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Abstract

Information is encoded in neural circuits using both graded and action potentials, converting between them within single
neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy
efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron
models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models
lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-
product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation
increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a
‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by
,50% in generator potentials, to ,3 times that of spike trains. Both generator potentials and graded potentials consume
almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator
potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude
more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that
there is a two-fold cost of converting analogue to digital; information loss and cost inflation.
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Introduction

Information is encoded, processed and transmitted in neural

circuits both as graded potentials (continuous, analogue) and

action potentials (pulsatile, digital). Although sensory and chemical

synaptic inputs to neurons are graded [1], in most neurons these

are converted into a train of action potentials. This conversion

overcomes the attenuation of graded signals that occurs as they are

propagated over long distances within the nervous system [2], and

may prevent noise accumulation in neural networks because

pulsatile signals are restored at each successive processing stage

[3,4]. However, because spike trains use discrete pulses of finite

precision they have a lower dimensionality than analogue voltage

signals, reducing their signal entropy [4]. Consequently, spike

trains can encode fewer states within a given time period than

analogue voltage signals. This is borne out by experimental

measurements that show the conversion of the graded generator

potential into a spike train reduces the information rate [5–7].

Thus, non-spiking neurons that encode information as graded

potentials typically have much higher information rates than

spiking neurons [5,8,9].

A drop in the energy efficiency of information coding has also

been suggested to accompany the conversion of graded to action

potentials [3,10]. Neuronal energy consumption is dominated by

the influx/efflux of ions, which must be pumped back across the

cell membrane by the Na+/K+ ATPase consuming ATP [3,11,12].

These ion movements can incur substantial energy costs even in

graded potential neurons [3,13]. However, the large Na+ influx

during action potentials requires additional cellular energy to

extrude, though the precise energy cost will vary among neuron

types [11,14–16].

Our aim is to identify the causes of the loss of information and

energy efficiency when graded potentials are converted to action

potentials. Although some causes of information loss in spiking

neurons have been studied previously, such as channel noise [17–

19] or dimensionality reduction [6,20], in most cases their effects

on information rates have not been quantified. We quantified both

information rates and energy efficiency using single compartment

models. We compared the information rates, energy consumptions

and energy efficiencies of spike trains with those of the generator

potentials that triggered the spike trains, and of the graded

response produced in the absence of voltage-gated Na+ channels.

We find that three previously unreported effects reduce the

information rate and efficiency of the generator potential by 50%;

namely the finite durations of action potentials, and the noise and

nonlinearity introduced by voltage-gated ion channels. The effect

of channel noise on spike timing reduces the information rate and

efficiency by ,10%. We conclude that the conversion of graded
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signals to ‘‘digital’’ action potentials imposes two penalties; spikes

increase energy costs and both spike coding mechanisms and the

spike code reduce information rates. As a result energy efficiency

falls by well over 90%.

Results

We simulated the responses of a 100 mm2 single compartment

model containing stochastic voltage-gated Na+ and K+ channels to a

300 Hz band-limited white-noise current stimulus to assess infor-

mation coding in a spiking neuron model (see Methods)

(Figure 1A,B). By altering the stimulus mean and standard deviation

the model captured a wide range of neuronal activity patterns. Low

mean, high standard deviation inputs produced voltage responses

that resembled relay neurons, the activity of which is dominated by

large post-synaptic potentials from relatively few pre-synaptic

neurons, such as principle cells of the Medial Nucleus of the

Trapezoid Body that receive synaptic inputs from the Calyx of Held

[21]. High mean, low standard deviation inputs produced voltage

responses that resembled those of integrator neurons, the activity of

which is determined by a large number of small post-synaptic

potentials, such as motor neurons [22].

By incorporating voltage-gated Na+ and K+ channels within the

same compartment as a current input stimulus, we modelled the

conversion of an analogue signal into a train of action potentials

(APs or spikes), as would occur at the spike initiation zone of a

neuron [23]. No extrinsic noise was added to the current stimulus

in most of our simulations, consequently stochastic fluctuations of

the voltage-gated ion channels were the only noise source. This

stimulus produced small, sub-threshold graded fluctuations in

membrane potential as well as action potentials approximately

100 mV in amplitude (Figure 1C). These transient 100 mV

excursions to the peak voltage produced a skewed probability

density function (PDF) of the membrane potential with a long tail

(Figure 1D).

We compared the information encoded by the spiking neuron

model with that encoded by an equivalent analogue model in

response to the same white-noise current stimuli with varying

mean amplitudes and standard deviations (Figure 1E,F). The

analogue model lacked voltage-gated Na+ channels but was

identical to the spiking neuron model in all other respects. In

this model, current stimuli produced small, graded fluctuations in

membrane potential with an approximately Gaussian PDF

(Figure 1F). We extracted the power spectra of the signal and

noise from these graded fluctuations and used them to calculate

Shannon information rates [24,25] (Methods). The rates at which

spike trains coded information was calculated from the total

entropy and noise entropy of the spikes using the direct method

[26]. Both models, graded and spiking, encoded the most

information when stimulated by low mean, high standard

deviation currents and the least information with high mean,

low standard deviation currents (Figure 2A,B). Thus, the

information rate of both neuron models is critically dependent

upon the statistics of the input stimulus.

The information encoded by the graded neuron model for each

input stimulus was greater than that of the spiking neuron model

(Figure 2A,B). The highest information rate attained by the spiking

neuron model was 235 bits/s, whereas the graded neuron model

attained information rates of 2240 bits/s. Thus, the graded neuron

model encodes almost an order of magnitude more information

per second than the spiking neuron model, reproducing experi-

mentally observed differences between graded and spiking neurons

[5–8].

Information coding in spiking neurons is dependent upon the

rate and timing of the action potentials with which it samples the

input stimulus [27]. We calculated the firing rate of the spiking

neuron model in response to the same set of band-limited white

noise current stimuli used previously to calculate information rates

(see Methods) (Figure 3A). Increasing the stimulus mean or

standard deviation increased the firing rate; low mean, high

standard deviation or high mean, low standard deviation stimuli

produced approximately 57 spikes/s whereas high mean, high

standard deviation stimuli generated the highest spike rates of

approximately 86 spikes/s (Figure 3A). Because these firing rates

are lower than the maximum firing rates that the spiking neuron

model can achieve, the information rates are not limited by the

absolute refractory period.

The total entropy of a spike train reflects its total variability over

time [26]. The highest total entropy occurred with high mean,

high standard deviation stimuli that produced the highest spike

rates, conversely, the lowest total entropy occurred with low mean,

low standard deviation stimuli that produced the lowest spike rates

(Figure 3B). However, noise prevents neurons from achieving the

maximal information rates, as bounded by the total entropy [26].

We quantified the differences in action potential reliability by

calculating the noise entropy among spike trains generated by

many repetitions of an identical current stimulus (Figure 3C).

Increasing the stimulus standard deviation increased the number

of transients in the stimulus that cross the voltage threshold at high

velocity. Consequently, high standard deviation stimuli generated

spike trains that were both precise and reliable among trials with

low noise entropy (Figure 3C; Figure S1A) [28]. Conversely, as the

mean increased the variance in the interspike interval influenced

spike timing, reducing the reliability of the spike trains and

increasing the noise entropy (Figure 3C; Figure S1B).

