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Abstract

Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize
such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis
of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that
shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables
the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific
noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq
datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS’s multi-experiment modeling
approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We
demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By
accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2
site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-
existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However,
MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2
can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings 
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Introduction

Profiling the activity of regulatory proteins in multiple cell types

is important for understanding cellular function, as a single

regulator can bind to distinct sets of genomic targets depending on

the cellular context in which it is expressed. Characterizing the

determinants of such binding specificity is key to understanding

how a single regulator can play multiple roles during development

and other dynamic cellular processes. For example, pre-existing

genomic context such as chromatin accessibility or the binding of

other regulators may determine the binding of some developmen-

tal transcription factors (TFs) [1–3], while other ‘pioneer’ TFs may

find their binding targets independently of the established

chromatin state [4,5].

Here we introduce MultiGPS, an integrated machine learning

approach for the analysis of condition-specific binding events from

multi-condition ChIP-seq data. MultiGPS performs binding event

analysis across multiple conditions, sharing information across

conditions to produce accurate joint binding estimates while

simultaneously allowing for condition-specific binding events.

MultiGPS employs a flexible framework for incorporating prior

information into binding event discovery, allowing models of joint

binding and sequence dependence to be used. The novel multi-

experiment modeling approach of MultiGPS identifies the read

enrichment associated with binding events that are bound in

specific conditions, enabling principled methods of discovering

differential binding [6–9].

Most current strategies for defining consistent ChIP-seq binding

event locations across multiple experiments either analyze each

experiment independently or pool reads for analysis. For example,

the ENCODE2 project used standard ChIP-seq event finders on

each experiment independently, and then merged event locations

across experiments using a fixed-sized window to define event

identity [10,11]. Related methods specifically developed for multi-

condition ChIP-seq analysis require that binding events be called

PLOS Computational Biology | www.ploscompbiol.org 1 March 2014 | Volume 10 | Issue 3 | e1003501

of the RECOMB 2014 conference, April 2 5.–

http://creativecommons.org/licenses/by/4.0/


in each condition individually as a preprocessing step, then apply

statistical models to matched regions to detect differential effects

[9,12]. Other multi-condition approaches focus on ChIP-seq

signals arising from broad regions of enrichment, such as histone

modifications. These methods instead search for larger genomic

regions where coverage patterns differ across experiments [8,13–

15]. In contrast, MultiGPS uses a joint multi-experiment model

that considers the read data from all experiments to produce

accurate location estimates of punctate binding events.

Approaches that first identify binding events and then attempt

to merge locations across conditions may inappropriately

combine distinct binding events that happen to be located within

the same window. In genomic regions with a high density of

binding events, the problem of matching sites across conditions is

difficult and may lead to erroneous comparisons between binding

strengths. Furthermore, the experiment-by-experiment event

calling approach fails to use the full power of the experimental

data when a large fraction of binding events are shared across

conditions. An alternative method is to pool ChIP-seq reads from

all experiments and then use a single event finding run to yield a

consistent set of binding event locations that can be subsequently

quantified in each individual experiment. However, this pooling

approach may not discover weak condition-specific binding

locations that are swamped by noise from other experiments in

the pooled set of reads. Additionally, applying a single detection

threshold in the pooled read set may bias the binding event calls

to experiments that had higher sequencing coverage, better

antibody batches, or fewer technical sources of error. Similarly,

varying experimental parameters such as the fragmentation

distribution could render the pooled read dataset harder to

analyze by algorithms that assume a single, consistent set of

experimental properties.

MultiGPS combines the theoretical benefits of pooling and

separate ChIP-seq experimental analysis by using a Bayesian prior

to couple the analysis of independent experiments together. This

multi-experiment model is one aspect of a novel modeling

approach that enables external sources of information to be

included as priors in binding event identification (see Methods). In

this work, we use the following priors, while recognizing that other

directions are also possible:

N A sparsity-promoting prior on binding event strengths to

encourage a core set of statistically-significant sites while

allowing for closely-spaced binding event deconvolution (as in

[16]).

N A genome sequence-based (motif) prior to allow binding events

to express a sequence preference, particularly useful for

automatically aligning sites to confident motif hits in the small

region implicated by the read data around a binding event

(similar to [17]).

N An inter-experiment prior that encourages location coherence

across experimental conditions, allowing for more effective

joint experiment analysis and automatic data-guided event

alignment.

MultiGPS detects binding events independently in each

experiment in each step of its iterative optimization, allowing it

to model experiment-specific parameters such as the distribution

of reads around binding events and the properties of background

noise. The iterative optimization procedure analyzes each

experimental condition in turn, using binding event locations

from other experiments to form an inter-experiment prior term for

a single experiment optimization. MultiGPS therefore encourages

the base locations of binding events to align across experiments

when appropriate, and automatically produces coherent sets of

binding events that are linked across experiments without any

potentially noisy windowed analysis. To our knowledge, MultiGPS

is the first ChIP-seq analysis approach that uses read data from

multiple experiments in a joint and fully integrated method for

identifying consistent and accurate binding event locations.

As a case study of our framework’s sensitive and accurate multi-

condition analysis, we applied MultiGPS to Cdx2 binding data in

three developmentally relevant cellular contexts and found that

condition-specific Cdx2 binding events are predicted by preexist-

ing chromatin state. Surprisingly, condition-independent Cdx2

binding events that are bound in multiple contexts do not appear

to be predetermined by accessibility or other chromatin signatures,

and instead may be predicted on the basis of cognate motif

occurrence. Our results suggest that Cdx2 can act as a pioneer

factor at a subset of sites, while also being influenced by preexisting

genomic context at other sites. Therefore, our results have

consequences for understanding where TFs will bind when

introduced into an established regulatory state during develop-

ment, or when induced artificially during cellular programming

techniques.

