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Abstract

Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from
convergence in macromolecular compositions. Extensive variation in size, structure and base composition of
alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest
relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-
biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of
mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly
related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference,
entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple
phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for
specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies
alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in
tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but
one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs
classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and
Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA
sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the
tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for
prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in
the search for robust signals to address difficult problems in classification and phylogeny.
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Introduction

Which parts of genomes are most resistant to compositional

convergence? Which information is vertically inherited most

faithfully? Compositional stationarity and vertical (co-)inheritance

are key, yet frequently violated, assumptions of most current

approaches in molecular phylogenetics and phylogenomics [1].

Horizontal gene transfer (HGT), for example, is so common and

widespread that the very existence of a ‘‘Tree of Life’’ has been

called into question [2,3]. Advances in understanding the history

of life will require discovery of new universal, slowly-evolving

phylogenetic markers that are resistant to compositional conver-

gence and HGT.

The controversial phylogeny of Ca. Pelagibacter ubique

(SAR11) is a case in point. SAR11 make up between a fifth and

a third of the bacterial biomass in marine and freshwater

ecosystems [4]. SAR11 have very small cell sizes, genome sizes,

and intergenic region sizes, possibly in adaptation to extreme

nutrient limitations [5]. Some recent phylogenomic studies place

free-living SAR11 together in a clade with the largely endopar-

asitic Rickettsiales and the alphaproteobacterial ancestor of

mitochondria [6,7,8]. Other studies persuasively argue that this

placement is an artifact of independent convergence of SAR11

and Rickettsiales towards increased genomic A+T contents, and

that SAR11 are more closely related to the free-living Alphaproteo-

bacteria such as the Rhizobiales and Rhodobacteraceae [9,10,11].

The monophyly of SAR11 was also recently rejected [10,12].

Nonstationary macromolecular compositions are a known

source of bias in phylogenomics [13,14]. Widespread variation

in macromolecular compositions may be caused by loss of DNA

repair pathways in reduced genomes [15,11], unveiling an

inherent A+T-bias of mutation in bacteria [16] that elevates

genomic A+T contents [17,18]. A process such as this has likely

altered protein and RNA compositions genome-wide in SAR11,

and if such effects are accounted for, SAR11 appear more closely

related to Rhizobiales and Rhodobacteraceae than Rickettsiales

[10,11]. Consistent with this interpretation, SAR11 strain

HTTC1062 shares, with a large clade of free-living Alphaproteo-

bacteria that excludes the Rickettsiales, a unique and derived

codivergence of features that govern recognition between

tRNAHis and histidyl-tRNA synthetase (HisRS) [19,20]. This

unique functionally significant synapomorphy likely arose only
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once in bacteria [21] and independently contradicts affiliation of

SAR11 with Rickettsiales.

Can the features that govern interactions between macromol-

ecules improve phylogenomic inferences? The two main phyloge-

nomic ‘‘supermatrix’’ and ‘‘supertree’’ approaches [22] treat

homologous sites or genes, respectively, as statistically independent

data. Yet gene product interactions have known influences on

their evolution. For example, amino acid substitution rates vary

inversely with interaction degree (number of interaction partners)

in proteins [23]. Furthermore, ‘‘informational’’ classes of genes,

which mediate the expression and regulation of other genes, have

more direct and indirect interaction partners on average than

induced, metabolic ‘‘operational’’ classes of genes [24] and are less

frequently exchanged across species by HGT [25,26]. A celebrated

exception to this ‘‘complexity hypothesis’’ — an exception thought

to prove the rule — is that of aminoacyl-tRNA synthetases

(aaRSs), which are ‘‘informational’’ housekeeping genes with high

rates of HGT; this is explained because aaRSs are thought to

interact primarily with only one set of tRNA isoacceptor types

[27,28,29,30,31]. Although aaRSs and also tRNAs [32] can have

high rates of HGT, the co-evolved features or ‘‘rules’’ that govern

their interactions are thought to be quite resistant to lateral

transfer [33]. Generally, we propose that laterally acquired gene

products are more likely to adapt to new resident networks rather

than to remodel those networks in accommodation of themselves.

Comprehensive, accurate identification and homology mapping

of features that govern macromolecular interactions remains

challenging in general. tRNAs bring two distinct advantages to

such an enterprise. First, the components and interactions in the

tRNA interaction network are relatively highly conserved. Second

and more importantly, as illustrated in Figure 1, because all

tRNAs are globally connected through general translation factors,

their structures are highly conserved not only across species but

also across different functional varieties of tRNAs (‘‘conformity’’

[34]). Each functional variety or ‘‘class’’ of tRNA, defined in part

by which amino acid it is charged with, is distinguished by

increasingly class-specific interactions with tRNA-binding proteins

and other factors (‘‘identity’’ [35]). The uniquely contradictory

requirements on tRNAs of conformity and identity makes it

possible to predict the features that govern tRNA interactions by

relatively simple bioinformatic analysis of genomic tRNA sequence

data alone [20].

In earlier work, we developed ‘‘function logos’’ to predict, at the

level of individual nucleotides before post-transcriptional modifi-

cation, which features in tRNA gene sequences are associated to

specific functional classes of tRNAs [36]. More precisely,‘‘class’’

refers to a functional variety of tRNA (such as amino acid charging

or initiator identity). We now call our function-logo-based predic-

tions Class-Informative Features (CIFs). A tRNA CIF answers the

question: ‘‘If a tRNA gene from a group of related genomes carries

a specific nucleotide at a specific structural position, how infor-

mative is that feature about function, and how over-represented

is that feature in a specific functional class?’’ Our estimates are

corrected for biased sampling of tRNA functional classes and

sample size effects [36], and we can calculate their statistical

significance [20]. In more practical terms, a tRNA CIF cor-

responds exactly to a single letter in the types of tRNA function

logos shown in Figure 2 in the Results presented below. The

‘‘height’’ or fractional information of such a letter, measured in

bits, is the product of conditional information of the feature about

function and the normalized odds ratio of its appearance in a

particular class. Thus, the greater height such a letter has, the

more functionally informative that feature is, and the more it is

specifically associated to a particular tRNA functional class above

background expectations. We have shown that these traits, already

known to have diverged across the three domains of life [37] have

evolved and diverged extensively among bacteria [21,38].