The total and noise entropy together determine the information

rate of the spiking neuron model for a particular input stimulus

(Figure 2A). Low mean, high standard deviation stimuli generated

spike trains that have only intermediate firing rates and total

entropies but have the highest information rates due to their low

noise entropy. High mean, high standard deviation stimuli

generated spike trains with lower information rates despite their

Author Summary

As in electronics, many of the brain’s neural circuits
convert continuous time signals into a discrete-time binary
code. Although some neurons use only graded voltage
signals, most convert these signals into discrete-time
action potentials. Yet the costs and benefits associated
with such a switch in signalling mechanism are largely
unexplored. We investigate why the conversion of graded
potentials to action potentials is accompanied by sub-
stantial information loss and how this changes energy
efficiency. Action potentials are generated by a large
cohort of noisy Na+ channels. We show that this channel
noise and the added non-linearity of Na+ channels destroy
input information provided by graded generator poten-
tials. Furthermore, action potentials themselves cause
information loss due to their finite widths because the
neuron is oblivious to the input that is arriving during an
action potential. Consequently, neurons with high firing
rates lose a large amount of the information in their inputs.
The additional cost incurred by voltage-gated Na+ chan-
nels also means that action potentials can encode less
information per unit energy, proving metabolically ineffi-
cient, and suggesting penalisation of high firing rates in
the nervous system.

Signal Encoding and Efficiency
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higher firing rates because noise entropy is higher. Consequently,

the information per spike was highest (4 bits/spike) with low mean,

high standard deviation stimuli that produced the highest

information rates (235 bits/s) with only moderate firing rates

(57 Hz), and lowest (0.2 bits/spike) with high mean, low standard

deviation stimuli that produced the lowest information rates (10.2

bits/s), also with moderate firing rates (58 Hz) (Figure 3D).

Channel noise and spiking
To determine the effect of noise generated by the voltage-gated

Na+ and K+ channels on the information rates of the spiking

neuron model, we replaced either the stochastic Na+ or K+

channels with deterministic channels thereby eliminating this

component of the channel noise. In comparison to the stochastic

model, the deterministic Na+ channel model generated more

reliable spike trains for a given stimulus (Figure S1A,S2A).

Similarly, replacing the stochastic K+ channels in the spiking

neuron model with deterministic channels also generated more

reliable spike trains for a given stimulus in comparison to the

original spiking neuron model (Figure S1A,S2B).

We quantified differences in the reliability between the original

stochastic spiking neuron model, the modified model with

deterministic Na+/stochastic K+ channels, and the modified

model with stochastic Na+/deterministic K+ channels. We

compared the total entropy, noise entropy, information rate and

information per spike for spike trains generated by low mean, high

standard deviation stimuli or high mean, low standard deviation

stimuli (Figure 4). All three models produced 50–57 spikes/s in

response to the stimuli (Figure 4A). In comparison to the original

spiking neuron model with stochastic Na+ and K+ channels, the

total entropy of the deterministic K+ channel model was lower by

1–7%, whereas the total entropy of the deterministic Na+ model

was almost identical (Figure 4B). The deterministic K+ channel

model also had the lowest noise entropy, making the APs more

reliable (Figure 4C). Both models with deterministic ion channels

had higher information rates than the original model because of

their lower noise entropy, but the difference was just 7%,

irrespective of the stimulus statistics (Figure 4D). This suggests

that channel noise has relatively little impact on the information

rate of the 100 mm2 single compartments we modelled. Thus, in

addition to channel noise and dimensionality reduction, there

must be other sources of information loss.

Information encoded in the generator potential
The information in the spike train comes from the generator

potential (Figure 5A). However, the generator potential is not

Figure 1. Voltage responses of spiking and graded potentials. A. The band-limited 300 Hz filtered Gaussian white noise current stimulus. B.
The probably density function (PDF) of the current stimulus shown in A. C. A voltage response of the spiking neuron model to the current stimulus
shown in A. D. The PDF of the spiking neuron model’s voltage response. E. A voltage response of the graded neuron model to the current stimulus
shown in A. F. The PDF of the graded neuron model’s voltage response. (Inset) A QQ plot showing departures from a Gaussian distribution (dotted
red-line) for the time-series shown in E.
doi:10.1371/journal.pcbi.1003439.g001
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equivalent to the voltage signals produced by the graded potential

model, which lacks voltage-gated Na+ channels. We constructed

an approximation of the generator potential, the pseudo-generator

potential, by removing the action potentials from spike trains and

replacing them with a 6 ms linear interpolation of the membrane

potential, corresponding to the maximum action potential width

(Figure 5A). The pseudo-generator potential probability density

function is distorted in comparison to the graded potential being

narrower with a more pronounced peak because voltage

excursions beyond threshold are truncated, the action potential

being replaced with an interpolated response (Figure 5A,B). For a

particular stimulus the information rate of the pseudo-generator

potential was intermediate between that of the spike trains and

that of the graded potential model (Figure 5C). The information

rates of the pseudo-generator potential were highest (1094 bits/s)

with low mean, high standard deviation stimuli, 860 bits/s (366%)

higher than that of the corresponding spike trains but 1146 bits/s

(51%) lower than that of the corresponding graded potential

(Figure 5C). The information rates of the pseudo-generator

potential were lowest (188 bits/s) with low mean, low standard

deviation stimuli. This lowest value was 158 bits/s (531%) higher

than that of the corresponding spike trains, but 352 bits/s (65%)

lower than that of the corresponding graded potential (Figure 5C).

What reduces the information rate of the pseudo-generator

potential relative to the graded potential? We identify three

processes: the duration of the action potential and associated

refractory period, and two effects caused by the presence of

voltage-gated Na+ channels, noise and non-linearity. We will assess

each of these processes, in turn.

Information loss during the action potential
The action potential and accompanying refractory period

creates a ‘footprint’ on the generator potential during which

information is lost (Figure 6A). To assess the impact of this

‘footprint’ on the information rate, we stimulated the graded

model with a white noise stimulus (Figure 1A,B) to generate a set

of graded responses from which we could estimate the signal, noise

and information rate. These graded responses produced a high

information rate (1427 bits/s). We then inserted 6 ms long sections

of linear interpolation spaced at least 10 ms apart into the

individual graded responses to mimic action potential footprints

(Figure 6B). We added between 10 and 80 linear interpolations per

second into each response to represent the spike footprints at

different firing rates and re-calculated the Shannon information

rate (Figure 6B) [25]. Interpolations were added at exactly the

same positions in all responses, termed deterministic interpolation

(Figure 6B), to represent the footprints of noise-free spikes and give

an upper bound on signal entropy. The placement of the

interpolations was then jittered by up to 4 ms (Figure 6B), termed

jittered interpolation, to represent reliable spike trains with low

noise entropy. Finally, interpolations were placed randomly in

each response (Figure 6B), termed random interpolation, to

resemble unreliable spike trains with high noise entropy.

The Shannon information rate [25] was unaffected by the

deterministic or jittered interpolation, irrespective of the number of

interpolations inserted (Figure 6C) because it depends only upon

the signal-to-noise ratio (SNR) and the response bandwidth [25].

Thus, inserting increasing numbers of interpolations, even when

jittered, does not affect the Shannon information rate because

these interpolations are inserted in identical (deterministic) or similar

(jittered) positions, leaving the regions between the interpolations

unaffected. Conversely, increasing the number of random interpo-

lations reduced the Shannon information rate from 1427 to 485

bits/s (Figure 6C) because these interpolations add noise to the

responses, thereby reducing the SNR.

In addition to the Shannon information rate [25], we calculated

coherence-based information rates to determine the effect of the

footprint on information loss from the stimulus (see Methods). The

coherence-based estimate of the information rate is a measure of

linear dependence between the stimulus and the response, and

describes different forms of signal corruption including non-linear

distortion [29]. The coherence-based information rate decreased

as the number of interpolations inserted increased for all three

types of interpolation, deterministic, jittered and random (Figure 6D).

Figure 2. Information encoding in the spiking and graded neuron models. A. Information rates (bits s21) of the spiking neuron model
evoked by white noise current stimuli with different means and standard deviations. B. Information rates (bits s21) of the graded neuron model
evoked by the same white noise current stimuli as in A.
doi:10.1371/journal.pcbi.1003439.g002
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The coherence-based information rate dropped from 1148 bits/s

with no interpolations to 346 bits/s with 80 interpolations.

