indicating that the rich club of densely connected hubs

supports the capacity to efficiently centralize and, presumably,

integrate information. The fact that rich club nodes are more likely

to exhibit signs of congestion warrants further investigation into

their potential role as bottlenecks in information processing.

Several empirical studies have reported evidence of bottlenecks

limiting processing capacity in attention [18] and response

selection [27], and the areas they implicate show considerable

correspondence with rich club regions (including medial prefrontal

cortex and precuneus), although a direct comparison between the

macaque network and human fMRI studies is difficult.

Despite the fact that rich club nodes were among the most

congested, comparisons with surrogate networks revealed that rich

club connectivity may serve to shape information flow, whereby

signal traffic is biased towards some nodes and away from others.

While a number of rich club nodes consistently experienced

heavier traffic than would be expected on the basis of their

degrees, others consistently experienced lighter traffic than would

be expected on the basis of theirs. Why macaque network

topology, and the rich club in particular, shapes cortico-cortical

communication in a way that imposes this specific pattern of

information flow, remains unclear. It is noteworthy that the under-

congested nodes are areas associated with making eye movements,

tracking and acting towards objects in space and fusing visual and

proprioceptive information. Many of these areas are part of the

dorsal attention sub-network [28–30], which presumably must be

continually responsive and capable of rapidly integrating and

communicating information. We therefore speculate that the

topology of the global network is configured in a way that relieves

congestion at these dorsal attention areas to facilitate fast and

efficient interaction with the external environment.

Previous analyses have shown that, despite constituting only a

small part of total network density, rich club connections participate

in the greatest number of shortest paths in the network [16,17]. This

has led to the hypothesis that if rich club topology is configured in a

way that facilitates cortico-cortical communication via shortest

paths, there may exist a set of routing or navigation strategies to take

advantage of this feature [16], such as ‘‘greedy’’ routing [31].

However, our data demonstrate that the rich club is central to global

communication even if information flow is governed by simple

diffusion rather than shortest path communication, potentially

eschewing the need for a more complex routing mechanism. To

characterize the organizational principles of global information

flow, further investigation is necessary to determine which types of

routing strategies can best take advantage of the unique connectivity

of brain networks, as well as which types of routing strategies best

replicate empirical functional data.

Methodological limitations
The modeling paradigm employed in the present study entails a

number of features and simplifying assumptions. Therefore, it is

important to consider what the biological correlates of these

features are and the extent to which they limit the utility of the

model. Central to our approach are discrete signal units. At the

large spatial scale, it is unlikely that neural communication takes

place via discrete signal units. Rather, information flow between

large scale neuronal ensembles is likely to be based on spike trains

or coordinated volleys of spike trains. It is also possible that

information is transferred as an ensemble of signals from multiple

neurons. In our model signal units represent the ability of brain

regions to influence one another. This simplifying assumption

allows us to trace the trajectory of each signal unit as it propagates

in the network, and hence to calculate various metrics about the

Figure 6. Delays and deliveries. Results are shown for 500
simulations on the CoCoMac network (A,B,C) and 1 simulation on 500
randomized networks (C) (l~0:01, H~20, m~0:02). Means of transit
times (A) and throughput (B) are either taken across all target nodes
(showing the mean for individual source nodes), or across source nodes
(showing the mean for individual target nodes). (C) The relationship
between transit time and throughput across all target nodes.
doi:10.1371/journal.pcbi.1003427.g006
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potential for communication that is afforded by the anatomical

connectivity.

External arrivals represent the assumption that new information

is continuously generated and communicated in the network. The

source of this information may be either stimulation exogenous to

the nervous system, or some endogenous process. Poisson arrivals

were chosen because at the level of individual neurons, inter-spike

intervals (ISIs) are found to be exponentially distributed [32] and

likewise, in psychophysics and signal detection, the Poisson process

is often used to model stimulus fluctuations and other statistical

properties of the sensory environment [33]. Queues and finite

buffers are constructs that allow us to model how network topology

constrains information flow. Queueing is a mechanism by which

signal units are made to interact as they flow through the network,

modeling the interplay between multiple information flows on top of

the structural network [34]. Finite buffers allow for the possibility of

signal loss, modeling the poor fidelity of neural transmission [35].

