
Integrated Text Mining and Chemoinformatics Analysis
Associates Diet to Health Benefit at Molecular Level
Kasper Jensen1, Gianni Panagiotou2*, Irene Kouskoumvekaki2*

1 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Lyngby, Denmark, 2 School of Biological Sciences,

The University of Hong Kong, Hong Kong

Abstract

Awareness that disease susceptibility is not only dependent on genetic make up, but can be affected by lifestyle decisions,
has brought more attention to the role of diet. However, food is often treated as a black box, or the focus is limited to few,
well-studied compounds, such as polyphenols, lipids and nutrients. In this work, we applied text mining and Naı̈ve Bayes
classification to assemble the knowledge space of food-phytochemical and food-disease associations, where we distinguish
between disease prevention/amelioration and disease progression. We subsequently searched for frequently occurring
phytochemical-disease pairs and we identified 20,654 phytochemicals from 16,102 plants associated to 1,592 human
disease phenotypes. We selected colon cancer as a case study and analyzed our results in three directions; i) one stop legacy
knowledge-shop for the effect of food on disease, ii) discovery of novel bioactive compounds with drug-like properties, and
iii) discovery of novel health benefits from foods. This works represents a systematized approach to the association of food
with health effect, and provides the phytochemical layer of information for nutritional systems biology research.
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Introduction

The increasing awareness of health and lifestyle in the last

decade has brought significant attention from the public media to

the role of diet. Typically, specific diets or single foods are

associated with health and disease states through in vivo studies on

humans or animal models, where the response of selected

phenotypes, e.g. up-regulation or down- regulation of certain

genes, is being monitored [1,2]. Observational studies on

populations with specific food preferences may also provide

statistical evidence for the absence or prevalence of certain diseases

in connection to certain dietary habits [3]. Even though these

approaches have offered some useful insights for specific food

types, they are frequently inconclusive due to small cohorts or

limited focus both on the diet and the disease space. Most

importantly, observations remain on the phenotypic layer, since

diet is treated as a black box, when it comes to its molecular

content. In the emerging field of systems chemical biology [4]

research is moving towards the network-based study of environ-

mental exposures, (e.g. medicine, diet, environmental chemicals)

and their effect on human health [5]. We believe that this shift in

paradigm, where one considers the system of the molecular

components of diet and their interplay with the human body, will

build the basis for understanding the benefits and impact of diet on

our health that will enable the rational design of strategies to

manipulate cell functions through what we eat [6,7]. However, to

interpret the biological responses to diet, as well as contribute to

the evidence in assigning causality to a diet-disease association, we

need first to overcome the major barrier of defining the small

molecule space of our diet. By assembling all available information

on the complex chemical background of our diet, we can

systematically study the dietary factors that have the greatest

influence, reveal their synergistic interactions, and uncover their

mechanisms of action.

In the present work we carried out text mining to collect in a

systematic and high-throughput way all available information that

links plant-based diet (fruits, vegetables, and plant-based beverages

such as tea, coffee, cocoa and wine) with phytochemical content,

i.e. primary and secondary metabolites, and human disease

phenotypes. There are two reasons for focusing on the plant-

based diet: (1) there is well established knowledge on the

importance of fruit- and vegetable-rich diet in relation to human

health e.g. nutraceuticals, antibiotics, anti-inflammatory, anti-

cancer, just to name a few [8–13]; (2) the huge diversity of the

phytochemical space offers a fertile ground for integrating

chemoinformatics with statistical analysis to go beyond the existing

knowledge in the literature and suggest new associations between

food and diseases.

Our text-mining strategy, based on dictionaries from the

argument browser Reflect [14], Natural Language Processing

(NLP) and Naive Bayes text classification [15,16], goes beyond

mere retrieval of diet - disease associations, as it further assigns a

positive or negative impact of the diet on the disease. With this

work we aim to demonstrate how data from nutritional studies can

be integrated in systems biology to boost our understanding of how

plant-based diet supports health and disease prevention or

amelioration. This wealth of knowledge combined with chemical

and biological information related to food could pave the way for
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the discovery of the underlying molecular level mechanisms of the

effect of diet on human health that could be translated into public

health recommendations.

Results

Mining the phytochemical space
We extracted by text mining plant - phytochemical associations

from 21 million abstracts in PubMed/MEDLINE, covering the

period 1908–2012. We used relation keyword co-occurrences

between plant names (both common names and scientific names)

and small compound names and synonyms. First, the chemical

name entities and plant name entities were recognized using a set

of simple recognition rules. Then, a training set was manually

compiled with abstracts mentioning plant - phytochemical pairs.

Finally, a Naı̈ve Bayes classifier was trained to correctly recognize

and extract pairs of phytochemicals and plants that contain them.

The performance of the classifier was quantitatively estimated to

88.4% accuracy and 87.5% F1-measure on an external test set of

250 abstracts.

When the classifier was applied to the raw text of PubMed/

MEDLINE, it associated 23,137 compounds to 15,722 plants – of

which, approximately 2,768 are edible – through 369,549 edges.

Since the total number of natural compounds discovered so far

from all living species is estimated to be approximately 50,000

[17], the retrieval of 23,137 phytochemicals solely by extraction of

information from raw text of titles and abstracts in the PubMed

domain provides a unique platform for obtaining a holistic view of

the effects of our diet on health homeostasis.