While a single bacterial genome does not present enough tRNA

sequence data to generate a statistically significant function logo,

data from related genomes may be lumped together. Although this

procedure assumes homogeneity, in practice features shared across

taxa yield the largest signals, while phyletic variation in class-

associations of features reduces signal. Function logos recover

known tRNA identity elements (i.e. features that govern specific

tRNA-aaRS interactions) [37,35], and more generally, predict

features governing interactions with class-specific network partners

such as amidotransferases [39]. A recent molecular dynamics

study on a tRNAGlu -GluRS (Glutaminal tRNA-synthetase)

complex identified functional sites in tRNAGlu involved in allos-

teric signaling that couple substrate recognition to reaction

catalysis in the complex [40]. The predicted sites are associated

with those from proteobacterial function logos [38]. Thus, tRNA

CIFs predict class-specific functional features beyond strictly tRNA

identity elements alone.

In this work, we show that tRNA CIFs have diverged among

Alphaproteobacteria in a phylogenetically informative manner,

enabling their use as signatures for classification. We validate our

approach on diverse alphaproteobacterial genomes. We show that,

as with other phylogenetic markers [10,11], tRNAs in SAR11 and

Rickettsiales have converged in base compositions, inducing an

artifactual affinity between these groups when more conventional

phylogenomic methods are applied to whole tRNA sequences.

Our results confirm those of multiple studies that control for

genomic base content variation across Alphaproteobacteria,

showing that SAR11 is not a clade [10,12], and that no SAR11

strains have Rickettsiales as their closest relatives [10,11]. Thus,

tRNA CIFs are more robust to compositional convergence than

the tRNA bodies in which they are embedded. Our results

suggest that the best signals in genomes for deep phylogenetic

problems may lie among the features that govern macromolecular

interactions.

Author Summary

If gene products work well in the networks of foreign cells,
their genes may transfer horizontally between unrelated
genomes. What factors dictate the ability to integrate into
foreign networks? Different RNAs and proteins must
interact specifically in order to function well as a system.
For example, tRNA functions are determined by the
interactions they have with other macromolecules. We
have developed ways to predict, from genomic data alone,
how tRNAs distinguish themselves to their specific
interaction partners. Here, as proof of concept, we built a
robust computational model from these bioinformatic
predictions in seven lineages of Alphaproteobacteria. We
validated our model by classifying hundreds of diverse
alphaproteobacterial taxa and tested it on eight strains of
SAR11, a phylogenetically controversial group that is
highly abundant in the world’s oceans. We found that
different strains of SAR11 are more distantly related, both
to each other and to mitochondria, than widely believed.
We explain conflicting results about SAR11 as an artifact of
bias created by the variability in base contents of
alphaproteobacterial genomes. While this bias affects
tRNAs too, our classifier appears unexpectedly robust to
it. More broadly, our results suggest that traits governing
macromolecular interactions may be more faithfully
vertically inherited than the macromolecules themselves.

tRNA Signatures Reveal Multiple Origins of SAR11
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Results

In order to characterize tRNA CIFs within Alphaproteobac-

teria, we reannotated alphaproteobacterial tDNA data from

tRNAdb-CE 2011 [41] and pre-publication genomic data for

SAR11. For our initial studies, we set aside the SAR11 data and

organized our alphaproteobacterial tDNA database taxonomically

into two parts, according to whether or not source genomes

contained the uniquely derived synapomorphic tRNAHis traits

described previously [21,19,20]. One part corresponded to a

phylogenetically coherent ‘‘RRCH clade,’’ comprising the Rho-

dobacteraceae, Rhizobiales, Caulobacterales, and Hyphomona-

daceae, which presented the derived tRNAHis traits A73 and

absence of the otherwise universally conserved genetically

templated {1G (defined according to the so-called ‘‘Sprinzl

coordinates,’’ standard in the field for enumerating tRNA

structural sites [42]). The other part corresponded to an ‘‘RSR

grade’’ comprising the Rhodospirillales, Sphingomonadales, and

Rickettsiales, which presented ‘‘normal’’ bacterial tRNAHis traits

C73 and genomically templated {1G (an ‘‘evolutionary grade’’ is

Figure 1. A universal schema for tRNA interaction networks. tRNAs interact to varying degrees of specificity within a strongly conserved
network of protein and RNA complexes. The simultaneous and conflicting requirements of ‘‘identity’’ and ‘‘conformity’’ on tRNAs create potential
deleterious pleiotropic effects when components of the network mutate or are transferred to foreign cells by HGT. They also facilitate the
bioinformatic prediction of Class-Informative Features (CIFs) from tRNAs that function together in the same or similar networks.
doi:10.1371/journal.pcbi.1003454.g001

Figure 2. Function logos of structurally aligned tRNA data as calculated by LOGOFUN [36] for two groups of Alphaproteobacteria
and overview of tRNA-CIF-based binary phyloclassification. Function logos generalize sequence logos. They are the sole means by which we
predict tRNA Class-Informative Features (CIFs), which form the basis of the scoring schemes of the classifiers reported in this work. A full derivation of
the mathematics of function logos is provided in [36]. The tRNA-CIF-based phyloclassifier shown in Figure 3A sums differences in heights of features
between two function logos for a set of genomically derived tRNAs. Complete source code and data to reproduce the function logos in this figure are
in Dataset S1.
doi:10.1371/journal.pcbi.1003454.g002

tRNA Signatures Reveal Multiple Origins of SAR11
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an ancestral and paraphyletic grouping). Importantly, the RRCH

and RSR split defined by tRNAHis traits are broadly consistent

with all phylogenomic treatments of alphaproteobacterial phylog-

eny to date [43,6,44,7,8,9,10,11]. In all, we analyzed 214

alphaproteobacterial genomes presenting 11644 predicted tRNA

gene sequences (8773 sequences unique within their respective

genomes and 3064 sequences unique overall). Our RRCH clade

data comprised 8597 tRNA genes from 147 genomes, while our

RSR grade data comprised 2792 tRNA genes from 59 genomes.

We analyzed 255 tRNA genes from eight SAR11 strain genomes.

