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Abstract

In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically
changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical
microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important
information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on
connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these
motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such
tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through
offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online
applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the
model through several computer simulations. The full power of hidden Markov model learning can be attained through
reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to
theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate
learning method for an artificial grammar task.
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Introduction

An ubiquitous motif of cortical microcircuits is ensembles of

pyramidal cells (in layers 2/3 and in layer 5) with lateral inhibition

[1–3]. This network motif is called a winner-take-all (WTA) circuit,

since inhibition induces competition between pyramidal neurons

[4]. We investigate in this article which computational capabilities

emerge in WTA circuits if one also takes into account the existence

of lateral excitatory synaptic connections within such ensembles of

pyramidal cells (Fig. 1A). This augmented architecture will be our

default notion of a WTA circuit throughout this paper.

We show that this network motif endows cortical microcircuits

with the capability to encode and process information in a highly

dynamic environment. This dynamic environment of generic

cortical mircocircuits results from quickly varying activity of neurons

at the sensory periphery, caused for example by visual, auditory, and

somatosensory stimuli impinging on a moving organism that actively

probes the environment for salient information. Quickly changing

sensory inputs are also caused by movements and communication

acts of other organisms that need to be interpreted and predicted.

Finally, a generic cortical microcircuit also receives massive inputs

from other cortical areas. Experimental data with simultaneous

recordings of many neurons suggest that these internal cortical codes

are also highly dynamic, and often take the form of characteristic

assembly sequences or trajectories of local network states [5–10]. We

show in this article that WTA circuits have emergent coding and

computing capabilities that are especially suited for this highly

dynamic context of cortical microcircuits.

We show that spike-timing-dependent plasticity (STDP) [11,12],

applied on both the lateral excitatory synapses and synapses from

afferent neurons, implements in these networks the capability to

represent the underlying statistical structure of such spatiotempo-

ral input patterns. This implies the challenge to solve two different

learning tasks in parallel. First it is necessary to learn to recognize

the salient high-dimensional patterns from the afferent neurons,

which was already investigated in [13]. The second task consists in

learning the temporal structure underlying the input spike

sequences. We show that augmented WTA circuits are able to

detect the sequential arrangements of the learned salient patterns.

Synaptic plasticity for lateral excitatory connections provides the

ability to discriminate even identical input patterns according to

the temporal context in which they appear. The same STDP rule,

that leads to the emergence of sparse codes for individual input

patterns in the absence of lateral excitatory connections [13] now

leads to the emergence of context specific neural codes and even

predictions for temporal sequences of such patterns. The resulting

neural codes are sparse with respect to the number of neurons that

are tuned for a specific salient pattern and the temporal context in

which it appears.

The basic principles of learning sequences of forced spike

activations in general recurrent networks were studied in previous

work [14,15] and resulted in the finding that an otherwise local

learning rule (like STDP) has to be enhanced by a global third

factor which acts as an importance weight, in order to provide a –

theoretically provable – approximation to temporal sequence

learning. The possible role of such importance weights for
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probabilistic computations in spiking neural networks with lateral

inhibition was already investigated earlier in [16].

In this article we establish a rigorous theoretical framework

which reveals that each spike train generated by WTA circuits can

be viewed as a sample from the state space of a hidden Markov model

(HMM). The HMM has emerged in machine learning and

engineering applications as a standard probabilistic model for

detecting hidden regularities in sequential input patterns, and for

learning to predict their continuation from initial segments [17–

19]. The HMM is a generative model which relies on the

assumption that the statistics of input patterns X~ x1 . . . xMð Þ
over M time steps is governed by a sequence of hidden states

S~ s1 . . . sMð Þ, such that the mth hidden state sm ‘‘explains’’ or

generates the input pattern xm. We show that the instantaneous

state sm of the HMM is realized by the joint activity of all neurons

of a WTA circuit, i.e. the spikes themselves and their resulting

postsynaptic potentials. The stochastic dynamics of the WTA

circuit implements a forward sampler that approximates exact HMM

inference by propagating a single sample from the hidden state sm

forward in time [19,20].

We show analytically that a suitable STDP rule in the WTA

circuit – notably the same rule on both the recurrent and the

feedforward synaptic connections – realizes theoretically optimal

parameter acquisition in terms of an online expectation-maximization

(EM) algorithm [21,22], for a certain pair S,X if the stochastic

network dynamics describes the state sequence S upon the input

sequence X. We further show that when the STDP rule is applied

within the approximative forward sampling network dynamics of

the WTA circuit, it instantiates a weak but well defined

approximation of theoretically optimal HMM learning through

EM. This is remarkable insofar as no additional mechanisms are

needed for this approximation – it is automatically implemented

through the stochastic dynamics of the WTA circuit, in combination

with STDP. In this paper we focus on the analysis of this

approximation scheme, its limits and its behavioral relevance.

We test this model in computer simulations that duplicate a

number of experimental paradigms for evaluating emergent neural

codes and behavioral performance in recognizing and predicting

temporal sequences. We analyze evoked and spontaneous

dynamics that emerges in our model network after learning an

object sequence memory task as in the experiments of [23,24]. We

show that the pyramidal cells of a WTA circuit learn through

STDP to encode the hidden states that underlie the input statistics

in such tasks, which enables these cells to recognize and distinguish

multiple pattern sequences and to autonomously predict their

continuation from initial segments. Furthermore, we find neural

assemblies emerging in neighboring interconnected WTA circuits

that encode different abstract features underlying the task. The

Author Summary

It has recently been shown that STDP installs in ensembles
of pyramidal cells with lateral inhibition networks for
Bayesian inference that are theoretically optimal for the
case of stationary spike input patterns. We show here that
if the experimentally found lateral excitatory connections
between pyramidal cells are taken into account, theoret-
ically optimal probabilistic models for the prediction of
time-varying spike input patterns emerge through STDP.
Furthermore a rigorous theoretical framework is estab-
lished that explains the emergence of computational
properties of this important motif of cortical microcircuits
through learning. We show that the application of an
idealized form of STDP approximates in this network motif
a generic process for adapting a computational model to
data: expectation-maximization. The versatility of compu-
tations carried out by these ensembles of pyramidal cells
and the speed of the emergence of their computational
properties through STDP is demonstrated through a
variety of computer simulations. We show the ability of
these networks to learn multiple input sequences through
STDP and to reproduce the statistics of these inputs after
learning.

Figure 1. Illustration of the network model. (A) The structure of the network. It consists of K excitatory neurons (blue) that receive feedforward
inputs (green synapses) and lateral excitatory all-to-all connections (blue synapses). Interneurons (red) install soft winner-take-all behavior by
injecting a global inhibition to all neurons of the circuit in response to the network’s spiking activity. (B) The Bayesian network representing the HMM
over M time steps. The prediction model (blue arrows) is implemented by the lateral synapses. It determines the evolution of the hidden states sm

over time. The observation model (green arrows) is implemented by feedforward connections. The inference task for the HMM is to determine a
sequence of hidden states S~(s1 . . . sM ) (white), given the afferent activity X~(x1 . . . xM ) (gray). (C) The STDP window that is used to update the
excitatory synapses. The synaptic weight change is plotted against the time difference between pre- and postsynaptic spike events.
doi:10.1371/journal.pcbi.1003511.g001

STDP Approximates Hidden Markov Model Learning
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resulting neural codes resemble the highly heterogeneous codes

found in the cortex [25]. Furthermore, neurons often learn to fire

preferentially after specific predecessors, building up stereotypical

neural trajectories within neural assemblies, that are also

commonly observed in cortical activity [5–7,26].

Our generative probabilistic perspective of synaptic plasticity in

WTA circuits naturally leads to the question whether the proposed

learning approximation is able to solve complex problems beyond

simple sequence learning. Therefore we reanalyze data on

artificial grammar learning experiments from cognitive science

[27], where subjects were exposed to sequences of symbols

generated by some hidden artificial grammar, and then had to

judge whether subsequently presented unseen test sequences had

been generated by the same grammar. We show that STDP

learning in our WTA circuits is able to infer the underlying

grammar model from a small number of training sequences.

The simple approximation by forward sampling, however,

clearly limits the learning performance. We show that the full

power of HMM-learning can be attained in a WTA circuit based

on the rejection sampling principle [19,20]. A binary factor is added

to the STDP learning rule, that gates the expression of synaptic

plasticity through a subsequent global modulatory signal. The

improvement in accuracy of this more powerful learning method

comes at the cost that every input sequence has to be repeated a

number of times, until one generated state sequence is accepted.

We show that a significant performance increase can be achieved

already with a small number of repetitions. We demonstrate this

for a simple and a more complex grammar learning task.

Results

We first define the spiking neural network model for the winner-

take-all (WTA) circuit considered throughout this paper. The

architecture of the network is illustrated in Fig. 1A. It consists of

stochastic spiking neurons, which receive excitatory input from an

afferent population (green synapses) and from lateral excitatory

connections (blue synapses) between neighboring pyramidal

neurons. To clarify the distinction between these connections,

we denote the synaptic efficacies of feedforward and lateral

synapses by different weight matrices W [RK|N and V [RK|K ,

respectively, where N denotes the number of afferent neurons and

K the size of the circuit (i.e., the number of pyramidal cells in the

circuit). In addition, all neurons within the WTA circuit project to

interneurons and in turn all receive the same common inhibition

i(t). Thus the membrane potential of neuron k at time t is given by

uk(t)~ûuk(t){i(t) with

ûuk(t)~
XN

i~1

wki
:xi(t)z

XK

j~1

vkj
:yj(t)zbk,

ð1Þ

with xi(t)~
X

t’

e t{t’ð Þ and yj(t)~
X

t’

e t{t’ð Þ, ð2Þ

where wki
:xi(t) and vkj

:yj(t) denote the time courses of the

excitatory postsynaptic potentials (EPSP) under the feedforward

and lateral synapses, where wki and vkj are the elements of W and

V respectively, and bk is a parameter that controls the excitability

of the neuron. The two sums in (1) describe the time courses of the

membrane potential in response to synaptic inputs from feedfor-

ward and lateral synapses. In equation (2) we used the assumption

of additive EPSPs, where e tð Þ denotes a kernel function that

determines the time course of an EPSP [28]. The sums run over all

spike times of the presynaptic neuron. For the theoretical analysis

we used a single exponential decay for the sake of simplicity,

throughout the simulations we used double exponential kernels, if

not stated otherwise. Our theoretical model can be further extended

to other EPSP shapes (see the Methods section for details).

As proposed in [29], we employ an exponential dependence

between the membrane potential and the firing probability.

Therefore the instantaneous rate of neuron k is given by

nk(t)~n̂n:euk(t), where n̂n is a constant that scales the firing rate.