Although we inserted linear interpolations into the voltage

responses, there is still a fluctuation at the corresponding position in

the current stimulus. The mismatch between the interpolations and

the stimulus may reduce the coherence-based information rate by

inflating the non-linearity. To determine whether this is the case, we

added linear interpolations at exactly the same positions to both the

stimulus and the response, and recalculated the coherence-based

information rate (Figure 6D). This difference between the

coherence-based information rates calculated with or without

interpolations added to the stimulus as well as the response is the

information lost due to the action potential footprint. For the same

number of interpolations, all three types of interpolation, determin-

istic, jittered and random, had higher information rates (between 177

and 516 bits/s) with interpolations added to the stimulus than

without (Figure 6D). These coherence-based information rates

were dependent upon the number of interpolations inserted. For

example, inserting 10 interpolations reduced the information rate

from 1148 bits/s to 1090 bits/s but inserting 80 interpolations

reduced the information rate to 860 bits/s. Thus, the coherence-

based method demonstrates that the action potential footprint

blanks out information about the stimulus. This loss of information

increases with spike rate from 5.3% at 10 Hz to 33.5% at 80 Hz.

Sub-threshold noise
Channel noise affects sub-threshold potentials as well as spike

timing and reliability [30]. We measured the standard deviation of

the voltage noise at sub-threshold membrane potentials for the

spiking neuron model, the deterministic Na+/stochastic K+ channel

model, the stochastic Na+/deterministic K+ channel model and the

graded neuron model (Figure 7A). In the absence of an input

stimulus, the voltage noise was generated entirely by the sponta-

neous opening and closing of the voltage-gated ion channels. The

noise standard deviation of all the models was highest at the most

depolarised potentials and dropped as the membrane potential was

Figure 3. The effect of stimulus statistics upon the rate, timing and precision of action potentials. A. Firing rates (spikes s21) of the
spiking neuron model evoked by white noise current stimuli with different means and standard deviations. The current stimuli used in A–D were
identical to those in Figure 3A. B. Total entropy (bits s21), C. Noise entropy (bits s21), and D. Information rate per spike (bits spike21) of the spiking
neuron model.
doi:10.1371/journal.pcbi.1003439.g003
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Figure 4. The information rates of the spiking neuron model are robust to voltage-gated ion channel noise. A. The firing rates of the
spiking neuron model (stochastic voltage-gated Na+ and K+ channels), a modified model with stochastic voltage-gated Na+ and deterministic voltage-
gated K+ channels and a modified model with deterministic voltage-gated Na+ and stochastic voltage-gated K+ channels evoked by low mean, high
standard deviation or high mean, low standard deviation input stimuli. B. The total entropy, C. The noise entropy, and D. The mutual information
rates of the same models shown in A evoked by the same stimuli.
doi:10.1371/journal.pcbi.1003439.g004

Figure 5. The information encoded in the pseudo-generator potentials of the spiking neuron model. A. Action potentials (top black
trace) evoked by white noise current stimuli (bottom red trace). Upper grey trace: The same voltage response with the action potentials removed and
replaced with a linear interpolation of the voltage. This is the pseudo-generator potential, which is an approximation of the generator potential.
Lower blue trace: A voltage response of the graded neuron model to the current stimulus shown in the bottom trace. B. The PDF of the pseudo-
generator voltage response. (Inset) A QQ plot showing departures from a Gaussian distribution (dotted red-line) for the time-series shown in A (upper
grey trace). C. Information rates (bits s21) of pseudo-generator potentials evoked by white noise current stimuli with different means and standard
deviations. The stimuli are identical to those in Figures 2 and 3.
doi:10.1371/journal.pcbi.1003439.g005
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hyperpolarised towards the reversal potential of the K+ ions

(Figure 7A). Between 274 to 270 mV the voltage noise standard

deviation was highest for the spiking neuron model and lowest for

the stochastic Na+/deterministic K+ channel model.

The voltage noise of the deterministic Na+/stochastic K+ was

close to that of the spiking neuron model (Figure 7A). However,

near the K+ reversal potential of 277 mV the voltage noise of all

three models containing stochastic K+ channels dropped as the

driving force on K+ ions approached zero. The drop was less

pronounced in the spiking neuron model because stochastic Na+

channels continued to produce noise. Below the K+ reversal

potential, the voltage noise of all three models containing

stochastic K+ channels increased (Figure 7A), with the driving

force on K+ ions.

The voltage noise of the deterministic K+ channel model

dropped as the membrane potential was hyperpolarised, even

below K+ reversal potential, because the probability of spontane-

ous Na+ channel opening, the only source of channel noise, drops

at hyperpolarised potentials. Indeed, the deterministic K+ channel

model had the lowest voltage noise at holding potentials more

depolarised than ,274 mV and more hyperpolarised than ,2

80 mV (Figure 7A). Thus, although the noise generated by the

spontaneous opening of both Na+ and K+ channels contributes to

the voltage noise of the spiking neuron model, the K+ channel

noise apparently makes the greater contribution at potentials

between 274 to 270 mV. Note that the voltage noise standard

deviation with both channel types together is less than the sum of

the standard deviations of the individual channel types because

their variances add.

We assessed the impact of the sub-threshold voltage noise on the

Shannon information rate by stimulating each model with a white

noise current with a zero mean and low standard deviation (m= 0,

s= 1, tc = 3.3 ms). An additional tonic current was injected and

adjusted to hold the mean membrane potential at either 277 or 2

70 mV. This tonic current prevented the models containing

voltage-gated Na+ channels from reaching threshold, permitting a

direct comparison of the effects of stochastic and deterministic

channel combinations upon sub-threshold information coding.

Figure 6. The action potential ‘footprint’ reduces the information encoded in a graded voltage response. A. White noise current (blue)
elicits a train of action potentials in the spiking neuron model (black). The same voltage response with the action potentials removed and replaced
with a linear interpolation of the voltage (red). B. Sections of the graded voltage response were replaced with a linear interpolation to mimic the
‘footprint’ each action potentials creates when any information contained in the graded response is obscured. The graded responses are shown in
black and the interpolated sections in red. The 3 replacement regimes deterministic (upper), jittered (middle) and random (lower) mimicked spiking
statistics with different current stimuli (see main text for details). C. The random insertion of 6 ms sections of linear interpolation into graded voltage
responses reduces the Shannon information rate. The drop in information rate is greater with more interpolations. Insertion of interpolations in the
same (deterministic) or nearly the same (jittered) positions does not affect the Shannon information rate. D. The random insertion of 6 ms sections of
linear interpolation into graded voltage responses reduces the coherence-based information rate. The drop in information rate is greater with more
interpolations. The insertion of interpolations in the same (deterministic) or nearly the same (jittered) positions have the same effect upon the
coherence-based information rate as the random insertion. Insertion of interpolations into the same positions within the stimulus as well as the
response reduces the effect upon the coherence-based information rate.
doi:10.1371/journal.pcbi.1003439.g006
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We calculated the Shannon information rate [25] of each model

at the two mean potentials, 277 and 270 mV (Figure 7B). The

highest information rates of all the models occurred at the more

hyperpolarised potential because the voltage noise was lower. Due

to a distinct drop in voltage noise near the K+ reversal potential,

the deterministic Na+/stochastic K+ channel model and the

graded neuron model, attain the highest information rates of 3123

bits/s at 277 mV. These information rates were ,30% greater

than those of the sub-threshold spiking neuron model and the

stochastic Na+/deterministic K+ channel model, which are lower

because of voltage-gated Na+ channel noise. At 270 mV the

increased voltage noise in all the models reduces their information

rates (Figure 7B). The information rate of the sub-threshold

spiking neuron model dropped 86% to 321 bits/s. The sub-

threshold information rates of both models with stochastic K+

channels dropped 63% to 1142–1168 bits/s, whilst the stochastic

Na+/deterministic K+ channel model has the lowest voltage noise

and, consequently, the highest sub-threshold information rate of

1288 bits/s. The drop in the information rates of all the models at

the more depolarised holding potential shows the substantial effect

of channel noise upon the sub-threshold and graded potentials.