Seven of eight SAR11 strain genomes available to us exhibited

the unique tRNAHis/HisRS codivergence traits in common with

RRCH clade genomes. In contrast, strain HIMB59 presented

ancestral bacterial characters in both tRNAHis and HisRS in

common with the RSR grade genomes (tRNA data not shown,

HisRS data shown in Figure S1). These results immediately

suggested, consistent with [10] and [12], that HIMB59 is not

monophyletic with the other SAR11 strains and is affiliated with

the RSR grade, while most other SAR11 strains are unrelated to

the Rickettsiales and belong in the RRCH clade.

In previous work, we reported the existence of fairly extensive

and general divergence of tRNA Class-Informative Features (CIFs)

between Proteobacteria and Cyanobacteria [38]. In order to

investigate tRNA CIF divergence within the Alphaproteobacteria,

we computed function logos [36] of the RRCH clade and RSR

grade tDNA data. Qualitatively, the RRCH and RSR function

logos provide visible evidence of general tRNA CIF divergence

between these two groups (comparing function logos in Figure 2).

To quantify these differences and exploit them to classify genomes,

we formulated a quantitative measure of how well tRNAs from a

given alphaproteobacterial genome match the tRNA CIFs of one

group or another. Our initial simple scoring scheme sums up the

differences in fractional information values or heights of features in

two different function logos for two taxonomic groups if tRNAs of

a given genome of the correct class carry those features (see Figure 2

and Materials and Methods). To reduce bias, we used a Leave-One-

Out Cross-Validation (LOOCV) approach, in which we recom-

puted the RRCH or RSR function logos for each genome to be

classified by removing its own contribution to the data. In order

to compare the results against those that we would get using the

entire tRNA sequences, we also scored genomes using the sum

of log-odds of entire sequences from tRNA-class-specific RRCH

and RSR tRNA sequence profiles, also with an LOOCV

approach.

Typical results are shown in Figure 3. Although the tRNA-CIF-

based phyloclassifier (Figure 3A) was biased positively by the

much larger RRCH sample size, it achieved better phylogenetic

separation of genomes than the total-tRNA-sequence-based

phyloclassifier based on taxon-specific tRNA profiles for different

functional classes (Figure 3B). The Sphingomonadales and Rhodo-

spirillales separated in scores from the Rickettsiales in both

classifiers. Most importantly, the tRNA-CIF-based phyloclassifier

placed all eight SAR11 genomes closer to the RRCH clade and far

away from the Rickettsiales with HIMB59 overlapping the

Rhodospirillales, while the total-tRNA-sequence-based phyloclas-

sifier placed all eight SAR11 genomes closer to the Rickettsiales.

Overall, while both scoring schemes separated taxonomically

distinct clades, these results show that CIFs and total tRNA data

yield different signals regarding the phylogenetic placement of

SAR11 genomes. Figure S2 shows the effects of different

treatments of missing data in the total-tRNA-sequence-based

classifier. Method ‘‘zero,’’ shown in Figure 3B, is most analogous

to the method used to generate Figure 3A. Method ‘‘skip’’ (Figure

S2B) shows that SAR11 tRNAs share sequence characters in

common with the RSR grade that are not seen in the RRCH

clade. Methods ‘‘small’’ and ‘‘pseudo’’ (Figures S2C and S2D)

show that SAR11 have sequence traits not observed in either the

RSR or RRCH datasets.

Divergence of tRNA CIFs between the RRCH clade and RSR

grade is general and encompasses other classes besides tRNAHis.

Other classes that contributed strongly to differentiated classifica-

tion of RRCH and RSR genomes by the tRNA CIF-based binary

classifier include tRNACys, tRNAAsp, tRNAGlu, tRNAIle
LAU (sym-

bolized ‘‘J’’), tRNALys, and tRNATyr (Figure 4). In a manual

curation of the most obvious CIF differences between RRCH and

RSR, we identified traits specific to RRCH including C7-Tyr, R8-

Tyr and U15:G48-Glu, all with heights greater than 2 bits (the

height of a CIF is the height of its letter in a function logo as shown

in Figure 2, which specifically quantifies both functional informa-

tion and over-representation of a CIF in tRNAs of a particular

functional class and taxonomic group; please see Materials and

Methods and [45,36] for more details). RSR-specific CIFs include

A12-Cys and C52:G62-Lys. These results extend the observations

of [19] who discovered unusual base-pair features of tRNAGlu

among members of the RRCH clade. Also, our results suggest that

the unique codivergence caused by HGT of a eukaryotic-derived

HisRS into an ancestor of the RRCH clade has perturbed

interactions in other tRNAs, in keeping with their network

coupling as shown in Figure 1. In classes for which the RRCH and

RSR groups are well-differentiated, SAR11 strain HIMB59

uniquely groups with RSR while other SAR11 strains group with

RRCH, while for other tRNA classes, all putative SAR11 strains

lie outside the RRCH and RSR distributions. These results imply

that more diverse alphaproteobacterial genomic data are necessary

to completely resolve the phylogenetic affiliation of SAR11 strains,

but strongly contradict a monophyletic affiliation of SAR11 with

Rickettsiales.

In order to expand on this preliminary binary classification, we

developed a multiway tRNA CIF-based classifier for alphaproteo-

bacterial genomes. Instead of computing a simple difference of

summed scores as before, the multiway classifier uses seven scores

as its input features, in which each score sums evidence that

tRNAs from a query genome match the tRNA CIFs of a specific

subclade of Alphaproteobacteria. We used these summed scores to

train the default multilayer perceptron (MLP) model implemented

in WEKA [46] with ten-fold cross-validation to avoid overfitting.