Note also that the present model does not take into account the

intrinsic hierarchy of sub-domains of brain networks. For instance,

one may expect primary sensory areas to send more information

than they receive. Likewise, one may expect higher order,

multimodal areas to receive more information than they send.

In our model, source and destination nodes for each signal unit are

chosen randomly, irrespective of their function, and we largely

ignore this aspect of cortical organization. Future studies should

investigate this fundamental feature of cortical networks.

The strength of the modeling approach pursued here is that it

allows one to generate relative metrics about network communi-

cation. The approach is complementary to other, more physio-

logically realistic paradigms for modeling global system dynamics

[36–41], which do not model information transmission directly.

These models suggest that three key ingredients are needed to

generate realistic brain dynamics: empirically derived patterns of

structural connectivity, time-delayed transmission and noise

[40,41]. Indeed, a queueing network model has the potential to

incorporate all three, and the present implementation includes

both empirically derived connectivity and stochastic dynamics.

A fundamental aspect of networked communication is the

switching architecture: the manner in which information is directed

and transported across the network. In the present study, we utilized

a message-switched architecture, wherein an entire ‘‘message’’ is

contained in a single discrete signal unit. Our study represents the

first attempt to characterize communication dynamics in brain

networks, so this type of switching architecture, together with

diffusive, stochastic routing, was particularly advantageous because

this type of model does not assume that signal units have any

knowledge of the global topology or traffic conditions [42–44]. A

physiologically plausible alternative would be a packet-switched

architecture, wherein a message is broken up into packets, which

individually take the most efficient path to the destination, where

they are re-assembled [45]. This type of architecture has many

potential advantages for systems that rely on temporally sparse

‘‘bursts’’ of communication, including lower transit times [45].

Thus, our results and conclusions are strongly tied to the diffusion-

based, non-hierarchical, message-switched architecture we used,

and may not hold for other switching architectures.

Conclusion
Altogether, our results reveal a dynamic aspect of the global

information processing architecture and the critical role played by

the so-called ‘‘rich club’’ of hub nodes. Our work lays the founda-

tion for further systematic study of organizational principles for

communication in large-scale brain networks, including routing

strategies and resource allocation.

Materials and Methods

Anatomical and reference networks
The anatomical connectivity data set used in the present study

was derived from the online Collation of Connectivity data on the

Macaque brain (CoCoMac) database, comprised of data from 413

tract tracing studies of the macaque [46,47]. The database was

originally queried by [48] and further condensed by [17]. To

facilitate comparison with previous reports, only cortical nodes

were included. The final directed network was comprised of 242

nodes and 4090 edges and was fully connected, such that each

node maintained at least one incoming and one outgoing edge.

Two populations of surrogate networks - one randomized and

one latticized - were generated to explore the extent to which the

topology of the macaque connectivity matrix influenced the

simulation results. Randomized networks were generated using a

Markov switching algorithm that randomly swapped pairs of edges

[22]. Latticized networks were generated using a modified version

of the same algorithm, whereby the edges were swapped only if

they moved closer to the main diagonal as a result [7]. By

randomly re-ordering edges and forcing them closer to the

diagonal, the topology of the original network is destroyed and

replaced by one where neighbouring nodes are more likely to be

connected, as in a ring lattice. Both sets of surrogate networks were

degree-matched in the sense that the in-degree and out-degree of

each node was preserved. Statistical assessment was performed by

comparing 100 simulations on the CoCoMac network with 100

simulations on a randomized null network, for 100 null network

realizations. Comparisons between node-specific metrics were

made using Welch’s t-test for samples with unequal variances [49],

and evaluated with respect to degrees of freedom determined using

the Satterthwaite approximation [50]. To control the false

discovery rate, p-values were corrected following the procedure

outlined by [51].