The combination of both stochastic Na+ and stochastic K+ ion

channels in the spiking neuron model reduce the information

content of the sub-threshold potential relative to the graded

neuron model by 24% at 277 mV to 73% at 270 mV.

Sub-threshold non-linearity
Voltage-gated ion channels introduce non-linearities [31,32]

that could reduce the information content of the generator

potential by distorting the voltage signal. We assessed the sub-

threshold effect of non-linearity on each of the models, at 277 mV

and 270 mV, using the coherence-based information rates we

previously calculated to assess the impact of the action potential

footprint (Figure 6D). Higher coherence-based information rates

indicate better reconstruction of the original stimulus, based solely

on linear decoding principles [29]. In the spiking neuron model

the coherence-based information rates dropped by more than 63%

as the holding potential becomes more depolarised i.e., from 1027

bits/s at 277 mV to 382 bits/s at 270 mV (Figure 7C). This fall

indicates a decline in the quality of linear reconstruction. By

comparison, the stochastic Na+/deterministic K+ model was the

least affected by depolarisation, the coherence-based information

rates dropping by just 1.5%. For the model with deterministic

Na+/stochastic K+ and the model with only stochastic K+

channels, the coherence-based information rates drop ,4.2–

4.8% at the more depolarised potential (Figure 7C). Increasing the

holding potential to 268 mV causes all three models containing

voltage-gated Na+ channels to produce spikes, making them

increasingly non-linear (data not shown).

In addition to coherence-based information rates, we used the

normalised root mean squared error (nRMSE) between the

Figure 7. The effects of channel noise upon sub-threshold and graded voltage signals. A. The standard deviation of the voltage of the
spiking neuron model (stochastic voltage-gated Na+ and K+ channels), a modified model with stochastic voltage-gated Na+ and deterministic voltage-
gated K+ channels, a modified model with deterministic voltage-gated Na+ and stochastic voltage-gated K+ channels, and the graded neuron model
(stochastic voltage-gated K+ channels) over a 16 mV range of holding potentials. B. Shannon information rates of all four models shown in A evoked
by low mean, high standard deviation current stimuli at sub-threshold holding potentials. C. Coherence-based information rates of all four models
shown in A evoked by low mean, high standard deviation current stimuli at sub-threshold holding potentials. D. Normalized mean square error
(nRMSE) information rates of all four models shown in A evoked by low mean, high standard deviation current stimuli at sub-threshold holding
potentials.
doi:10.1371/journal.pcbi.1003439.g007
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original stimulus and the reconstructed stimulus to assess the effect

of non-linearity. An nRMSE value that tends towards zero

represents perfect reconstruction [29]. The nRMSE increased as

the membrane potential increased indicating a drop in the quality

of reconstruction (Figure 7D); the increase in nRMSE was largest

for the sub-threshold spiking model (67%) but the nRMSE of the

three other models also increased by 8–13%. This decline in

reconstruction quality is due to an increase in the open channel

probability with depolarization. For the models containing

voltage-gated Na+ channels, the voltage threshold for eliciting an

action potential is close to 268 mV. At 270 mV the increase in

the numbers of open voltage-gated Na+ channels increases

positive-feedback and, consequently, the magnitude of the non-

linearity. A fluctuating input stimulus superimposed upon the

holding current also reduces the distance from the voltage

threshold, though the effect of this on reconstruction will depend

on the magnitude and polarity of the fluctuations.

Linear decoding accuracy in the suprathreshold regime
Using linear systems analysis (see Methods), we assessed how

much of the input (current) can be predicted from the response

(voltage) by reconstructing the input stimulus current. We find that

when the graded voltage response was used for the reconstruction

based on linear decoding the predicted input stimuli were most

coherent, with the lowest nRMSE (Figure S3C,D) and the highest

coherence-based information rates (Figure S3C,E). The recon-

struction accuracy (nRMSE and coherence based information) of

the pseudo-generator potentials was lower than that of the graded

potentials (Figure S3B,D,E). The highest nRMSE and, conse-

quently, the lowest coherence-based information rate was obtained

from reconstructions based on action potentials (Figure S3A,D,E),

although these were only marginally worse than reconstructions

based on pseudo-generator potentials (Figure S3). Thus, voltage-

gated Na+ channels distort both the subthreshold (pseudo-

generator) and suprathreshold responses so that the incoming

stimulus current cannot be accurately reconstructed using just a

linear decoder.

Extrinsic noise
Neuronal information rates are constrained by extrinsic noise in

the input stimuli, as well as by intrinsic noise generated by ion

channels [33,34]. To investigate this constraint, we added

broadband Gaussian noise to the white noise input stimulus. This

enabled us to quantify and compare the effect of extrinsic noise

upon the information rates of the spiking model, the pseudo-

generator potentials from the spiking model and the graded model.

In our simulations, although the presence of the extrinsic noise

source facilitates a marginal increase in precision of the APs for

inputs with low standard deviations, it does not alter the variability

of the APs, consequently noise-aided enhancement of mutual

information is absent (cf. McDonnell et al. [35]).

The amount of extrinsic noise was altered to produce an input

stimulus with either a low or a high SNR input stimulus (Equations

2 and 3; SNR = 2 or 20). The SNR is defined as the ratio of the

signal power to the noise power. In our simulations, we decreased

the SNR by increasing the noise power (see Methods; Equation 3).

For the spiking model, increasing the input noise produces a

relatively small increase in total entropy (,5%, SNR = 2; ,2%,

SNR = 20) (Figure S4A) but a relatively large increase in noise

entropy (,180%, SNR = 2; ,50%, SNR = 20) (Figure S4B), and

this produces a significant drop in the mutual information (,40%,

SNR = 2; ,10%, SNR = 20) (Figure S4C,S5A).

The information rates of the pseudo-generator potentials also

decrease with increased extrinsic noise (Figure S5B). The loss in

relation to the noise-less stimulus is greater in the pseudo-

generator potentials (,69%, SNR = 2; ,29%, SNR = 20) with

higher standard deviation input signals. A 10-fold increase in the

input SNR caused a 133% increase in information rate, from 335

bits/sec (SNR = 2) to 780 bits/sec (SNR = 20), compared to 1094

bit/sec in the absence of extrinsic noise. Likewise, the information

rates of the graded model were reduced by up to 73% for low SNR

input signals (SNR = 2) and by up to 36% for high SNR input

signals (SNR = 20) (Figure S4C), the higher quality input signal

(SNR = 20) causing the information rate to increase from 595 to

1422 bits/sec. Thus, the information rates of the spiking model

were the least affected by the extrinsic noise whilst those of the

graded model were the most affected (Figure S5A–C).

Energy consumption
The energy consumption of each model was determined from

the K+ ion fluxes across the membrane needed to generate the

voltage signals, as the number of ATP molecules hydrolyzed by the

Na+/K+ pump [12]. This pump maintains the ionic concentration

gradients that generate electrical responses and operates stoichio-

metrically, pumping back 2 K+ ions for every ATP molecule that it

consumes [36]. The energy consumption of the spiking neuron

model is strongly correlated with its firing rate (Figure 8A) because

the energy consumption of an action potential is high compared to

the consumption between action potentials. Higher standard

deviation stimuli evoke larger membrane potential fluctuations,

eliciting more action potentials and, therefore, consuming more

energy. Consequently, the high mean, high standard deviation

stimuli that evoked the highest firing rates also incurred the highest

energy consumption, 3.9*108 ATP molecules/s (Figure 8A). Low

mean stimuli with high standard deviations consume 3.1 times

more energy than stimuli with low standard deviations but for high

mean stimuli it is just 1.4 times more (Figure 8A). This is because

the standard deviation of signal fluctuations has less of an effect

upon the average firing rate with high mean input stimuli.