Results

MultiGPS encourages consistent binding event locations
across experiments

We find that MultiGPS’s inter-experiment and motif priors

encourage binding location consistency on CTCF biological

replicate experiments. The binding events that are called in both

CTCF replicates should by definition be located at the same base

location. As we can see in Figure 1a, when MultiGPS is run

without either prior, predicted binding events do not typically

align to each other or to cognate motif instances. Each prior alone

makes a significant, though incomplete, improvement in binding

event accuracy (Figure 1b–c). The inter-experiment prior is

able to significantly improve the distance to the nearest motif

when compared to sites identified without any positional priors

(p,561025, Mann-Whitney U test comparing binned distance to

Author Summary

Many proteins that regulate the activity of other genes do
so by attaching to the genome at specific binding sites.
The locations that a given regulatory protein will bind, and
the strength or frequency of such binding at an individual
location, can vary depending on the cell type. We can
profile the locations that a protein binds in a particular cell
type using an experimental method called ChIP-seq,
followed by computational interpretation of the data.
However, since the experimental data are typically noisy, it
is often difficult to compare the computational analyses of
ChIP-seq data across multiple experiments in order to
understand any differences in binding that may occur in
different cell types. In this paper, we present a new
computational method named MultiGPS for simultaneous-
ly analyzing multiple related ChIP-seq experiments in an
integrated manner. By analyzing all the data together in an
appropriate way, we can gain a more accurate picture of
where the profiled protein is binding to the genome, and
we can more easily and reliably detect differences in
protein binding across cell types. We demonstrate the
MultiGPS software using a new analysis of the regulatory
protein Cdx2 in three different developmental cell types.

Multiple-Condition ChIP-Seq Analysis
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nearest motif match). The motif prior significantly improves the

distance to the nearest site in another experiment (p,1610212,

Mann-Whitney U test comparing binned distance to the nearest

event in another experiment). In these two comparisons, we used

information sources not considered by the prior as validation

(motif distance for the inter-experiment prior and inter-experiment

distance for the motif prior). The use of both priors together fully

utilizes available sequence and multi-experiment information and

allows almost all binding events in this example to be aligned to

consistent (typically motif-associated) locations (Figure 1d). These

comparisons are not meant as absolute performance assessments

for the MultiGPS modeling approach, but instead as relative

measurements of the benefit of using additional types of prior

information within a single modeling framework.

MultiGPS outperforms alternative approaches in
simulated multi-condition ChIP-seq datasets

MultiGPS facilitates the detection of differential binding events

by accurately quantifying read count levels associated with each

binding event in each analyzed experiment. Since at present no

ChIP-seq datasets exist for which absolute binding levels are

known across multiple conditions, we generated simulated ChIP-

seq datasets to test the relative performance of MultiGPS in

defining differential binding events. In our simulated data, the

distribution of reads at binding events mirrors the properties of

real ChIP-seq datasets (see Methods). A subset of binding events is

chosen to be differentially enriched across conditions, and while

we chose to set the absolute level of differential enrichment to be

constant at all differential events (4-fold in Figure 2, 8-fold in

Figure S1), simulated sampling noise leads to a wide array of

apparent fold differences (Figure 2a, blue dots).

Using the simulated data, we compared MultiGPS with other

approaches for determining differential binding events. We used

MultiGPS (without the motif prior since no sequence information

was used to simulate the data), MultiGPS in single-condition mode

(i.e. without using either inter-experiment or motif priors), and the

single-condition event finders MACS [18] and SISSRs [19] to

predict binding events in each simulated condition. All methods

made comparable numbers of binding event predictions in each

dataset (Figure S2). For the methods other than MultiGPS,

differential binding events were defined using: a) binding event list

comparison, where differential binding events are those that are

detected in one condition and no binding event is detected within

200 bp in the other condition; b) using the software DBChIP [9];

or c) by counting reads that occur within the enriched regions and

inputting the resulting tables into edgeR [6] (using the same

parameters as used by edgeR within MultiGPS).

The results illustrate the problems with defining differentially

bound events using binding event list comparison. Regardless of

which event finding method was used to provide input binding

events, list comparisons have poor sensitivity when predicting

differentially bound events with higher mean read counts

(Figure 2b, dashed lines). Such events are more likely to be

detected in both conditions and hence would be treated as non-

differential binding events regardless of quantitative differences in

ChIP enrichment levels. Conversely, binding event list compari-

sons have low specificity when predicting differentially bound

events with lower mean read counts (Figure 2c, dashed lines). Low

enrichment binding events may have read counts that are just

above a binding event detection threshold in one condition, and

just below in another, even if there is no significant quantitative

difference in the underlying ChIP enrichment levels. Such events

would appear as false positive differential binding event predic-

tions according to the binding event list comparison approach.

In contrast, approaches that test differential binding using

statistical analyses of read count tables have uniformly high

specificity across our test datasets (Figure 2c, solid lines). These

methods also have higher sensitivity when predicting differential

binding events with higher mean read counts (Figure 2b, solid lines)

or involving greater absolute differences in binding levels (Figure

S1b, solid lines). EdgeR attains the highest overall sensitivity using

the read count tables generated by MultiGPS, thus illustrating the

advantages of MultiGPS’ probabilistic approach to quantifying read

enrichment at binding sites across conditions.

MultiGPS improves the quantification of condition-
specific binding events in ENCODE data

MultiGPS models experiment-specific parameters such as the

distribution of reads around binding events and the properties of

background noise. To investigate whether these parameters yield

Figure 1. MultiGPS binding event consistency with or without the use of motif and inter-experiment priors. MultiGPS was run on two
ENCODE GM12878 CTCF ChIP-seq biological replicate experiments, treating them as distinct conditions. Red histograms show the distance in base
pairs from each predicted binding event in one experiment to the nearest binding event in the other condition (if within 100 bp). Blue histograms
show the distance from each binding event to the nearest strong match to the CTCF motif (if within 100 bp).
doi:10.1371/journal.pcbi.1003501.g001
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improved quantification of binding event ChIP enrichment, we

ran the complete MultiGPS model on 14 ChIP-seq experiment

sets in which the ENCODE2 project has performed replicated

ChIP-seq of a given protein in all three human Tier 1 cell lines.