In order to collect all relevant available information for

subsequent analyses, we integrated the data we collected via text

mining with the Chinese Natural Product Database [18] (CNPD)

and an Ayurveda [19] data set that we have previously curated in

house. CNPD, which is a commercial, manually curated database,

contains information on 16,876 unique compounds from 5,182

plant species associated through 21,172 edges. The Ayurveda data

set includes information on 1,324 phytochemicals and 189 plants.

After merging these two sources with the text-mined data and

removing redundant information, we ended up with 36,932

phytochemicals and 16,102 plants. What further adds value to this

pool of data is that all 36,932 compounds are encoded in

Canonical SMILES and linked to a unique chemical structure,

which allows the application of chemoinformatics tools for

interrogating the human protein and disease space that these

compounds may have an effect on.

Figure 1A shows the most well studied edible plants and the

number of phytochemicals identified in each of them. Rice has the

highest number of recorded phytochemicals (4,155 compounds),

followed by soybean (4,064 compounds), maize (3,361 compounds)

and potato (2,988 compounds). Figure 1B shows representative

phytochemicals from our retrieved data that have made it all the

way to the pharmacy shelves or have served as lead structures for

drug development. Camptothecin is a natural compound that has

lead to the semisynthesis of the analogues irinotecan and

topotecan, two antineoplastic enzyme inhibitors that are currently

used in the treatment of colorectal and ovarian cancer, respec-

tively. As camptothecin is highly cytotoxic, we have not

encountered any common foods within the list of plants that

contain it. Ergocalciferol (vitamin D2), on the other hand, has

been traced in numerous plant sources, many of which are

common foods, such as tomato, cacao and alfalfa. Ergocalciferol is

an approved nutraceutical compound found in the market under

various brand names that is used in the treatment of diseases

related to vitamin D deficiency, such as hypocalcemia, rickets and

osteomalacia.

Figure 1B brings also to light that natural compounds are

comonly encountered in more than one plant, or family of plants.

Previous studies have indicated that there are no consistent trends

as to whether phytochemicals can be used as taxonomic markers

or may occur in several unrelated plant families [8,20]. With this

question in mind, we decided to examine how the 36,932

phytochemicals are distributed among neighboring and ancestral

taxa and whether there are clusters of certain phytochemicals at

specific parts of the taxonomy. Overrepresentation of phytochem-

icals on the taxonomy was calculated by using Fishers exact test,

following the Benjamini-Hochberg procedure with a 5% False

Discovery Rate [21]. Our analysis showed that only 8% of all

phytochemicals are localized on certain parts of the taxonomy

(Figure S1 and Table S1). For example the family of Fabales –

Fabaceae – Lens, which includes lentils, and the Sapindales – Rutaceae

– Citrus linkage, which includes orange, contain 60 out of 562

compounds and 42 out of 214 compounds, respectively (p-

value,1024) that are not found anywhere else on the taxonomy.

On the other hand, compounds such as b-sitosterol, palmitic acid

and catechin are spread all over the taxonomy (p-value,1024). A

possible interpretation of this finding is that the synthesis of small

compounds in plants is mainly defined by short-term regulatory

than long-term evolutionary adaptation to the environment.

Association of food with disease prevention or
progression

To systematically associate plant-based diet with health effect we

extracted by text mining plant - disease associations from 21 million

abstracts in PubMed/MEDLINE, covering the period 1908–2012.

In this manner we associated 7,106 plant species, 2,768 of which

edible, with 1,613 human disease phenotypes. The performance of

the classifier was quantitatively estimated to 84.5% accuracy and

84.4% F1-measure on an external test set of 250 abstracts. Natural

Language Processing allowed us to add directionality to these

associations, an extremely valuable feature for dietary recommen-

dations. This enabled us not only to link a certain food to a disease,

but also to characterize the association as being positive (food

associated with disease prevention or amelioration) or negative (food

associated with disease progress). Together with the temporal

parameter that is included in the text-mined data (date of

Author Summary

Until recently diet was considered a supplier of energy and
building blocks for growth and development. However,
current research in the field suggests that the complex
mixture of natural compounds present in our food has a
variety of biological activities and plays an important role
for health maintenance and disease prevention. The
mixture of bioactive components of our diet interacts
with the human body through complex processes that
modify network function and stability. In order to increase
our limited understanding on how components of food
affect human health, we borrow methods that are well
established in medical and pharmacological research. By
using text mining in PubMed abstracts we collected more
than 20,000 diverse chemical structures present in our diet,
while by applying chemoinformatics methods we could
systematically explore their numerous targets. Integrating
the above datasets with food-disease associations allowed
us to use a statistical framework for identifying specific
phytochemicals as perturbators of drug targets and
disease related pathways.

Molecular Level Association of Diet and Health
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publication of articles that associate food to disease), one can make

interesting observations as to when scientists began showing interest

in the health effect of food and how opinion regarding a certain food

has been varying throughout time.

As shown in Figure 2A, research on the health effect of food

effectively began in the early 80’s and until middle 90’s there was

more research activity in relation to the negative effects of foods,

such as their involvement in the development and progression of

allergic reactions and asthma. However, the change of public

opinion towards lifestyle and preventive strategies related to health

in the last 15 years, resulted to an exponential growth of research

papers reporting beneficial effects of plant-based foods against

diabetes mellitus and different types of cancers (e.g. breast cancer,

carcinoma and leukemia), not surprising since these diseases are

the scourge of our time. Also of interest are the contradicting

opinions over time on the health benefit of foods (Figure 2B). Until

the beginning of the 21st century there were only sparse reports on

the health benefits associated with rice consumption, while the last

10 years there are numerous reports describing the positive impact

of a rice-based diet. The opposite trend is observed for peanuts,

which was mainly studied for its beneficial role in cancer before a

number of studies begun correlating its consumption with health

problems, such as allergy and hypersensitivity.

