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Abstract

T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly
in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands,
there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded
remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological
impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in
theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here
we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and
decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We
tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and
utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding
affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits
an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate
ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the
high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate
TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating
TCRs with customized antigen targeting capabilities.
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Introduction

T cell receptors (TCRs) are key elements of adaptive immunity,

as they specifically recognize antigenic peptides bound to MHC

proteins (pMHCs) on cell surfaces and are responsible for initiating

immune responses against targeted cells. The TCR-pMHC

interaction is of considerable importance in health and disease,

notably in transplantation, autoimmunity, and is a target for

development of vaccines and therapeutics for infectious disease

and cancer [1–3]. For example, the adoptive transfer of genetically

engineered T cells, whereby tumor-specific TCRs are transduced

into T cells and then infused into the patient, is being explored as a

means for cancer immunotherapy. Clinical trials of such

genetically engineered T cells have shown promise in the

treatment metastatic melanoma [4–6] and synovial cell carcinoma

[7], leading to durable tumor regression and long-term survival in

patients.

The observations that TCRs have relatively weak affinities

towards pMHC (typically 1–300 mM; ,1000-fold lower than

mature antibody/antigen interactions) and that pMHC affinities

are correlated to some extent with in vivo potency [8] have led to a

number of efforts to engineer TCRs with enhanced binding

affinity. These efforts include in vitro selection [9–13] as well as

computational structure-based design [14–16], resulting in up to

1,000,000-fold improvements in affinity. However, a major

concern in enhancing TCR affinity is maintenance of peptide

specificity. As TCRs recognize peptides presented by MHC

proteins, yet invariably form contacts to both peptide and MHC

[17], enhancements to TCR affinity risk dangerous cross-reactivity

if affinity-enhancing substitutions preferentially target the MHC

protein. Such ‘‘off-target’’ interactions can be challenging to

predict from peptide sequence and are a major concern for high

affinity TCRs [18]. Indeed, the unanticipated cross-reactivity of a

high affinity TCR resulted in serious consequences and deaths in a

recent clinical trial [19]. Additionally, significant enhancements in

antigen-specific affinity may be detrimental for T cell activity, as

there is evidence of a TCR ‘‘threshold affinity’’ above which T cell

responsiveness is attenuated [20,21]. Thus, careful control of

affinity and specificity is crucial in the development of enhanced

TCRs for therapeutic purposes.
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The ab TCR DMF5 was originally isolated from tumor

infiltrating lymphocytes present in a patient with metastatic

melanoma [22]. DMF5 recognizes the 27–35 nonameric and

26–35 decameric peptide epitopes from the MART-1 melanoma

antigen presented by the class I MHC protein HLA-A*0201

(HLA-A2), and was the second TCR to be used in clinical trials of

genetically engineered T cells [5]. Without knowledge of structure

or affinity, Robbins and colleagues previously examined a series of

point mutations in DMF5, generating variants that resulted in

improved antigen-specific responses yet also showed evidence of

reduced specificity, underscoring the need for incorporating

structural information in the design process [23]. More recently,

the DMF5 TCR has been crystallized by our laboratory in

complex with both the MART-1 nonameric epitope (AAGI-

GILTV; referred to as AAG) as well as the anchor-modified

decameric epitope (ELAGIGILTV; referred to as ELA), both

bound to HLA-A2 [24]. The structures show that despite the

significant difference in peptide conformation between the ELA/

HLA-A2 and AAG/HLA-A2 ligands [24], DMF5 engages them

with an identical binding mode. These structures along with

associated affinity measurements provide an ideal opportunity to

explore the applicability of computational structure-based design

for rationally enhancing a clinically relevant TCR, while

simultaneously exploring the impact on peptide specificity.

Utilizing a refined algorithm initially developed for our redesign

of the A6 TCR [14], we applied structure-based design to the

DMF5 TCR, generating variants and characterizing mutants with

affinity enhancements of up to 400-fold toward ELA/HLA-A2.

Highlighting the ability of structure-based design to directly target

regions of interest within protein interfaces, and in contrast with

results seen with in vitro selection, the strongest affinity enhancement

was achieved with only two previously identified amino acid

substitutions [25] that directly interact with the peptide. Impor-

tantly, the highest affinity variant showed no detectable recognition

of unrelated peptides presented by HLA-A2. We determined the

crystallographic structure of this variant bound to ELA/HLA-A2,

permitting a detailed analysis of the accuracy of the various

structural modeling protocols, and together with the affinity

measurements, a quantitative assessment of scoring functions and

terms. Further, by purposely disrupting interactions with the ELA

peptide, we were able to shift TCR specificity away from the ELA

peptide toward the AAG peptide, albeit with more modest efficacy.

Altogether, these results highlight the promise of structure-based

design for TCR engineering, and provide a rich dataset for further

improvements in design strategies, including the broadening of

efforts to other TCR-pMHC systems. Lastly, given the ongoing use

of the DMF5 TCR in efforts to develop immunological therapies for

melanoma (e.g., [26]), the high affinity DMF5 variants identified

here may have future clinical applicability.

Results

Design and Affinities of DMF5 Point Mutants
We used the ZAFFI and Rosetta software tools [14,27] to

predict the affinity changes of DMF5 mutants for ELA/HLA-A2

or AAG/HLA-A2, simulating all point mutations for each DMF5

residue within 5.5 Å of the pMHC ligand in the tertiary structures.

In total, we examined 589 substitutions of 31 DMF5 residues

within each complex, which were then ranked based on predicted

TCR-pMHC affinity. Twelve computationally designed mutations

were chosen for experimental testing. To help maintain peptide

specificity, with the exception of two aR27 mutants, we only chose

mutants that were predicted to contact the peptides. The aR27

mutants were selected to compare with our previously designed

substitutions at the corresponding position in the A6 TCR [14],

which shares the germline a chain gene (TRAV 12-2) and some

MHC contacts with DMF5. We performed mutagenesis using

soluble DMF5 gene constructs, expressed and purified the mutant

proteins, and measured their binding affinities toward ELA/HLA-

A2 and AAG/HLA-A2 via surface plasmon resonance (Figure 1).