While no gold standard exists for measuring the accuracy of ChIP-

enrichment quantification, we reasoned that accurate quantifica-

tion estimates should be correlated across biological replicate

experiments. For each of the 14 experiment sets, MultiGPS yields

per-replicate estimates of binding enrichment for binding events

discovered in any cell line. We compared these values to those

produced by the widely used approaches of counting read

occurrences in a window around the binding event locations

(here we use a 400 bp window centered on the MultiGPS-defined

binding event locations), or by using the peak heights defined by

MACS [18] analyses of the same data. Quantified read counts

were compared across biological replicate pairs using Spearman’s

rank correlation, a nonparametric assessment of statistical

dependence that makes no distributional assumptions that could

artificially favor one model over another. Note that MACS does

not produce per-replicate read counts or peak heights at each

event, and so to compare MultiGPS with MACS we ran MACS

on each replicate separately and compared read counts and

heights at only those binding events detected in both replicates by

MACS and MultiGPS. Read counts at these reproducibly detected

binding events may be more highly correlated than read counts

associated with the wider sets of binding events tested in the

comparison between MultiGPS estimates and windowed read

counts.

As shown in Figure 3, MultiGPS improves the cross-replicate

correlation of binding event quantification estimates in most tested

datasets, implying that MultiGPS has reduced the effects of inter-

replicate noise in comparison to the window counting approaches.

We expect that reducing the degree of over-dispersion between

replicates will yield greater sensitivity in detecting significant

differences between conditions. Indeed, in all 14 tested datasets we

find substantially greater numbers of statistically significant

differentially enriched binding events between cell lines when we

run edgeR [6] on the MultiGPS quantification table as opposed to

the table of read counts produced by the window approach (Table

S1). Therefore, MultiGPS improves the quantification of binding

event ChIP-enrichment and the detection of condition-specific

binding events.

Condition-specific Cdx2 binding event detection is
improved by MultiGPS

To demonstrate the ability of MultiGPS to analyze biologically

relevant condition-specific binding events, we examined if

MultiGPS improves upon the independent analysis of experiments

when identifying Cdx2 events in multiple conditions. Cdx2 is a

mammalian caudal-type homeobox protein that plays a key role in

regulating the development of diverse tissue types. For example,

Cdx2 is a master regulator of the intestinal lineage when expressed

in endoderm [20], and also plays a key role in defining caudal

motor neuron fate when expressed in motor neuron progenitors

(pMNs) [21]. In addition, over-expression of Cdx2 in embryonic

stem (ES) cells forces cells to differentiate into the trophectoderm

lineage [22,23]. We thus wanted to elucidate how Cdx2 performs

its different regulatory functions in these three developmental

contexts. Does it bind to the same genomic targets in all cell types,

or does it bind distinct targets in each context? If the latter, how is

such specificity achieved? To determine the context-dependent

binding activity of Cdx2, we performed ChIP-seq analysis of Cdx2

after it was over-expressed in ES cells, endoderm, and pMNs. We

call these cell types after Doxycycline-dependent Cdx2 induction

ES+Dox Cdx2, endoderm+Dox Cdx2, and pMN+Dox Cdx2,

respectively. Since Cdx2 is not natively expressed in any of these

three cell types, our experiments provide a useful model of how a

transcription factor responds to a new cellular environment.

We found that MultiGPS outperformed an independent binding

event analysis (i.e. using independent runs of MultiGPS without

the use of priors) on the three Cdx2 conditions using a binding

event list comparison approach to determine differentially bound

sites. While this is a common approach in the literature, it leads to

highly misleading results. As can be seen in Figure 4, the binding

event list comparison suggests that 95% of pMN+Dox sites are not

bound in ES+Dox cells. However, the apparent degree of

differential binding is largely caused by the disparity in the total

numbers of binding events predicted in each condition (3,704 in

ES+Dox and 36,651 in pMN+Dox). The difference in the total

number of events is in turn caused by differences in read coverage

between the conditions and the thresholds employed to determine

bound events. In addition, the binding event list comparison

approach may miss differences at events when the level of ChIP

enrichment varies significantly between conditions. To perform a

more principled analysis of Cdx2 differential binding, we analyzed

the ChIP-seq data collection using MultiGPS (Table 1). With

the coupled MultiGPS method only 24% of all pMN+Dox

Cdx2 binding events are significantly differentially enriched in

pMN+Dox cells compared with ES+Dox cells (p,1023), while

37% of all ES+Dox Cdx2 binding events are significantly

differentially enriched in ES+Dox cells compared with pMN+
Dox (p,1023).

Condition-specific Cdx2 binding is predetermined by
genomic context

Since MultiGPS identifies a large proportion of condition-

specific Cdx2 binding events without finding any evidence for a

corresponding change in Cdx2’s DNA-binding preference, we

asked whether ES cell genomic context could predict the observed

condition-specific binding of Cdx2 after induction. To answer this

question, we examined the ES genomic patterns at the locations of

Cdx2 sites that are significantly enriched in ES+Dox cells

according to MultiGPS. Interestingly, we found that ES+Dox-

specific Cdx2 sites are enriched for ES signatures of chromatin

accessibility (DNaseI hypersensitivity), enhancers (H3K4me1 and

H3K27ac ChIP-seq), and TF binding (Oct4, Sox2, and Nanog

ChIP-seq), but not active transcription (H3K4me3 ChIP-seq)

(Figure 5). Conversely, pMN+Dox-specific Cdx2 sites and

endoderm+Dox-specific Cdx2 sites show no enrichment for these

ES cell chromatin signatures (Figure 5 & Figure S3).

To more rigorously test the capacity of ES cell genomic context

to predict ES+Dox-specific Cdx2 binding events, we trained

support vector machines (SVMs) to classify Cdx2 binding events

vs. unbound Cdx2 motif instances using the read count

information from a collection of 55 ES experiments (2 DNaseI-

seq, 13 histone modification ChIP-seq, 35 TF, co-activator and

Figure 2. a) MA plot displaying the mean read count and log fold ratio distributions of the simulated ChIP-seq dataset in which
40% of binding events are defined as 4-fold differentially enriched in one condition versus the other. Defined differential events
highlighted in blue, non-differential in gray. b) Sensitivity and c) specificity of various approaches when predicting differentially bound events.
Results are broken out by quintile on the mean read count across conditions (i.e. based on x-axis in a)).
doi:10.1371/journal.pcbi.1003501.g002
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chromatin modifier ChIP-seq, and 5 Pol2 ChIP-seq experiments).