The network of Figure 3A presents the most strongly supported

associations of common foods and health benefits in the public

literature. There are only a handful of common foods that have

been associated either only positively or negatively with disease

phenotypes. Consumption of broccoli, blueberry and camellia-tea

for example, is consistently linked positively with a variety of

disease phenotypes including diabetes mellitus, atherosclerosis and

different types of cancers (Figure 3B). Cassava, a good source of

carbohydrates but poor in protein, which constitutes the basic diet

for many people in the developing world, has only negative

associations with malnutrition, and malnutrition-related pheno-

types (Figure 3C). For the majority of cases however, a particular

food is positively correlated with specific disease phenotypes and

negatively with others, highlighting the importance of personalized

dietary interventions; rice is one characteristic example, associated

positively to hypertension, diabetes, colon and breast cancer and

negatively to dermatitis and hypersensitivity reactions. There are

also several foods, including peanut, chestnut and avocado,

consistently associated negatively with type-1 hypersensitivity

and similar disease phenotypes, such as dermatitis, rhinitis and

urticarial. Not surprisingly, a high number of publications exist for

the negative effects of common foods such as wheat, barley and rye

to celiac disease (also known as gluten intolerance). Figure 3 makes

also evident that considerable research investments have been

made in the past decades for enhancing our understanding of the

association between diet and cancer; breast, prostate and colon

cancers constitute the thickest edges on the network.

Molecular level association of food to human disease
phenotypes

Our main hypothesis for the molecular level association of a

plant-based diet to human disease phenotypes is that the positive or

negative effect of a certain food on human health is due to the

presence of one or more bioactive molecules in it. Towards this end,

we used Fisher’s exact test to systematically detect frequently

occurring phytochemical - disease pairs through the phytochemical

- food and food - disease relations that we extracted by text mining.

At a 5% FDR we identified 20,654 phytochemicals connected to

1,592 human disease phenotypes, with approximately half of the

disease associations being positive (Figure 4A).

Some of these phytochemicals have been previously studied in

vitro for potential biological activity. By integrating information

from ChEMBL we find that, from the 20,654 phytochemicals that

the above analysis suggests as bioactive, approximately 5,709 have

been tested experimentally on a biological target. From the

remaining phytochemicals, for which no experimental bioactivity

data are available, 8,113 compounds are structurally similar to

compounds with known protein targets (estimated with a

Tanimoto coefficient .0.85), indicating similar bioactivity, while

the rest belong to a hitherto unexplored phytochemical space

(Figure 4B).

In order to get an estimate of the performance of our approach

to associate phytochemicals to diseases, we used the Therapeutic

Targets Database to annotate the protein targets from ChEMBL

to diseases. From the 5,709 phytochemicals that are included in

ChEMBL, almost half are active against a biological target that is

relevant for the same disease as the one we have predicted

(Figure 4C).

Adding molecular-level information to food - disease associa-

tions allows us to zoom in the network of Figure 3 and generate

lists of phytochemicals as promising drug-like candidates for

subsequent target-based or cell line-based assay experiments, as we

demonstrate in Table 1 with focus on a number of common cancer

types. For example, 103 phytochemicals from 83 common foods

[22–24] that through our analysis are associated with lung cancer,

are structurally similar with 23 drugs from DrugBank that are

approved for use in lung cancer treatment. In addition, by

integrating information from ChEMBL and TTD, we identify

1,070 phytochemicals from 119 common foods with experimental

activity against a lung cancer drug target. For cancer types, such as

endometrial cancer and adenocarcinoma, where the drugs

currently available in the market are scarce, this approach could

be of particular interest, as it provides new opportunities for the

identification of new drug candidates.

Case study on colon cancer
To demonstrate the full potential of our approach we selected

colon (colorectal) cancer as a case study and analyzed our results in

the three directions shown below. Colon cancer is the second

largest cause of cancer-related deaths in Western countries and

various diet intervention and epidemiological studies suggest that

diet is a vital tool for both prevention and treatment of the disease

[3,25].

(1) One stop legacy knowledge-shop. When one embarks

into studying the effect of food on colon cancer, it is useful first to get

a systems view of the existing knowledge. This includes information

about what types of foods and phytochemicals have already been

tested in relation to colon cancer, which are their biological targets

and how these activities affect the biological networks that consist

the disease pathway. Such a systems view of the influence of dietary

molecules associated to colon cancer is sketched in Figure 5A, based

on the knowledge derived from our text mining approach that has

been projected on the colon cancer pathway from the KEGG

PATHWAY Database (http://www.genome.jp/kegg-bin/show_

pathway?hsadd05210). By surveying our data resource we found

Figure 1. Distribution of plant species and recorded phytochemicals. a) Distribution of phytochemicals on the plant space. Rice, soybean,
maize and potato are the plants with the most recorded phytochemicals: 4,155, 4,064, 3,361 and 2,988 compounds respectively. b) Structures of
representative phytochemicals that have made the way to the pharmacy shelves and their occurrence in respective edible sources.
doi:10.1371/journal.pcbi.1003432.g001
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519 plants associated with a health benefit towards colon cancer.

Statistical analysis of the data for frequently occurring phytochem-

ical - disease pairs, reveals significant associations between 6,418

phytochemicals and colon cancer. Among the molecules associated

with a health benefit for colon cancer, 623 of them have

experimentally verified activity against proteins involved in the

colon cancer pathway (nodes with a grey ring in Figure 5A).