The mutations and their measured affinities for ELA/HLA-A2

and AAG/HLA-A2 are given in Table 1, organized by the

method through which they were selected: Affinity, Specificity, or

Proline, as discussed in detail below. In addition, Table 1 includes

four mutations, listed under ‘‘Test’’, that we selected for

measurement based on manual inspection of the TCR-pMHC

structures.

Mutations in the Affinity category were chosen on the basis of

predicted enhancement in affinity towards both ELA/HLA-A2

and AAG/HLA-A2. Three of the six mutations in this category

had significantly improved affinities: aD26W, aD26Y, and

bL98W. The two aD26 mutants had the highest measured

binding affinities among all tested mutants (up to 40-fold

improvement for aD26W towards AAG/HLA-A2), while the

bL98W mutant had a 3-fold affinity improvement for both ELA/

HLA-A2 and AAG/HLA-A2.

Mutations in the Specificity category were chosen on the basis

of predicted differential affinity towards ELA/HLA-A2 and AAG/

HLA-A2. These were predicted to contact a portion of the

interface that varies between the two peptides, where the alanine

at the N-terminus of the nonamer is replaced by a larger glutamate

residue in the decamer (Figure S1). Several mutations at TCR

position aG28 were chosen that would potentially destabilize the

interaction with ELA/HLA-A2 via steric hindrance while favoring

AAG/HLA-A2. Of the specificity-altering substitutions, all shifted

specificity toward the AAG nonamer as predicted, albeit the shifts

were relatively modest (up to a 5-fold shift; Table 1 and Figure 2).

Based on work with the A6 TCR [28], as well as the observation

of proline CDR mutants in high affinity TCR selection

experiments [9,11], we tested three proline mutations that were

Author Summary

T cell receptors (TCRs) play a major role in immunity,
recognizing peptide antigens presented by major histo-
compatibility complex proteins. Due to their capacity to
target intracellularly produced proteins and initiate cell
killing, there is significant interest developing TCR-based
therapeutic strategies, particularly towards cancer. A
concern with TCRs is their weak-to-moderate affinities,
which limits therapeutic potential. While in vitro evolution
has been used to enhance TCR affinity, with sometimes
spectacular results, these techniques can reduce peptide
specificity and offer little control over affinity enhance-
ments. Here we explored the use of structure-based
computational design to enhance TCR affinity, which in
principle can permit control over both specificity and
affinity gains. We examined a clinically relevant TCR
recently used in melanoma immunotherapy, identifying
and characterizing mutations which enhanced affinity with
no detectable impacts on binding specificity. We solved a
crystal structure of our highest affinity designed TCR in
complex with antigen, which indicated high accuracy of
the structural modeling during the design process, and we
critically evaluated several design protocols and functions
to further improve design success. These results provide
valuable insights into the use of computational design for
TCRs. Lastly, the enhanced affinity variants identified may
be of potential clinical benefit.
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Figure 1. Representative binding affinity measurements. (a) Steady-state binding equilibrium data for ELA/HLA-A2 binding wild type DMF5
and the bL98W and aG28P mutants. Solid lines represent a fit to a 1:1 equilibrium binding model. (b) Kinetic titration data for ELA/HLA-A2 binding of
the high affinity YW (aD26Y/bL98W) mutant of DMF5. Data are in black in the bottom panel; the red line is a fit to a 1:1 kinetic titration model with
drift. Residuals (difference between data and fitted curve) are shown in the smaller top panel.
doi:10.1371/journal.pcbi.1003478.g001

Table 1. DMF5 mutants organized by design strategy and measured affinities toward ELA/HLA-A2 and AAG/HLA-A2.

ELA AAG

Mutant KD, mM DDG, kcal/mol DDG Error Fold Change1 KD, mM DDG, kcal/mol DDG Error Fold Change1 Spec Change2

wild-type 9.5 - - - 43 - - - -

Affinity

aD26W 0.68 21.6 0.1 14 1.1 22.2 0.1 42 2.9

aD26Y 0.46 21.8 0.1 21 4.5 21.4 0.1 10 0.5

aR27W 26 0.6 0.1 0.4 62 0.2 0.1 0.7 1.9

bL98W 2.9 20.7 0.1 3.3 11 20.8 0.1 3.9 1.1

bF100W 46 0.9 0.1 0.2 83 0.4 0.1 0.5 2.5

bT102F 8.9 20.04 0.1 1.1 27 20.3 0.2 1.6 1.5

Specificity

aG28I 41 0.9 0.1 0.2 36 20.1 0.1 1.2 5.2

aG28L 99 1.4 0.1 0.1 130 0.7 0.1 0.3 3.4

aG28Y 120 1.5 0.1 0.1 110 0.5 0.1 0.4 5.2

Proline

aR27P 12 0.2 0.1 0.8 46 0.02 0.1 1.0 1.2

aG28P 60 1.1 0.2 0.2 340 1.2 0.2 0.1 0.8

bA55P 8.5 20.1 0.1 1.1 61 0.2 0.1 0.7 0.6

Test

aG28N 40 0.9 0.1 0.2 86 0.4 0.2 0.5 2.1

aY50A NB - - - NB - - - -

aG94T NB - - - NB - - - -

bF100Y 100 1.4 0.1 0.1 160 0.8 0.1 0.3 2.8

Combinations

aD26W/bL98W 0.033 23.3 0.1 290 0.60 22.6 0.1 72 0.2

aD26Y/bL98W 0.024 23.5 0.1 400 1.7 21.9 0.1 30 0.1

Bold denotes measured affinity improvements, or specificity changes, greater than 3-fold.
1Improvement in binding association constant relative to wild-type (KD_mut/KD_wt).
2Specificity change toward AAG versus ELA peptide: Fold_Change AAG/Fold_Change_ELA.
doi:10.1371/journal.pcbi.1003478.t001
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predicted to stabilize CDR loops in the bound conformation while

not negatively impacting contacts with the pMHC (Proline

category in Table 1). None of these proline substitutions showed

a significant improvement in affinity, indicating that while

potentially reducing the entropic cost for binding, the magnitudes

of any such improvements were not substantial enough to yield a

net increase in binding free energy, possibly because these loops

appear relatively rigid in the unbound DMF5 TCR [29].