The inhibitory feedback loop i(t) in equation (1), that depresses the

membrane potentials whenever the network activity rises, has a

normalizing effect on the circuit-wide output rate. Although, each

neuron k generates spikes according to an individual Poisson

process, this inhibition couples the neural activities and thereby

installs the required competition between all cells in the circuit. We

model the effect of this inhibition in an abstract way, where we

assume, that all WTA neurons receive the same inhibitory signal

i(t) such that the overall spiking rate of the WTA circuit stays

approximately constant. Ideal WTA behavior is attained if the

network rate is normalized to the same value at any point in time,

i.e.
PK

l~1 nl(t)~n̂n. Using this, we find the circuit dynamics to be

determined by

nk(t)~n̂n:euk(t)~n̂n:eûuk(t){i(t)~n̂n:
eûuk (t)PK
l~1 eûul (t)

,

with i(t)~log
XK

l~1

eûul (t):

ð3Þ

This ideal WTA circuit realizes a soft-max or soft WTA function,

granting the highest firing rate to the neuron with the highest

membrane potential, but still allowing all other neurons to fire

with non-zero probability.

Recapitulation of hidden Markov model theory
In this section we briefly summarize the relevant concepts for

deriving our theoretical results. An exhaustive discussion on

hidden Markov model theory can be found in [17–19].

Throughout the paper, to keep the notation uncluttered we use

the common short-hand notation p(z) to denote p(Z~z), i.e. the

probability that the random variable Z takes on the value z. If it is

not clear from the context, we will use the notation p(z:k) to

remind the reader of the underlying random variable, that is only

implicitly defined.

The HMM is a generative model for input pattern sequences

over M time steps X~ x1 . . . xMð Þ (the input patterns are

traditionally called observations in the context of HMMs). It

relies on the assumption that a sequence of hidden states

S~ s1 . . . sMð Þ and a set of parameters h exist, which govern the

statistics of X. This assumption allows to write the joint

distribution of X and S as

p(S, X hj )~ P
M

m~1
p(xm sm, hj ) p (sm sm{1, hj ), ð4Þ

where we suppress an explicit representation of the initial state s0,

for the sake of brevity. The joint distribution (4) factorizes in each

time step into the observation model p(xm sm, hj ) and the state

transition or prediction model p(sm sm{1, hj ) [19]. This independence

property is illustrated by the Bayesian network for a HMM in

Fig. 1B.

STDP Approximates Hidden Markov Model Learning
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The HMM is a generative model and therefore we can recover

the distribution over input patterns by marginalizing out the

hidden state sequences p(X hj )~
Ð

p(S’, X hj )dS0. Learning in

this model means to adapt the model parameters h such that this

marginal distribution p(X hj ) comes as close as possible to the

empirical distribution p�(X) of the observable input sequences. A

generic method for learning in generative models with hidden

variables is the expectation-maximization (EM) algorithm [30], and its

application to HMMs is known as the Baum-Welch algorithm

[31]. This algorithm consists of iterating two steps, the E-step and

the M-step, where the model parameters h are adjusted at each M-

step (for the updated posterior generated at the preceding E-step).

A remarkable feature of the algorithm is that the fitting of the

model to the data is guaranteed to improve at each M-step of this

iterative process. Whereas the classical EM algorithm is restricted

to offline learning (where all training data are available right at

the beginning), there exist also stochastic online versions of EM

learning.

In its stochastic online variant [21,22] the E-step consists of

generating one sample S from the posterior distribution p(S Xj , h),
given one currently observed input sequence X. Given these

sampled values for S, the subsequent M-step adapts the model

parameters h such that the probability p(SDX,h) increases. The

adaptation is confined to acquiring the conditional probabilities

that govern the observation and the prediction model.

It would be also desirable to realize the inference and sampling

of one such posterior sample sequence S in a fully online

processing, i.e. generating each state sm in parallel to the arrival of

the corresponding input pattern xm. Yet this seems to be

impossible as the probabilistic model according to (4) implies a

statistical dependence between any sm and the whole future

observation sequence xmz1 . . . xM . However, it is well known that

the inference of p(SDX,h) can be approximated by a so-called

forward sampling process [19,20], where every single time step sm of

the sequence S is sampled online, based solely on the knowledge of

the observations x1,x2, . . . ,xm received so far, rather than the

observation of the complete sequence X. Hence sampling the

sequence S is approximated by propagating a single sample from

the HMM state space forward in time.

Forward sampling in WTA circuits
In this section we show that the dynamics of the network realizes

a forward sampler for the HMM. We make use of the fact that

equations (1), (2) and (3) realize a Markov process, in the sense that

future network dynamics is independent from the past, given the

current network state (for a suitable notion of network state). This

property holds true for most reasonable choices of EPSP kernels.

For the sake of brevity we focus in the theoretical analysis on the

simple case of a single exponential decay with time constant t.

We seek a description of the continuous-time network dynamics

in response to afferent spike trains over a time span of length T
that can be mapped to the state space of a corresponding HMM

with discrete time steps. Although the network works in continuous

time, its dynamics can be fully described taking only those points

in time into account, where one of the neurons in the recurrent

circuit produces a spike. This allows to directly link spike trains

generated by the network to a sequence of samples from the state

space of a corresponding HMM.

Let the M spike times produced during this time window be

given by t̂t1 . . . t̂tM . The neuron dynamics are determined by the

membrane time courses (2). For convenience let us introduce the

notation ym :~(ym1 . . . ymK ), with ymj :~yj (̂ttm) and by analogy

xm :~(xm1 . . . xmN ), with xmi :~xi (̂ttm).

Due to the exponentially decaying EPSPs the synaptic activation

ym at time t̂tm is fully defined by the synaptic activation ym{1 at the

time of the previous spike t̂tm{1, and the identity of the neuron that

spiked in that previous time step, which we denote by a discrete

variable zm{1[f1 . . . Kg. We thus conclude that the sequence of

tuples fzm,ym,Dmg (with Dm :~t̂tmz1{t̂tm) fulfills the Markov

condition, i.e. the conditional independence p (sm x1 . . . xm,sm{1)~j
p (sm xm,sm{1)j and thus fully represents the continuous dynamics

of the network (see Methods). We call sm :~fzm,ym,Dmg the network

state. The corresponding HMM forward sampler follows a simple

update scheme that samples a new state sm given the current

observation xm and the previous state sm{1. This dynamic is

equivalent to the WTA network model.

This state representation allows us to update the network

dynamics online, jumping from one spike time t̂t to the next. Using

this property, we find that the dynamics of the network realizes a

probability distribution over state sequences S~ s1 . . . sMð Þ, given

an afferent sequence X~ x1 . . . xMð Þ, which can be written as

q SDX,hð Þ~ P
M

m~1
p smDxm,sm{1,hð Þ

~ P
M

m~1
p(zmDxm,ym,h)p(ymDzm{1,ym{1,Dm{1)p(Dm{1)

ð5Þ

where h~fW,V,b1 . . . bKg is the set of network parameters. The

factorization and independence properties in (5) are induced by the

state representation and the circuit dynamics. We assume here that

the lateral inhibition within the WTA circuit ensures that the output

rate of the whole circuit is normalized, i.e.
P

l nl(t)~n̂n at all times t.

This allows to introduce the distribution over the inter-spike-time

intervals Dm independent from X (see Methods for details). Note,

that Dm determines the interval between spikes of all circuit neurons,

realized by a homogeneous Poisson process with a constant rate n̂n. The

second term in the second line of (5) determines the course of the

membrane potential, i.e. it assures that ym follows the membrane

dynamics. Since the EPSP kernels are deterministic functions this

distribution has a single mass point, where (2) is satisfied. The first

factor in the second line of (5) is given by the probability of each

individual neuron to spike. This probability depends on the

membrane potential (1), which in turn is determined by xm, ym

and the network parameters h. Given that the circuit spikes at time

t̂tm, the firing probability of neuron k can be expressed as a

conditional distribution p(zm:kDxm,ym,h)~euk t̂tmð Þ. The lateral

inhibition in (1) ensures that this probability distribution is correctly

normalized. Therefore, the winner neuron k[f1 . . . Kg is drawn

from a multinomial distribution at each spike time.

For the given architecture the functional parts of the network

can be related directly to hidden Markov model dynamics. In the

Methods section we show in detail that by rewriting p(zmDxm,ym,h)
the membrane potential (1) can be decomposed into three

functional parts

p zm:kDxm,ym,hð Þ

~euk t̂tmð Þ

~

exp
XN

i~1

wki
:xmi

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{observation

: exp
XK

j~1

vkj
:ymjzbk

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{prediction

exp i t̂tmð Þð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
normalization

:

ð6Þ

STDP Approximates Hidden Markov Model Learning
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The lateral excitatory connections predict a prior belief about the

current network activity and the feedforward synapses match this

prediction against the afferent input. The inhibition i(̂ttm) imple-

ments the normalization that is required to make (6) a valid

multinomial distribution. The functional parts of the membrane

potential can be directly linked to the prediction and observation

models of a HMM, where the network state is equivalent to the

hidden state of this HMM. The WTA circuit realizes a forward-

sampler for this HMM, which approximates sampling from the

posterior distribution p(SDX,h) in an online fashion [20]. Its

sampling is carried out step by step, i.e. it generates through each

spike a new sample from the network state space, taking only the

previous time step sample into account. Furthermore this forward

sampling requires no additional computational organization, but

is achieved by the inherent dynamics of the stochastically firing

WTA circuit.

STDP instantiates a stochastic approximation to EM
parameter learning

Formulating the network dynamics in terms of a probabilistic

model is beneficial for two reasons: First, it gives rise to a better

understanding of the network dynamics by relating it to samples

from the HMM state space. Second, the underlying model allows

us to derive parameter estimation algorithms and to compare

them with biological mechanisms for synaptic plasticity. For the

HMM, this approach results in an instantiation of the EM

algorithm [19,30] in a network of spiking neurons (stochastic

WTA circuit). In the Methods section we derive this algorithm for

the WTA circuit and show that the M-step evaluates to weight

updates that need to be applied whenever neuron k emits a spike

at time t̂t, according to

Dwki (̂tt)~j: e{wki xi (̂tt){1ð Þ and Dvkj (̂tt)~j: e
{vkj yj (̂tt){1

� �
, ð7Þ

where j is a positive constant that controls the learning rate. Note

that the update rules for the feedforward and the recurrent

connections are identical, and thus all excitatory synapses in the

network are handled uniformly. These plasticity rules (7) are

equivalent to the updates that previously emerged as theoretically

optimal synaptic weight changes, for learning to recognize

repeating high-dimensional patterns in spike trains from afferent

neurons, in related studies [13,32,33]. The update rules consist of

two parts: A Hebbian long-term potentiating (LTP) part that

depends on presynaptic activity and a constant depression term.

The dependence on the EPSP time courses (2) makes the first part

implicitly dependent on the history of presynaptic spikes. The

STDP window is shown in Fig. 1C for a-shaped EPSPs.

Potentiation is triggered when the postsynaptic neuron fires after

the presynaptic neuron. This term is commonly found in synaptic

plasticity measured in biological neurons, and for common EPSP

windows it closely resembles the shape of the pre-before-post part

of standard forms of STDP [11,12]. The dependence on the

current value of the synaptic weight has a local stabilizing effect on

the synapse. The depressing part of the update rule is triggered

whenever the postsynaptic neuron fires independent of presynaptic

activity. It contrasts LTP and assures that the synaptic weights stay

globally in a bounded regime. It is shown in Fig. 4 of [13] that the

simple rule (7) reproduces the standard form of STDP curves when

it is applied with an intermediate pairing rate.