Cross-validation was used to generate disjoint training and test

sets (see Methods). Our SVMs discriminate ES+Dox-specific

Cdx2 sites from unbound sites with an area under true-positive

vs. false-positive curve (AUC) of 0.95–0.96, suggesting that the

pre-existing genomic context in ES cells is highly predictive of

future Cdx2 binding. Conversely, our SVMs are unable to

discriminate pMN+Dox-specific Cdx2 sites from unbound Cdx2

motif instances using ES genomic context (AUC = 0.63, Figure 6).

Our results therefore suggest that condition-specific Cdx2 binding

events are more likely to be located in genomic regions that

already displayed regulatory activity or accessibility before Cdx2

expression was induced.

Condition-independent Cdx2 binding is associated with
higher cognate motif affinity

Since condition-specific Cdx2 binding events appear highly

correlated with immediately pre-existing genomic context, we

reasoned that the condition-independent Cdx2 sites that are

bound in multiple conditions might also display the same

associations. For example, Cdx2 sites that are bound in two

conditions may represent locations that happened to have

pre-existing regulatory activity or accessibility in both conditions.

Surprisingly, the Cdx2 sites bound in both ES+Dox and pMN+
Dox conditions are not enriched for accessibility, enhancer

chromatin marks, or TF binding in ES cells (Figure 5). Further-

more, SVMs trained as before are unable to discriminate between

these shared Cdx2 sites and unbound motif instances using ES

genomic context information (AUC = 0.61, Figure 6). These

results suggest that the condition-independent Cdx2 sites are not

determined by pre-existing genomic context, in contrast with the

condition-specific sites.

Given that the condition-independent Cdx2 sites do not seem to

have any distinguishing chromatin features before Cdx2 induction,

we asked how Cdx2 recognizes these sites regardless of genomic

context. We hypothesized that such sites may have sequence

features that enable condition-independent binding. To test this

hypothesis, we trained SVMs to discriminate condition-indepen-

dent Cdx2 sites from condition-specific Cdx2 sites using only 4-

mer word frequencies in 200 bp windows around the sites.

Surprisingly, even these crude sequence features were sufficient to

discriminate between the two types of sites (AUC = 0.89–0.92,

Figure 7a), suggesting that some sites contain sequence informa-

tion that enables condition-independent Cdx2 binding. We next

used the discriminative motif finders DEME and DECOD [24,25]

to determine which sequence motifs discriminate between Cdx2

site types. Interestingly, both tools returned the primary Cdx2

motif as being the most discriminative, even though most

Figure 3. MultiGPS probabilistic ChIP-enrichment estimates
improve binding site quantification consistency across repli-
cates. MultiGPS was used to identify binding sites on 14 ENCODE
transcription factor ChIP-seq experiments in three Tier 1 cell types.
Binding site strengths were quantified with MultiGPS’s probabilistic
model, incorporating an integrated noise model and read sharing
among nearby binding sites, and either: a) windowed counts, which
sum up reads in a 400 bp window centered on the MultiGPS predicted
binding location; or b) peak heights defined by MACS. MultiGPS
produces more replicable quantifications for all examined factors in a),
and most in b).
doi:10.1371/journal.pcbi.1003501.g003

Figure 4. Binding event list comparison approaches to
differential binding overestimate differences between binding
site lists due to threshold effects and ignore true differences in
enrichment between sites that are called bound in multiple
conditions. The Venn diagram shows the overlap between ES+Dox
and pMN+Dox binding events using a 200 bp overlap window. 1,633
ES+Dox Cdx2 events are within 200 bp of pMN+Dox events, while 1,843
pMN+Dox events are within 200 bp of ES+Dox events.
doi:10.1371/journal.pcbi.1003501.g004
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condition-specific and condition-independent sites contain in-

stances of the same primary motif. This apparent contradiction is

resolved by considering features of the motif instances in each set

of Cdx2 sites. SVMs trained with just three simple primary Cdx2

motif-related metrics – the maximum motif score in the 200 bp

window around sites, the number of motif instances above a

threshold, and a score that integrates motif scores across the entire

200 bp window [26] – were able to discriminate between

condition-independent and condition-specific sites with reasonable

accuracy (AUC = 0.81, Figure 7b). In other words, the strength

and multiplicity of motif instances are somewhat predictive of

condition-independent Cdx2 binding.

Taken together, our results suggest that sequence information

allows Cdx2 to act as a pioneer TF at some sites, overriding the

lack of pre-existing accessibility or chromatin markers.

Discussion

MultiGPS provides a principled platform for the analysis of

differential protein-DNA binding across multiple experimental

Table 1. Numbers of significantly enriched Cdx2 binding events called by MultiGPS in each condition.

Total Significant Events .ES+Dox (p,1023) .pMN+Dox (p,1023) .Endo+Dox (p,1023)

ES+Dox 4,581 / 37% 31%

pMN+Dox 38,423 24% / 8%

Endo+Dox 35,394 49% 22% /

Percentages of called events that are significantly enriched in one condition over another are also shown.
doi:10.1371/journal.pcbi.1003501.t001

Figure 5. Clustergrams of the top 4,000 binding events in ES+Dox and pMN+Dox conditions, clustered according to MultiGPS
differential binding calls. Cdx2 binding is compared with ES cellular state information, including DNaseI-seq, chromatin marks, and Oct4/Sox2/
Nanog TF ChIP-seq (O/S/N). Similar results comparing ES+Dox and endoderm+Dox conditions are presented in Figure S3.
doi:10.1371/journal.pcbi.1003501.g005

Multiple-Condition ChIP-Seq Analysis
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conditions by preferring consistent binding locations across related

experiments while also modeling condition-specific experimental

parameters. Rather than treating reads from all experiments as

equivalent, MultiGPS models experiment-specific read distribu-

tions around binding events. MultiGPS can thus correctly analyze

collections of related ChIP experiments that were performed

according to different protocols such as mixtures of related ChIP-

seq and ChIP-exo [27] experiments. As demonstrated above,

MultiGPS improves the quantification of ChIP enrichment at

binding events in comparison with the typically used window-

counting approaches, thus enabling more sensitive analyses of

differential binding enrichment between conditions.