Moreover, given the .1 kcal/mol loss in binding free energy

with both ELA/HLA-A2 and AAG/HLA-A2, the aG28P

substitution may have directly or indirectly impacted pMHC

contacts, consistent with its relatively buried position in the pMHC

interface.

Combining the affinity-enhancing aD26Y and bL98W muta-

tions (this double mutant is referred to as YW) yielded a substantial

improvement towards ELA/HLA-A2. This high affinity double

mutant was previously described in a brief report, with a

preliminary affinity measurement yielding an approximate 200-

fold enhancement [25]. Here, however, we measured a 400-fold

improvement (from 9.5 mM to 24 nM). The difference is

attributable to our use of a kinetic titration binding assay in this

case (Figure 1b), which is more accurate at quantifying binding in

the nanomolar range or higher, as it permits analyses of high

affinity binders without requiring surface regeneration [30]. The

on and off rates of the YW mutant towards ELA/HLA-A2

determined from the kinetic titration were 1.76106 M21 s21 and

0.05 s21, respectively. The dissociation rate of wild type DMF5

from ELA/HLA-A2 was too fast to accurately measure [29],

indicating that the combined mutations result in a slower TCR off

rate, as seen with the majority of affinity-enhanced TCRs [31].

The combined YW mutations were somewhat nonadditive

(23.5 kcal/mol enhancement versus 22.5 kcal/mol assuming

additivity), suggesting a modest degree of communication between

the CDR1a and CDR3b loops; the same degree of cooperativity

was also observed for the aD26W/bL98W (WW) mutant binding

ELA/HLA-A2 (Table 1). Nonadditivity within TCR binding

interfaces has been observed previously [32,33], and could be

attributable to structural or dynamic effects of mutations on

neighboring loops. The YW variant also showed a smaller but still

considerable 30-fold enhancement towards AAG/HLA-A2. The

reduced affinity enhancement is likely attributable to the lack of

the N-terminal glutamate in the AAG peptide as discussed below.

Given its dramatic affinity improvement toward both ELA/

HLA-A2 and AAG/HLA-A2, we next asked whether the high

affinity YW variant could recognize targets other than the MART-

1 nonamer and decamer. No binding was detectable towards

HLA-A2 presenting the Tax or gp100 peptides, even at

concentrations more than 25-fold higher than those used to

characterize binding to wild type DMF5 (Figure S2). The Tax and

gp100 peptides have markedly different sequences from ELA or

AAG (Tax: LLFGYPVYV; gp100: IMDQVPFSV), yet the

conformations of HLA-A2 are identical in the four peptide/

HLA-A2 crystal structures [24,34,35]. The lack of detectable

binding of the high affinity DMF5 YW variant towards the other

peptides thus suggests that we may have improved its specificity

towards the MART-1 peptides, and at the minimum demonstrates

that our design has avoided peptide-independent targeting of

HLA-A2.

Comparison with Predicted Affinities
To quantify the performance of the design methods that we

used to generate candidate mutations, ZAFFI and Rosetta, we

compared predicted versus measured affinities towards ELA/

HLA-A2 and AAG/HLA-A2 for each of the point mutations that

were experimentally characterized (excluding the aY50A and

aG94T mutants, for which binding was too weak to measure).

Mutants were scored with or without structural minimization

(referred to as Min and NoMin respectively), as shown in Figure 3

(with scores in Table 2). For both the Rosetta and ZAFFI scoring

functions, the NoMin simulations yielded higher agreement with

experimental data (Figure 3a–b), with the Rosetta scoring function

achieving an impressive 0.72 correlation with measured DDGs

(excluding four outlier points correctly predicted to have poor

affinities). Except for the proline mutant aG28P, the Rosetta

NoMin protocol made no other false positive predictions, and its

top four predictions (aD26Y and aD26W for the two pMHCs) had

the highest measured affinities among all predicted point

mutations (bL98W was also correctly ranked highly, particularly

for AAG). This predictive success is notable as the majority (8 out

of 14) of these mutants involved glycine and proline, which are

often overlooked during in silico studies due to difficulties

predicting backbone-related effects [27].

The ZAFFI NoMin protocol gave a correlation of 0.59 with

measured data (again excluding several true negative outlier points

due to predicted steric hindrance). Though it previously outper-

formed Rosetta in scoring A6 TCR mutants [14], and correctly

gave favorable scores for the DMF5 aD26 mutants, ZAFFI made

several false positive DMF5 predictions for both AAG/HLA-A2

and ELA/HLA-A2, possibly due to its parameterization on a more

limited dataset than Rosetta and the distinct biophysical properties

of the A6 and DMF5 interfaces. This led us to evaluate and

reparameterize the terms in the ZAFFI function using a larger set

of energy terms and mutants, as described further below.

Both minimization-based protocols (ZAFFI Min and Rosetta

Min; Figure 3c–d), while displaying positive correlations with the

experimental results, were lower in their predictive success than

the NoMin protocols. However, ZAFFI Min scored the aD26

mutants favorably, and correctly identified bL98W (for AAG) as

within the score cutoff for predicted binding improvement (#2

0.6; for ELA, bL98W was near this cutoff). Overall though, false

positive predictions for ZAFFI and Rosetta led to relatively weak

correlations, suggesting that minimization may have led to

Figure 2. DDG (in kcal/mol) for DMF5 point mutants for
nonameric (AAG) versus decameric (ELA) peptide bound to
HLA-A2. Solid line denotes equal DDG values, while dashed lines
denote a 4-fold affinity shift (0.82 kcal/mol) toward AAG (bottom
dashed line) or ELA (top dashed line). AAG and ELA DDG error bars are
shown for each mutant, while solid points are the aG28 substitutions
selected to shift preference toward the nonameric variant.
doi:10.1371/journal.pcbi.1003478.g002
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incorrect structures in some cases. We additionally tested other

minimization protocols as well as more extensive side chain

packing (Table S1), each of which gave lower correlations with

measured energies than the relatively restrictive NoMin protocol.