Naringenin, apigenin, quercetin, ellagic acid and genistein are

examples of such compounds. Naringenin is commonly found in

barley, beans and corn and apigenin is found in chestnuts, celery

and pear. These foods have been associated with colon cancer

prevention in a number of studies [26–28]. When tested in vivo, both

compounds have been found able to suppress colon carcinogenesis

[29]. In addition, in in vitro experiments naringenin and apigenin

have seven targets on the KEGG colon cancer pathway. Quercetin,

found in artichoke, carrot and cassava, and ellagic acid, present in

grapes, papaya and olives have seven and five targets, respectively,

on the KEGG colon cancer disease pathway, while genistein, found

in pistachio-nuts and onions, has four. In most, if not all, of these

cases, interest on the biological activity of the phytochemicals

emerged after observations that the foods that contain them have

some health benefit in relation to colon cancer prevention and

treatment [30–32].

Typical drugs in the market against colon cancer are listed in

Figure 5B, along with their main protein targets. By surveying our

data resource we identified a number of phytochemicals that have

measured experimental activity against the same proteins. Ribofla-

vin monophosphate, for example, which is found in many common

foods such as almond, broccoli and tomato, is one among the 16

phytochemicals we have identified with biological activity against

thymidylate synthase, the main target of drugs 5-fluorouracil and

capecitabine [33]. Similarly, reserpine, a natural compound that has

found applications as antihypertensive and antipsychotic, exhibits

activity against DNA topoisomerase I [34] - the target of the colon

cancer drug irinotecan - which could be interesting to investigate

further in the light of drug repurposing.

Figure 2. The association of foods with disease prevention/amelioration or disease progression throughout time. a) Examples of well
studied foods in relation to positive (disease prevention/amelioration) and negative (disease progression) effect on health. The focus varies from
negative effects (below 0) to positive effects (above 0) over the years. The value on the y-axis denotes the number of negative publications
subtracted from the number of positive publications in a given year. b) Examples of well studied disease phenotypes in relation to food consumption.
Likewise, the figure illustrates a change in focus from negative effects (below 0) to positives effects (above 0).
doi:10.1371/journal.pcbi.1003432.g002

Figure 3. Food – disease association network. a) Disease phenotypes associated with common vegetables, fruits and plants of our diet. Foods
are shown as green nodes and human disease phenotypes as purple nodes. Disease prevention/amelioration is depicted as a blue edge and disease
promotion as a red edge. The size of the edge indicates the number of publications in support of the association. An edge is drawn between a food
node and a disease node when there are at least five publications in support of this association. When a disease node has more than five edges, only
the five strongest (with the most publication support) are shown on the network for the sake of clarity. Top left: zoom in the network formed
between diabetes mellitus and foods that prevent/ameliorate the disease. Bottom left: zoom in the network formed between Type 1 hypersensitivity
and foods that promote it. b) Examples of a vegetable (broccoli), a fruit (blueberry) and a plant-based beverage (camellia-tea) that are only positively
associated with disease phenotypes. c) Two examples of foods that are only negatively associated with disease phenotypes.
doi:10.1371/journal.pcbi.1003432.g003
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(2) Discovery of novel bioactive compounds with drug-like

properties. As we saw above, from the 6,418 molecules

associated with a health benefit for colon cancer, only 623 have

experimentally verified activity against colon cancer protein targets

(Figure 5C). On the remaining phytochemical space linked to

colon cancer, we can use chemoinformatics approaches to

predict activity based on compound structure and select the

most promising candidates for in vitro testing. By encoding the

structure in 2D fingerprints and setting a Tanimoto coefficient

of 0.85 as the similarity threshold, 1,415 molecules turn up as

structurally similar to a phytochemical or a synthetic compound

from ChEMBL with activity against a protein from the colon

cancer pathway or a colon cancer drug target (Figure 5B). The

compounds listed in Table 2 are such examples, for which we

can infer their bioactivity from experiments performed on

structurally similar compounds.

In regards to the remaining phytochemicals that our approach has

associated to colon cancer, for which there exists no experimental

protein target information and are not structurally similar with

molecules that interact with colon cancer proteins, more advanced

chemoinformatics techniques could be applied, such as pharmaco-

phore-based similarity and docking. Alternatively, in vivo assays in

model animals or in vitro experiments on disease cell lines could assist

in elucidating their bioactivity. Such compounds with strong

statistical support are beta-caryophyllene [35], guaiacol [36] and

alloisoleucine [37] (p-value,10223). Guaiacol, for example, has

Figure 4. Association of phytochemicals to human disease phenotypes. The flow diagram illustrates the approach we followed for
associating phytochemicals to human disease phenotypes. a) In the phytochemical - food and food - disease relations that we extracted by text
mining, there are 7,077 plants with both phytochemical and human disease annotation. We used Fisher’s exact test to identify statistically significant
correlations between phytochemical and human disease phenotypes. At a 5% false discovery rate we identified 20,654 phytochemicals associated to
1,592 human disease phenotypes. b) 5,709 of the text-mined phytochemicals have been tested experimentally on a biological target and the activity
data have been deposited in ChEMBL. For the remaining two thirds of the compounds, 8,113 phytochemicals are structurally similar to compounds
with known protein targets (estimated with a Tanimoto coefficient .0.85), indicating similar bioactivity. The rest of the compounds, 6,832
phytochemicals, are not similar to any known bioactive compound and belong to a hitherto unexplored phytochemical space. c) We used the
Therapeutic Targets Database to annotate the protein targets from ChEMBL to diseases. From the 5,709 phytochemicals that are included in ChEMBL,
2,354 are active against a biological target that is relevant for the same disease as the one we have predicted.
doi:10.1371/journal.pcbi.1003432.g004
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been identified in 93 plants in total, 32 of which are associated in the

literature with colon cancer.