A similar procedure was performed for synthetic small-world

[19] and rich club [14,15,52] networks and their respective null

models. A network containing a rich-club was created from a

random network by endowing a sub-set of the nodes (the rich club)

with greater connection density than the rest of the network, and

an even greater connection density amongst each other. The

randomized and latticized controls were then created as described

above. For the small world scenario, the starting point was a ring

lattice. A small world network was generated by randomly per-

muting 10% of the edges, while a completely randomized network

was generated by further permuting each edge 100 times.

Rich club detection
Our results have considerable implication for the rich club feature

of brain network topology and so for completeness we briefly

rehearse the procedure for detecting and defining rich clubs. Fuller

descriptions of the rich club phenomenon can be found elsewhere,

for brain networks in general [15,16], as well as for this particular

network [17].

For a given graph, a rich club is defined as a set of high-degree

nodes (a subgraph) that are more densely connected amongst each

other than would be expected on the basis of degree alone [52].

Rich club classification is made with respect to a range of node

degrees. For a given degree k, all nodes with degree ƒk are stripped

from the network. A rich club coefficient w(k) is calculated as the

ratio of remaining connections to all possible connections. Thus,

w(k) can be thought of as the density of the subgraph. For the same

set of nodes, the ratio is also computed with respect to 10,000

degree-matched randomized networks. The normalized rich club

coefficient, wnorm(k)~w(k)=wrandom(k), measures the density of the
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subgraph relative to the null model where the global topology has

been destroyed. These steps are repeated for a range of k, from the

lowest to the second-highest degree in the macaque network (2 to

121). A wnorm(k) consistently greater than 1 for a range of k suggests

the existence of rich club organization.

Therefore, across the range of k it is possible to define unique

sets of rich club nodes corresponding to different values of k.

These nodes can then be positioned in a nested hierarchy of rich

club ‘‘levels’’, ranging from those containing nodes with the

highest degree to those containing nodes with the lowest degree. In

the present study, we follow the classification made by [17],

whereby two rich clubs were singled out. The first, RC1, was more

densely interconnected and comprised of fewer nodes, with greater

minimum degree. The second, RC2, was less densely intercon-

nected and contained more nodes, with smaller minimum degree.

RC2 is a subset of RC1, and by examining these two levels of the

rich club, it is possible to identify robust relationships between

rich-club organization and information flow as estimated by our

model.

Once nodes have been classified as either rich club or non-rich

club, it becomes possible to classify edges as well. Namely, edges

that connect non-rich club nodes to non-rich club nodes are

classified as ‘‘local’’, those connecting non-rich club nodes to rich

club nodes as ‘‘feeder’’ and those connecting rich club nodes to

other rich club nodes as ‘‘rich club’’.

Discrete-event simulation
Signal units were generated and introduced in the network

according to a Poisson process with rate l, i.e. with exponentially

distributed inter-arrival times. For each signal unit, a source node

and destination node were randomly selected. To reach its

destination node, the signal propagated to one of the neighbouring

nodes, with equal probability for each. The time spent at each

node (service time) was exponentially distributed with rate

m~0:02. If a signal unit arrived at a node that was occupied, a

queue was formed. Units entered the node on a last-come-first-

served basis, also known as last-in-first-out (LIFO) queueing [53–

55]. A maximum buffer size was imposed (H~20), such that a

signal unit arriving at a full buffer caused the oldest signal unit in

the queue to be ejected and removed from the system. Upon

reaching the destination node, the unit was removed from the

network. The purpose of queueing is simply to ensure that

information flow is interactive, while a finite buffer size allowed us

to model imperfect signal transmission [35]. Buffer capacity is not

a critical parameter, in the sense that it cannot induce a phase

transition in the system. Changes in buffer capacity will produce

quantitative, but not qualitative, changes in system behavior (SI

Section 3, Fig. S5).

This type of model has two characteristic modes of operation.

At low intensities (external arrival rates), the total number of signal

units in the network fluctuates around some finite value and the

system is said to be in a steady-state. As the intensity is increased,

there is a qualitative change in the system dynamics, characterized

by a monotonic increase in the number of signal units in the

network until all buffers are filled, leading to ‘‘jamming’’ [2,20].