The MLP is the simplest nonlinear classifier able to handle the

phylogenetically dependent signals in our score vectors [47]. The

output of the MLP is a seven-element vector giving the

classification probabilities of the query genome for each of the

seven clades. Again using an LOOCV approach, each genome in

our dataset classified consistently with published taxonomic

positions [6,44,8,9,10,11] as expressed through NCBI Taxonomy,

except for all eight SAR11 strains and three additional taxa

recently placed in the Rhodobacteraceae based on 16S ribosomal

RNA evidence: Stappia aggregata [48], Labrenzia alexandrii [49] and

the denitrifying Pseudovibrio sp. JE062 [50] (Figure 5). Our results

for SAR11 are exactly consistent with those of [10]: all SAR11

strains except HIMB59 classify as Rhizobiales, while strain

HIMB59 classifies as Rhodospirillales. Furthermore, Stappia,

Labrenzia and Pseudovibrio classify poorly or not at all as Rhodo-

bacteraceae. Pseudovibrio classified four times more strongly as

Rhizobiales than as Rhodobacteraceae.

Even excluding SAR11, the alphaproteobacterial genomes that

we analyzed vary remarkably in both tRNA gene numbers

(reflecting genome size variation) and tRNA G+C contents.

Genomic tRNA numbers vary from under 20 for highly reduced

endosymbiotic genomes to over 110, while tRNA G+C contents

tRNA Signatures Reveal Multiple Origins of SAR11
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Figure 3. Leave-One-Out Cross-Validation (LOO-CV) scores of alphaproteobacterial genomes under two different binary
phyloclassifiers. A. Score distribution of genomes under the binary tRNA-CIF-based phyloclassifier as sketched in Figure 2. The score of a
genome in this classifier is the summation of differences in heights of the features of its tRNAs in the RRCH and RSR function logos in Figure 2. B.
Scores under the ‘‘zero’’ total tRNA sequence-based phyloclassifer defined in Materials and Methods and conducted as a control. Here the score of a
genome is just the sum of log-odds of its tRNA sequences in two class-specific sequence profiles from the RRCH and RSR clades. See Figure S2 for
alternative treatments of missing data under other methods. Complete source code and data to reproduce these results and those in Figure S2 are in
Dataset S2.
doi:10.1371/journal.pcbi.1003454.g003

Figure 4. Breakout of class contributions to scores under the tRNA CIF-based binary phyloclassifier. Contributions of each functional
variety of tRNA, or class, to the tRNA-CIF-based phyloclassifier scores in Figure 3A. Different SAR11 strain tRNAs are plotted separately by genome of
origin. Complete source code and data to reproduce these results are in Dataset S3.
doi:10.1371/journal.pcbi.1003454.g004

tRNA Signatures Reveal Multiple Origins of SAR11
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range from about 53% for some Rickettsiales to over 62% for

Methylobacterium and Magnetospirillum (Table S1). Despite this

variation, most classifications in Figure 5 were strongly and

consistently statistically supported, indicating that our classifier is

generally robust to base content variation of tRNAs and even

deletion of entire tRNA classes. In two different bootstrap

analyses, we bootstrapped sites of tRNA data in each genome to

be classified, and we also filtered away small CIFs with heights

v0:5 bits from our models, retrained the classifier and

bootstrapped sites again. Generally, the majority of bootstrap

classifications matched the original dominant classifications.

Alphaproteobacteria with more A+T-rich tRNAs such as mem-

bers of the genus Ehrlichia classified correctly in order Rickettsiales

with high probability and bootstrap values of 100 (or an average of

92.5 using only CIFs with heights above 0.5 bits). At the other

extreme with more G+C-rich tRNAs in the genus Methylobacteria,

all strains classified correctly as Rhizobiales with a mean bootstrap

value of 89 (or 78 using only CIFs with heights above 0.5 bits).

Azorhizobium caulinodans, belonging in the Rhizobiales, has G+C-

rich tRNAs at 62%, and is the only representative of its genus

in our study. Even in a Leave-One-Out Cross-Validation,

A. caulinodans classified correctly with bootstrap values of 94 and

77, respectively.

In our CIF bootstrap analyses, SAR11 strains either had

support values greater than 80% as Rhizobiales, majority

bootstrap values as Rhizobiales (HIMB114 at 70% with Rickett-

siales at 15% and HTCC7211 at 54% with Rickettsiales at 13%),

or a plurality bootstrap value as Rhizobiales (HIMB5 at 48% with

Rickettsiales at 18%), except for HIMB59 which had a bootstrap

support value of 87% as Rhodospirillales. Full bootstrap statistics

over all seven clades with these models are provided in Table S2

for SAR11, Stappia, Labrenzia and Pseudovibrio. In a separate

analysis, we also deleted each one of the 22 functional tRNA

classes from the data training multiway classification (Table S3).

Classification results for all of the ‘‘known’’ training genomes were

generally highly stable to the deletion of a tRNA functional class,

with a maximum of only six out of 203 genomes changing

taxonomic classifications upon deletion of any one of the following

tRNA functional classes: Cys, His, Arg, and Gly.

When using total tRNA sequence evidence, we could not

reconstruct results similar to those in Figure 5, by either a

‘‘classical’’ phylogenomic supermatrix analysis of tRNAs, or using

the recent novel FastUnifrac based approach specifically adapted

for tRNA data [51]. In a ‘‘supermatrix’’ phylogenomic approach,

concatenating genes for 28 isoacceptor tRNA classes from 169

species (2156 total sites) and using the GTR+Gamma model in

RAxML, we estimated a Maximum Likelihood tree in which all

eight putative SAR11 strains branch together with Rickettsiales

(Figure S3). For this analysis, in 31% of instances when isoacceptor

genes were picked from a genome, we randomly picked one gene

from a set of isoacceptor paralogs. However, our results did not

depend on which paralog we picked. Using a distance-based

approach with FastTree, we computed a consensus cladogram

over 100 replicate alignments each representing different ran-

domized picks over paralogs. As shown in a consensus cladogram

(Figure S4) each replicate distance tree placed all eight putative

SAR11 strains together with the Rickettsiales. Widmann Et Al.

(2010) [51] introduced a novel phylogenomic approach that

computes a distance tree of all tRNA sequences from all genomes,

and then clusters genomes using the UniFrac metric applied to

that tree. Their method, although innovative, is also based on total

tRNA sequence evidence. We found that it also places all SAR11

strains together with Rickettsiales (Figure 6). These results

strengthen those shown in Figures 3 and S2 which suggest that

tRNA CIFs exhibit a specific evolutionary signal distinct from that

of tRNA sequences as a whole.