While these M-step updates emerge as exact solutions for the

underlying HMM, the WTA circuit implements an approximation

of the E-step, using forward sampling from the distribution in

equation (5). In the following experiments we will first focus on this

simple approximation, and analyze what computational function

emerges in the network using the STDP updates (7) without any

third signal related to reward or a ‘‘teacher’’. In the last part of the

Results section we will introduce a possible implementation of a

refined approximation, and assess the advantages and disadvan-

tages of this method.

Learning to predict spike sequences through STDP
In this section we show through computer simulations that our

WTA circuits learn to encode the hidden state that underlies the

input statistics via the STDP rule (7). We demonstrate this for a

simple sequence memory task and analyze in detail how the

hidden state underlying this task is represented in the network.

The experimental paradigm reproduces the structure of object

sequence memory tasks, where monkeys had to memorize a

sequence of movements and reproduce it after a delay period

[23,24,34,35]. The task consisted of three phases: An initial cue

phase, a delay phase and a recall phase. Each phase is

characterized by a different input sequence, where the cue

sequence defines the identity of the recall sequence. We used four

cue/recall pairs in this experiment.

The structure of this task is illustrated in Fig. 2A. The graph

represents a finite state grammar that can be used to generate

symbol sequences by following a path from Start to Exit. In this first

illustrative example the only stochastic decision is made at the

beginning, randomly choosing one of the four cue phases with

equal probabilities while the rest of the sequence is deterministic.

On each arc that is passed, the symbol next to the arc is generated,

e.g. AB-delay-ab is one possible symbolic sequence. Note that all

symbols can appear in different temporal contexts, e.g. A appears

in sequence AB-delay-ab and in BA-delay-ba. The delay symbol is

completely unspecific since it appears in all four possible

sequences. Therefore this task does not fulfill the Markov

condition with respect to the input symbols, e.g. knowing that

the current symbol is delay does not identify the next one as it

might be any of a,b,c,d. Only additional knowledge about the

temporal context of the symbol allows to uniquely identify the

continuation of the sequence.

This additional knowledge can be represented in a hidden state

that encodes the required information, which renders this task a

simple example of a HMM. The hidden states of this HMM have

to encode the input patterns and the temporal context in which

they appear in order to maintain the Markov property throughout

the sequences, e.g. a distinct state sB,AB encodes pattern B when it

appears in sequence AB-delay-ab. The temporal structure of the

hidden state can be related to the finite state grammar in Fig. 2A.

The arcs of the grammar directly correspond to the hidden states,

i.e. given knowledge about the currently visited arc allows us to

complete the sequence. The symbols next to the arcs define the

observation model, i.e. the most likely symbol throughout each

state. In this simple symbolic HMM the observation model is in

fact deterministic, since exactly one symbol is allowed in each

state.

In the neural implementation of this task, the symbolic

sequences are presented to the WTA circuit encoded by afferent

spike trains. Every symbol A,B,C,D,a,b,c,d,delay is represented by a

rate pattern with fixed length of 50 ms, during which each afferent

neuron emits spikes with a symbol-specific, fixed Poisson rate (see

Methods). One example input spike train encoding the symbolic

sequence AB-delay-ab is shown in the top panel of Fig. 2A. The

input spike times are not kept fixed but newly drawn for each

pattern presentation. This input encoding adds extra variability to

the task, which is not directly reflected by the simple symbolic

finite state grammar. Still, the statistics underlying the input

STDP Approximates Hidden Markov Model Learning
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sequences X follow the dynamics of a HMM of the form (4), and

therefore our WTA circuit and the spike trains that encode

sequences generated by the artificial grammar share a common

underlying model.

The observation model p(xmDsm,h) of that HMM covers the

uncertainty induced by the noisy rate patterns by assigning a

certain likelihood to each observed input activation xm. The

hidden state representation has to encode the context-dependent

Figure 2. Emergence of working memory encoded in neural assemblies through weak HMM learning in a WTA circuit through
STDP. (A) Illustration of the input encoding for sequence AB-delay-ab. The upper plot shows one example input spike train (blue dots) plotted on top
of the mean firing rate (100 out of 200 afferent neurons shown). The lower panel shows the finite state grammar graph that represents the simple
working memory task. The graph can be used to generate symbol sequences by following any path from Start to Exit. In the first state (Start) a
random decision is made, which of the four paths to take. This decision determines all arcs that are passed throughout the sequence. On each arc
that is passed the symbol next to the arc is emitted (and provided as input to the WTA circuit in the form of some 200-dimensional rate pattern). (B,C)
Evoked activity of the WTA circuit for one example input sequence before learning (B) and for each of the four sequences after learning (C). The
network activity is averaged and smoothed over 100 trial runs (gray traces), the blue dots show the spiking activity for one trial run. The input
sequences are labeled by their pattern symbols on top of each plot. The neurons are sorted by the time of their highest average activity over all four
sequences, after learning. For each sequence a different assembly of neurons becomes active in the WTA circuit. Dotted black lines indicate the
boundaries between assemblies. Since the 4 assemblies that emerged have virtually no overlap, the WTA circuit has recovered the structure of the
hidden states that underlie the task. (D) The lateral weights vkj that emerged through STDP. The neurons are sorted using the same sorting algorithm
as in (B,C). The black dotted lines correspond to assembly boundaries, neurons that fired on average less than one spike per sequence are not shown.
Each neuron has learned to fire after a distinct set of predecessors, which reflects the sequential order of assembly firing. The stochastic switches
between sequences are represented by enhanced weights between neurons active at the sequence onsets.
doi:10.1371/journal.pcbi.1003511.g002
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symbol identity and the temporal structure of the sequences, i.e.

the duration of each individual symbol. In our continuous-time

formulation the hidden state is updated at the time points t̂t1 . . . t̂tM .

Therefore, throughout the presentation of a rate pattern of 50 ms

length, several state updates are encountered during which the

hidden state has to be maintained. In principle this can be done by

allowing each hidden state to persist over multiple update steps by

assigning non-zero probabilities to p(sm:k sm{1:k,hj ). However,

this approach is well known to result in a poor representation of time

as it induces an exponential distribution over the state durations,

which is inappropriate in most physical systems and obviously also

for the case of deterministic pattern lengths, considered here

[17,19]. The accuracy of the model can be increased at the cost of a

larger state space by introducing intermediate states, e.g. by

representing pattern B in sequence AB-delay-ab by an assembly of

states sB,AB,1,sB,AB,2, . . . that form an ordered state sequence

throughout the pattern presentation. Each of these assemblies

encodes a specific input pattern, the temporal context and its

sequential structure throughout the pattern, and with sufficiently

large assemblies the temporal resolution of the model achieves

reasonable accuracy. We found that this coding strategy emerges

unsupervised in our WTA circuits through the STDP rule (7).

To show this, we trained a WTA circuit with N~200 afferent

cells and K~100 circuit neurons by randomly presenting input

spike sequences until convergence. In this experiment, the patterns

were presented as a continuous stream of input spikes, without

intermediate pauses or resetting the network activity at the

beginning of the sequences. Training started from random initial

weights, and therefore the observation and prediction model had

to be learned from the presented spike sequences. Prior to learning

the neural activity was unspecific to the patterns and their

temporal context (see Fig. 2B). Fig. 2C shows the evoked activities

for all four sequences after training. The output of the network is

represented by the perievent time histogram (PETH) averaged

over 100 trial runs and a single spike train that is plotted on top.

To simplify the interpretation of the network output we sorted the

neurons according to their preferred firing times (see Methods).

Each sequence is encoded by a different assembly of neurons. This

reflects the structure of the hidden state that underlies the task.

Since the input is presented as continuous spike train, the network

has also learned intermediate states that represent a gradual

blending between patterns. About 25 neurons were used to encode

the information required to represent the hidden state of each

sequence.

This coding scheme installs different representations of the

patterns depending on the temporal context they appeared in, e.g.

the pattern delay within the sequence AB-delay-ab was represented

by another assembly of neurons than the one in the sequence BA-

delay-ba. Small assemblies of about five neurons became tuned for

each pattern and temporal context. This sparse representation

emerged through learning and is not merely a consequence of the

inherent sparseness of the WTA dynamics. Prior to learning all

WTA neurons are broadly tuned and show firing patterns that are

unordered and nonspecific (see Fig. 2B). After learning their

afferent synapses are tuned for specific input patterns, whereas the

temporal contexts in which they appear are encoded in the

excitatory lateral synapses. The latter can be seen by inspecting the

synaptic weights vkj shown in Fig. 2D. They reflect the sparse code

and also the sequential order in which the neurons are activated.

They also learned to encode the stochastic transitions at the

beginning of the cue phase, where randomly one of the four

sequences is selected. These stochastic switches are reflected in

increased strength of synapses that connect neurons activated at

the end and the beginning of the sequences.

The behavior of the circuit is further examined in Fig. 3. The

average network activity over 100 trial runs of the neurons that

became most active during sequence AB-delay-ab are shown in

Fig. 3A. In addition the spike trains for 20 trials are shown for

three example neurons. The same sorting was applied as in Fig. 2.

Using the hidden state encoded by the network it should be

possible to predict the recall patterns after seeing the cue, if it

correctly learned the input statistics. We demonstrate this by

presenting incomplete inputs to the network. After presentation of

the delay pattern the input was turned off and the network was

allowed to run freely. The delay pattern was played three times

longer than in the training phase (150 ms). During this time the

network was required to store its current state (the identity of the

cue sequence). After this delay time the input was turned off – no

spikes were generated by the afferent neurons during this phase,

the network was purely driven by the lateral connections. Since the

delay time was much longer than the EPSP windows the network

had to keep track of the sequence identity in its activity pattern

throughout this time to solve the task. Fig. 3B shows the output

behavior of the network for sequence AB-delay-free (where free

denotes a 100 ms time window with no external input). After the

initial sequence AB was presented, a small assembly of neurons

became active that represents the delay pattern that was associated

with that specific sequence. After the delay pattern was turned off,

the network completed the hidden state sequence using its

memorized activity, which can be seen by comparing the evoked

and spontaneous spike trains in Fig. 3A and B, respectively.

In order to quantify the ability of the network to reproduce the

structure of the hidden state, we evaluated the similarity between

the spontaneous and evoked network activity using the rank order

correlation coefficient, which is a similarity measure normalized

between {1 and 1, where 1 means that the order is perfectly

preserved. This measure has been previously proposed to detect

stereotypical temporal order in neural firing patterns [6]. Fig. 3C

shows the histograms over the correlation coefficients for all four

sequences. The histograms were created by calculating the rank

order correlation between the spontaneous sequences and the

PETH of the evoked sequences. It can be seen that the temporal

order of the evoked sequence was reliably reproduced during the

free run. To that end, for each of the input sequences, a stable

representation has been trained into the network, that is encoded

in the lateral synapses. This structure emerged completely

unsupervised using the local STDP rule, solely from the intrinsic

dynamics of the network.