The key variable is the ratio between the arrival rate and service

rate at each node. Therefore, we fixed the service rate (m) and

varied the rate of external arrivals (l). The focus of the present

study was on the steady-state behavior of the network, and the

range of external arrival rates (l~0:005,0:01,0:015,0:02) was

chosen to sustain stationary flow, prior to the phase transition.

All simulations were run for 2 million dimensionless time units.

Due to the presence of stochastic time variables in the simulation

(inter-arrival times and service times), the state of the system was

updated at non-uniform time points. Upon completion, the time

series of system states were linearly interpolated to produce

uniformly sampled time series (Text S1, Section 6, Fig. S6). An

initial transient of 40,000 time units, during which the system state

had not yet stabilized (determined via the ensemble average

method [54]), was discarded from further analysis to avoid

transitory effects. The Mersenne Twister [56] was used to generate

a uniform distribution, which was then used to generate

exponentially distributed random numbers (inter-arrival times

and service times) using the standard inverse transform method.

All simulations were implemented in Matlab (Mathworks Inc.,

Natick, MA) and independently verified in Artifex (RSoft Design

Group Inc., Ossining, NY), as well as analytically (Text S1 Section

2, Figs. S3,4).

All signal units were uniquely identified, allowing for their

position and complete trajectory in the network to be traced across

the simulation. These trajectories were then analyzed to compile a

set of node-, edge- and network-level statistics. For each node, we

calculated the mean proportion of time the node was busy

(utilization), the probability of signal loss (blocking) and the mean

system contents. For each edge, we calculated the mean

throughput of signal units. For each network, we calculated the

mean utilization and blocking rates across nodes, as well as the

total number of signal units successfully transmitted from source to

destination (throughput) and the mean latency of those transmis-

sions (transit time).

More formally, simulation variables were defined as follows. A

node i at time t has two components: the server contents

si(t)~f0,1g, which describes the number of signal units currently

in service, and the queue length qi(t)~f0, . . . ,Hg, which

describes the number of signal units waiting in the buffer. The

node contents ni(t) were thus defined as

ni(t)~si(t)zqi(t): ð1Þ

Likewise, the contents at any existing channel from node i to

node j was cij(t). The total network load N(t) is then the sum of all

node and channel contents:

N(t)~
X

i

ni(t)z
X

i

X

j

cij(t): ð2Þ

The utilization of node i is the proportion of simulation time

during which si~1. The blocking probability at node i was

calculated as the number of signal units ejected from i divided by

the total number of signal units arriving at i.

The total time a signal unit spends at a single node, T , is the

sum of the waiting time in the queue Tw and the service time in the

node Ts

T~TwzTp: ð3Þ

Both Tw and Ts are stochastic processes, with Tw determined by

the the topology and dynamics on the network, while Ts is drawn

from an exponential distribution with rate m~0:02. For any signal

unit, the transit time is the sum of waiting and service times across

all nodes traversed from source to destination. Transit time

statistics are calculated only for signals that successfully reached

their destination.
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Supporting Information

Figure S1 Effect of increasing simulation intensity.
Fluctuations in the total number of signal units present in the

network during a single simulation run, shown for three different

arrival rates (simulation intensities, l~0:005,0:01,0:02).

(TIF)

Figure S2 Rich club of the macaque network. The spatial

distribution of the rich club, shown for two different rich club

‘‘levels’’ (adapted from [17]).

(TIF)

Figure S3 System statistics: analytical and numerical
results. The network-level results of the analytical model are

shown against the numerical simulation, with 500 replications

(H~20, m~0:02).

(TIF)

Figure S4 Node statistics: analytical and numerical
results. The node-level results of the analytical model are shown

against the numerical simulation, with 500 simulations (H~20,

m~0:02).

(TIF)

Figure S5 Effect of buffer size. The results of 500

simulations (l~0:01, m~0:02), showing the utilization, blocking

and node contents at each node for three different buffer sizes:

H~5,20,100.

(TIF)

Figure S6 Effect of interpolation. Network load time series

are shown for a single simulation (l~0:01, H~20, m~0:02). (A)

Original time series, with non-uniform sampling. (B) Linearly

interpolated time series, with uniform sampling. (C) Interpolated

time series overlayed on the original time series.