Results with total tRNA sequence evidence mirror those with

16S ribosomal RNA [52] in placing all SAR11 strains together

with the Rickettsiales. We suspected that it was variability in base

contents of alphaproteobacterial tRNAs — caused in part by

convergence of SAR11 and Rickettsiales tRNA genes to greater

A+T contents — that contributed most greatly to the discrepancies

in classification results between our CIF-based classifier and the

phylogenomic methods using total tRNA evidence. Increases in

genomic A+T in SAR11 and the Rickettsiales have driven

increases in A+T content of ribosomal RNA genes [10]. We

found evidence of convergence to greater A+T contents of tRNA

genes as well (Figure 7A). Rickettsiales and SAR11 tRNA genes

are notably elevated in both A and T, and share an overall

similarity in compositions distinct from those of other Alphapro-

teobacteria. Furthermore, a hierarchical clustering of Alphapro-

teobacterial families and orders based on tRNA gene base contents

closely group SAR11 and Rickettsiales together (Figure 7B).

Discussion

We have exploited our now well-established function logo

approach [36], which predicts functional sites in tRNAs, as a

means to statistically classify genomes. We have shown that our

approach is more robust to tRNA base content variation than

more conventional phylogenomic approaches using total tRNA

evidence. While our simple scoring schemes are not interpretable

as evolutionary distances, in other work we have developed

evolutionary distances based on tRNA CIFs and used them to

reconstruct phylogenetic trees.

Our results provide strong, albeit unconventional, evidence that

most SAR11 strains are affiliated with Rhizobiales, while strain

HIMB59 is affiliated with Rhodospirillales. Our results are

completely consistent with phylogenomic studies that control for

nonstationary macromolecular compositions among Alphaproteo-

bacteria [9,10,11,12] and also with a site-rate-filtered phyloge-

nomic analysis [44]. Our CIF-based method works even though

SAR11 tRNAs and Rickettsiales tRNAs have converged in base

contents (Figure 7). tRNA CIFs must be at least partly robust to

compositional convergence of the tRNA bodies in which they are

embedded.

Our results suggest that tRNA-CIF-based phyloclassification is

robust to HGT of components of the tRNA interaction network.

Our alphaproteobacterial phyloclassifications were highly consis-

tent and showed no signs of misclassification of individual

genomes, even though aminoacyl-tRNA synthetases (aaRS) are

highly prone to HGT [27,28,29,30,31] including in the Alpha-

proteobacteria [21,53,54]. tRNAs are also known to be horizon-

tally transferred [32], although confident estimation of tRNA

HGT rates is difficult. Even while HGT of tRNAs and tRNA-

interacting proteins may be common, HGT of foreign tRNA

‘‘identity rules’’ governing tRNA interactions must be relatively

rare. This argument is consistent with that of [33], who argued

that a horizontally transferred aaRS is more likely to functionally

ameliorate to a tRNA interaction network into which it has been

transferred rather than remodel that network to accommodate

itself. HGT of components may also perturb a network so as to

cause a distinct pattern of divergence [21]. Wang et al. [19] discuss

the possibility that RRCH tRNAHis and HisRS were co-

transferred into an ancestral SAR11 genome. However, this

hypothesis fails to explain the correlations of many other tRNA

traits of SAR11 genomes with the RRCH clade reported here.

Further investigation will be needed to clarify how HGT of aaRSs

tRNA Signatures Reveal Multiple Origins of SAR11
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and tRNAs affect the evolution of tRNA CIFs and our novel

phyloclassification method.

A more distant relationship between SAR11 strains and

Rickettsiales actually strengthens the genome streamlining hy-

pothesis [5]. With a placement of SAR11 within Rickettsiales, it

becomes more difficult to justify how genome reduction in SAR11

occurred by a selection-driven evolutionary process rather than

the drift-dominated erosion of genomes in the Rickettsiales

[55,17,56]. By the same token, polyphyly of nominal SAR11

strains implies that the extensive similarity in genome structure

and other traits between HIMB59 and SAR11 reported by [57]

may have originated independently. Perhaps convergence in some

traits is consistent with selective streamlining, which could also

explain trait-sharing between SAR11 and Prochlorococcus, marine

cyanobacteria also argued to have undergone streamlining [58].

The very clear signs of data limitation evident from results shown

Figure 5. Seven-way tRNA-CIF-based phyloclassification of alphaproteobacterial genomes by the default multilayer perceptron in
WEKA. Each test genome classified is assigned a probability of classification into each of the seven alphaproteobacterial clades indicated. Bootstrap
support values under resampling of tRNA sites against (left) all tRNA CIFs and (right) CIFs with heights §0:5 bits and model retraining (100 replicates).
All support values correspond to most probable clade as shown except for Stappia and Labrenzia for which they correspond to Rhizobiales. Complete
source code and data to produce this figure, including the full WEKA model for classification of other alphaproteobacterial genomes and code to
produce such models from scratch, is provided in Dataset S4.
doi:10.1371/journal.pcbi.1003454.g005
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in Figures 3, 4, 5 and S2 imply that better taxonomic sampling will

improve our results and could ultimately resolve more than two

origins of SAR11-type genomes among Alphaproteobacteria.

We extracted accurate and robust phylogenetic signals from

tRNA gene sequences by first integrating within genomes to

identify features likely to govern functional interactions with other

macromolecules. Unlike small molecule interactions, macromo-

lecular interactions are mediated by genetically determined

structural and dynamic complementarities. These are intrinsically

relative; a large neutral network [59] of interaction-determining

features should be compatible with the same interaction network.

Coevolutionary divergence — turnover—of features that mediate

Figure 6. FastUniFrac-based phylogenetic tree of alphaproteobacteria using tRNA data computed according to the methods of [51].
The FastUniFrac algorithm was recently adapted as a phylogenomic method using tRNA genes. Like the supermatrix phylogenomic approach on
tRNAs with results shown in Figures S3 and S4, this method uses unfiltered total sequence information of tRNAs. In contrast to Figure 5, both in this
figure and in Figures S3 and S4, all SAR11 strains are affiliated with Rickettsiales. For reasons shown in Figure 7, we argue these results are artifacts of
convergence in tRNA base contents. Complete source code and data to reproduce these results are in Dataset S5.
doi:10.1371/journal.pcbi.1003454.g006
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macromolecular interactions, while conserving network architec-

ture, has been described in the transcriptional networks of yeast

[60,61] and worms [62] and in post-translational modifications

underlying protein-protein interactions [63]. Coevolutionary

divergence of features governing tRNA interactions may be driven

by ongoing recruitment of tRNA genes to new functional classes

[64]. This work demonstrates that generally, divergence of

interaction-governing features is phylogenetically informative.