Since MultiGPS prefers but does not force binding events to

align across experiments, it may also be used to study possible

forms of differential binding activity that we did not illustrate. For

instance, it may be of interest to examine locations where the

underlying read evidence overrides the MultiGPS inter-experi-

ment prior, resulting in differing reported binding locations across

experiments. Such locations may represent shifts in binding

location between conditions, which may be useful for studies of

nucleosome positioning or regulators that might bind alternate

nearby locations in different conditions.

We demonstrated that MultiGPS can characterize condition-

specific binding and then used MultiGPS to characterize the

nature of both condition-specific and condition-independent

binding of Cdx2. Our results suggest that many condition-specific

Cdx2 binding events are located in regions that had pre-existing

regulatory activity, thus agreeing with hypotheses proposed to

explain the observed binding of other developmental TFs [1–3].

However, Cdx2 also appears to act as a ‘pioneer’ at a subset of

sites that are bound condition-independently. Our analysis

suggests that such sites on average contain stronger and more

frequent Cdx2 motif instances than condition-specific sites, thus

suggesting a possible mechanism by which condition-independent

sites can be bound regardless of preexisting genomic context.

These findings also accord with our recent demonstration that TF

combinations can override pre-existing cellular state to synergis-

tically bind composite motifs during motor neuron programming

[28], perhaps pointing to a deeper relationship between sequence

information and ‘pioneer’ binding activity.

Methods

The MultiGPS mixture model
In our previously described GPS [16] and GEM [17]

approaches to binding event detection, ChIP sequencing data

are modeled as being generated by a mixture of binding events

along the genome, and an Expectation Maximization (EM)

learning scheme is used to probabilistically assign sequencing

reads to binding event locations. The assignment of reads is

achieved via an empirically estimated multinomial distribution,

Pr(rn|x), which gives the probability of observing read rn from a

binding event located at genomic coordinate x. Conceptually,

every base position is treated as a potential binding event, although

the use of a sparse prior [29] has the effect of allowing only a small

subset of these potential binding events to take responsibility for

observed reads and survive the EM training process.

In MultiGPS, we decouple the relationship between a binding

event’s index and its spatial (genomic) location. Specifically, we

introduce a vector of component locations m where mj is the

Figure 6. Predictive performance of SVMs trained using ES chromatin state information when discriminating between subsets of
Cdx2 binding events and unbound Cdx2 motif instances.
doi:10.1371/journal.pcbi.1003501.g006

Multiple-Condition ChIP-Seq Analysis

PLOS Computational Biology | www.ploscompbiol.org 8 March 2014 | Volume 10 | Issue 3 | e1003501



genomic location of event j. We initialize a large number of

potential events, M, such that the events are evenly spaced in

30 bp intervals along the genome. Note, however, that the use of a

sparse prior will again result in only a subset of events remaining

active in the model after training (i.e. components having mixing

probability pj.0; see MAP estimation of p below). In the new

mixture model, the likelihood of observing the N total ChIP read

locations r is given by:

Pr(rjp,m)~P
n~1

N XM
j~1

pj Pr(rnjmj)

where Pr(rn|mj) is the distribution over ChIP-seq read positions

conditioned on membership in a binding event at location mj. This

distribution is initialized to a strand-specific shape typical of many

ChIP-seq datasets (see Figure S5), and is iteratively re-estimated

during EM training using the distribution of reads observed

around high-confidence binding site locations. The above

expression calculates the observed data likelihood of a mixture

model by taking the product over all reads, where each read

averages over each possible binding event that may have caused it.

This extension of the model allows us to apply prior knowledge

directly to the positions of the binding events (m), without affecting

the binding event strength estimation or the sparsity-promoting

prior, which continues to act on raw expected read counts.

We introduce a Bernoulli prior over each genomic location

where each element ki of the parameter k corresponds to the

probability that location i is a binding event (that is, i [ m). This

prior assumes that there can be only one or zero binding events at

a single position and that binding positions are selected

independently along the genome according to this weighting.

The prior assigns likelihoods to a set of binding events on a

genome of size L as follows:

Pr(mjk)~P
L

i~1
k

1(i[m)
i (1{ki)

1(i=[m)

~P
L

i~1
(1{ki)P

M

j~1

kmj

1{kmj

!P
M

j~1

kmj

1{kmj

As in the original framework, the latent assignments of reads to

binding events are represented by the vector z. The complete-data

log posterior can thus be derived as follows:

logPr(m,pjr,k,a)

~
XN

n~1

XM
j~1

1(zn~j)(logpjzlogPr(rnjmj))

" #

{a
XM
j~1

logpjz
XM
j~1

log
kmj

1{kmj

zC

Here, C is a normalization constant that does not involve any of

the terms to be optimized. It can be seen that the overall binding

event sparsity-inducing negative Dirichlet prior a acts only on the

mixing probabilities p, which controls the total fraction of reads

assigned to each binding event, and the positional prior k acts only

on the binding event locations m. Therefore, the E-step that

calculates the relative responsibility of each binding event in

generating each read is unchanged from our original framework,

following standard mixture model approaches:

c(zn~j)~
pj Pr(rnDpj)PM

j’~1 (pj’ Pr(rnDpj’))

Furthermore, the maximum a posteriori probability (MAP)

estimation of p is also unchanged:

p̂pj~
max(0,Nj{a)PM

j’~1
max(0,Nj’{a)

, Nj~
PN

n~1

c(zn~j)

where Nj is the effective number of reads assigned to binding event

j. The a parameter can thus be interpreted as the minimum

number of ChIP-seq reads required to support a binding event

remaining active in the mixture model. We set the value of a per

experiment to be the maximum number of reads that would be

expected to occur (p.1027) in a window equal to the effective

range of the binding distribution should the experiment’s reads be

distributed uniformly along the mappable portion of the genome.