Crystal Structure of Mutant DMF5 YW in Complex with
ELA/HLA-A2

To examine the structural basis of the 400-fold binding affinity

improvement and compare with the models generated during the

design process, we crystallized and determined the structure of the

DMF5 YW mutant bound to ELA/HLA-A2 at 2.56 Å resolution

(Figure 4, with crystallographic data in Table S2). Clear electron

density was observed for the TCR-pMHC interface, and the

positions of the mutated amino acids were unambiguous as

indicated by an unbiased, iterative-build OMIT map [36] (Figure

S3). As with other structurally characterized TCRs engineered for

high pMHC affinity [12,13,37–39], the docking orientation was

conserved when compared to the wild-type complex, with a TCR-

pMHC crossing angle of 32u, versus 33u for the wild-type.

Essentially no perturbations of the interface CDR loops or peptide

were observed (0.34 Å backbone atom RMSD for TCR and

pMHC residues within 10 Å of the binding interface), indicating

that our relatively conservative design strategy of selecting point

substitutions against a fixed pMHC structure did not substantially

alter the interface or proximal side chains (Figure 4b–e). This tight

structural conservation of the binding loops and target pMHC

residues is in contrast to some high affinity TCRs generated by in

vitro selection where moderate (1G4 designs c5c1, c48c50, c58c61,

c58c62) [12,37] or pronounced (2C designs m6, m13, m67, and

Mel5 design a24b17) [13,38,39] perturbations of CDR loops were

exhibited, along with adjacent CDR loop remodeling [39] and

addition of a synergistic ion adduct in the interface [12]. In the

recently described structure of the c134 TCR [39] which is an in

vitro selected variant of the A6 TCR with nearly 1000-fold

improved affinity for Tax/HLA-A2, the mutant CDR3b loop

retained largely the same backbone structure as the wild-type loop,

yet it led to a shifted footprint of the a chain over the pMHC.

As anticipated from our modeling, both the tyrosine and

tryptophan mutant side chains directly contact the MART-1

peptide in the aD26Y/bL98W structure, and make more

extensive peptide contacts than their wild-type counterparts

(Table S3). These mutations led to a 5% increase in buried

solvent accessible surface area for the pMHC, from 1059 Å2 to

1113 Å2. Unexpectedly, as explicit water molecules were not used

in our structural modeling or scoring, a water-mediated hydrogen

bond to the peptide was introduced between the mutant residue

aY26 and the side chain of the N-terminal glutamate of the

Figure 3. Predicted versus measured DDGs for measured DMF5 point mutants binding to ELA/HLA-A2 (solid circles) and AAG/HLA-
A2 (empty triangles), using the Rosetta (a, c) and ZAFFI (b, d) functions. Mutations were modeled in Rosetta without minimization (a, b) or
with minimization of interface backbone and side chains (c, d). For (a) and (b), four outlier points with poor measured ELA/HLA-A2 binding and highly
unfavorable scores are not shown. For each plot, best fit lines and correlations (all calculated without the four outlier points for consistency) are
given.
doi:10.1371/journal.pcbi.1003478.g003

Computational Design of a Therapeutic TCR
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peptide, in addition to a direct hydrogen bond between side chains

(Figure 4c). This polar network may explain the superior affinity of

aY26 versus aW26 for ELA/HLA-A2, despite the fact that they

were predicted to be similar (ZAFFI) or aW26 was preferred

(Rosetta; Table 2). In contrast, aD26W binds more strongly than

aD26Y to AAG/HLA-A2, which lacks the N-terminal peptide

glutamate and hydrogen bonding capability at that side chain. In

light of the water-mediated contacts observed in the mutant crystal

structure, we re-ran simulations using explicit water molecules

from the wild-type and mutant structures, but no improvement in

correlation was observed (Table S1).

Evaluation of Modeled Mutant Residues
The crystal structure of the YW variant bound to ELA/HLA-

A2 allowed us to evaluate the performance of several structural

Table 2. Scores from ZAFFI (ZF) and Rosetta (Ros), predicted peptide contacts, and measured energies (in kcal/mol) for DMF5
point mutants binding to ELA/HLA-A2 and AAG/HLA-A2.

ELA AAG

Mutant ZF Ros ZFMin RosMin Pep Conts1 DDG ZF Ros ZFMin RosMin Pep Conts1 DDG

aD26W 21.23 23.50 22.14 21.60 E1 21.56 21.17 23.30 21.84 20.50 22.21

aD26Y 21.28 21.58 21.82 21.00 E1 21.8 21.32 22.11 21.72 20.90 A1 21.36

aR27P 20.80 0.38 20.69 0.50 0.16 20.84 0.43 20.61 0.70 0.02

aR27W 20.18 0.83 21.06 0.20 0.6 20.04 0.37 21.55 0.00 0.2

aG28I 15.83 8.01 21.06 20.30 E1 0.87 22.18 20.67 21.59 20.70 A1 20.12

aG28L 38.09 29.33 21.53 20.80 E1 1.39 3.66 2.97 21.68 21.20 A1,A2 0.65

aG28N 9.50 5.00 0.34 0.10 E1 0.85 0.93 20.03 20.18 20.30 A1,A2 0.39

aG28P 5.30 1.29 20.59 0.80 E1 1.09 21.22 20.84 21.17 0.00 A1 1.2

aG28Y 9.21 4.38 20.92 20.60 E1 1.52 0.23 3.55 21.79 0.20 A1 0.53

aY50A 1.70 1.50 1.63 1.50 I5 .2.0 1.02 0.75 0.95 0.80 .2.0

aG94T 1.49 1.94 0.57 1.50 .2.0 6.89 4.83 1.36 3.40 .2.0

bA55P 20.29 20.20 20.23 20.20 20.07 20.29 20.29 20.25 0.50 0.19

bL98W 1.10 0.02 20.70 20.30 L8 20.71 20.25 20.83 21.02 20.40 L7,T8 20.8

bF100W 3.06 6.30 20.44 20.80 A3,G42 0.93 1.33 4.96 21.01 0.30 I4,I6,T8 0.37

bF100Y 2.33 2.39 0.81 2.10 G4 1.4 2.80 2.92 1.61 2.40 I4 0.77

bT102F 20.06 20.46 21.42 21.40 I5 20.04 20.01 20.13 20.25 0.80 20.29

Scores were produced using fixed backbone and fixed neighboring side chains (ZF, Ros) or minimization of interface backbone and side chains (ZFMin, RosMin) of wild-
type and mutant structures. Bold denotes measured DDG better than 20.25 kcal/mol, or prediction score of #20.6 for ZF or Ros, which we found to correspond to 2