Pseudo-generator membrane potentials consume less energy

than the spiking neuron model. Indeed the maximum energy

consumption of the pseudo-generator potentials is 6.4*107 ATP

molecules/s, almost an order of magnitude less than the spiking

neuron model (Figure 8B). Like the spiking model, when the

pseudo-generator potential model is driven with a high mean

stimulus, increasing the stimulus standard deviation increases

energy consumption. But, unlike the spiking model, when the

stimulus mean is low, increasing its standard deviation reduces

energy consumption. Low mean, high standard deviation stimuli

consume less energy because they hyperpolarise the membrane

potential by 10 mV or more below the resting potential, and this

reduces the number of open K+ channels (Figure S6A,B).

Conversely, with high mean stimuli the maximum peak-to-peak

voltage of the compartment is approximately the same, irrespec-

tive of the standard deviation (Figure S6A,B). The greater energy

consumption of the high standard deviation is due to the 1.6-fold

greater numbers of open K+ channels, which cause a doubling of

the mean K+ current at equivalent membrane potentials, thereby

inflating the energy consumption.

The energy consumption of the graded model showed the same

trends as the pseudo-generator potentials (Figure 8C). Again, less

energy is consumed in response to low mean high standard

deviation stimuli than to low standard deviation stimuli, due to an

85% decrease in the number of open K+ channels (Figure S7A,B).

In contrast, at high means, high standard deviation stimuli

consumed 64% more energy than low standard deviation stimuli

(Figure 8C) because high input standard deviations open greater

numbers of K+ channels (Figure S7A,B).
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Energy efficiency
We calculated the energy efficiency of information coding by

dividing the information rates of the spiking neuron model, the

pseudo-generator potentials and the graded neuron model by their

corresponding energy consumptions. The energy efficiency of the

spiking neuron model was highest (8.4*1027 bits/ATP molecule)

for low mean, high standard deviation stimuli and lowest

(3.8*1028 bits/ATP molecule) for high mean, low standard

deviation stimuli (Figure 9A). This 22-fold difference in energy

efficiency was accompanied by a 23-fold difference in information

rate. Thus the coding of low mean, high standard deviation stimuli

was most efficient because these stimuli generated the highest

information rates with firing rates, and therefore energy costs,

similar to high mean, low standard deviation stimuli (Figure 9A).

In other words, energy efficiency rises with information per spike.

Indeed, in all models, spiking, pseudo-generator potential, and

graded, increasing input stimulus mean reduced energy efficiency

because it increased the mean level of response without

introducing more information (Figure 9A,B). As expected, the

energy efficiency of all three models improved when the

information rate increased in response to an increase in stimulus

standard deviation at a given stimulus mean (Figure 9A,B). For

example at low means, the spiking model’s information rate

increased by 689% with a concomitant increase in efficiency of

151%. For the pseudo-generator potentials information increased

by 482%, and efficiency increased by 889% and in the graded

neuron efficiency increased by 363% and information increased by

315%.

Both pseudo-generator (8.0*1025 bits/ATP) and graded poten-

tial (1.3*1024 bits/ATP) models were 95–156 times as energy

efficient as the spiking model (8.4*1027 bits/ATP), when all

models were compared with low mean, high standard deviation

inputs. At higher information rates the energy efficiency of both

the pseudo-generator and graded potentials improved substantially

(Figure 9B). However, the graded potentials achieved higher

information rates than the pseudo-generator potentials and in this

regime they were as much as 1.6 times more energy efficient at

1.3*1024 bits/ATP molecule.

The addition of extrinsic noise did not affect this general pattern

of relationships between input stimuli, information rate and energy

efficiency in the three models. However, by reducing the

information rates of all three models the extrinsic noise reduced

the energy efficiency for any given input stimulus (Figure 9A,B).

For example, adding noise to the inputs reduced the efficiencies of

the pseudo-generator potentials by 71% for a low quality input

(SNR = 2) and by 26% for a high quality input (SNR = 20).

Similarly, the efficiency of the graded potential model dropped by

74% at low SNR and by 36% for high input SNR. Given that

extrinsic noise only marginally altered the energy consumption, it

decreases efficiency by decreasing the amount of information that

can be coded.

Discussion

Analogue voltage signals in non-spiking neurons and generator

potentials in spiking neurons typically have higher information

rates than spike trains [5–9]. This information loss is a

consequence of a change in coding strategy; non-spiking neurons

and generator potentials encode information as a continuous

analogue voltage signal whereas spiking neurons use discrete

pulses of finite precision and width, limiting the number of states

that can be coded within a given time period. However, there are

also biophysical causes of this information loss, and these were the

focus of our study. Spiking neurons can be lossless encoders of

band-limited inputs if their spike rates exceed the Nyquist limit

[37], both at the level of a single neuron or across a population of

neurons [38,39]. But below this limit information loss occurs and is

affected by the factors we have examined.

Our simulations show that voltage-gated Na+ channels, which

are necessary for action potential generation, are the primary

biophysical cause of information loss in sub-threshold potentials

because they increase intrinsic noise and introduce non-linearities.

Indeed, this information loss in sub-threshold potentials is greater

than the information loss in spike generation attributable to

voltage-gated Na+ channels. Further information loss in the sub-

threshold potential occurs because each action potential obscures

the generator potential, reducing its information content. This

suggests that the biophysical factors we identify have their major

impact upon sub-threshold information processing. Comparing

the energy efficiencies of our models, spike trains consume an

order of magnitude more energy than graded or pseudo-generator

potentials for a given stimulus. This result emphasizes the two-fold

penalty of action potentials on coding efficiency; lower information

rates and higher energy costs. Graded and generator potentials

consume similar amounts of energy, the primary determinant of

which is the input mean, but due to their lower information rates

generator potentials are less energy efficient than graded

potentials.

Our models contained voltage-gated ion channels with the same

biophysical properties as those found in the squid giant axon

because well-established kinetic models exist for them [40,41].

Different channel kinetics will alter channel noise [42], affect the

shape of the action potential [11] and alter the information rates of

a spiking model [43]. However the main effects of channel noise in

our models are on the graded and generator potentials. Previous

modeling studies have used squid voltage-gated Na+ channels to

show that they increase sub-threshold noise [30], but did not

quantify their effect on sub-threshold information rates. We find

that the noise from voltage-gated Na+ channels and voltage-gated

K+ channel noise substantially decreases the information rate of

the generator potential. This finding suggests that the high

densities of voltage-gated Na+ channels at the spike initiation zone

[44], as well as voltage-gated Na+ channels and Ca2+ channels in

dendrites and dendritic spines [45,46] could also reduce the

information rate of sub-threshold signals, and this could have a

deleterious effect on information processing.

Our models suggest that action potential duration (including the

absolute refractory period) is an important source of information

loss, imposing a lower limit on the interspike interval and

preventing the spike initiation zone from integrating new

information for a brief period. In vivo many neurons have

considerably higher spike rates than our models, which had

moderate spike rates below approximately 90 Hz. At these high

spike rates, substantial portions of the information would be lost

from the generator potential, promoting narrower action poten-

tials and sparse codes that require relatively few action potentials

[47]. However, many neurons use signals that are considerably

longer than typical action potentials such as bursts and plateau

Figure 8. The energy consumption of spike trains, pseudo-generator potentials and graded potentials. A. Energy consumption (ATP
molecules s21) of the spiking neuron model, B. the pseudo-generator potentials, and C. the graded potential model evoked by white noise current
stimuli with different means and standard deviations.
doi:10.1371/journal.pcbi.1003439.g008
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potentials [48] that obscure far more of the generator potential

and incur a greater information loss. This emphasizes the

importance of these long-duration signals as indicators of high

salience signals.

The non-linearity of all the models incorporating voltage-gated

Na+ channels increases with the sub-threshold depolarization

because the positive feedback generated by the Na+ channels

increases as the threshold approaches. Thus, at sub-threshold levels

the Na+ channels distort the voltage waveform. This distortion could

reduce the information content of the sub-threshold potentials,

though this depends upon whether the transformation of any

synaptic metric (current, conductance, etc.) into the voltage

waveform is linear in the sub-threshold regime. Linear as well as

non-linear mapping may occur between the synaptic input and the

resultant voltage waveform [20,49]. Voltage-gated Na+ channels

may constitute one such non-linearity, distorting the synaptic input

[50]. In such cases, although a linear decoder cannot fully represent

and recover the input information, a decoder relying on higher

order features of the membrane potential may prevent any

information loss (also see [39]).