We can estimate m component-wise since it only participates in

sums in the log likelihood. However, no closed form solution exists

since the prior k has no parametric form. We can determine the

MAP (integer) value of mj by simply enumerating over all possible

values of mj. Specifically, the MAP value of mj is:

m̂mj~ argmax
x

XN

n~1
c(zn~1)logPr(rnDx)½ �zlog

kx

1{kx

� �
. If the

Figure 7. Predictive performance of SVMs when discriminating between condition-specific and condition-independent subsets of
Cdx2 binding events, where SVMs are trained using a) all 4-mer frequencies or b) Cdx2 motif information in 200 bp windows
around the binding events.
doi:10.1371/journal.pcbi.1003501.g007
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maximization step results in two components sharing the same

location, they are combined in the next iteration of the algorithm.

One practical use for the positional prior k is to bias the

estimated binding locations towards biologically appropriate base

positions. For example, a TF’s position weight matrix scores along

the genome can be directly encapsulated in k in the above

framework. As described previously for our GEM approach [17],

we can estimate binding motifs from current estimates of binding

locations, and reciprocally use those motifs as prior information to

re-estimate binding event locations. Note that motif priors are

incorporated quite differently in GEM and MultiGPS. In practice,

MultiGPS uses MEME [30] to discover a set of over-represented

motifs in the top 500 most enriched binding events (80 bp

windows), chooses the motif with the highest true-positive vs. false-

positive AUC for discriminating bound regions from random

sequences (if any motif AUC$0.7), and incorporates the genomic

log-odds scores for that motif in the positional prior.

Unlike our previously described approaches, MultiGPS incor-

porates an additional mixture component that explicitly models

noise (i.e. reads arising from nonspecific binding and independent

of any binding event). Whereas binding component read

distributions have approximately finite support (and therefore

only allow binding events to take responsibility for reads in their

local vicinity), the noise component is defined as having a global

distribution. The form of the noise distribution can be defined as

uniform or can be parameterized using the read density observed

in a control experiment. In the latter case, the shape of the noise

distribution is defined by smoothing the control experiment’s read

counts using a 50 bp sliding window (adding fractional pseudo-

counts to 50 bp windows that contain no control reads).

For a more efficient and stable training process, some

parameters in MultiGPS are re-estimated only periodically,

including the form of the binding event read distribution, the

noise component mixing probability (pM+1), and the binding motif

position weight matrix. We can therefore think of MultiGPS as an

instance of a generalized EM algorithm. Generalized EM

algorithms increase the expected log likelihood in each M step

without necessarily achieving a maximum in each iteration (as in

the original EM algorithm) [31]. Convergence to a local optimum

is guaranteed with generalized EM algorithms, as it is with the EM

algorithm [31].

As with GPS and GEM, MultiGPS filters predicted binding

events to require that their associated read counts are significantly

enriched (p,1023, Benjamini-Hochberg corrected Binomial test)

over the corresponding read count from an appropriately

normalized control experiment, such as a mock-IP experiment.

The control experiment normalization factors are estimated via

regression on the read count ratios in 10 Kbp windows. Control

read counts are associated with individual binding events via

maximum likelihood assignments using the trained model (i.e.

assigning control reads to binding events without changing the p
and m parameters learned from the ChIP data).

Analyzing multiple experimental conditions in MultiGPS
MultiGPS can be run in a multi-condition analysis mode by

providing multiple input datasets and structured annotation as to

how these datasets are related (i.e. which datasets represent

technical or biological replicates of others, which collections of

datasets represent distinct experimental conditions, and which

datasets serve as controls for others). MultiGPS then runs semi-

independent mixture model training across all provided data.

Since reads from distinct conditions are not pooled, MultiGPS can

maintain condition-specific and replicate-specific parameters,

including distinct binding event read distributions per replicate,

distinct noise component read distributions and mixing probabil-

ities per replicate, and distinct binding motifs per condition.

However, the goal is to report binding event locations that are

consistent across conditions. This is achieved using another form

of prior information during the maximization of binding event

locations m.

We motivate our approach by imagining a TF that binds to N

locations in cellular condition A and N locations in cellular

condition B. In typical analysis scenarios, the number of bound

locations will be much fewer than the number of bases on the

genome (i.e. N%L), and a non-zero set of S locations will be

bound in both A and B conditions. We present the model for two

conditions with a symmetric number of binding sites here for

notational simplicity, but note that the same process can be

applied to any number of conditions with more complex binding

site sharing patterns. A schematic example (not to scale) of bound

and unbound bases in two conditions as a fraction of the genome is

shown in Figure 8.

Now, the distribution that generates binding positions is

extended from the single-condition case of a Bernoulli distribution

to a multivariate Bernoulli distribution. As suggested by the

schematic in Figure 8, this distribution generates a sample from

{(0,0),(0,1),(1,0),(1,1)} at each base in the genome, where each

element in a sample corresponds to whether a binding site is

present at that position in that condition. This generative model

induces the following distribution over genome positions i with

respect to binding site positions in conditions A and B:

Pr(1(i[mA)~a,1(i[mB)~b)~

N{S
L

, if a~0 and b~1
N{S

L
, if a~1 and b~0

S
L

, if a~b~1
L{2NzS

L
, if a~b~0

8>>><
>>>:

We parameterize the above distribution during each iteration of

the MultiGPS algorithm by choosing appropriate values for N and

S (L is fixed, being the length of the genome). While N can be

taken from MultiGPS’ current estimate of the number of binding

events in each condition, we do not typically know S. We therefore

define S by setting the ratio S/N as described below.