Mixed selectivity emerges in multiple interconnected
WTA circuits

The first experiment demonstrated that through STDP, single

neurons of a WTA circuit get tuned for distinct input patterns and

the temporal context in which they appear. The neural code that

emerged is reminiscent of some features found in cortical activity

of monkeys solving similar tasks, namely the emergence of context

cells that respond specifically to certain symbols when they appear

in a specific temporal context [34,36,37]. However, the overall

competition of a single WTA circuit hinders the building of codes

for more abstract features, which are also found in the cortex in

the very same experiments where neurons in the same cortical

area encode different functional aspects of stimuli and actions.

They seem to integrate information on different levels of

abstraction which results in a diverse and rich neural code, where

close-by neurons are often tuned to different task-related features

[25].

We show that our model reproduces this mixed selectivity of

cortical neurons if multiple interconnected WTAs are trained on a

STDP Approximates Hidden Markov Model Learning
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common input. The strong competition is restricted to neurons

within every single WTA, whereas there is no competition

between neurons of different circuits and lateral connections allow

full information exchange between the circuits. Therefore, the

model is extended by splitting the network into smaller WTA

groups, each of which receives input from a distinct inhibitory

feedback loop that implements competition between members of

that group. In addition all neurons receive lateral excitatory input

from the whole network. Every WTA group still follows the

dynamics of a forward sampler for a HMM. Each of these WTA

circuits adapts its synaptic weights through STDP to best represent

the observed input spike sequences. In addition, the lateral

connections between WTA groups introduce a coupling between

the network states of individual groups. The dynamics of the whole

network of WTA circuits can be understood as a forward sampler

for a coupled HMM [38], where every WTA group encodes one

multinomial variable of a compound state such that from one time

step to the next all single state variables have influence on each

other [20,38].

In the first experiment we have seen that the WTA circuit

learned to use about 25% of the available neurons to encode each

of the four sequences. We have also seen that the network used

small assemblies of neurons to represent each of the patterns in

favor of a finer temporal resolution. This implies that WTA

circuits of different size can learn to decode the input sequence on

different levels of detail, where small circuits only learn the most

salient features of the input sequences. To show this we trained a

network with 10 WTA groups of random size between 10 and 50

Figure 3. Spontaneous replay of pattern sequences. (A,B) The output behavior of a trained network for sequence AB-delay-ab. The network
input is indicated by pattern symbols on top of the plot and pattern borders (gray vertical lines). (A) The average firing behavior of the network
during evoked activity. The 30 circuit neurons that showed highest activity for this sequence are shown. The remaining neurons were almost
perfectly silent. The network activity is averaged over 100 trial runs and neurons are sorted by the time of maximum average activity. Detailed spiking
activities for three example neurons that became active after the delay pattern are shown. Each plot shows 20 example spike trains. (B) Spontaneous
completion of sequence AB-delay-free. After presenting the cue sequence AB and the delay pattern for 150 ms the afferent input was turned off,
letting the network run driven solely by lateral connections. During this spontaneous activity, the neurons are activated in the same sequential order
as in the evoked trials. Detailed spiking activity is shown for the same three example neurons as in (A). (C) Histograms of the rank order correlation
between the evoked and spontaneous network activity for all four sequences, computed over 100 trial runs. The sequential order of neural firing is
reliably reproduced during the spontaneous activity and thus the structure of the hidden state is correctly completed.
doi:10.1371/journal.pcbi.1003511.g003
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units, giving a total network size of K~318, on the simple object

sequence memory task (Fig. 2A). The neural code that emerges in

this network after training is shown in Fig. 4. The output rates of

the circuit neurons were measured during the presentation of

pattern a appearing in the sequence AB-delay-ab, BA-delay-ba,

shown in Fig. 4A,B respectively. Three classes of neurons can be

Figure 4. Mixed selectivity in networks of multiple interconnected WTA circuits. (A,B) Mean firing rate of the circuit neurons for evoked
activity during pattern a in sequence AB-delay-ab (A) and BA-delay-ba (B). A threshold of 10 Hz (dashed line) was used to distinguish between
neurons that were active or inactive during the pattern. Firing rates of neurons that were not context selective are shown in green, that of neurons
selective for starting sequences AB and BA are shown in red and blue, respectively. Neurons that did not fall in one of these groups are not shown.
Spike trains of one context selective (C) and one non-selective (D) neuron are presented for spontaneous completion of sequence AB-delay-ab
(upper) and BA-delay-ba (lower) (cue phase is not shown). Spike raster plots over 20 trial runs and corresponding averaged neural activity (PETH) are
shown. The two neurons encode the input on different levels of abstraction. The neuron in panel (D) shows context cell behavior, since it encodes
pattern a only if it occurs in the context of sequence ab. During ba it remains (almost) perfectly silent. The neuron in (C) is not context selective, but
nevertheless fires reliably during the time slot of pattern a during the free run by integrating information from other (context selective) neurons. It
belongs to a WTA circuit with 15 neurons, for which the network state projection is shown in panel (E). (E,F) Linear projection of the network activity
during the delay phase to the first two components of the jPCA, for a single WTA circuit with 15 neurons (E) and for the whole network (F). 10
trajectories are plotted for each sequence (AB-delay-ab red, BA-delay-ba green, CD-delay-cd blue, DC-delay-dc yellow). The dots at the beginning of
each line, indicate the onsets of the delay state, i.e. the beginning of the trajectories. The plots have arbitrary scale. The projection of the WTA circuit
in (E) does not allow a linear separation between all four sequences, whereas the activity of the whole network (F) clusters into four sequence-specific
regions. The network neurons use this state representation to modulate their behavior during spontaneous activity.
doi:10.1371/journal.pcbi.1003511.g004
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distinguished: 10 neurons were tuned to pattern a in the context

AB-delay-ab only (shown in red), 12 neurons were tuned to pattern a

exclusievly in the context BA-delay-ba (shown in blue) and 5

additional neurons encode pattern a independent of its context

(green), i.e. they get activated by the pattern a in both sequences

AB-delay-ab and BA-delay-ba. The remaining neurons were not

significantly tuned for pattern a (average firing rate during pattern

a was less than 10 Hz, not shown in the plot).

To pinpoint the computational function that emerged in the

network we compared the spontaneous activity of individual

neurons from different WTA circuits. Spike trains for one context-

specific and one non-specific neuron are compared in Fig. 4C and

D, respectively. Both panels show spike raster plots over 20 trial

runs and averaged neuron activities (PETH) for sequences AB-

delay-free and BA-delay-free. The neuron in Fig. 4C belongs to a

small WTA group with a total size of 15 neurons and shows

context unspecific behavior, whereas the neuron in Fig. 4D which

belongs to a larger WTA group (42 neurons) is context specific (see

Fig. 4A,B). This behavior is also reproduced during the free run,

when the neurons are only driven by their lateral synapses. The

neuron in Fig. 4D remains silent during BA-delay-free and thus

shows the properties of context cells observed in the cortex,

whereas the neuron in Fig. 4C is active during both sequences.

Still, during spontaneous replay that neuron correctly reproduces

the temporal structure of the input sequences. In sequences

starting with AB the neural activity peaks at 50 ms after the onset

of the free run – the time pattern a was presented in the evoked

phase. If the sequence starts with BA this behavior is modulated

and the activity is delayed by roughly 50 ms, to the time point a

would appear in the recall phase. The required information to

control this modulation was not available within the small WTA

group the neuron belongs to, but provided by neighboring

context-specific neurons from other groups.

To see this we trained a linear classifier on the evoked activity

during the delay phase of AB-delay-ab and BA-delay-ba (see Methods

for details). If the neurons reliably encode the sequence identity a

separating plane should divide the K-dimensional space of network

activities between the sequences. Training the classifier only on the

15-dimensional state space of the group the neuron in Fig. 4C

belongs to, did not reveal such a plane (the classification

performance was 72:5%). Therefore, this small WTA circuit did

not encode the required memory item to distinguish between the

two sequences after the delay phase. However, the whole network of

all WTA groups reliably encoded this information and the classifier

trained on the K-dimensional state space could distinguish between

the delay phases of AB-delay-ab and BA-delay-ba with 100% accuracy.

To illustrate the different emergent representations, we com-

pared linear projections of the state of the small WTA group with

15 neurons and the state of the whole network in Fig. 4E,F,

respectively. The plots show the network activity during the delay

phase for all four sequences. Each line corresponds to a trajectory

of the evoked network activity, where the line colors indicate the

sequence identity. The state trajectories were projected onto the

first two dimensions of the dynamic principal component analysis

(jPCA), that was recently introduced as an alternative to normal

PCA that is applicable to data with rotational dynamics [39].

Empirically, we found this analysis method superior to normal

PCA in finding linear projections that separate the network states

for different input sequences. One explanation for this lies in the

dynamical properties of WTA circuits. Due to the global

normalization which induces a constant network rate, the

dynamics of the network are roughly energy-preserving. Since

this implies that the corresponding linear dynamical system is

largely non-expanding/contracting, a method that identifies

purely rotational dynamics such as the jPCA was found to be

beneficial here.

Fig. 4E shows the first two jPCA components of the neural

activities during the delay phase for the WTA circuit with 15

neurons, which the neuron in Fig. 4C belongs to. This circuit was

not able to distinguish between all four input sequences, since it

activated the same neurons to encode them. This is also reflected

in the jPCA projections shown in Fig. 4E, which show a large

overlap for sequences AB-delay-ab and BA-delay-ba. On the other

hand, the network state comprising all K neurons reliably encoded

the sequence identities (see Fig. 4F). The delay state for each

sequence spans an area in the 2-D projection and therefore the

network found a state space that allows a linear separation

between the sequences. Such a representation is important since

the neuron model employs a linear combination of the network

state in the membrane dynamics (1) and therefore provides the

information required by the neurons in Fig. 4C,D to modulate

their spontaneous behavior.

Trajectories in network assemblies emerge for stationary
input patterns

Information about transient stimuli is often kept available over

long time spans in trajectories of neural activity in the mammalian

cortex [5,7,26,40] and in songbirds [41–43]. In the previous

experiment we saw that our model is in principle capable to

develop such trajectories in neural assemblies (see Fig. 3B), which

emerged to encode salient input patterns and the temporal

structure throughout them. However, in that experiment the input

sequences comprised a rich temporal structure, since each pattern

was only shown for a 50 ms time bin which might have facilitated

the development of these activity patterns. In this section we study

whether a similar behavior also emerges when the input signal is

stationary over long time spans.

In analogy to the previous experiment we generated two input

sequences A-delay and B-delay. The patterns A, B were played for

100 ms and the pattern delay for 500 ms. As in all other

experiments, the patterns were rate patterns, i.e. each input

neuron fired with a constant Poisson rate during the pattern and

spike times were not kept fixed throughout trials. One example

input spike train is shown in Fig. 5A.