(3) Discovery of novel health benefits from foods. One of

the key observations from our analysis is that the majority of

phytochemicals is found in a variety of foods, even in foods that

are distant taxonomically. Thus, information about the bioactive

phytochemical content of one food that has been characterized as

beneficial towards colon cancer could help us identify other foods,

which contain the same bioactive phytochemicals that may have

similar health benefits. For example, cauliflower has been

associated with a preventive effect on colon cancer [38,39]. The

adzuki bean shares 800 phytochemicals with it and could

potentially have a similar effect on colon cancer as well; there

exists, however, no such evidence in the literature. Such

comparisons of phytochemical profiles could also find applications

in the design of nutrigenomics studies, with the purpose to confirm

that the study group follows a reference diet as different as possible

from that of the control group, i.e. the two diets do not contain

foods with similar phytochemical profiles.

Discussion

Food is a complex system that has an equally complex pattern of

interactions with the human organism. As such, it consists the ideal

platform for applying a systems biology approach, where different

heterogeneous data sources are integrated and analyzed in a

holistic way. Ferguson and Schlothauer in a review article that was

published in 2012 [3] illustrated how information on the beneficial

effect of broccoli against cancer is enriched by the integration of

genomics, proteomics and metabolomics data. For a well studied

food such as broccoli there is a rich body of evidence regarding its

bioactive phytochemicals. Nevertheless, gathering and visualizing

all evidence at once offered novel insights into the mechanisms by

which broccoli may prevent cancer or retard cancer growth and

progression.

An enormous scientific literature focusing on bioactive plant

extracts and their phytochemicals, encompassing thousands of

scientific papers, has emerged over the years. However, in order to

utilize this wealth of information and integrate it with other types

of data within systems biology studies, it is essential to first locate

and then retrieve it in a high-throughput manner. The approach

we have demonstrated here, which relies on the text mining of

abstracts in PubMed/MEDLINE, has associated 23,137 phyto-

chemicals with 15,722 plants, including approximately 2,768

edible fruits, vegetables and plant-based beverages. Even though

there are several ongoing efforts that aim to collect information on

molecular composition of food in a single resource, i.e. the Danish

Food Composition Database (http://www.foodcomp.dk) centered

on well-known organic nutrients, such as vitamins, amino acids,

carbohydrates and fatty acids; the Phenol-Explorer [40] with

information in text format for 500 polyphenols in over 400 foods

and the KNApSAcK Family Database [17], these are rather

limited in focus and size. For a molecular systems chemical biology

approach of diet, the lack of chemical structures in the above

databases is another significant bottleneck, as linking chemical

names to a chemical structure in a high-throughput manner is

Table 1. Phytochemicals are associated with diseases via the approach illustrated in Figure 4.

Cancer type (DOID) # drugs1

# associated
phytochemicals
similar to a drug

# associated phytochemicals
with experimental
disease-related target2

# common foods
with disease-associated
phytochemicals3

Breast cancer (1612) 44 344 1,840 94 (120)

Leukemia (162) 36 302 1,067 95 (118)

Lung cancer (1324) 23 103 1,070 83 (119)

Prostate cancer (10283) 20 170 2,105 82 (120)

Lymphoma (0060058) 20 146 527 80 (115)

Urinary system carcinoma (3996) 11 28 1,623 58 (121)

Ovarian cancer (2394) 11 15 1,219 49 (117)

Sarcoma (1115) 8 38 45 26 (82)

Intestinal cancer (10155) 8 52 1,530 86 (120)

Testicular cancer (2998) 7 41 0 51 (0)

Kidney cancer (263) 6 12 1,605 39 (121)

Melanoma (1909) 5 4 275 11 (114)

Renal cell carcinoma (4450) 5 8 1,271 30 (120)

Pancreatic cancer (1793) 4 28 1,331 53 (119)

Liver cancer (3571) 4 24 781 53 (118)

Skin carcinoma (3451) 2 8 11 16 (58)

Adenocarcinoma (299) 2 28 7 44 (19)

Endometrial cancer (1380) 2 97 20 58 (88)

For exemplary cancer types, we list the number of phytochemicals that are similar to small compound drugs that are approved for treatment of the disease (column 3),
the number of phytochemicals that have experimental activity against a target implicated in this cancer type (column 4) and the corresponding number of common
foods that contain these phytochemicals (column 5).
DOID: Human Disease Ontology Identifier.
1from DRUGBANK.
2from ChEMBL and TTD.
3similar to a drug (with exp. disease-related target).
doi:10.1371/journal.pcbi.1003432.t001
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Target name Uniprot ID
Compounds 

identical to ChEMBL 
compounds

Compounds 
similar to ChEMBL 

compounds
Thymidylate Synthase P04818 16 84
Vascular Endothelial 
Growth Factor P15692 0 20

DNA Topoisomerase I P11387 24 88
Epidermal Growth Factor 
Receptor P00533 383 527

1415 compounds
(22%)

4380 compounds
(68%)

623 compounds
(10%) 

Phytochemicals similar to compounds with 
experimental activity against disease-related 
proteins and known drug-targets 