0.25 kcal/mol based on fitting to 26 measured point mutations of the A6 TCR.
1Peptide residues within 6.0 Å of the predicted mutant side chain (modeled without minimization).
2Additional peptide residue contacts were predicted in the structural model; the two closest are shown.
doi:10.1371/journal.pcbi.1003478.t002

Figure 4. Structure of the DMF5 YW double mutant in complex with ELA/HLA-A2. (a) Superposition of the YW/ELA/HLA-A2 and the DMF5/
ELA/HLA-A2 complexes. DMF5 a chain is yellow, b chain is tan, peptide is magenta (shown as sticks), MHC is green, and b2m is cyan; residues that
were mutated are shown as sticks. Close-ups of (b) wild-type aD26, (c) mutant aY26, (d) wild-type bL98, (e) mutant bW98 are shown. In (b–e), residues
proximal to the mutation sites are shown as sticks, and in (c) hydrogen bonds involving the aY26 side chain and a bound water molecule are shown
as dashed lines.
doi:10.1371/journal.pcbi.1003478.g004
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modeling protocols. After least squares fitting of the backbone of

the TCR and pMHC interface residues to the crystal structure, we

compared positions of the modeled side chains to those in the

crystal structure (Figure 5, with RMSDs in Table 3). In addition to

the NoMin and Min methods, we evaluated models generated

using two intermediate minimization methods: MinSC (minimiz-

ing interface side chains only) and MinBB (minimizing interface

backbone atoms). Finally, we re-modeled the engineered side

chains in the context of the mutant crystal structure (NoMinMut)

to determine whether accurately positioned backbone and

neighboring side chain atoms could improve modeling results.

For modeling the side chain of aY26, all protocols performed

well in predicting the general orientation of the Tyr side chain,

with NoMin outperforming the other protocols (RMSD = 1.06 Å).

Though generally accurate, all models exhibited a rotation in the

aromatic ring and a slight shift in the OH group with respect to the

crystal structure. As these errors were possibly due to the absence

of explicit waters in the modeling omitting the water mediated

hydrogen bonding observed in the YW/ELA/HLA-A2 crystal

structure, we re-ran the NoMinMut simulation with water

molecules from that structure, but found little improvement in

RMSD (0.98 Å, versus 1.13 Å without water molecules).

The predicted side chain conformations for the mutant bL98W

were more variable than aY26, including a flip of the aromatic

rings in the Min and MinBB models, leading to relatively high

RMSDs (.2 Å) relative to the experimentally determined

structure for this residue. The structure modeled without

minimization had a sub-optimal positioning of the Trp side chain

(tilted away from the pMHC) (Figure 5), which improved

substantially (from 1.52 Å to 0.89 Å RMSD) when modeled in

the context of the backbone and side chains from the mutant

crystal structure. This indicates that Rosetta’s packing protocol is

sensitive to small structural perturbations and accurate modeling

of backbone and neighboring side chains can lead to improved

predictions.

Evaluation of Scoring Terms and Functions for Affinity
Prediction

In light of the lower accuracy of the ZAFFI scoring function on

the measured DMF5 point mutants (Figure 3) than for the A6

TCR, we performed a systematic evaluation of scoring functions to

better predict DMF5 affinities while still maintaining accuracy

with the set of A6 mutants. We included several statistical

potentials in addition to the energetic and knowledge-based terms

from the original ZAFFI study [14]. Given that minimization

yielded false positive results for both ZAFFI and Rosetta functions

(Figure 3) and that unminimized structures more closely matched

the YW-ELA/HLA-A2 crystal structure, we used unminimized

models for this analysis. In addition to correlation with measured

DDGs, we evaluated scoring functions using receiver operating

characteristic area under the curve (AUC) in order to judge

discrimination of binding improvement without penalizing true

negative or true positive outliers.

We identified a scoring function (referred to as ZAFFI 1.1) with

a higher correlation (0.74) than ZAFFI (0.59) and Rosetta (0.72)

for the set of DMF5 point mutants (excluding the four aG28

outlier mutants), and high AUC values for both DMF5 and A6

mutants (Table 4 and Figure S4). Correlation P-values are

included in Table 4 for all functions, highlighting significant

predictive performance of ZAFFI 1.1 (p,0.001) for both sets of

data. ZAFFI 1.1 includes six terms: van der Waals attractive and

repulsive components, desolvation, intra-residue clash, hydrogen

bonding and Coulombic electrostatics. While its correlation with

A6 TCR data (0.65) was not as high as the original ZAFFI

function (0.77), both the correlation and AUC are considerably

higher than Rosetta on that set of data. Although a few outlier

points persisted, including aG28P in the AAG/HLA-A2 interface,

the overall success of this function demonstrates that a relatively

simple scoring function and packing scheme can be used to model

a large proportion of energetic changes in three designed TCR-

pMHC interfaces. To examine the performance of this function in

the context of other protein-protein interactions, we applied it to

two large sets of interface point mutants (285 mutants each) of two

proteins designed de novo to target influenza hemagglutinin

(Table S4), recently used in a collaborative effort to evaluate

protein design algorithms as part of the protein docking

experiment CAPRI [40]. We found that ZAFFI 1.1 (with NoMin

packing) performed similarly to the other tested functions for

scoring the HB36 mutants (r = 0.36; p = 2.1610210), while for

HB80 mutants it outperformed all other functions (r = 0.5; p,

2.2610216), with a Kendall tau rank correlation (0.38) higher than

we achieved in the CAPRI experiment using a ZAFFI-related

function (0.31), where our Kendall correlation surpassed all other

groups [40].

Figure 5. Predicted structures of mutant residues (a) aD26Y
and (b) bL98W compared with the crystal structure. Colors for a
chain, b chain, peptide, MHC, and mutant side chains from the crystal
structure are as in Figure 4. Mutant side chains are shown as sticks, with
models in yellow (no minimization), cyan (with minimization), and
green (no minimization, in the context of the mutant crystal structure).
For simplicity, only the pMHC from the crystal structure is shown.
doi:10.1371/journal.pcbi.1003478.g005

Table 3. Root mean square distances (in Å) between
predicted mutant residues and those from the crystal
structure.