Although the input was stationary for 500 ms during the delay

pattern, we could still observe the emergence of neural trajectories

in the network after training. Again, we used a network composed

of multiple interconnected WTA circuits to learn these patterns.

We employed a network of 20 WTA groups of random size in the

range from 10 to 100 neurons. The total network had a size of

K~704 circuit neurons and we used N~100 afferent cells. Fig. 5B

shows the sorted average output activity after training. For each of

the two sequences a distinct assembly of neurons emerged and the

neurons composing these assemblies fired in a distinct sequential

order. Fig. 5C shows the rank order correlations between the

evoked and spontaneous activities. The trajectories of neural firing

were reliably reproduced during spontaneous activity, but only

about 100 neurons were used for each of the two assemblies,

leaving the remaining 500 neurons (almost) perfectly silent.

The emergence of these trajectories can be further enhanced

using a homeostatic intrinsic plasticity mechanism which enforces

that on average all network neurons participate equally in the

representation of the hidden state. This can be achieved by a

mechanism that regulates the excitability bk of each neuron, such

that the overall output rate nk of neuron k (measured over a long

time window) converges to a given target rate nk~
1

K
n̂n. (see [44]

and the Methods section). Augmenting the dynamics of the

STDP Approximates Hidden Markov Model Learning

PLOS Computational Biology | www.ploscompbiol.org 10 March 2014 | Volume 10 | Issue 3 | e1003511



network with this intrinsic plasticity rule prevents neurons from

becoming inactive if their synaptic weights decrease and by that

assures that each neuron joins one of the assemblies. This can be

seen in Fig. 5C,D which shows the output activity after training

with STDP augmented with the homeostatic mechanism. The

neurons formed a fixed ordered sequence and thus showed a clear

preference for a certain point in time within the pattern. Even

though the delay pattern had no salient temporal structure (the

rates of all afferent neurons were constant throughout the pattern)

these trajectories were formed by imprinting the sequential order

of the neural activity into the lateral excitatory connections. As in

the first experiment each neuron has learned to fire after a distinct

group of preferred predecessors, resulting in neural trajectories

through the network. Therefore, the time that has elapsed since

the delay pattern started could be inferred from the neural

population activity. In addition the identity of the initial pattern

was also memorized, since about half of the population became

active for each of the two sequences.

Learning the temporal structure of an artificial grammar
model

The finite state grammar used in the previous experiments

(Fig. 2A) did not utilize the full expressive power of HMMs since it

only allowed stochastic switches at the beginning of each sequence.

In this section we consider the problem of learning more general

finite state grammars in WTA circuits, a problem that has also

been extensively studied in cognitive science in artificial grammar

learning (AGL) experiments [45]. Fig. 6A shows the artificial

grammar that was used in [27] to train subjects using different

stimulus modalities (visual, auditory and tactile). There it was

shown that humans can acquire the basic statistics of such

grammars extremely fast. On this particular task humans showed a

performance of 62% to 75% percent (depending on the stimulus

modality that was used) after only a few dozens of stimulus pre-

sentations [27].

We show that our network model can extract the basic structure

of this grammar. This internal representation can be subsequently

used to classify unseen sequences as grammatical or not. Through

STDP the network adapts the parameters h such that they reflect

the statistics underlying the training sequences, and the emergent

HMM can then be used to evaluate the sequence likelihood

p(XDh). The ability of the network to distinguish between

grammatical and ungrammatical sequences was assessed by

applying a threshold on the sequence log-likelihood, an approx-

imation of which was computed over a single sample S from (5)

(see Methods). The threshold was assigned to the mean of the log-

likelihood values computed for all test sequences. Likelihoods that

laid above that threshold were reported as grammatical.

In this experiment we used a sparse input coding, where only a

small subset of afferent neurons is activated for each of the symbols.

This representation could be realized by another WTA circuit used

as input for the network to decode more complex input patterns. We

trained a single WTA circuit with K~10 neurons on this sparse

input. Using this model, we were able to achieve high learning

speeds. In each training iteration one of the 12 training data sets

from [27] (using only the first sequence of each match/mismatch

pair) was chosen at random and presented to the network. For

Figure 5. Neural trajectories emerge for stationary input patterns. (A) A network was trained with an extended delay phase of 500 ms. Input
spike trains of a single run for sequence A-delay (25 out of 100 afferent neurons). Throughout the delay phase the afferent neurons fire with fixed
stationary Poisson rates. (B) The output behavior for sequence A-delay averaged over 100 trial runs. The circuit neurons are sorted according to their
mean firing time within the sequences (120 out of 704 neurons are shown). (C) Histograms of the rank order correlation between the evoked and
spontaneous network activity. The sequential order of neural firing is preserved during spontaneous activity. (D,E) Homeostatic plasticity enhances
the formation of this sequential structure. The output behavior of the network trained with STDP and the homeostatic plasticity mechanism is shown.
Approximately 50% of the neurons encode each of the two sequence. The neurons learn to fire at a specific point in time within the delay patterns,
building up stable trajectories.
doi:10.1371/journal.pcbi.1003511.g005
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testing we used the 20 test sequences from [27] to evaluate the

learning performance. Training was interrupted after every 10th

sequence presentation to assess the classification performance. The

resulting learning curve is shown in Fig. 6B. The classification rate

of 75% that was reported in the behavioral experiment was

exceeded after only 80 iterations. By training the network beyond

this point performances up to 85% were reached. Note that none of

the training sequences appeared in the test set. Therefore the

network has not just learned a fixed set of sequences, but extracted

relevant statistical features that allowed it to generalize to new data.

A refined EM approximation using rejection sampling
So far in all experiments the simple forward sampling approx-

imation was used for learning the model parameters. Although this

learning paradigm has shown to be surprisingly powerful, it is

limited and will not be sufficient if the network is required to learn

more complex tasks or acquire probabilistic models with a high

level of detail. In this section we derive the refined approximation

toward evaluating the HMM E-Step in a recurrent WTA circuit

based on rejection sampling.

Exactly solving the E-step requires to evaluate the posterior

probability of S, given by

p SDX,hð Þ~ p(S,XDh)

p(XDh)
with p(XDh) ~

ð
p(S’,XDh)dS0, ð8Þ

where p(S,XDh) is the HMM joint distribution, given by equation

(4). A stochastic EM update is realized by drawing a state sequence

from the posterior for which the M-step parameter updates are

performed. However, directly sampling from (8) is not possible for

a spiking neural network, since it requires the integration of

information over the whole state sequence and thus, looking into

the future. This can be seen by noting that the integral in (8) runs

over the state space of the whole sequence. To that end, the

network is not able to sample from this distribution directly.

Nevertheless, it is possible to indirectly evaluate (8) using samples

generated from (5), which can be expressed by

p SDX,hð Þ~q SDX,hð Þ: r(S)

Sr(S0)T q(S0 DX,h)

, ð9Þ

where S:Tq S X,hjð Þ denotes the expected value over q SDX,hð Þ, which

in this context is called a proposal distribution since it is used to

propose samples, which are then used to indirectly evaluate the

target distribution p(S X,hj ). The scalar r Sð Þ is the importance weight

between the target and the proposal distribution, which is used to

scale the influence of the sample S [19,20,46].

The expectation in the denominator of (9) is again not easy to

evaluate, since it requires us to integrate over multiple sequences.

The most pragmatic solution to this problem is to approximate

this term using a single sample from the proposal distribution

Sr(S0)Tq(S0 X,hj )&r(S). Under this approximation the importance

weight in (9) cancels out and we arrive at the trivial approximation

p S X,hjð Þ&q SDX,hð Þ, i.e. each sample from the proposal distribu-

tion is accepted as a valid sample from the posterior. This is the

forward sampling approximation that was used so far throughout

all experiments.

In order to improve this approximation we use the stochasticity

of the network, which assures that different state sequences S are

proposed if the same input sequence X is presented several times.

Rejection sampling utilizes this stochasticity and preferentially

selects sequences with high likelihood throughout the whole input.

The required information to do this selection is a global quantity

that must be tracked over the whole sequence. The probability to

accept a state sequence S is directly proportional to the impor-

tance weight r(S), which computes to

r Sð Þ~ P
M

m~1
p xmDsm{1,hð Þ: ð10Þ

Note that (10) can be easily computed forward in time, since in

each time step, it only needs to be updated using the instantaneous

input likelihood p(xm sm{1,hj ). Further note that this is a measure

for surprise or prediction error – the probability of observing the

current input given the previous state. The information to decide

whether to accept S is the accumulated prediction error over the

whole sequence. This approach also naturally extends to the case

of multiple interconnected WTAs. There, the contributions to the

importance weight of every single circuit have to be multiplied in

every time step and therefore, a possible rejection is in that case

effective for the whole network of all WTAs at once.

Figure 6. Fast learning of an artificial grammar. (A) The artificial grammar from [27,74] represented as a finite state grammar graph.
Grammatical sequences are generated by following a path from Start to Exit. If a node has more than one outgoing arc one is chosen at random with
equal probability to continue the path. (B) Convergence of the network performance on that task. The blue curve shows the evolution of the mean
classification performance against the number of training samples, when forward sampling was used. The blue shaded area indicates the standard
deviation over 20 trial runs. After 80 training samples the network exceeds human performance reported in [27]. Using rejection sampling with 10
samples on average (red curve) does not significantly outperform forward sampling on this task.
doi:10.1371/journal.pcbi.1003511.g006
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Since the importance weights need to be accumulated over the

whole sequence of spike events of length M, the weight update

rules (7) can not be applied instantaneously. In the neural

implementation we achieved this using a synaptic eligibility trace

as proposed in [47]. Instead of updating the weights directly they

are tagged and consolidation of the tags is delayed until the whole

sequence is read. The probability to accept these tags is

proportional to the importance weights, i.e.

p(accept sequence S) ~ c:r Sð Þ, ð11Þ

where c is a constant that scales the acceptance rate. If a sequence

S is accepted, the synaptic tags are consolidated. If the circuit

decides not to accept, the synaptic weight changes for the whole

sequence have to be discarded. This result is analytically similar to

[15], where the importance weights (10) were introduced by

weighting the eligibility traces with a deterministic scalar factor

(importance sampling). Here, in the rejection sampling framework

a stochastic variant of this method is used. The advantage of the

rejection sampling method is that it is not necessary to explicitly

compute the normalization in (8). The normalization can be

approximated by replaying in every training iteration the input

sequence multiple times until it gets accepted once, instead of

using a constant number of replays as with importance sampling.

In practice however it is necessary to adapt the parameter c
throughout learning in order to get a reasonable number of

replays. We used a simple linear tracking mechanism for c
throughout the experiments (see Methods). A performance

comparison of these different sampling approximations is provided

at the end of the Results section.

We assume that the circuit interacts with a mechanism that

allows the replay of the afferent stimulus multiple times. By

enforcing that each input is accepted once, we guarantee that the

network learns the statistics of all input sequences with equal

accuracy. This view allows us to make an interesting theoretical

prediction: when an input is not well represented by the network it

is more likely to be rejected and therefore, the number of rejected

and resampled sequences represents a notion of novelty. Literally

speaking, the network pays more attention to novel inputs, by

resampling them multiple times (see Methods for details).