(TIF)

Figure S7 Effect of rich club size. System statistics for 500

simulations (H~20, m~0:02) for three different synthetic ‘‘rich

club’’ networks, with rich clubs comprised of 10, 20 and 30 nodes,

out of 100 total nodes.

(TIF)

Table S1 Comparing scenarios. To assess similarities in the

patterns of results produced by the CoCoMac, Small-World and

Rich-Club scenarios, we correlate the values of specific network

metrics (transit time, throughput, utilization and blocking) across

networks (original, randomized and latticized) and simulation

intensities (0.05, 0.10, 0.15 and 0.20). Fisher’s r-to-z expresses the

difference between the CoCoMac-Small World and CoCoMac-

Rich Club correlation coefficients as a z-score. Values greater than

D1:645D indicate that the CoCoMac-Rich Club correlation is

significantly greater than the CoCoMac-Small World correlation.

(PDF)

Table S2 Network comparisons for the transit time
statistic. The average of 100 simulations on the CoCoMac (C)

network was compared against 100 simulations on randomized (R)

and latticized (L) null networks, for 100 null network realizations.

The entries represent the average t-statistics and p-values for those

100 comparisons.

(PDF)

Table S3 Network comparisons for the throughput
statistic. The average of 100 simulations on the CoCoMac (C)

network was compared against 100 simulations on randomized (R)

and latticized (L) null networks, for 100 null network realizations.

The entries represent the average t-statistics and p-values for those

100 comparisons.

(PDF)

Table S4 Comparisons for the node contents statistic.
The average of 100 simulations on the CoCoMac network was

compared against 100 simulations on randomized networks, for

100 null network realizations. The entries represent nodes with

statistically significant differences, and the average t-statistics and

p-values for those 100 comparisons.

(PDF)

Text S1 Supporting information text. The supporting

information contains the following: explanation of the biological

meaning of various model components (Section 1), an analytical

model (Section 2), exploration of parameter space (Section 3), a

statistical assessment of the similarity between network scenarios

(Section 4), exact T- and P-values (Section 5), assessment of the

effect of resampling simulation time series (Section 6) and an

assessment of the effect of rich club size (Section 7).

(PDF)
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1. Albert R, Barabäsi AL (2002) Statistical mechanics of complex networks. Rev

Mod Phys 74: 47.

2. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D (2006) Complex
networks: Structure and dynamics. Phys Rep 424: 175–308.

3. Easley D, Kleinberg J (2010) Networks, Crowds, and Markets. Volume 8.

Cambridge Univ Press.

4. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:

uses and interpretations. NeuroImage 52: 1059–1069.

5. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.

6. Hilgetag C, Burns G, O’Neill M, Scannell J, Young M (2000) Anatomical

connectivity defines the organization of clusters of cortical areas in the macaque
monkey and the cat. Phil Trans R Soc Lond B 355: 91–110.

7. Sporns O, Zwi J (2004) The small world of the cerebral cortex. Neuroinformatics

2: 145–162.

8. Gong G, He Y, Concha L, Lebel C, Gross D, et al. (2009) Mapping anatomical

connectivity patterns of human cerebral cortex using in vivo diffusion tensor

imaging tractography. Cereb Cortex 19: 524.

9. Sporns O, Honey C, Kötter R (2007) Identification and classification of hubs in

brain networks. PLoS One 2: e1049.

10. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, et al. (2008)

Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159.

11. Bassett D, Greenfield D, Meyer-Lindenberg A, Weinberger D, Moore S, et al.
(2010) Efficient physical embedding of topologically complex information

processing networks in brains and computer circuits. PLoS Comput Biol 6:
e1000748.

12. Bullmore E, Sporns O (2011) The economy of brain network organization. Nat

Rev Neurosci 13: 336–349.

13. Tononi G, Sporns O, Edelman G (1994) A measure for brain complexity:
relating functional segregation and integration in the nervous system. Proc Natl

Acad Sci USA 91: 5033–5037.
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