How features that govern macromolecular interactions diverge

is an open question, with possibilities including compensatory

nearly neutral mutations [65], fluctuating selection [66], adaptive

reversals [67], and functionalization of pre-existent variation [68].

Major changes to interaction interfaces may be sufficient to induce

genetic isolation between related lineages, as discussed for the 16S

rRNA- and 23S rRNA-based standard model of the ‘‘Tree of

Life,’’ in which many important and deep branches associate with

large, rare macromolecular changes (‘‘signatures’’) in ribosome

structure and function [69,70,71].

In summary, we propose that tRNA CIFs represent one of

many possible different lineage-specific ‘‘shape codes’’ [20] among

coinherited macromolecules. The concept of tRNA identity as a

‘‘second genetic code’’ is an old one [72,73,74,75] as recounted in

[76]. However, by ‘‘shape code’’ we intend to emphasize the

potentially arbitrary and co-evolveable nature of the features that

underlie macromolecular interactions in specific lineages. The

shape codes of macromolecular interactions within specific cellular

lineages not only create a barrier to HGT of components but resist

transfer even when HGT of those components occurs. Therefore,

the interaction-mediating features of macromolecules may be

systems biology’s answer to the phylogeny problem. Perhaps no

other traits of genomes are vertically inherited more consistently

than those that mediate functional interactions with other

macromolecules in the same lineage. In fact, the structural and

dynamic basis of interaction among macromolecular components

— essential to their collaborative function in a system — may

define a lineage better than any of those components can

themselves, either alone or in ensemble.

Materials and Methods

Supplementary data packages are provided to reproduce all

figures from raw data and enable third-party classification of

alphaproteobacterial genomes (Datasets S1, S2, S3, S4, S5, S6, S7,

S8).

tRNA Data
The 2011 release of the tRNAdb-CE database [41] was

downloaded on August 24, 2011. From this master database, we

selected Alphaproteobacteria data as specified by NCBI Taxon-

omy data (downloaded September 24, 2010, [77]). Also using

NCBI Taxonomy, we further tripartitioned Alphaproteobacterial

tRNAdb-CE data into those from the RRCH clade, the RSR

grade (excluding SAR11), and three SAR11 genomes, as

documented in Supplementary data for figure 2. Five additional

SAR11 genomes (for strains HIMB59, HIMB5, HIMB114,

IMCC9063 and HTCC9565) were obtained from J. Cameron

Thrash courtesy of the lab of S. Giovannoni. We custom

annotated tRNA genes in these genomes as the union of pre-

dictions from tRNAscan-SE version 1.3.1 (with -B option, [78])

and Aragorn version 1.2.34 [79]. We classified initiator tRNAs

and tRNAIle
CAU using TFAM version 1.4 [80] using a model

previously created to do this based on identifications in [81]

provided as supplementary data. We aligned tRNAs with covea

version 2.4.4 [82] and the prokaryotic tRNA covariance model

[78], removed sites with more than 97% gaps with a bioperl-based

utility [83], and edited the alignment manually in Seaview 4.1 [84]

to remove CCA tails and remove sequences with unusual

secondary structures. We mapped sites to Sprinzl coordinates

manually [42] and verified by spot-checks against tRNAdb [85].

We added a gap in the 21 position for all sequences and G-1 for

tRNAHis in the RSR group [19].

Analysis of HisRS Data
We reannotated HisRS genes from a custom BLAST database

of the eight SAR11 strain genomes using previously identified

HisRS inferred protein sequences from SAR11 strains

HTCC1002, HTCC1062 and HTCC7211 and IMCC9063

downloaded from NCBI on September 27, 2012. Using tBLASTn

from commandline BLAST version 2.2.27+ [86], we found one

match to each SAR11 strain genome, extracted these sequences

and aligned them using clustalw2 (v 2.0.11) [87].

tRNA CIF Estimation and Binary Classifiers
Our tRNA-CIF-based binary phyloclassifier with Leave-One-

Out Cross-Validation (LOO CV) is computed directly from

function logos, estimated from tDNA alignments as described in

[36]. Here, we define a feature f [F as a nucleotide n[N at a

position l[L in a structurally aligned tDNA, where

N~fA,C,G,Tg and L is the set of all Sprinzl coordinates [42].

The set F of all possible features is the Cartesian product

F~N|L. A functional class or class of a tDNA is denoted c[C
where C~fA,C,D,E,F ,G,H,I ,J,K ,L,M,N,P,Q,R,S,T ,V ,W ,X ,
Yg is the universe of functions we here consider, symbolized by

IUPAC one-letter amino acid codes (for aminoacylation classes),

Figure 7. Base compositions of alphaproteobacterial tRNAs
showing convergence between Rickettsiales and SAR11. A.
Stacked bar graphs of tRNA base compositions by clade. B. UPGMA
clustering of clades based on Euclidean distances of tRNA base
compositions under the centered log ratio transformation [88]. tRNA
base compositions alone are sufficient to group all SAR11 strains
together with Rickettsiales as a clade. Most popular molecular
evolutionary models in use today do not account for base content
variation as a source of bias in phylogenetic estimation. Complete
source code and data to reproduce these results are in Dataset S6.
doi:10.1371/journal.pcbi.1003454.g007
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X for initiator tRNAs, and J for tDNAIle
LAU. A taxon set of genomes or

just taxon set S[P(G) is a set of genomes, where G is the set of all

genomes, and P(G) is the power set of G. In this work a genome G

is represented by the multiset of tDNA sequences it contains,

denoted TG . The functional information of features is computed

with a map h : (F|C|P(G))?R§0 from the Cartesian product

of features, classes and taxon sets to non-negative real numbers.