Novel phytochemical space 

Phytochemicals with experimental activity against 
disease-related proteins and known drug-targets 

CCND1

MYC

JUN
FOS

MAPK3
MAPK1

MAP2K1

PIK3CD

PIK3CG

GSK3B

PIK3R2

PIK3R1
AKT3

AKT2

AKT1

BAD
PIK3R5

CASP9

PIK3CB

ARAF

RAF1

BRAF

PIK3CA

KRAS

PIK3R3

MAPK8
RAC1

MAPK10

RHOA

RAC2

RAC3

MAPK9

RALGDS

CTNNB1

BIRC5
LEF1

TCF7

TCF7L1

TCF7L2

BAX

BCL2

CASP3

DCC

SMAD4

SMAD2

SMAD3

Number of compounds with experimental
 activity (log 10-scale)

GSK3B, AKT1, MAP2K1,
MAPK1, MAPK10, MAPK8,
MAPK9

Food Compound

Quercetin (CID:5280343)

Ellagic acid (CID:5281855)

Genistein (CID:5280961)

Apigenin (CID:5280443)

Targets

CCND1, MAPK3, MAPK1,
AKT1

CCND1, AKT1, MAPK1,
BRAF, GSK3B

GSK3B, AKT1, MAP2K1,
MAPK1, MAPK10, MAPK8,
MAPK9

AKT1, CCND1, GSK3B,
MAPK3, MAPK1, MAPK8,
MAPK9

Naringenin (CID:932)

Celery

Beans
Corn
Barley

Chesnut
Pear

Artichoke
Carrot

Cassava

Grapes
Papaya

Pistachio
Onion

Olives

A

B

C
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not yet a straightforward process [41]. The most important

contribution of our study is that it uses all the evidence generated

during the last 100 years supporting health benefits of vegetables,

fruits and other plants for establishing associations between foods,

phytochemicals and human diseases, where entities from all three

classes are annotated with unique, standard identifiers, so that they

can be traceable in other databases. Moreover, chemical names

and synonyms of all phytochemicals are linked to a unique

chemical structure, which, besides traceability in other resources,

allows for the application of chemoinformatics tools and their

integration in systems chemical biology analyses. Last but not

least, food associations to disease are annotated with directionality,

which differentiates between causative and preventive effects of the

food in relation to the specific disease.

Nevertheless, and despite the enormous amount of information

collected here, we should also point out that inherent bias of meta-

analysis allows for further improvements in our text mining pipeline. For

example, while PubMed/MEDLINE is the most appropriate database

for associating dietary interventions with disease phenotypes, it is

certainly lacking scientific journals focused on the chemical composition

of plants (for example, the Springer journal of Metabolomics;

www.springer.com/lifesciences/biochemistry&biophysics/journal/11306).

In order to overcome other common pitfalls of meta-analysis, such as

data quality and data independence, it is our intention in the future to

investigate the use of weighting parameters on the retrieved

associations, so that, for example, associations generated from

different labs constitute stronger evidence than associations from

the same research team.

As we show in the case study on colon cancer, associating food,

phytochemical content and diseases can build the basis for

discovering novel bioactive compounds with drug-like properties.

Furthermore, our analysis brought to the surface an undiscovered

dietary component space of 8,113 phytochemicals that has not

been previously linked to a health benefit and bears no structural

similarities to other bioactive phytochemicals with established

molecular targets. This represents a forthright opportunity for

biochemists and nutritionists and offers a good basis for an

attractive drug discovery platform.

At the same time, food safety authorities are concerned about

the presence of compounds in herbal products and dietary

supplements that could exert toxicity to humans [42]. For

example, myristicin, a known component of nutmeg [43] and

glycoalkaloids that are present in potatoes [44] can be extremely

dangerous when taken in large doses. It is thus of great value to

have in silico tools that are able to quickly list all phytochemicals

associated to a given food in the public literature, and subsequently

interrogate databases (e.g. the Comparative Toxicogenomics

Database, http://ctdbase.org) for experimental evidence that

associates the compounds in question or structurally similar

compounds with a toxic effect.

Similar to research in the field of nutrition, scientists in

ethnomedicine are seeking for evidence that can explain at the

molecular level the health effect of traditional medicine. Ethno-

medicine, such as Traditional Chinese Medicine and Ayurveda

has existed and supported human health for thousands of years. A

major barrier for developing an ethnomedicine evidence-based

knowledgebase is that the current information related to plant

substances for medicinal purposes is scattered and unstructured

[45]. We provide a solution to this problem by extracting in a

structured and standardized format phytochemicals that are

associated with a medicinal plant, either in the open literature of

the last 100 years or in the ethnomedicinal databases that we have

in-house. Our approach facilitates the identification of novel

bioactive compounds from natural sources and the repurposing

Table 2. Phytochemicals (column 1) from common foods (column 2) with inferred activity to a colon cancer protein (column 3),
based on structural similarity with an active compound from the ChEMBL library (column 4).