We need to know the contribution of the location prior Pr(1mDk)
in the optimization step for the binding site locations m. For the

multi-condition analysis, we jointly optimize two binding sites

when they fall within 100 bp of each other (range chosen

empirically as the maximum range for which the inter-experiment

prior will have an effect at most binding events, see Figure S7).

The model optimization step determines whether the two binding

positions in question are separate (and therefore two site-specific

positions contribute to Pr(1mDk)) or shared (and therefore one

shared site contributes to Pr(1mDk)). All other bases will be the

same during this optimization since all other binding sites are

fixed, and can be ignored in this step. Using the distribution above

gives the following contribution to the prior Pr(1mDk):

f (mA
i ~x,mB

j ~y)~
N{S

L
: N{S

L
, if x=y ½~pp1�

S
L
: L{2NzS

L
, if x~y ½~pp2�

(

where ~pp2&~pp1 in most experimental studies. If the binding events

share a location across conditions, we choose the optimal shared

position w by maximizing the expected complete-data log

posterior (with terms not affecting the minimization omitted) as

follows:
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mA
i ~mB

j ~

argmax
w

XNA

n~1

c(zA
n ~i)logPr(rA

n jw)

2
4

z
XNB

n~1

c(zB
n ~j)logPr(rB

n jw)zlog~pp2

3
5

Alternatively, the two binding component locations are indepen-

dent, in which case the two positions are optimized independently:

mA
i ~ argmax

w

XNA

n~1

c(zA
n ~i)logPr(rA

n Dw)zlog~pp1

2
4

3
5

mB
j ~ argmax

w

XNB

n~1

c(zB
n ~j)logPr(rB

n Dw)zlog~pp1

2
4

3
5

The decision to use the coupled or uncoupled estimate is based

on which scenario yields the higher expected complete-data log

posterior probability. Higher values of the ratio S/N encourage the

coupling of nearby binding event locations across conditions by

increasing ~pp2 with respect to ~pp1 (see Figures S6 & S7). In

MultiGPS, we set the ratio S/N to be equal to 0.9, although in

practice we observe few differences in the proportion of aligned

binding components when varying the ratio in the range 0.5,S/

N,0.99. This is because a number of nearby genomic locations

give similar probabilities when maximizing mj (Figure S7), allowing

the penalties associated with moving the components away from

the optimal positions in each condition to be overridden by the

positive-valued ~pp2 prior over a range of S/N ratios. Note, however,

that MultiGPS will still prefer the uncoupled scenario in situations

where the read evidence supports distinct binding locations across

conditions. This behavior represents a data-driven joint analysis

mode that weighs the statistical confidence given by the reads

against prior knowledge of the experimental setup in a probabi-

listically optimal way. We also note that positional prior terms

encapsulating per-condition TF position weight matrix scores can

be accounted for in the m maximization terms above in a manner

analogous to that described in the previous section. MultiGPS can

therefore account for both motif positional priors and the inter-

experiment prior.

Assessing all possible scenarios of coupled and uncoupled

binding events during the update of each mj becomes prohibitive

when analyzing more than two conditions. Therefore MultiGPS

assesses a limited number of scenarios when updating mj in such

cases: 1) event j is uncoupled across all conditions; 2) event j is

coupled with a corresponding event in one other condition; or 3)

event j is coupled with corresponding events in all other

conditions. The scenario that yields the best overall likelihood is

chosen.

Detecting differential binding
A table containing the replicate-specific read counts associated

with each binding event is generated from the MAP-estimated

responsibilities c. MultiGPS uses the edgeR Bioconductor package

[6] to detect differential ChIP enrichment between conditions

from the read count table. We use edgeR’s TMM method to

calculate normalization factors, and the glmLRT method to

calculate likelihood ratios. In the Cdx2 example described here,

we used a fixed overdispersion parameter of 0.15 across all

experiments, which results in a stricter definition of significant

differential enrichment than the overdispersion parameters esti-

mated by edgeR.

Benchmarking analysis on simulated ChIP-seq data
To computationally simulate multi-condition ChIP-seq data, we

defined a hypothetical system in which a protein has 20,000

binding events in the mouse genome (version mm9). The relative

strengths of each of these binding events was drawn randomly

from a distribution of relative read counts observed for Cdx2

binding events in our pMN ChIP-seq experiments. For two

hypothetical experimental conditions, A & B, we randomly chose

20% of the binding events to be differentially enriched in condition

A with respect to B, and we modify the relative binding event

strengths of these sites such that they are 4-fold (or 8-fold in

separate simulations) greater in condition A versus B. We similarly

chose a non-overlapping 20% of binding events to be differentially

enriched in condition B with respect to A. The binding events

were placed along the genome in 10 Kbp intervals.

We then generated 20 million read positions for each of two

replicates in each of the two conditions. To reflect the typical

signal-to-noise ratio observed in real ChIP-seq experiments,

95% of the read positions are spread randomly across the

entire genome. The remaining reads (averaging 1 million per

replicate) are distributed amongst the binding events accord-

ing to the relative strength of the event in each relevant

condition, and accounting for read sampling noise using a

negative binomial distribution with an over-dispersion param-

eter of 0.1. The MA plot in Figure 2a shows the log2 mean

read count and log2 fold difference for each binding event in

the simulated experiments. The position of generated reads

with respect to the defined binding event location is drawn

from a bimodal distribution typical of ChIP-seq binding sites

(Figure S5).

We ran the following binding event analysis methods on the

simulated data: a) MultiGPS on the entire dataset, using default

parameters with the exception of turning off the use of sequence

information and the motif prior (since motif information was not

used in generating the simulated data); b) MultiGPS without the

inter-experiment prior or the motif prior on the entire dataset,

which has the effect of calling binding events in each condition

independently; c) MACS [18] using default parameters on each

condition independently, merging reads across replicates; and d)

Figure 8. Schematic of bound and unbound bases in two
conditions.
doi:10.1371/journal.pcbi.1003501.g008
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SISSRs [19] using default parameters (with the exception of using

a p-value cutoff of 0.05) on each condition independently,

merging reads across replicates. For binding event list comparison

approaches, per-condition events were compared with each other

using a 200 bp window. In other words, if an event prediction in

one condition is located within 200 bp of an event prediction in

the other condition, it is treated as being in the intersection of the

binding event list comparison, and thus not differentially bound.