Protocol1 aD26Y bL98W

NoMin 1.06 1.52

MinSC 1.07 1.21

MinBB 1.6 2.26

Min 1.28 2.23

NoMinMut 1.13 (0.98) 0.89

1Modeling protocol used in Rosetta; NoMin denotes packing only the mutant
side chain without minimization while MinSC, MinBB, and Min denote
minimization of interface side chains, backbone atoms, or both, respectively.
NoMinMut utilized the NoMin protocol, starting with coordinates from the
mutant YW-ELA/HLA-A2 crystal structure (with mutant side chains removed
prior to modeling). For aD26Y, the value in parentheses is the RMSD with water
molecules from the YW-ELA/HLA-A2 structure included in the simulation.
doi:10.1371/journal.pcbi.1003478.t003
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Discussion

Structure-based design of TCRs provides a means to improve

upon low wild-type affinities for pMHC while maintaining,

improving, or altering specificities for desired targeting capabili-

ties. While some studies have determined the fine specificities of

designed TCRs using biophysical [39,41] and cell-based [23]

methods, here we demonstrated that point substitutions selected

using structure-based methods can be used to efficiently engineer

pMHC specificity and affinity. We then utilized structural

modeling and x-ray crystallography to gain atomic-level insights

into these substitutions. We achieved higher affinity improvements

than previously reported in structure-based TCR design, with just

two point substitutions resulting in an approximately 400-fold

affinity improvement, versus 150-fold for four combined point

mutants of the BC1 TCR selected using molecular mechanics

[16], and 100-fold for four combined point mutants of the A6

TCR selected using ZAFFI [14].

Despite the structural plasticity commonly observed in TCR-

pMHC interfaces [42–45], our computational modeling and

crystal structure indicate that carefully selected point substitutions

can improve pMHC affinity and modulate peptide specificity

without grossly perturbing the interface structure. We note though

that a broad extension this approach to other TCRs of interest will

likely entail further refinement of the energy function based on

measured data, in addition to improvements in high-resolution

modeling of TCR-pMHC complexes [46]. Large-scale datasets of

mutant binding affinities, including the CAPRI data we utilized to

assess our design functions [40], can provide possible training sets

for re-weighting terms and derivation of energy-based statistical

potentials that would add discriminating power and predictive

breadth to the ZAFFI function. Additionally, our analysis of the

YW-ELA/HLA-A2 structure indicates that there is room for

improving structural modeling of mutant residues, with modeling

of fine structural effects and bound water molecules representing

two avenues for further development.

The modulation of nonamer versus decamer specificity by many

point mutants of the DMF5 TCR highlights the sensitive nature of

TCR-antigen recognition, as well as the potential to fine-tune TCR

recognition properties via structure-based design. We achieved a

shift in specificity toward the nonameric MART-1 peptide via

mutation of aG28 residues that were predicted to clash with the

decameric E1 residue but would be accommodated in the cleft near

the nonameric A1, similar in concept to the ‘‘knob-in-to-hole’’

designs utilized to alter binding specificity in other protein-protein

interfaces [47]. The clash with the decamer was overestimated using

the NoMin modeling methods (which had the greatest overall

predictive success), thus leading to lower than anticipated specificity

shifts; better modeling of clashes through judicious use of

minimization (avoiding false positive predictions as we observed)

could potentially reduce such errors. In contrast, we found an

increase in specificity (.4-fold) toward the decameric peptide with

the DMF5 double mutants YW and WW, resulting from the

cooperativity of these mutants in the presence of the decamer. This

peptide-dependent cooperative effect is a previously undescribed

mechanism for shifting TCR specificity. As the structure of the

YW/ELA/HLA-A2 complex did not suggest any major alterations

in the binding interface compared to the wild-type complex, this

effect may be dynamic in nature. As recently reported, the Mel5

TCR mutant a24b17, which targets ELA/HLA-A2 with a 30,000-

fold affinity improvement over wild-type, was found to retain

peptide specificity, albeit towards alanine substituted ELA variants

rather than between the ELA and AAG decameric/nonameric

peptides [13]. In this case specificity was mediated through subtle

solvent interactions. By modeling solvent and dynamic effects, as

well as exploring explicit specificity design methods, such as multi-

state design [48], greater control of TCR specificity could be

achieved via rational engineering.

Three of the a chain mutants we tested were previously

examined in the A6 TCR (aD26W, aG28I, and aG28L) [14],

whose CDR1a and CDR2a loops are identical to DMF5 due to

the common use of the TRAV12-2 gene. aD26W improved

pMHC affinity significantly for both TCRs, though to varying

extents. On the other hand, the aG28 mutants improved the

affinity of A6 modestly (,2-fold) but resulted in no change or

weakened affinity with DMF5. This behavior likely follows from

the positions of the mutations, as the aG28 mutants are predicted

to make extensive contacts with the varying N-terminus of the

peptide, while aD26W would primarily target the same HLA-A2

site to improve affinities for all three pMHCs. However, both

aD26 mutants of DMF5 still exhibited a measurable peptide

dependence with DDG, compared with, for instance, bL98W

which had identical effects in the context of both MART-1

peptides. Data from more mutants and positions, as well as other

TCR-pMHC systems, such as the Mel5 TCR which shares the

TRAV12-2 gene with DMF5 and A6 and also targets ELA/HLA-

A2 with a similar docking mode [49], would help to further

delineate the extent of any conserved effects of affinity-enhancing

or destabilizing mutants. Indeed, the structure of the high affinity

a24b17 Mel5 TCR mutant in complex with ELA/HLA-A2 [13]

features a large hydrophobic substitution at position aD26 (Phe),

which closely matches the aD26Y conformation and the pMHC

binding site in the YW/ELA/HLA-A2 structure (Figure S5),

although as Mel5 a24b17 contained 18 additional substitutions,

the energetic effect of aD26F alone is unclear. A more detailed

study of the impact of affinity-enhancing mutations in germline

CDRs would help to further probe TCR germline binding

permissiveness suggested by a recent double mutant cycle

deconstruction of the interface with the A6 TCR [50].