Compound name # common foods
Predicted colon
cancer target

Similar bioactive
compound (Tc)

p-value for
colon cancer

Vanillin 18 CCND1 CHEMBL53781 (0.86) 10223

Folic acid 19 MAPK1, MAPK3, ERBB2 CHEMBL1679 (0.85) 10223

Spermidine 16 CASP3 CHEMBL23194 (1.00) 10212

Vanillic acid 27 MAPK1, MAPK3, ERBB2 CHEMBL32749 (0.88) 10212

Chalconaringenin 1 JUN CHEMBL129795 (0.86) 10211

Protocatechuic acid 30 EGFR CHEMBL145 (0.86) 1027

Quercetin-3-glucoside 34 EGFR CHEMBL486625 (0.85) 1024

Folinic acid 1 TYMS CHEMBL439741 (0.88) 10211

Protopanaxatriol 4 TOP1 CHEMBL1096728 (0.85) 1023

Listed compounds are examples of compounds predicted by our approach to have a positive effect against colon cancer, where p-values are included in column 5.
doi:10.1371/journal.pcbi.1003432.t002

Figure 5. Targeting the colon cancer disease pathway with food components. a) The KEGG colon cancer disease pathway map is illustrated
on the right, where the number of phytochemicals with experimentally measured bioactivity data is depicted as grey ring of varying width. Examples
of bioactive phytochemicals are listed on the left, along with typical food source and biological target. b) Protein targets of typical colon cancer drugs
and number of phytochemicals with experimental and predicted activities against them. c) From the 6,418 molecules associated with a health benefit
for colon cancer, 623 have measured experimental activity against proteins from the colon cancer pathway or targets of colon cancer drugs. On the
remaining phytochemical space linked to colon cancer, we can use chemoinformatics to predict activity based on compound structure and select the
most promising candidates for in vitro or in vivo experimental validation. Accordingly, we have identified 1,415 phytochemicals with potential activity
against colon cancer. For reasons of consistency with the disease pathway map, protein targets are given with their corresponding gene names.
doi:10.1371/journal.pcbi.1003432.g005
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of medicinal plants to other diseases than the ones traditionally

used for, and builds a step towards elucidating their mechanism of

action.

Conclusion
Food is a factor that exerts influence on human health on a daily

basis. Modulating the expression and the activity of enzymes,

transcription factors, hormones and nuclear receptors is how food

and its bioactive constituents modulate metabolic and signaling

processes. The aim of our study is to provide the molecular basis of

the effect of food on health in the complete spectrum of human

diseases and to suggest why and how diet and dietary molecules

may represent a valuable tool to reinforce the effect of therapies

and protect from relapse.

Our systematized approach for connecting foods and their

molecular components to diseases makes possible similar analyses

as the one illustrated for colon cancer for approximately 2,300

disease phenotypes. In addition, it provides the phytochemical

layer of information for nutritional systems biology studies with the

aim to assess the systemic impact of food on health and make

personalized nutritional recommendations.

Methods

Mining the literature for plant - phytochemical pairs
We retrieved the names of land plant species (embryophyta) and

their synonyms from NCBI (http://www.ncbi.nlm.nih.gov/

taxonomy). Chemical compound names and synonyms were taken

from the argument browser Reflect [14]. With these two

dictionaries the mining of 21 million titles and abstracts of

PubMed/MEDLINE (http://www.nlm.nih.gov) was carried out

using ChemTagger (https://pypi.python.org/pypi/ChemTagger).

A Naive Bayes Classifier (https://pypi.python.org/pypi/Naive

Bayes) was trained to recognize pairs of plants and phytochem-

icals.

A set of 200 tags, – plant and compound name entities – from

200 abstracts was compiled for training. As positive training set

(PTS) we manually compiled a set of 75 abstracts mentioning

plants and their phytochemical content. As negative training set

(NTS) we manually compiled a set of 125 abstracts mentioning

plants and chemical compounds, which we judged that did not

refer to an actual plant - phytochemical content relationship. This

includes, for example, abstracts that associate plants with synthetic

small compounds in the context of chemical extraction and

purification of plant extracts (e.g. ecdysonoic acid, 3-acetylecdy-

sone 2-phosphate [46]) A feature vector was complied consisting of

words within the abstract that were in proximity of each name-tag.

The lexical features were chosen based on the term frequency–

inverse document frequency (tf-idf) [47] and were sorted with the

most frequent feature on the top and the least frequent at the

bottom of the list. The training of the classifier commenced with

only the highest score feature, while features with the next higher

scores were added one by one, until the accuracy of the classifier

stabilized at 31 features. Words such as ‘‘compound’’, ‘‘isolated’’,

‘‘extract’’ and ‘‘concentrated’’ were the features with the highest tf-

idf score. Training was carried out using leave-one-out cross

validation on the shuffled training data set. The performance of

the classifier was subsequently evaluated on an external, balanced

test set of 250 positive and negative abstracts, and resulted to

88.4% accuracy and 87.5% F1-measure. When the classifier was

applied to the raw text of PubMed/MEDLINE, it retrieved 23,137

phytochemicals from 15,722 land-plant species (embryophyta)

associated through 369,549 edges.

Chemical structures of the text-mined phytochemicals were

retrieved from PubChem [48] ChEBI [49], CHEMLIST [50], the

Chinese Natural Product Database [18] (CNPD) and the

Ayurveda [19] that we have previously curated in-house [19].

Canonical SMILES were calculated with OpenBabel (http://

openbabel.org/wiki/Canonical_SMILES) with no salts, isotopic

or chiral center information. Edible plant names were retrieved

from Plant For A Future (PFAF) (http://www.pfaf.org) and were

mapped to NCBI IDs.

The taxonomy of plant species was retrieved from NCBI

taxonomy (http://www.ncbi.nlm.nih.gov/taxonomy). Overrepre-

sentation of phytochemicals on the taxonomy was calculated by

using Fishers exact test, following the Benjamini-Hochberg

procedure with a 5% false discovery rate [21]. A phytochemical

that is significantly overrepresented on a specific class, order,

family or genus of the taxonomy denotes that it is not randomly

distributed over the whole tree. Since the association of plants to

their phytochemicals was performed on the genus level, for this

analysis we projected the phytochemical content of a child node to

the parent node.