Our use of current rather than conductance as the input

stimulus ignores the energy cost associated with conductance

inputs, which will reduce the energy efficiency of information

coding of all the models. Conductance inputs close to the spike

initiation zone will also alter the membrane time constant and

affect action potential initiation [51,52]. Consequently, conduc-

tance inputs will affect the bandwidth and temporal precision of all

the models and the maximum spike rate of the spiking neuron

model [53]. The synaptic channels needed to implement the

conductance changes will also contribute noise to the models [54],

reducing their information rates. By incorporating extrinsic noise,

however, we have shown that the relationships we have found will

remain qualitatively similar.

The squid giant axon action potentials that we modeled consume

substantially more energy than other vertebrate and invertebrate

action potentials [11,14–16], inflating the energy consumption of

the spiking neuron model and reducing its efficiency. Nevertheless,

the efficiency drop that occurs when generator potentials are

converted to action potentials is substantial and will remain, albeit

with a smaller difference. The topological class of model (e.g. Type

I or Type II) may also influence energy consumption through the

dynamics and time course of the ionic and synaptic currents

determining the threshold manifold [55]. Indeed, minimizing

metabolic consumption in single compartment models [55] leads to

the leak and the inward currents competing with each other even

before reaching the spiking threshold, via a Hopf bifurcation (Type

II). This causes an increase in energy consumption forcing the

optimal action potentials to steer away from such bifurcations;

gradient descent on metabolic consumption leads to saddle-node

bifurcations as in Type I cortical neurons (unpublished observation

– BS, personal communication – Martin Stemmler, [55]). The

energy consumption of the graded potential neurons will also be

affected by changes in the biophysical properties of voltage

-gated ion channels, though this is unlikely to substantially affect

the relationship between the input stimuli and the energy

consumption.

Our models systematically explored combinations of the

mean and standard deviation of a Gaussian input. Those spike

trains with the lowest information rates and bits per spike were

evoked by low standard deviation stimuli, whereas high

standard deviation stimuli evoked consistently higher informa-

tion rates for a given mean stimulus. Consequently, across all

our models there was no systematic relationship between the

mean spike rate and the information rate, total entropy, noise

entropy or coding efficiency (bits per spike). Indeed, the highest

and lowest information rates and coding efficiencies were found

at similar spike rates. However, these findings are specific to the

type of stimuli we used, a randomly varying input signal

superimposed on an offset. It is more usual to find that the

information rate increases with spike rate whilst the coding

efficiency declines because the entropy per spike falls [56,57].

Non-Gaussian naturalistic stimuli vary more widely than do

Gaussians. These larger excursions make the voltage response

more nonlinear and engage adaptation mechanisms that, if they

affect the signal and noise differently, can change the

information rates of both graded potentials and the spike trains

they generate [58]. Although there are methods that could allow

us to compare the coding and metabolic efficiency of analogue

and spiking responses to natural stimuli [6], each modality has

its own statistics. Even within a modality different classes of

neuron have distinctive firing patterns because they select

different components of the input (e.g. retinal ganglion cells

[57]). Faced with many particular cases, we chose to start with a

general stimulus that identifies factors, such as input signal to

noise, that are widely applicable.

As a case in point, in many neurons the mean and standard

deviation of the input stimuli and the extrinsic noise are often

correlated [59–61]. For example, extrinsic noise in synaptic inputs

is often correlated with their number and strength, and hence

signal amplitude [62–64]. Thus, the stimulus space investigated

with our models exposes relationships between energy efficiency

and information rate that are broadly applicable to a number of

different types of neuron. In particular, our models demonstrate

that the energy efficiency of spiking neurons can be improved by

reducing the mean input and increasing the standard deviation of

the signal. Graded neurons achieve this by using predictive coding

to eliminate the mean and amplify the remaining signal to fill their

output range [65,66] and these procedures increase both their

coding efficiency and their energy efficiency [3]. Our findings

demonstrate that spiking neurons can do likewise.

Taken together, our analyses show that the biophysical

mechanisms involved in action potential generation contribute

significantly to the information loss that accompanies the

conversion of a graded input to a spike train. Although we cannot

directly relate the proportions of information loss to specific

mechanisms, it seems likely that the action potential ‘footprint’ and

sub-threshold voltage-gated Na+ channel noise are the major

sources of information loss. Viewed as a cost-benefit trade-off,

action potentials incur penalties (information loss and energy cost)

that are, presumably, balanced against being able to transmit

information over considerable distances and preventing noise

accumulation during successive processing stages. Reducing the

distances over which information is transmitted in the nervous

system may favor less conversion of graded signals into spike trains

[67]. However, problems associated with accumulating noise

during successive processing stages [4] may remain severe. Thus,

Figure 9. The energy efficiency of information encoding in spike trains, pseudo-generator potentials and graded potentials. A.
Energy efficiency of information processing (bits ATP molecule21) with (thick lines; SNR = 2) and without (thin lines) extrinsic noise in the spiking
neuron model and the model containing the pseudo-generator potentials, and B. the graded potential model evoked by white noise current stimuli
with different means and standard deviations.
doi:10.1371/journal.pcbi.1003439.g009

Signal Encoding and Efficiency

PLOS Computational Biology | www.ploscompbiol.org 13 January 2014 | Volume 10 | Issue 1 | e1003439



even in some highly miniaturized nervous systems, neurons with

action potentials are likely to be necessary [67].

In conclusion, our modeling of single compartment neurons

confirms that a critical step in neural coding, the conversion of an

analogue sub-threshold signal to a series of discrete ‘‘digital’’

pulses, is accompanied by substantial information loss. We show

that voltage-gated Na+ channels, critical components for the

conversion of analogue to digital, reduce the information in sub-

threshold analogue signals substantially, and that this loss is

compounded by interference from action potentials. Thus, the first

step in a hybrid processing strategy to increase efficiency [4,68],

the analogue processing of inputs, is compromised by mechanism

used for the second step, the conversion of analogue to digital, and

this calls for strategic placement of the spike initiation zone [69].

Some neurons appear to mitigate a small fraction of the loss of

information that accompanies the conversion of analogue to digital

by transmitting both analogue and digital [70–72]. Information

may be encoded in the height and width of action potentials [71–

74] suggesting that spiking neurons may transmit more informa-

tion than is calculated by treating them as digital pulses. Even in

these cases, however, the ‘footprint’ of the action potentials and

sub-threshold voltage-gated Na+ channel noise are still likely to

cause substantial information loss.

Methods

Single compartment model
We used a single compartment stochastic Hodgkin-Huxley

model of the squid giant axon for our simulations [40,41]. The

model supporting spiking contained two voltage-gated ion

channels, transient Na+ and a delayed rectifier K+ along with

the leak conductance, while the model producing purely graded

signals contained delayed rectifier K+ and leak conductances. The

dynamics of the membrane potential is governed by a set of

activation and inactivation variables m, h and n with the current

balance equation,

Cm

dVm

dt
~{gNam3h(Vm{ENa){gK n4(Vm{EK )

{gleak(Vm{Eleak)zIstim(t)zfnoise(t)

ð1Þ

Cm is the membrane capacitance, gNa, gK and gleak are the

conductance of the Na+, K+ and leak channels respectively,

ENa, EK and Eleak are the respective reversal potentials, Istim(t) is

a time dependent current stimulus and fnoise(t) is the input

(extrinsic) stimulus noise current. fnoise(t) is zero for no input noise

simulations. The variables m, h and n follow first order kinetics of

the form _xx~
x?(Vm){x

tx(Vm)
, where x?(Vm) is the steady-state (in)

activation function and tx(Vm) is the voltage-dependent time

constant. The model was driven using a time dependent current –

Istim(t), a 300 Hz Gaussian white noise, filtered using a 40th order

Butterworth filter. The voltage resonant frequency of the squid

axon model can vary between 100 Hz at 10uC to 250 Hz at 20uC
[75]. Therefore, we selected the input cut-off frequency at 300 Hz

that is slightly more than the output 3 dB cut-off frequency

encompassing the frequency response expected out of an under-

damped second-order response (see Figure 3 in Guttman et al.