Rejection sampling enhances the learning capabilities of
STDP

In the following experiments we investigate the possible

performance gain that can be achieved if the network has access

to this rejection sampling mechanism. We have previously seen

that the grammar from Fig. 1 in [27] can be learned almost

perfectly using pure forward sampling. However, this data set had

a very simple structure. To distinguish between grammatical and

ungrammatical sequences only required the analysis of the local

statistics of the input. E.g. it is easy to see that the sequence DEAC

is not grammatical since it contains the bigram DE, which never

appears in the training data. Each of the ungrammatical sequences

contains at least one illegal bigram and thus can be classified based

on a simple model of symbol transitions. This simple structure was

already recovered with the online learning scheme and therefore

using rejection sampling on that task did not result in a significant

performance increase (see Fig. 6).

To demonstrate the advantage of rejection sampling, we created

a grammar that required integration of information over a longer

time span, shown in Fig. 7A. Although this grammar only allows to

create four sequences AABC, BBAC, ABAD and BABD, the

underlying structure is more complex than in the previous tasks.

The identity of the last symbol can only be inferred if the identity

and context of the first symbol is integrated and memorized over

the whole sequence. To that end, the rejection sampling algorithm

that allows the network to propagate information over the whole

sequence, should bring a definite benefit over forward sampling for

this task.

The quantity that is needed to update the importance weights

(10) and also to estimate the sequence likelihood for classifying

grammatical against ungrammatical inputs, is given by the

instantaneous input likelihood p(xmDsm{1,h) (see Methods). As

pointed out earlier, this quantity is a measure for surprise, i.e. the

probability of observing the current input pattern given the

network state. The ability of the network to exploit this prediction

error to classify sequences is illustrated in Fig. 7. The input-output

behavior of a network after training with rejection sampling is

shown for the grammatical sequence BBAC and the ungrammat-

ical sequence BBAD, in Fig. 7C,D respectively. The bottom plots

show traces of the instantaneous input log-likelihood. Throughout

the grammatical sequence in Fig. 7C the trace stays near baseline,

which indicates that the network is capable of predicting the

sequence. Within the patterns, the trace only shows small

deviations due to input noise. Switches between the input patterns

e.g. at the border from pattern A to C cause modest levels of

surprise, due to the sudden change of the network state. However,

the illegal transition to pattern D in Fig. 7D causes a strong

negative peak. At this point the network is not capable of

predicting the final pattern. Thus the input is assigned to a low

overall sequence likelihood and will therefore be classified as

ungrammatical.

In the rejection sampling algorithm this quantity is also used

throughout training, to learn preferably from sequences that are

best capable of predicting the input sequences. To quantify the

advantage of this method over online learning we compared the

performance on the AGL task. As in the previous experiment, the

ability of the network to distinguish between grammatical and

ungrammatical sequences was evaluated by applying a threshold

on the sequence likelihood. The threshold was assigned to the

mean of the log-likelihood values computed for all tested

sequences. The network parameters were tuned such that the

number of rejected samples in each iteration, averaged over the

whole training session was equal to the desired number of samples

(see Methods). The classification errors are compared in Fig. 7B

for learning with forward and rejection sampling. The parameter c
that scales the number of rejected samples was tracked to give an

average number of 10 rejected samples per iteration. Despite this

relatively small number of times the sequences is resampled, it can

be seen that the performance on this task significantly increased

with rejection sampling. Online learning achieved a classification

rate of 68:38+12:52%. With rejection sampling the network

achieved 84:30+5:98% classification rate. Hence we confirmed,

that having access to the rejection sampling mechanism allows the

network to learn the input statistics with higher levels of accuracy.

Furthermore, for the example given here, this was achieved with a

relatively small average number of resampled state sequences.

Comparison of the convergence speed and performance
of the approximate algorithms

In order to give a quantitative notion of how the sampling

approximations affect the learning performance, we applied the

methods to solve a generic HMM learning task. To allow a direct

comparison with standard machine learning algorithms for

HMMs, we used a time-discrete version of our model in this

section. Therefore, we set the inter-spike-intervals Dm to a fixed

constant value and used rectangular EPSP kernels of the same

STDP Approximates Hidden Markov Model Learning
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length. With this modification our model is equivalent to a discrete

input, discrete state HMM, commonly considered in the machine

learning literature [19]. We created random HMMs and used

them to generate a training and a test data set. Using this data we

compared the training performance of different approximation

algorithms.

The accuracy of the rejection sampling algorithm crucially

depends on how the parameter c in equation (11) is selected. If it is

set to a very large constant value, every sample gets accepted and

we arrive at the simple forward sampling approximation. We

compared this forward sampling algorithm with the simple track-

ing algorithm that was used in the previous experiment and with

the optimal mechanism, which computes c over a batch of

sampled sequences (see Methods). In addition we compared these

methods with the importance sampling algorithm considered in

[15], where the scalar values of the importance weights were

directly used to weight synaptic tags. All sampling methods were

compared for an average number of 10 and 100 resampled

sequences. Furthermore we applied standard EM learning for

HMMs (the Baum-Welch algorithm) as reference method [19,31].

The results of the eight different training algorithms are

compared in Fig. 8. The figure shows the log-likelihood on the

test data averaged over the 50 learning trials. As can be seen, pure

forward sampling shows poor performance on this task compared

with Baum-Welch learning, but with increasing number of samples

the approximation approaches the performance of the exact EM

updates. Interestingly we found that importance sampling and

rejection sampling show almost the same performance. We believe

that the reason for this lies in the high variance of the importance

weights. The weights of consecutive samples can differ several

orders of magnitude. After normalization, effectively only the

sample with the highest importance weight has non-zero influence

on the weight updates. Therefore the two algorithms are numer-

ically almost identical for the task considered here. Using the

tracking mechanism for c resulted in decreased performance

compared to the exact algorithm. Still, a significant performance

gain can be observed with increased average number of samples.

Discussion

We have shown that STDP in WTA circuits with lateral

excitatory connections implements the capability to represent the

statistical structure underlying time-varying input patterns. The

different types of excitatory synapses in the network serve different

computational functions. Lateral connections recurrently feed

back past network spikes which are used to predict a prior belief

about the current network activity. The feedforward synapses

match this prediction against the belief inferred from afferent

inputs. The sparse code that emerges in this circuit allows to

represent the activity of the whole network as samples from the

Figure 7. Rejection sampling enhances the classification performance of the network. (A) The grammar graph used for this task. A three
letter sequence composed of As and Bs identifies the last symbol, C or D. Therefore, the most salient information is provided at the end of the
sequence. (B) The classification rate on this task is plotted for forward (green) and rejection sampling (red). The error bars indicate the standard
deviation over 10 trial runs. Rejection sampling significantly increases the classification performance on this task. (C,D) Comparison of the time
courses of the instantaneous input log likelihood for a legal input sequence BBAC (C) and an illegal sequence BBAD (D). Input patterns are indicated
by the pattern symbols on top of the plots. The upper plot shows the output spike trains of the network, the lower plot shows the traces of the
instantaneous input likelihood plotted in the log domain, which indicates the ability of the network to predict the continuation of the afferent spike
train. The trace in (D) shows a strong negative peak at the illegal transition at 150 ms. The prediction model that emerged through STDP augmented
with rejection sampling, enables the network to detect illegal sequences.
doi:10.1371/journal.pcbi.1003511.g007
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state space of a HMM, implementing a forward sampler, which

provides the circuit with a simple online approximation to exact

HMM inference.

We have focused in this article on an idealized version of the

STDP rule that implements the maximization step of the EM

algorithm for the HMM. Similar rules also emerged in earlier

studies as stochastic approximations to EM implemented in

networks of spiking neurons [13,32,33,48], for learning instanta-

neous afferent spike patterns. The only structural difference in the

network architecture for temporal models is the presence of lateral

excitatory connections. We have shown that if a WTA circuit is

passively exposed to spatiotemporal rate patterns STDP imple-

ments a crude online approximation of EM. The emerging neural

codes represent the hidden states that underlie the spatiotemporal

input patterns. Different neurons are activated for the same input

pattern if it appears in different temporal contexts. Furthermore,

we have shown that if multiple WTA circuits are recurrently

interconnected the network activity becomes more diverse and

encodes various abstract features.

Throughout our analysis we realized the WTA dynamics using

a feedback loop, where the required inhibition was given in its

theoretically optimal form, according to equation (3). This optimal

inhibition predicted by our model is strongly correlated with the

activation of excitatory neurons within the WTA circuit. Such

strong balance and correlation between excitation and inhibition

has been observed in the cortex in vivo [2,49]. A consequence of

this inhibitory feedback in our network model is that the total

output rate is constant. Yet individual neurons in the network may

exhibit complex behavior, and our experimental results have

shown that they exploit a wide dynamical range. Furthermore it

has been shown in [13] that the assumption of a constant overall

output rates can be lifted for the case of WTA circuits without

lateral synapses. The only requirement identified there was that

the circuit-wide output rate and the input had to be stochastically

independent, which was theoretically shown and experimentally

verified in an experiment where the network rate was modulated

with a global oscillation throughout learning. The constant output

rate considered in the present study is the simplest case which is

compatible with our model. Identifying a more general class of

rate functions which can be incorporated into our theoretical

framework will be the subject of future work.

The activity patterns that emerge in our WTA circuits share

important features with experimentally observed cortical dynam-

ics. One feature is that neurons become tuned for mixtures of

different task-relevant aspects as commonly observed in cortical

neurons [25,34,36]. The neural assemblies that encode these

temporal features imprint their stereotypical sequential activation

pattern within the lateral synapses. Another common feature is the

emergence of stereotypical firing sequences during evoked and

spontaneous activity, which is also found in cortical activity

[5,7,26]. This analysis also provides a theoretical foundation for

the results that were reported recently in [50]. There, a similar

network of stochastic WTA circuits was used to learn spike

patterns superimposed with Poisson noise, and similar stimulus-

specific assemblies emerged. But no theoretical framework was

provided there.

The network of multiple interconnected WTA circuits has a

very interesting theoretical interpretation as it implements in that

case a forward sampler for a coupled HMM [38], where multiple

HMMs run in parallel to jointly encode the hidden state. In our

experiment this coupling between neighboring WTA circuits

allowed them to reproduce typical sequences of hidden states in

the absence of input, even if some circuits did not have enough

expressive power to store this information. An interesting future

extension of this model would be to present different coupled

stimuli (e.g. speech and audio from a common source) to different

WTA groups in this circuit. Individual WTA circuits would then

learn the temporal structure of these stimuli and the lateral

excitatory synapses between WTA circuits would detect relevant

correlations between them.