For a feature f [F , class c[C and taxon set S[P(G), h(f ,c,S) is the

fraction of functional information or ‘‘height,’’ measured in bits,

associated to that feature, class and taxon set. This height is the

product of conditional functional information of a feature

(corrected for bias due to sampling), times the normalized odds

ratio of it appearing in a specific class [45], see Figure S5 for more

detail. In this work, for a given taxon set S, a function logo H(S) is

the tuple:

H(S)~f(a,b)Db~h(a,S),Va[(F|C)g: ð1Þ

Furthermore the set I(S)5(F|C) of tRNA Class-Informative

Features for taxon set S is defined:

I(S)~fa[(F|C)Dh(a,S)w0g: ð2Þ

Briefly, a tRNA Class-Informative Feature is a tRNA structural

feature that is informative about the functional classes it associates

with, given the context of tRNA structural features that actually

co-occur among a taxon set of related cells, and corrected for

biased sampling of classes and finite sampling of sequences [36].

Let A denote a set of Alphaproteobacterial genomes partitioned

into three disjoint subsets X , Y and Z with X|Y|Z~A,

representing genomes from the RRCH clade, the RSR grade, and

the eight nominal Ca. Pelagibacter strains respectively. To execute

the Leave-One-Out Cross-Validation of a tRNA CIF-based binary

phyloclassifier for a genome G[A as shown in Figure 3A, we

compute a score SC(G,S1,S2), averaging contributions from the

multiset TG of tDNAs in G scored against two function logos

H(S1) and H(S2) computed respectively from two disjoint taxon

sets S15A and S25A, with G=S1|S2. In this study, those sets

are X \G and Y \G, denoted XG and YG respectively. Each tDNA

t[TG presents a set of features Ft5F and has a functional class

ct[C associated to it. The score SC(G,XG,YG) is then defined:

SC(G,XG,YG):
1

DTG D

X
t[TG

X
f [Ft

h(f ,ct,XG){h(f ,ct,YG): ð3Þ

As controls, we implemented four total-tDNA-sequence based

binary phyloclassifiers to score a genome G, shown in Figures 3B

and S2. All are slight variations in which a tRNA t[TG of class c(t)
contributes a score that is a difference in log relative frequencies of

the features it shares in class-specific profile models generated from

XG and YG . The default ‘‘zero’’ scoring scheme method

SZ
T (G,XG,YG) shown in Figure 3B is defined as:

SZ
T (G,XG,YG):

1

DTG D

X
t[TG

X
f [Ft

log2

p�(f Dct,XG)

p�(f Dct,YG)
, ð4Þ

where

p�(f Dc,S):
#ff ,c,Sg=#fc,Sg #ff ,c,Sgw0

1 #ff ,c,Sg~0

�
, ð5Þ

#ff ,c,Sg is the observed frequency of feature f in tDNAs of class

c in set S, and #fc,Sg is the frequency of tDNAs of class c in set

S.

Method ‘‘skip’’ corresponding to scoring scheme SK
T (G,XG,YG)

and Figure S2B defined as:

SK
T (G,XG,YG):

1

DTG D

X
t[TG

X
f [Ft

sk(f ,ct,XG,YG), ð6Þ

where

sk(f ,c,S,T):
log2

p(f Dc,S)

p(f Dc,T)
#ff ,c,Sgw0 ^#ff ,c,Tgw0

0 #ff ,c,Sg~0 _#ff ,c,Tg~0

8<
: ,ð7Þ

and p(f Dc,R):#ff ,c,Rg=#fc,Rg for R[fS,Tg as before.

Methods ‘‘pseudo’’ and ‘‘small’’ corresponding to scoring

schemes SI
T (G,XG,YG) and Figure S2C and S2D respectively:

SI
T (G,XG,YG):

1

DTG D

X
t[TG

X
f [Ft

log2

pI (f Dct,XG)

pI (f Dct,YG)
, ð8Þ

where

pI (f Dc,S):
o=t Vn[N : #f(n,l),c,Sgw0

ozI

tz4I
An[N : #f(n,l),c,Sg~0

8<
: , ð9Þ

where f ~(n,l), o:#ff ,c,Sg, t:#fc,Sg, I~1 for method

‘‘pseudo,’’ and, for method ‘‘small,’’ I~1=TA, where

TA~
P

G[A TG .

Analysis of tRNA Base Composition
To create Figure 7, we computed the base composition of

tRNAs aggregated by clades using bioperl-based [83] scripts, and

transformed them by the centered log ratio transformation [88]

with a custom script provided as supplementary data. We then

computed Euclidean distances on the transformed composition

data, and performed hierarchical clustering by UPGMA on those

distances as implemented in the program NEIGHBOR from

Phylip 3.6b [89] and visualized in FigTree v.1.4.

Supermatrix and FastUniFrac Analysis
For supermatrix approaches, we created concatenated tRNA

alignments from 169 Alphaproteobacteria genomes (117 RRCH,

44 RSR, 8 PEL) that all shared the same 28 isoacceptors with 77

sites per gene (2156 total sites). In cases where a species contained

more than a single isoacceptor, one was chosen at random.

Using a GTR+C model, we ran RAxML by means of

The iPlant Collaborative project RAxML server (http://www.

iplantcollaborative.org, [90]) on January 23, 2013 with their

installment of RAxML version 7.2.8-Alpha (executable raxmlHPC-

SSE3, a sequential version of RAxML optimized for parallelization)

(Figure S3). We tested the robustness of our result to random picking

of isoacceptors by creating 100 replicate concatenated alignments

and running them through FastTree [91] (Figure S4). For the

FastUniFrac analysis (Figure 6) we used the FastUniFrac [92]
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web-server at http://bmf2.colorado.edu/fastunifrac/ to accommo-

date our large dataset. We removed two genomes from our dataset

for containing fewer than 20 tRNAs, and following [51] removed

anticodon sites. Following [51] deliberately, we computed an

approximate ML tree based on Jukes-Cantor distances using

FastTree [91]. We then queried the FastUniFrac webserver with

this tree, defining environments to be genomes of origin. We then

computed a UPGMA tree based on the server’s output FastUniFrac

distance matrix in NEIGHBOR from Phylip 3.6b [89].