[75]). The mean and the standard deviations of the stimulus were

varied in the range 1–10 mA/cm2, enabling comparison to earlier

work studying channel noise and its effects on information rates

[76]. The stimulus was presented for 1 second and each set of

simulations consisted of 60 such trials. fnoise(t) is an unfiltered

broad-band Gaussian white noise with,

Sfnoise(t)T~0

Sfnoise(t)fnoise(t’)T~s2d(t{t’)
ð2Þ

where noise variance is computed using

1

T

ðT
0

Istim(t)2dt

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{SignalRMS

V
ð3Þ

V denotes the signal-to-noise ratio (SNR).

All Gaussian random numbers were generated using the

Marsaglia’s Ziggurat algorithm [77]; uniform random numbers

were generated using Mersenne Twister algorithm [78]. Deter-

ministic equations were integrated using the Euler-algorithm while

stochastic differential equations were integrated using the Euler-

Maruyama method, both with a step size of 10 ms. Parameter

values are given in Table S1.

Gillespie algorithm for simulating channel noise
Our simulations incorporate Na+ and the K+ voltage-gated ion

channels without cooperativity (Figure S8) so that the state

transition matrix evolves according to a Markov process [79,80].

We track the numbers of channels that were either closed or open

[79] using the Gillespie algorithm [81]. The Na+ and the K+

channels had 13 states with 28 possible transitions among these

states 220 transitions for the Na+ channels and 8 for the K+

channels. As an example, in time interval dt, the probability that

the K+ channel remains in state k is e{ckdt, where ck depicts the

sum of all transition rates from state k to any possible successive

state. During the interval dt no other ion channel changes its state

such that the probability of the ion channels remaining in the same

state in the time interval dt is e{ldt,

l~
X3

i~0

X1

j~0

mihj

� �
cijz

X4

k~0

nk½ �ck ð4Þ

mihj

� �
is the number of Na+ voltage-gated ion channels in state

[i, j], [nk] is the number of K+ voltage-gated ion channels in state

[k], cij is the total transition rate from state mihj

� �
and ck is the total

transition rate from state nk½ �. The transition rate ttrans for a

particular ion channel state is chosen by drawing a pseudo-

random number r1 from a uniform distribution [0, 1] and defining

ttrans as ln(r{1
1 )l{1. The Gillespie algorithm then selects which of

the 28 possible transitions occur in the time interval ttrans [79,81].

The conditional probability of a particular transition j that occurs

in the time interval dt is given by,

ajdtP28
i~1 aidt

~
ajP28

i~1 ai

ð5Þ

Here, aj is the product of transition rate associated with transition j

and the number of channels in the original state of that transition.

The denominator in Eqn. (5) is equal to l. The particular

transition rate is selected by drawing a random number r2 from the
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uniform distribution [0, 1] and fixing y as,

Xy{1

i~1

aivr2ƒ

Xy

i~1

ai ð6Þ

The number of voltage-gated ion channels in each state was

updated and the membrane potential calculated. An identical

algorithm was used for the channel noise in the compartment

containing only K+ voltage-gated channels.

Information-theoretic and linear systems analyses
Both information-theoretic and linear system analysis are a

common place in neuroscience [82], but before providing a

detailed exposition for each of these methods, we justify our use of

them. The channel capacity for a Gaussian channel [25,56] allows

us to place an upper bound on the Shannon information encoded

in the generator potentials under the assumption of an additive

Gaussian noise. On the other hand, the ‘‘direct method’’ [26] is a

minimal assumption method to derive an estimate of the reduction

in entropy per unit time per spike. Although these two calculations

enable us to quantify the information loss separately within each

domain (graded and spiking), a more appropriate comparison

would employ the same metric permitting direct comparison

between domains. The Wiener filter [9,56] permits such a

comparison, allowing us to test the fidelity of both the analog

and the pulsatile signals using identical linear optimal filtering,

giving a lower bound on the information present in the response

(e.g. to linearly decode the input stimulus). Thus, if inputs were

linearly mapped onto outputs then the information rates from

‘‘direct method’’ and the ‘‘Wiener filter’’ analysis would be

identical [82]. The lower our reconstruction error the better our

generative model of the output is.

Information rates for spiking neuron models
There are several methods that have been used to quantify

information rates in spiking neurons. These include histogram

based ‘‘direct method’’ [26], context-tree Markov Chain Monte

Carlo (MCMC) [83], metric space method [84], binless method

[85], compression entropy [6], among others. We have used the

widely employed ‘‘direct method’’ to measure the entropy of the

responses, primarily due to its simplicity and the separation of

mutual information into separate terms capturing variability (spike

train entropy) and reproducibility (noise entropy) [26]. The spike

train entropy quantifies the variability of the spike train across

time. The noise entropy on the other hand, measured the

reproducibility of the spike train across trials. These quantities

were dependent upon the temporal resolution with which the

spikes were sampled, Dt and the size of time window, T. We

present a different stimulus current in each subsequent trial

(unfrozen noise) to calculate the spike train entropy, while using

presentations of the same stimulus current in each subsequent trial

(frozen noise) to calculate the noise correlation. We divided the

spike train to form K-letter words (K = 2, 4, 6, 8, 12, 16, 24, 32, 48

or 64), where K = T/Dt. We used the responses from the unfrozen

noise session, to estimate the probability of occurrence of

particular word, P(W). We estimated the total entropy as,

Stotal~{
X
W

P(W )log2 P(W ) bits ð7Þ

We estimated the probability distribution of each word at

specified time durations, t so as to obtain P(W|t). Entropy

estimates were then calculated from these distributions and the

average of the distributions at all times were computed to yield

the noise entropy as,

Snoise~S{
X
W

P(W tj )log2 P(W tj )Tt bits ð8Þ

Ææ indicates average over time. The information was then

computed as,

I~Stotal{Snoise ð9Þ

The spike train entropy and the conditional noise entropy diverge

in the limit of DtR0, their difference converges to the true finite

information rate in this limit [26]. Therefore, we used bias

correction methods such that the estimation of entropy was less

prone to sampling errors [86]. Using Dt = 1 ms, we varied the

spike trains to form words of different lengths. Using these

entropy estimates, we extrapolated to infinite word length from

four most linear values of the curve of entropy against the inverse

of word length.

Information rates for nonspiking neuron models
We used an upper-bound method to calculate the maximum

information transferable by the nonspiking responses [25,56]. This

method assumes that the neuronal response and the neuronal

noise had independent Gaussian probability distributions in the

frequency domain and the noise was additive in nature. In the

presence of additive non-Gaussian noise such a method provides

us with an upper bound on the channel capacity that is dependent

on the entropy power of the non-Gaussian noise distribution

[25,87,88]. We defined the stimulus S as the mean neuronal

response obtained from a frozen noise experiment. The noise in

each trial was calculated by removing the average response from

the individual responses Ri. Owing to Gaussian assumptions, it

required enough data to estimate the mean and variance of the

Gaussian probabilities. The actual information might be lower

than this bound because a Gaussian distribution has the highest

entropy for a given variance. In our simulations, both the response

and the noise had an approximately Gaussian distribution. We

obtained the mean response power spectrum and the noise power

spectrum using the multi-taper spectral estimator and computed

their ratio to be the signal-to-noise ratio (SNR) [29]. This is then

used to compute the information for the Gaussian channel as,

I(S,R)~

ðk2

k1

log2½1zSNR(f )�df ð10Þ

For our simulations, the limits of the integral were taken from

k1 = 0 Hz to k2 = 300 Hz. The integral was evaluated using

trapezoidal rule.