EdgeR [6] was run either internally in MultiGPS (as described

above) or, using the same parameters, on read count tables built

by counting reads that overlap the peak regions found by MACS

or SISSRs. We also ran DBChIP [9] using default parameters

with the exception of an FDR threshold ,0.01 and using the

MACS peaks as inputs. Sensitivity and specificity in Figures 2 and

S1 are defined by comparing predicted binding events to the

positions of the simulated differential binding events using a

100 bp window.

SVM analysis
Support vector machines were trained using the libSVM [32]

interface in Bioconductor (e1071). In all cases, classification

accuracy was determined using a randomly selected held-out

test set of 100 datapoints, and training of each SVM application

was repeated 20 times (using different held-out test sets each

time) to calculate average true-positive vs. false-positive AUC

values.

To train SVMs using ES chromatin state data, we first gathered

55 mouse ES ChIP-seq and DNaseI-seq experiments from a

variety of sources [33–42]. We defined positive training sets from

the top-most Cdx2 binding events for each condition-specific and

condition-independent permutation (up to a maximum of 4,000

binding events), and we also defined a negative training set of

10,000 matches to the Cdx2 cognate binding motif (as defined by

UniProbe [43]) that were not bound by Cdx2 in any experiment.

Reads were counted in 1,000 bp windows around each of the

positive and negative locations for each of the 55 mouse ES

experiments, and SVMs were trained on the resulting 55-

dimensional vectors without any normalization.

SVMs were trained on k-mer frequencies by enumerating the

occurrences of each 4-mer (accounting for reverse-complement

redundancies) in 200 bp windows around each of the top-most

Cdx2 binding events for each condition-specific and condition-

independent permutation (up to a maximum of 4,000 binding

events). Similarly, SVMs were also trained on three pieces of

information from the same 200 bp windows: the maximum log-

likelihood ratio score for the Cdx2 motif in the window; the

number of matches to the motif in the window that score more

than a 5% FDR threshold; and the probability of binding

occupancy in the window [26].

ChIP experiments & processing
An ES cell line harboring Dox-inducible Flag-tagged Cdx2 was

generated as previously described [44]. Anti-Flag ChIP-seq

experiments were performed as previously described [44] after

24 hours of Dox-induced expression of Cdx2 in the ES cells or in

motor neuron progenitors or endoderm cells that were differen-

tiated from the same ES cell line. Differentiation of the ES cells to

pMN and endoderm lineages was also described previously

[20,21]. Mock IP control experiments were performed using the

same system. Sequenced ChIP-seq reads were mapped to the mm9

reference genome using Bowtie [45]. ChIP-seq data generated

during this study were deposited in GEO under accession numbers

GSE39433 and GSE39435.

Availability
MultiGPS is available as an open-source Java package, released

under the MIT license, from: http://mahonylab.org/software and

https://github.com/shaunmahony/seqcode. Simulated multiple

condition ChIP-seq datasets are also available from the same

webpage.

Supporting Information

Figure S1 a) MA plot displaying the mean read count and log

fold ratio distributions of the simulated ChIP-seq dataset in

which 40% of binding events are defined as 8-fold differentially

enriched in one condition versus the other. Defined differential

events highlighted in blue, non-differential in gray. b)
Sensitivity and c) specificity of various approaches when

predicting differentially bound events. Results are broken out

by quintile on the mean read count across conditions (i.e.

based on x-axis in a)).

(TIF)

Figure S2 Detected binding event counts (a,c) and average

distance from binding event prediction to defined binding position

(b,d) for various methods when predicting events in simulated

ChIP-seq datasets. Results are presented broken down by quintile

of the mean absolute read count associated with the binding event

across conditions.

(TIF)

Figure S3 Clustergrams of the top 4,000 binding events in ES+
Dox and endoderm+Dox conditions, clustered according to

MultiGPS differential binding calls. Cdx2 binding is compared

with ES chromatin state information, including DNaseI-seq,

chromatin marks, and Oct4/Sox2/Nanog TF ChIP-seq (O/S/

N). Similar results comparing ES+Dox and pMN+Dox conditions

are presented in Fig. 4.

(TIF)

Figure S4 Predictive performance of SVMs trained using Cdx2

motif information when discriminating between condition-specific

and condition-independent subsets of Cdx2 binding events.

(TIF)

Figure S5 Initial strand-specific distribution Pr(rn|mi) used in the

multiGPS mixture model.

(TIF)

Figure S6 Log prior differences (log~pp2{log~pp1) as a function of

varying S/N.

(TIF)

Figure S7 Log-likelihood assigned by MultiGPS to various

positions around the optimal binding location, as a function of

the number of reads associated with the binding event. Events

with higher read counts have more sharply peaked log-

likelihood landscapes, since there is more evidence pointing

towards the optimal binding location. For illustration, we placed

gray shaded bars representing a log-likelihood range of 10

around the peak of each log-likelihood distribution. The shaded

bars illustrate the degree to which a typical cross-condition prior

value (see Figure S6) can affect the binding location update step.

If binding events are detected in nearby locations in each

condition, the cross-condition prior will encourage them to align

by overriding the optimal log-likelihood value found from read
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evidence alone. However, if events are associated with high read

A summary of this paper appears in the proceedings of the

RECOMB 2014 conference, April 2 5 [46].–
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https://github.com/shaunmahony/seqcode


sufficient read evidence exists to support their existence in the

model.

(TIF)

Table S1 MultiGPS increases sensitivity for detecting cell-type

specific binding events. edgeR was used to do a three-condition

analysis across the Tier 1 cell types for each protein, where each

cell type/protein pair was performed twice. Recommended edgeR

practices were used to estimate normalization factors and over-

dispersion amounts, and sites that had any condition-specific

signature (testing for any of the coefficients in the regression model

to be nonzero) were identified. The table reports the number of

sites reported as significant by edgeR (FDR,0.01).
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