We have also shown that STDP installs in WTA circuits

capabilities that go beyond just learning afferent sequences. From

few presentations the network extracted relevant statistical

properties underlying the afferent patterns. We demonstrated this

on an artificial grammar learning task. The network extracted

parts of the structure of this grammar, which allowed it to

subsequently classify unseen sequences as stemming from the same

grammar or not. Interestingly, the learning speed and classification

performance achieved with the forward sampling approximation,

in the early learning phase, is comparable to the performance

reported for humans on the same task [27]. This is also interesting

because the network considered here is similar to the single

recurrent network (SRN) previously suggested as a model for

artificial grammar learning [51,52]. The context layer, that is used

in the SRN to store the hidden layer activity from previous time

steps, is implicitly implemented in the lateral synapses of our WTA

circuit. The SRN was successfully used to model human

capabilities in artificial grammar learning tasks [53] (but see

[54,55], for alternative theories and models of artificial grammar

learning).

We have also exhibited a strategy to increase the computational

power of WTA circuits by using more advanced learning methods.

The rejection sampling algorithm that was proposed here is one

possible solution to this problem. It enables the network to learn

the temporal statistics with a much higher degree of accuracy, but

Figure 8. Comparison of the convergence speed and learning
performance of different sampling methods. Comparison of the
sampling approximations to standard HMM learning. The performance
is assessed by the log likelihood averaged over 50 trial runs. The plots
show average convergence properties of: forward sampling (solid blue),
importance sampling over 10 (dashed yellow) and 100 trials on average
(solid yellow), rejection sampling over 10 (dashed red) and 100 trials
(solid red), rejection sampling with the simple linear tracking of c over
10 (dashed green) and 100 trials on average (solid green), and the
Baum-Welch algorithm (solid black). With increased number of samples
the performance of the algorithm converges towards the solution of
the standard EM algorithm. There was no significant performance
difference between rejection and importance sampling. The simple
tracking mechanism for the rejection sampler is outperformed by the
exact algorithm, but still a significant performance gain with increased
number of samples can be observed.
doi:10.1371/journal.pcbi.1003511.g008
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at the same time it considerably increases the complexity of

learning. Each input sequence must be replayed multiple times and

thus, the convergence speed is decreased since many sampled paths

will be rejected (in the experiment we resampled each path 10 times

on average, therefore the learning time increased 10-fold). This

makes learning possible on a long time scale only. However, the two

mechanisms – pure forward sampling and rejection sampling –

should not be seen as mutual exclusive strategies. Possibly both

mechanisms could be found in biological systems. STDP might

subserve to learn a quick preliminary representation of novel input

statistics, while more complex models could emerge on a long time

scale by selectively modulating the learning rate with global

information. We demonstrated that in some cases a significant

increase in learning performance can be achieved with only a small

average number of resampled sequences. The experimental results

suggest that for learning temporal sequences and simple grammars

the pure implementation of STDP in WTA circuits is sufficient,

whereas third-factor STDP rules become relevant for learning

complex temporal structures.

Related work
The close relation between HMMs and recurrent neural

networks was previously discovered and employed for deriving

models for Bayesian computation in the cortex. These studies

targeted the implementation of Bayesian filtering [56,57], captur-

ing the forward message of the belief propagation algorithm in a

rate-based neural code, or using a two-state HMM to capture the

dynamics of single neurons [58,59]. In the present study we

directly analyzed spikes produced by WTA circuits in terms of

samples from the state space of a HMM. For the HMM this results

in an arguably weaker form of inference than belief propagation,

but led in a straightforward manner to an analysis of learning in

the network.

The emergence of predictive population codes in recurrent

networks through synaptic plasticity and their importance for

sequence learning was previously suggested and experimentally

verified [60,61]. In [62] it was shown that spiking neurons can

learn the parameters of a 2-state HMM using synaptic plasticity,

thereby implementing an online EM algorithm [63,64]. In [14]

learning of temporal models was implemented through a

variational approximation, and revealed STDP-like learning rules.

In [15] it was shown that a network of neurons can learn to encode

and reproduce a sequence of fixed spike times. The learning rules

were derived using an importance sampling algorithm that yielded

synaptic updates similar to the third-factor STDP rule presented

here.

The crucial difference between [15] and our approach is the

usage of WTA circuits as building blocks for the recurrent network

instead of individual neurons. Due to the possibility to use multiple

WTAs our model has the freedom to factorize the multinomial

HMM state space into smaller coupled variables, whereas [15]

always fully factorizes the state space down to single binary

variables. However, under the assumption of linear neurons the

state-transition probabilities in all these models are always

represented by only K2 recurrent synapses. Thus the expressive

power of all these models (with the same number of neurons)

should be more or less identical. The optimal factorization of the

state space may strongly depend on the task. Our experiments

suggest that the restriction on the number of possible activity

patterns due to the usage of WTAs seems minor compared to the

crucial advantage of their intrinsic stabilizing effects of the

network’s activity. To the best of our knowledge this stabilization

is the reason why the pure forward sampling learning approach

performed so well in our experiments.

Contribution to a principled understanding of
computation and plasticity in cortical microcircuits

The theoretical framework that we have introduced in this

article provides a new and more principled understanding for the

role of STDP in a generic cortical microcircuit motif (ensembles of

pyramidal cells with lateral excitation and inhibition): Even in the

absence of global signals related to reward, STDP installs in these

microcircuit motifs an approximation to a HMM through forward

sampling. The underlying theoretical analysis provides a new

understanding of the role of spikes in such WTA circuits as

samples from a (potentially very large) set of hidden states that

enable generic cortical microcircuits to detect generic neural codes

for afferent spike patterns that can reflect their temporal context

and support predictions of future stimuli.

A remarkable feature of our model is that it postulates that noise

in neural responses plays a very important role for the emergence

of such ‘‘intelligent’’ temporal processing: We have shown that it

provides in WTA circuits the basis for enabling probabilistic

inference and learning through sampling, i.e. through an

‘‘embodiment’’ of probability distributions through neural activity.

Thus stochasticity of neural responses provides an interesting

alternative to models for probabilistic inference in biological

neural systems through belief propagation (see [65] for a review),

i.e. through an emulation of an inherently deterministic calcula-

tion.

The rejection sampling algorithm that was proposed here as a

method for emulating the full power of HMM learning requires in

addition a mechanism that allows to replay input patterns multiple

times. Such replay of complex spatiotemporal patterns is well

documented in the hippocampus and was proposed as a

mechanism for memory consolidation in the cortex [66]. This

view is also supported by findings that showed that coordinated

reactivation of temporal patterns can be observed in the cortex

[8,9,67,68]. In our framework, samples generated by the WTA

circuit must be replayed several times until the network produces a

spike train that provides a sequence of hidden states that gives

satisfactory explanations and predictions for all segments of the

sequence. The number of times a sequence is replayed is

proportional to the prediction error accumulated over the

sequence, which is a measure for the sample quality. Thus,

sequences that are novel and to that end not well represented in

the network should be replayed more often and thus, they get

more attention in the learning process. This view is supported by

experimental data that revealed that transient novel experiences

are replayed more prominently than familiar stimuli [69–71].

Altogether our results show that hidden Markov models provide

a promising theoretical framework for understanding the emer-

gence of all-important capabilities of the brain to understand and

predict hidden states of complex time-varying sensory stimuli.

Methods

Spiking network model
In this section we provide additional details to the derivations of

the network model and its stochastic dynamics. For the sake of

simplicity, throughout the theoretical analysis we use a simple

EPSP kernel of the form

e sð Þ~exp {s=tð Þ:H(s): ð12Þ

Thus, a kernel with a single exponential decay with time constant

t. Here, H(s) determines the Heaviside step function which is 1 for

sw0 and zero else.
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The derivation provided here can be extended to more complex

EPSP shapes, if two prerequisites are fulfilled. First, a suitable

Markov state must be found that describes the dynamics of the

EPSP kernel, i.e. a state sm must exist for which we can write

p smDsm{1,sm{2, . . . ,hð Þ~p(smDsm{1,h). In fact, this property holds

true for any deterministic function, although the required Markov

state can be very complex. Second, the statistics of the EPSPs

induced by the kernel must be readily described by an exponential

family distribution. For this latter requirement the same consid-

erations as for the afferent synapses apply, which have been

addressed in [13,32,33]. The simplest case for which these

conditions are fulfilled is the one considered in the last experiment

where rectangular EPSPs and constant inter-spike intervals Dm of

the same length were used. In that case the network state collapses

to sm~zm, which follows a multinomial distribution as considered

in [32].

Details to Forward sampling in WTA circuits. We show

here that the WTA circuit correctly implements forward sampling

in a HMM. In particular we show that a HMM with an

observation model from the exponential family can be directly

mapped to the network dynamics. Many of the theoretical details

for the special case of stationary input patterns were analyzed in

[13,32,33], here we focus on the derivations specific for the

network with lateral excitatory connections.

First we define a HMM with observations xm and hidden state

sm~fzm,ym,Dmg to reflect the dynamics of the WTA circuit. The

HMM joint distribution is given by equation (4). Each time step m
factorizes into the observation model p(xmDsm,h) and the prediction

model p(smDsm{1,h). We assume a mixture of exponential family

distributions for the observation model. Many interesting distri-

butions are members of this family, e.g. the Poisson or the Normal

distribution. The network output zm determines which mixture

component is responsible for the observation xm. In its generic

form the likelihood of the N-dimensional observations xm given

mixture component k can be written as

p xm zm:k,hjð Þ~h(x) xmð Þ:exp
XN

i~1

wki
:xmi{A

(x)
k (W)

 !
ð13Þ

where h(x) xmð Þ is a base measure and A
(x)
k (W) is the log-partition

function, which assure that (13) is correctly normalized. In this

framework xm determines the sufficient statistics of the input

distribution, e.g. the current input rate for the Poisson distribution,

which is estimated by filtering the input spike train with the EPSP

kernel. Since the input and output spike times are independent,

given optimal WTA behavior, we exploit the conditional

independence p xmDsm,hð Þ~p(xmDzm,h). We assume that inputs

are homogeneous, meaning that the sums over all input channels

are constant. More precisely, we assume that
PN

i~1 xi(t)~A
(x)
0

and
PK

j~1 yj(t)~A
(y)
0 holds true at all times. These assumptions

were never perfectly fulfilled in the simulations, but nevertheless

the algorithm was robust against deviations from these constraints

throughout all experiments. The choice of the log-partition

function determines the member from the exponential family.

The derivations here were done for Poisson distributed inputs but

they equally apply to other members. Given the homogeneity

assumption for the input we find the log-partition to be

A
(x)
k (w)~

PN
i~1 ewki [33].

The prediction model has to reflect the dynamics of the state sm.