Stimulus reconstruction
We performed stimulus reconstruction to test how noise affects

the coherence of a linear system [9,56]. The method involved

finding a linear temporal filter to minimize the difference between

the real and the reconstructed stimulus. We followed Haag and

Borst [89] in the derivation of this filter using Gaussian unfrozen

noise as the stimulus set. We used 60 trials that consisted of

1 second period of unfrozen white noise si(t) to obtain the spike

trains ri(t) in the form of 1’s and 0’s with 10 ms resolution. These

time domain signals were Fourier-transformed to obtain complex
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functions Si ( f ) and Ri ( f ). Two filters were obtained, either by

normalizing the cross-power spectral densities (CPSD) of the

stimulus and the spike response by the stimulus power spectral

density (PSD) ( forward filter) or the spike power spectral density

(reverse filter) as demonstrated below, with angle brackets (, .)

indicating averages over trials,

Gforward (f )~
SS�i (f ):Ri(f )T
SSi(f ):S�i (f )T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

CPSD(stimulus,spike)
PSD(stimulus)

ð11Þ

Greverse(f )~
SR�i (f ):Si(f )T
SRi(f ):R�i (f )T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

CPSD(stimulus,spike)
PSD(spike)

ð12Þ

Using the reverse filter, we estimated the stimulus, Sest
i (f ) as the

product between Ri ( f ) and Greverse ( f ),

Sest
i (f )~Ri(f ):Greverse(f ) ð13Þ

The quality of the estimate was evaluated by computing a filter

between the original stimulus and the reconstructed stimulus; this

is simply the coherence function (c2(f)) as shown below,

Gfinal(f )~
SS�i (f ):Sest

i (f )T
SSi(f ):S�i (f )T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

CPSD(original stimulus,recontructed stimulus)
PSD(original stimulus)

ð14Þ

c2(f )~
SS�i (f ):Ri(f )T
SSi(f ):S�i (f )T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

CPSD(stimulus,spike)
PSD(stimulus)

:
SR�i (f ):Si(f )T
SRi(f ):R�i (f )T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

CPSD(stimulus,spike)
PSD(spike)

ð15Þ

The coherence results have been cross-validated using a 65–35

split between the training set and the test set i.e., we used the first

65% of the trials to calculate the reverse filter and then checked its

validity on the next 35% of the trials by computing the final filter

(Gfnal ( f )) or the actual coherence (c2 ( f )).

Reconstruction quality was measured using two metrics. First,

normalized root mean squared error (nRMSE) between the

original stimulus and the reconstructed stimulus was calculated as,

NMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i~1

Wi
original{Wi

original

� �2

Var(Woriginal)

vuuut
ð16Þ

A nRMSE value that tends towards zero represents perfect

reconstruction. Second, we calculated a coherence based infor-

mation rate where a higher value indicates better reconstruction,

InformationLB~{

ðk2

k1

log2(1{c2)df ð17Þ

Calculation of energy
Energy consumption in our model is defined as the amount of

ATP expended during the encoding of the band-limited stimulus

current. The Na+–K+ pump hydrolyses one ATP molecule for

three Na+ ions extruded out and two K+ ions imported into the cell

[11]. We determined the total K+ current by separating the leak

current into a K+ permeable leak current and adding it to the

delayed rectifier K+ current. We computed the number of K+ ions

by integrating the area under the total K+ current curve for the

duration of stimulus presentation. In order to derive the energy

consumption we calculated the number of ATP molecules used by

multiplying the total K+ charge by NA/(2F), where NA is the

Avogadro’s constant and F is the Faraday’s constant.

Supporting Information

Figure S1 Input stimulus statistics affect the reliability
of action potentials generated by the spiking neuron
model. A. An example of a low mean, high standard deviation

current stimulus (upper trace) and the action potentials evoked in

the spiking neuron model with stochastic voltage-gated Na+

channels and stochastic voltage-gated K+ channels (middle trace).

A raster plot (lower graph) of the action potentials evoked by

presenting the same current stimulus 60 times. B. An example of a

high mean, low standard deviation current stimulus (upper trace)

and the action potentials evoked in the spiking neuron model with

stochastic voltage-gated Na+ channels and stochastic voltage-gated

K+ channels (middle trace). A raster plot (lower graph) of the

action potentials evoked by presenting the same current stimulus

60 times.

(EPS)

Figure S2 The effect of voltage-gated Na+ or K+ channel
noise on action potentials generated by the spiking
neuron model. A. An example of a low mean, high standard

deviation current stimulus (upper trace) and the action potentials

evoked in the spiking neuron model with stochastic voltage-gated

Na+ channels and deterministic voltage-gated K+ channels (middle

trace). A raster plot (lower graph) of the action potentials evoked

by presenting the same current stimulus 60 times. B. An example

of the action potentials evoked in the spiking neuron model with

deterministic voltage-gated Na+ channels and stochastic voltage-

gated K+ channels (middle trace) in response the same current

stimulus (upper trace) as in A. A raster plot (lower graph) of the

action potentials evoked by presenting the same current stimulus

60 times.

(EPS)

Figure S3 Linear decoding performance using action
potentials, generator potentials and graded voltage
responses. A. The blue trace represents the input stimulus

current while the red trace represents linear reconstruction based

entirely on the spiking response. The current input had a mean

and standard deviation set at 0 mA/cm2 and 5 mA/cm2 respec-

tively. B. The blue trace represents the input stimulus current and

the red trace represents linear reconstruction based entirely on the

pseudo-analog response. C. The blue trace represents the input

stimulus current while the red trace represents linear reconstruc-

tion based entirely on the graded response. D. Normalized mean

squared error (nRMSE) between the original and the reconstruct-

ed input. The mean and standard deviation of the inputs were

sampled from N(0, 2), N(0, 5), N(0, 10), N(5, 5), N(10, 5) and N(10,

10). E. Coherence based mutual information for the inputs in D.

(EPS)

Figure S4 The effect of extrinsic noise on action
potentials generated by the spiking neuron model. A.

Total entropy, B. noise entropy, and C. mutual information of the

spike trains generated in response to white noise current stimuli
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with different means and standard deviations. The Signal-to-Noise

ratio (SNR) of the input was fixed at 2.

(EPS)

Figure S5 Extrinsic noise reduces mutual information
in spike trains, pseudo-generator potentials and graded
potentials. A. Introduction of extrinsic noise with SNR = 2

causes a 40% decrease in mutual information in the spiking

responses. B. Similarly, there is a decrease of up to 60% in the

pseudo-generator potentials in response to inputs with SNR = 2.

C. Over a wide variety of inputs, the mutual information is

decreased up to 70% in the graded potentials with the introduction

of extrinsic noise.

(EPS)

Figure S6 The numbers of open K+ channels and the
membrane potential range determines the energy
consumption of pseudo-generator potentials. A. Joint

kernel density estimates of open K+ channels and the membrane

potential in response to low mean, low standard deviation

stimulus, and B. low mean, high standard deviation stimulus. C.

Joint kernel density estimates of open K+ channels and the

membrane potential in response to high mean, low standard

deviation stimulus, and D. high mean, high standard deviation

stimulus.

(PDF)

Figure S7 The numbers of open K+ channels and the
membrane potential range determines the energy
consumption of graded potentials. A. Joint kernel density

estimates of open K+ channels and the membrane potential in

response to low mean, low standard deviation stimulus, and B. low

mean, high standard deviation stimulus. C. Joint kernel density

estimates of open K+ channels and the membrane potential in

response to high mean, low standard deviation stimulus, and D.

high mean, high standard deviation stimulus.

(PDF)

Figure S8 The gating scheme for the voltage-gated ion
channels. A. State transition diagram for Na+ channel. B. State

transition diagram for K+ channel.

(EPS)

Table S1 Parameters for the stochastic Hodgkin-Hux-
ley model.

(DOCX)
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