Multiway Classifier
All tDNA data from the RSR and RRCH clades were partitioned

into one of seven monophyletic clades: orders Rickettsiales (N = 40

genomes), Rhodospirillales (N = 10), Sphingomonadales (N = 9),

Rhizobiales (N = 91), and Caulobacterales (N = 6), or families

Rhodobacteraceae (N = 43) or Hyphomonadaceae (N = 4) as

specified by NCBI taxonomy (downloaded September 24, 2010,

[77]) and documented in supplementary data for figure 7. We

withheld data from the eight nominal SAR11 strains, as well as from

three genera Stappia, Pseudovibrio, and Labrenzia, based on prelimi-

nary analysis of tDNA and CIF sequence variation. Following a

related strategy as with the binary classifier, we computed, for each

genome, seven tRNA-CIF-based scores, one for each of the seven

Alphaproteobacterial clades as represented by their function logos,

using the principle of Leave-One-Out Cross-Validation (LOO CV),

that is, excluding data from the genome to be scored. Function logos

were computed for each clade as described in [36]. For each taxon

set XG (with genome G left out if it occurs), genome G obtains a

score SM (G,XG) defined by:

SM (G,XG):
1

DTG D

X
t[TG

X
f [Ft

h(f ,ct,XG): ð10Þ

Each genome G is then represented by a vector of seven scores, one

for each taxon set modeled. These labeled vectors were then used to

train a multilayer perceptron classifier in WEKA 3.7.7 (downloaded

January 24, 2012, [46]) by their defaults through the command-line

interface, which include a ten-fold cross-validation procedure. We

bootstrap resampled sites in genomic tRNA alignment data (100

replicates) and also bootstrap resampled a reduced (and retrained)

model including only CIFs with heights greater than 0:5 bits.

Supporting Information

Dataset S1 Source code and data to reproduce Figure 2.

(ZIP)

Dataset S2 Source code and data to reproduce Figures 3
and S2.

(ZIP)

Dataset S3 Source code and data to reproduce Figure 4.

(ZIP)

Dataset S4 Source code and data to reproduce Figure 5,
WEKA model to classify alphaproteobacterial genomes
and instructions to extend and generate new WEKA
models from tRNA CIF data.

(ZIP)

Dataset S5 Source code and data to reproduce Figure 6.

(ZIP)

Dataset S6 Source code and data to reproduce Figure 7.

(ZIP)

Dataset S7 Source code and data to reproduce Figure
S1.

(ZIP)

Dataset S8 Source code and data to reproduce Figures
S3 and S4.

(ZIP)

Figure S1 Sequence variation of HisRS motif IIb tRNA-
binding loops in SAR11 strains. Frequency plot logos of the

motif IIb tRNA-binding loop of inferred HisRS proteins from

putative SAR11 strain genomes. Seven of eight putative SAR11

genomes show the derived characteristic Gly123 unique to the

RRCH clade, while one, HIMB59, shows the ancestral Gln123

common to the RSR group and most other bacteria [21],

which specifically interacts with the ancestral G-1:C73 base-pair

in tRNAHis [93]. These data covary perfectly with tRNAHis

consistent with affiliation of seven of eight SAR11 strains with the

RRCH clade, and of HIMB59 with the RSR grade. Logos made

in WebLogo [94].

(EPS)

Figure S2 Leave-one-out cross-validation scores of
alphaproteobacterial genomes under the tRNA se-
quence-based binary phyloclassifer, using four different
methods for handling missing data. When a genome

presents tRNA features missing from one or the other training

data sets for the RRCH clade (in red) or RSR grade (in blue).

SAR11 data is in green. Method ‘‘zero’’ is shown in the main text

as Figure 3B. See Materials and Methods for definitions of

‘‘small,’’ ‘‘pseudo’’ and ‘‘skip.’’

(EPS)

Figure S3 Maximum likelihood phylogram of a concat-
enated supermatrix of 28 isoacceptor genes for 169
alphaproteobacterial genomes computed in RAxML
using the GTR+C model. For genomes in which paralog

‘‘isodecoders’’ of the same isoacceptor gene, one paralog was

picked randomly. This occurred in 31% of cases, where a case is

one genome x isoacceptor combination. Rickettsiales genomes are

boxed in blue and all eight putative SAR11 strains are boxed in

green.

(EPS)

Figure S4 Consensus cladogram of 100 replicates of
distance-based trees computed in FastTree, each with
different randomized picks of isoacceptor genes for
alphaproteobacterial genomes in which paralogs for the
same isoacceptor exist (also called ‘‘isodecoders’’).
A. Complete cladogram, with Rickettsiales boxed in blue

and putative SAR11 genomes, including HIMB59, in green.

B. Magnification showing perfect replicate support for

monophyly of Rickettsiales and the eight putative SAR11

strains.

(EPS)

Table S1 Numbers and base compositions of 214
alphaproteobacterial tRNA genes. This PDF file has its

generating source file and raw data in CSV format attached.

(PDF)

Table S2 Frequencies out of 100 bootstrap replicates
that specific alphaproteobacterial test genomes classi-
fied into one among seven alphaproteobacterial clades.
This PDF file has its generating source file and raw data in CSV

format attached.

(PDF)
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Table S3 Classifications of 214 alphaproteobacterial
genomes across seven alphaproteobacterial clades after
deletion of one of 22 different tRNA functional classes
using the MLP multiway classifier model in WEKA.
Genomes are ordered to match, top-to-bottom and left-to-right,

Figure 5. Clades are symbolized as follows: K, Rickettsiales; D,

Rhodospirillales; S, Sphingomonadales; C, Caulobacterales; B,

Rhodobacteraceae; H, Hyphomonadaceae; Z, Rhizobiales. For

each genome, the 22 clade classfications/functional class deletions

are ordered by decreasing robustness of classifications to deletion

over all genomes considered known (all but SAR11, Stappia,

Labrenzia and Pseudovibrio). The class order is as follows:

F,T,K,E,L,X,P (203 out of 203 genomes), S (202 genomes), A,I

(201 genomes), N,Y,Q,M,J,W (200 genomes) V,D (199 genomes),

C,H,R,G (197 genomes). This PDF file has its generating source

file and raw data in CSV format attached.

(PDF)
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