In conclusion, we have shown that rational, computational-

based design offers the potential to simultaneously alter the

efficacy and antigen targeting of a therapeutic TCR, potentially

enabling the development of improved TCRs for adoptive cell

therapy [51] or biotherapeutics [52] customized to bind antigens

presented by tumors or virally infected cells from individual

patients. Given the ongoing use of the DMF5 TCR in clinical trials

for cancer immunotherapy, the higher-affinity YW variant of

DMF5 generated here may also be of potential clinical benefit.

Table 4. Correlation and ROC AUC values of tested energy
functions and structural modeling methods for DMF5 and A6
TCR point mutants.

Function Packing DMF5 Corr1
DMF5
AUC2 A6 Corr3

A6
AUC3

Rosetta NoMin 0.72 (,1024) 0.95 0.42 (,1021) 0.79

ZAFFI NoMin 0.59 (,1022) 0.86 0.77 (,1025) 0.92

Rosetta Min 0.54 (,1022) 0.82 0.52 (,1022) 0.75

ZAFFI Min 0.54 (,1022) 0.77 0.56 (,1022) 0.79

ZAFFI 1.1 NoMin 0.73 (,1024) 0.93 0.63 (,1023) 0.92

124 points with DDG values, excluding four (true negative) outliers.
2All 32 tested ELA and AAG mutants.
326 previously measured A6 TCR point mutants.
Values in parentheses are correlation p-values.
Values in bold indicate correlation .0.6, p-value,1023, or AUC.0.9.
doi:10.1371/journal.pcbi.1003478.t004
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Methods

Simulation and Scoring of DMF5 Point Mutations
As with our previous study designing the A6 TCR [14], we used

the ‘‘interface’’ mode of Rosetta 2.0.2 [27] to model point

mutations of the DMF5 TCR. Command line options were

specified to include extra chi1, chi2, and chi3 rotamers

(‘‘-extrachi_cutoff 1 -ex1 -ex2 -ex3’’). Only the mutant side chain

was repacked (the default behavior of this mode) while the protein

backbone from the wild-type structure was retained. Rosetta

predicted mutant structures as well as DDGs, and the structures

were then re-scored by our energetic scoring function ZAFFI to

generate its own set of predicted DDG scores. The ZAFFI filter,

parameterized using the A6 TCR data and designed to remove

false positive predictions that destabilized native electrostatic

contacts, was not used in this study, given that our focus was

evaluation and development of binding energy prediction func-

tions, and the new system and protocols being explored would

require tuning of the parameters of this filter. However, the filter

function was used to corroborate avoidance of mutations in some

cases (such as hydrophobic mutants of aQ30) where key hydrogen

bonds would likely be disrupted.

To generate predictions of point mutants using side chain and/

or backbone minimization we used Rosetta 2.3, a more recent

version of this program that includes minimization functionality in

its interface mutagenesis mode. Minimization was specified using

the command line flags (‘‘-min_interface -int_bb -int_chi’’) to

perform minimization of interface backbone and side chain atoms

in the wild type and mutant structures (‘‘Min’’ protocol), while just

‘‘-int_chi’’ or ‘‘-int_bb’’ was used to perform only side chain or

backbone minimization (‘‘MinChi’’, ‘‘MinBB’’). Point mutant

simulations with explicit water molecules taken from the input

structure were also performed using Rosetta 2.3, using the

command line flag: ‘‘-read_hetero_h2o’’.

Selection of Proline Mutants
We analyzed residue backbone conformations in the bound and

unbound DMF5 TCR structures using a Ramachandran plot

analysis server [53] (http://zlab.bu.edu/rama/). DMF5 CDR

positions with favorable backbone conformations for proline (as

well as favorable pre-proline conformations for the preceding

residue), in addition to either improved or maintained pMHC

affinity predicted for the proline mutant by at least one prediction

method, were selected for experimental mutation to proline.

Protein Expression and Purification
Expression and refolding of soluble constructs of DMF5 TCRs

and HLA-A2 were performed as previously described [29,54]. In

brief, the TCR a- and b-chains, the HLA-A2 heavy chain, and b2-

microglobulin (b2m) were generated in Escherichia coli as inclusion

bodies, which were isolated and denatured in 8 M urea. TCR a-

and b-chains were diluted in TCR refolding buffer (50 mM Tris

(pH 8), 2 mM EDTA, 2.5 M urea, 9.6 mM cysteamine, 5.5 mM

cystamine, 0.2 mM PMSF) at a 1:1 ratio. HLA-A2 and b2m were

diluted in MHC refolding buffer (100 mM Tris (pH 8), 2 mM

EDTA, 400 mM L-arginine, 6.3 mM cysteamine, 3.7 mM

cystamine, 0.2 mM PMSF) at a 1:1 ratio in the presence of excess

peptide. TCR and pMHC complexes were incubated for 24 h at

4uC. Afterward, complexes were desalted by dialysis at 4uC and

room temperature respectively, then purified by anion exchange

followed by size-exclusion chromatography. Refolded protein

absorptions at 280 nm were measured spectroscopically and

concentrations determined with appropriate extinction coeffi-

cients. Mutations in the DMF5 a- and b-chains were generated by

PCR mutagenesis and confirmed by sequencing. Peptides and

plasmids were commercially synthesized and purified (Genscript).

Surface Plasmon Resonance
Surface plasmon resonance experiments were performed with a

Biacore 3000 instrument using CM5 sensor chips. In all

experiments, TCR was immobilized to the sensor chip via

standard amine coupling and pMHC complex was injected as

analyte. All samples were thoroughly dialyzed in HBS-EP buffer

(20 mM HEPES (pH 7.4), 150 mM NaCl, 0.005% Nonidet P-20),

then degassed for at least 15 minutes prior to use. Steady-state

experiments were performed with TCRs coupled onto the sensor

chip at 1000–1500 response units. Injections of pMHC spanned a

concentration range of 0.5–150 mM at flow rates of 5 ml/min at

25uC. Multiple data sets were globally fit using a 1:1 Langmuir

binding model utilizing BIAevaluation 4.1. Kinetic titration

experiments were performed with TCRs coupled at approximately

500 response units. A series of five ELA titrations, spanning 10–

160 nM and 20–320 nM at 2-fold increase per titration, were

flowed over YW and WW respectively. Flow rates of 30 ml/min

were used at 25uC. Data were fit with a 1:1 association model with

drift using BIAevaluation [30].