Mining the literature for plant - disease associations
The names of land plant species (embryophyta) and their

synonyms were taken from NCBI (http://www.ncbi.nlm.nih.gov/

taxonomy). We retrieved 70,005 human disease terms and

synonyms from the Open Biological and Biomedical Ontologies

(OBO) Foundry [51]. The list of 143 common, non-processed

foods was retrieved from the Danish Food Composition Database

(http://www.foodcomp.dk). Names were mapped to NCBI land

plant species and whenever var. IDs were available, they were

subsequently collapsed to the corresponding species ID (e.g.

broccoli and kale are varieties of the same Brassica olerasea species).

With these two dictionaries, text mining of 21 million titles and

abstracts of PubMed/MEDLINE (http://www.nlm.nih.gov) was

carried out using ChemTagger (https://pypi.python.org/pypi/

ChemTagger).

A Naive Bayes Classifier (https://pypi.python.org/pypi/

NaiveBayes) was trained to recognize pairs of plants and the

associated human disease phenotypes. A set of 2,074 name-tags,

plants and human disease phenotype name entities from 333

abstracts was compiled for training. Plants and human diseases

with a ‘preventive’ association were used as the positive training set

(PTS) and plants and human diseases with a ‘promoting’

association as the negative training set (NTS). Name entities of

plants and human diseases mentioned in other contextual

associations were used as the ‘noise’ training set (OTS).

For the training of the Naive Bayes Classifier, the lexical

features were chosen based on the tf-idf score [47] and were sorted

with the most frequent feature on the top and the least frequent at

the bottom of the list. The training of the classifier commenced

with only the highest score feature, while features with the next

higher scores were added one by one, until the accuracy of the

classifier stabilized at 71 features. Words such as ‘‘treatment’’,

‘‘effect’’, ‘‘patient’’, ‘‘disease’’ and ‘‘plant’’ were the features with

the highest tf-idf score. Training was carried out set using leave-

one-out cross validation on the shuffled training data set. The

performance of the classifier was subsequently evaluated on an

external, balanced test set of 250 positive and negative abstracts,

and resulted to 84.5% and an F1-measure of 84.4%. When the

classifier was applied to the raw text of PubMed/MEDLINE, it

retrieved 7,178 land-plant species associated with 1,613 human

disease phenotypes through 38,090 edges. Plant - disease networks

were constructed in Cytoscape v.2.8.1.
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Molecular level association of plant consumption to
human disease phenotypes

We performed a categorical Fisher’s exact test with the

Benjamini-Hochberg procedure and a 5% false discovery rate

[21] to associate particular phytochemicals with human disease

phenotypes. Our alternative hypothesis was that the proportion of

plants associated with a particular phytochemical is higher among

the plants with a specific human disease phenotype than among

those without. Our null hypothesis was that there is no relationship

between plants associated with a particular phytochemical and a

specific human disease phenotype.

Phytochemicals were associated to protein targets though

experimental chemical-protein association data from ChEMBL,

version 15 [52]. Canonical SMILES with no salts, isotopic or

chiral center information (http://openbabel.org/wiki/

Canonical_SMILES) were used as the unique molecular identifier

for searching for common small compound entities between the

phytochemical and ChEMBL lists. Human proteins were

associated to diseases through the Therapeutic Targets Database

[53] (TTD Version 4.3.02). Disease names were mapped to the

OBO Foundry human disease ontology and ordered in disease

categories. Disease pathway networks were constructed in

Cytoscape v.2.8.1.

Case study on colon cancer
The colon cancer disease pathway was obtained from KEGG

PATHWAY Database (http://www.genome.jp/kegg-bin/show_

pathway?hsadd05210). The network was constructed in Cytoscape

v.2.8.1. Phytochemicals were associated to the proteins from the

disease pathway though experimental chemical-protein association

data from ChEMBL, version 15 [52]. Canonical SMILES with no

salts, isotopic or chiral center information (http://openbabel.org/

wiki/Canonical_SMILES) were used as the unique molecular

identifier for searching for common small compound entities

between the phytochemical and ChEMBL lists. Colon cancer

drugs were obtained from KEGG Disease Entry: H00020 (http://

www.genome.jp/dbget-bin/www_bget?ds:H00020) and their re-

spective protein targets from the Therapeutic Targets [53] (TTD

Version 4.3.02).

Supporting Information

Figure S1 Mapping the phytochemical space on the
plant taxonomy. 37,351 phytochemicals were mapped on the

plant taxonomy. Only 8% of the recorded phytochemicals show

localized enrichment (p-value,1024). The taxonomy of land-plant

species (embryophyta) was retrieved from NCBI taxonomy

(http://www.ncbi.nlm.nih.gov/taxonomy). Nodes represent Class-

es (yellow), Orders (blue), Families (green) and Genera (pink) of the

taxonomy tree. Links are placed between a parent and a child

node, if they share conserved phytochemicals. A phytochemical is

conserved, when it is overrepresented on both the parent and the

child nodes. The width of the link corresponds to the number of

conserved phytochemicals between parent and child nodes. The

size of the node corresponds to the number of overrepresented

phytochemicals on a given class, order, family or genus.

(EPS)

Table S1 List of phytochemicals described as SMILES that are

localized on a taxonomy class, order, family or genus.

(XLS)
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