Crystallization, Diffraction Data Collection, Structural
Refinement and Analysis

Crystals of the DMF5 YW-ELA/HLA-A2 complexes were

grown from 12% PEG 3350, 0.25 M MgCl2 buffered with 0.1 M

HEPES (pH 8.0) at 25uC. Crystallization was performed using

sitting drop/vapor diffusion. For cryoprotection, crystals were

transferred into 20% glycerol/80% mother liquor for 30 s and

immediately frozen in liquid nitrogen. Diffraction data were

collected at the 22ID (SER-CAT) beamlines at the Advanced

Photon Source, Argonne National Laboratories. Data reduction

was performed with HKL2000. The ternary complexes were

solved by molecular replacement using PHENIX and Protein

Data Bank (PDB) entry 3QDG as the reference model [29]. Rigid

body refinement, followed by translation/libration/screw (TLS)

refinement and multiple steps of restrained refinement were

performed. TLS groups were automatically chosen by phenix.re-

fine. Once defined, TLS parameters were included in all

subsequent steps of the refinement. Anisotropic and bulk solvent

corrections were taken into account throughout refinement. After

TLS refinement, it was possible to unambiguously trace the

position of peptides and TCR CDR loops in all structures against

sA-weighted 2Fo-Fc maps. Evaluation of models and fitting to

maps were performed using COOT [55]. The template structure

check in WHATIF [56] and MolProbity [57] was used to evaluate

the structures during and after refinement. Atomic positioning was

verified with an iterative-build OMIT map calculated in PHENIX

[36]. Structures were visualized using PyMOL [58]. Analysis of

hydrogen bonds was performed with HBPlus [59], using

hydrogen-acceptor maximum distance of 2.7 Å and a donor-

acceptor maximum distance of 3.6 Å. Solvent accessible surface

areas were measured in Discovery Studio (Accelrys Inc.) using a

probe radius of 1.4 Å. The structure has been deposited with the

Protein Data Bank (PDB ID 4L3E).

Analysis and Retraining Scoring of Affinities
ROC AUC analysis was performed using the CROC package

[60]. Multi-linear regression to determine weighting of terms was

performed as described previously, using 760 measured point

mutants from four enzyme-inhibitor complexes [14]. However, we

used van der Waals attractive and repulsive terms from Rosetta
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[27] rather than the corresponding terms from ZRANK [61], as

the former led to some improvement in performance across the

tested systems. As with the original ZAFFI training, we removed

mutants with high clash during training (van der Waals repulsive

score .580, corresponding to 48 mutants removed out of 760).

We included a number of statistical potential terms for evaluation

that were recently tested for binding affinity prediction [62],

though none led to substantial improvements in predictive

performance in this context. The terms and weights for the

retrained energy function (ZAFFI 1.1) are:

van der Waals attractive: 0.57

van der Waals repulsive: 0.0045

solvation: 0.58

hydrogen bonding: 1.2

intra-residue repulsion: 0.026

electrostatics: 0.03

Solvation, hydrogen bonding, and intra-residue repulsion terms

were obtained from Rosetta (along with the van der Waals terms

as noted above), while the electrostatics term is the long-range

Coulombic electrostatics energy from ZRANK [61].

Correlations
All correlations (with the exception of the Kendall tau rank

correlations reported in Table S4) are Pearson correlations. P-

values for correlations were calculated using the program R (www.

r-project.org).

Supporting Information

Figure S1 Structural variability of nonameric (AAG; cyan) and

decameric (ELA; magenta) MART-1 peptides bound to wild-type

DMF5 (from wild-type complex structures, PDB IDs 3QDJ and

3QDG). MHC and TCR colors are as in Figure 4; DMF5 residue

aG28 is shown as spheres for reference.

(PDF)

Figure S2 The high affinity DMF5 variants show no recognition

of the Tax11–19 or gp100209(2M)-217 peptide/HLA-A2 complexes.

a) Injections over a wild-type DMF5 surface. The main response

shows injections of MART-126(27L)-35/HLA-A2, with the binding

response indicated. The inset shows injections of gp100/HLA-A2

and Tax/HLA-A2 over the same surface, with no response at

concentrations as high as 400 mM. b) Injections over a high

affinity YW DMF5 surface. Injected pMHC is as in panel a. c)

Injections over a high affinity WW DMF5 surface. Injected

pMHC is as in panel a.

(PDF)

Figure S3 Electron density for bW98 (gold) and aY26 (purple) in

the YW-ELA/HLA-A2 crystal structure contoured at 1s
calculated from an unbiased, iterative-build OMIT map. The

density shows the clear, unambiguous positioning of the two

mutated residues.

(PDF)

Figure S4 Predictions from ZAFFI 1.1 compared with measured

DDGs for DMF5 point mutants binding to ELA/HLA-A2 (solid

circles) and AAG/HLA-A2 (empty triangles). Best fit line and

correlation are given; the four true negative outlier points omitted

from Figure 3 are omitted here as well.

(PDF)

Figure S5 Comparison of mutant TCR aD26Y residue in the

YW-ELA/HLA-A2 complex with the corresponding mutant

position (aD27F) in the a24b17-ELA/HLA-A2 complex. Com-

plexes were superposed by fitting pMHC backbone atoms. The

mutant aD27F is shown in orange sticks, ELA peptide from

a24b17-ELA/HLA-A2 in pink sticks, and all other colors are as in

Figure 4.

(PDF)

Table S1 DMF5 mutant predictive performance for additional

tested packing protocols.

(PDF)

Table S2 X-ray data collection and refinement statistics for the

crystal structure of the DMF5 aD26Y/bL98W - ELA/HLA-A2

complex.

(PDF)

Table S3 Contacts between mutant DMF5 residues and ELA/

HLA-A2.

(PDF)

Table S4 Correlations with measured values and corresponding

p-values for HB36 and HB80 mutants.

(PDF)
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