At each time point t̂tm the spiking output projects the K-

dimensional state ym to the discrete value zm, which is then

projected in the next step to ymz1. Using the independence

properties, that emerge from these dynamics, the prediction model

factorizes to

p smDsm{1,hð Þ~p(zm ym,h)j p (ym zm{1,ym{1,Dm{1j )p(Dm{1) ð14Þ

The last term determines the distribution over the inter-spike

intervals Dm. Assuming Poisson distributed spike times t̂tm this is

given by an exponential distribution with mean n̂n{1, i.e.

p(Dm)~
1

n̂n
e
Dm

n̂n : ð15Þ

The second part of (14) deterministically updates the EPSPs. Using

the simple kernel function (12) the lateral EPSPs can be updated

online

yj (̂ttmzD)~

e{D=t: yjmz1
� �

, if neuron j spiked at time t̂tm

e{D=t:yjm, else

(
:
ð16Þ

Since this is a deterministic function the probability distribution

p(ym zm{1,ym{1,Dm{1)j in (14) collapses to a single mass point,

where the update equation (16) is fulfilled. The second and third

parts of (14) project the spiking network output to the K-

dimensional space of the EPSP time courses (2). The first part of

the prediction model projects it back to a discrete variable drawn

from a multinomial distribution p(zmDym,h). Using Bayes rule, we

can decompose this into

p zmDym,hð Þ~p(ym zm,h)j p(zm h)j
p(ym h)j ð17Þ

The likelihood term can again be expressed in terms of an

exponential family distribution

p ym zm:k,hjð Þ~h(y) ymð Þ:exp
XK

j~1

vkj
:ymj{A

(y)
k (v)

 !
: ð18Þ

For each neuron k the prior probability to fire is determined by

the excitability parameter, i.e. p(zm:kDh)~ebk . In [32] a learning

rule was presented for these network parameters, which equally

applies to the framework presented here. For simplicity however,

we can assume that all neurons have the same prior probability to

fire, i.e. p(zm:k hj )~
1

K
.

Under the homogeneity condition and if the synaptic weights

obey
PK

j~1 evkj ~A
(y)
0 , the log-partition function A

(y)
k (v) becomes

constant over k. It has been shown that this condition emerges

automatically from the STDP rules (7) [33]. Using this, the

probability of generating a state sequence S using forward

sampling can be directly linked to the network dynamics. The

true posterior distribution (8) and the proposal distribution for

forward sampling only differ in the normalization. Forward

sampling is done, by explicitly normalizing the state update in

(4) at each time point m [20]. This normalization is given byÐ
p(xmDs’m) p (s’mDsm{1)ds’m~p(xm sm{1j ), from which we find

the proposal distribution to be given by

q SDX,hð Þ~ P
M

m~1

p(xm sm)p(sm sm{1jj )

p(xm sm{1j )
ð19Þ
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~ P
M

m~1
p(zm xm,ym,j h) p (ym zm{1,ym{1,Dm{1)p(Dm{1)j : ð20Þ

This recovers the result of equation (5). The first term of the

second line can be written using (13), (17) and (18)

p zm:k xm,ym,hjð Þ~ p(xm zm:k,hj ) p (zm:k ym,hj )PK
l~1 p(xm zm:l,hj ) p (zm:l ymj ,h)

ð21Þ

~exp
XN

i~1

wki
:xmiz

XK

j~1

vkj
:ymjzbk{i(̂ttm)

 !
ð22Þ

with i(̂ttm) given by (3). Here we have used that the marginal in the

denominator of (17) does not depend on k and so do A
(x)
k (w) and

A
(y)
k (v) under the conditions described above. Therefore they

cancel out through the normalization (3). Comparing this result

with the neuron dynamics (6) and (5) it is easy to verify that the

WTA circuit correctly realizes the HMM forward sampler (19).

Details to STDP installs a stochastic approximation to EM

parameter learning. In this section we derive the optimal

updates for the model parameters in terms of the expectation-

maximization (EM)-algorithm and show that the STDP rules (7)

are stochastic approximations. The goal of the EM optimization is

to minimize the error between the model likelihood p(XDh) and the

empirical distribution over input sequences, which we denote by

p � (X). A natural way to express this error is the Kullback-Leibler

divergence. Thus, the update can be derived by minimizing

KL p�(X)Ep(X hj )ð Þ~
ð

p�(X0)log
p�(X0)

p(X’ hj )
dX0

~{Hp� Xð Þ{Slog p(X hj )Tp�

ð23Þ

where Hp� Xð Þ is the entropy of the true input distribution and

S:Tp� denotes the expectation with respect to p� Xð Þ. We are

interested in a solution to h that minimizes (23). Since Hp� Xð Þ is

constant for a given input sequence X, it can be ignored and

minimizing (23) becomes equivalent to maximizing the expected

log-likelihood Slog p XDhð ÞTp� Xð Þ. The derivative of the log-

likelihood can be simplified to

L
Lh

log p XDhð Þ~ L
Lh

log

ð
p X,S’Dhð ÞdS0

~

ð
p(S’DX,h)

L
Lh

log p X,S’Dhð ÞdS0:

ð24Þ

The integral can again be written in terms of an expectation. The

condition for the maximum likelihood becomes

S
L
Lh

log p(X,S hj )Tp̂p~0 ð25Þ

where S:Tp̂p denotes the expectation with respect to p�(X)p(S X,j h).

The derivative in this last form can be easily calculated. By inserting

the model joint distribution (4) it yields for the model parameters vkj

of neuron k

L
Lvkj

log p(X,S hj )~

~
L

Lvkj

log P
M

m~1
p(xm zm,j h)p (zm ym,j h)p(ym zm{1,ym{1j ,Dm{1)p(Dm{1)

~
XM
m~1

L
Lvkj

dk,zm

XK

j~1

vkj
:ymj{Ak(v)

 !

~
XM
m~1

dk,zm ymj{e
vkj

� �
:

ð26Þ

A similar result can be found for wki. Here, dij is the Kronecker

delta, which is one if i~j and zero otherwise. Inserting this result

into (25), setting the derivative to zero and rearranging the terms,

we identify the optimal model parameters

w�ki ~ logSdk,zm
:xi (̂tt)Tp̂p{logSdk,zmTp̂p

v�kj ~ logSdk,zm
:yj (̂tt)Tp̂p

{logSdk,zmTp̂p

: ð27Þ

In the E-step the expectations S:Tp̂p are evaluated. Note that the

expectations are taken over the whole sequence of M output spikes.

In the M-step the parameters are updated to their new values. An

estimate of these expectations is computed by the network

generating output spike sequences. A local minimum of (23) can

be found by iteratively evaluating the E- and M-step.

We will now show that the STDP protocol introduced here

converges stochastically to the same result as the EM updates (27).

We will derive this results for the lateral weights vkj only, since

adaption for other parameters is straightforward. Including the

reward mechanism, the weight update consists of two stochastic

processes: the forward sampling and the stochastic decision for the

rejection step (11). The updates are made for each output spike of

the network and therefore they will always fluctuate. In our

analysis we are interested in the equilibrium point of these

fluctuations for some given target distribution p�(X). This can be

expressed for the expected weight update using (7),(9) and (11), for

which we get

S
ð

q S0DX,hð ÞDvkj (̂tt) dS0Tp�~0

<S
ð

q S0DX,hð Þ: r S’ð Þ
Sr(S’)Tq(S’jX,h)

:dk,zm
: e

{vkj yj (̂tt){1
� �

dS0Tp�~0

ð28Þ

which by inserting equation (10) yields

<S
ð

p (S0DX,h):dk,zm
: e

{vkj yj (̂tt){1
� �

dS0Tp�~0

<Sdk,zm
:e

{vkj yj (̂tt){dk,zmTp̂p~0

<vkj~logSdk,zm
:yj (̂tt)Tp̂p{logSdk,zmTp̂p

which is equivalent to the solution of the EM-algorithm (27).

Details to A refined EM approximation using rejection

sampling. Here we present additional details to the rejection

sampling algorithm that was used throughout the numerical

experiments. The algorithm requires to evaluate two quantities
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that evolve on different time scales. The synaptic weight updates

need to be updated on each spike, whereas the importance weights

(10) need to be tracked over a whole input sequence.

The importance weight over sequence S is given by (10) which

can be verified by inserting equation (19) and (4) into (10). Using

(3) we find that this quantity computes to

r Sð Þ ~exp
PM

m~1

i(̂ttm){log p xm hjð Þ{log p(ym hj )

� �
ð29Þ

where the marginals p(xmDh) and p(ymDh) are given by

p xmjhð Þ~
PK
l~1

exp
PN
i~1

wli
:xmi

� �
,

p ymjhð Þ~
PK
l~1

exp
PK
j~1

vlj
:ymj

 !
:

ð30Þ

The term p(xmDh) is arbitrary since it cancels out in the rejection

sampling algorithm, but we found that (30) achieves better

performance including the dependence on p(xmDh), when using

the the rejection sampler with the simple tracking mechanism for

c. The performance of the rejection sampling algorithm essentially

depends on the variance of the importance weights. The lower this

variance is, the more generated sequences will be accepted. Since

the importance weights are only needed to compare the quality of

different proposed hidden state trajectories, all fluctuations that

depend on the feedforward weights and inputs only, can be

discarded. Explicitly subtracting p(xmDh) allows to minimize the

fluctuations injected by the feedforward synapses. This modifica-

tion had a large impact on reducing the number of rejected

trajectories and therefore increased learning speed.

The likelihood of an input sequence X can be approximated

using a set of L paths S1 . . . SL sampled from (5) given by

p XDhð Þ~Sr(S)Tq(S X,hj )&
1

L

XL

l~1

r Slð Þ :~LL(X): ð31Þ

In the simplest approximation the expectation can be taken over a

single path. Thus, we find that the sequence log-likelihood can be

directly approximated by (29), i.e.

log p XDhð Þ&
XM
m~1

log p xm sm{1,j hð Þ :~log L̂L(X): ð32Þ

In the AGL experiments this simple approximate likelihood was

used to distinguish between grammatical and non-grammatical

sequences.

The probability of generating a sequence S through the state

space is given by the proposal distribution q SDX,hð Þ, which was

defined in equation (5). The bias between this and the model

distribution p(S X,h)j , is given by the importance weight r Sð Þ,
which we have derived earlier (10). This bias can be eliminated

using rejection sampling, i.e. accepting the sampled sequences

based on a stochastic decision proportional to the importance

weight. In the neural network we implemented this using an

eligibility trace of synaptic weight changes [47]. The weight

updates were accumulated over the whole input sequence

Dŵwki~
XM
m~1

Dwki (̂ttm) and Dv̂vkj~
XM
m~1

Dvkj (̂ttm): ð33Þ

The synaptic weights can be learned by modulating the learning

rate j when incorporating the synaptic weight changes (33) at the

end of a sequence. The learning rate must be modulated according

to the importance weights. In the simulations we used a stochastic

binary decision, whether to accept or reject the sampled sequence

p(j~j0 Sj )~c:r Sð Þ, p(j~0DS)~1{c:r Sð Þ ð34Þ

where, j0 is a constant learning rate and c is a constant that scales

the average number of rejected samples. The probability of

accepting a path S is directly proportional to the importance

weights. Using this, we immediately find that the mean number of

rejected samples L̂LX for an input sequence X is inversely

proportional to the sequence likelihood, i.e.

L̂LX~
1

c:S r(S’)Tq(S’ X,j h)

~
1

c:p XDhð Þ : ð35Þ

The average learning rate assigned to a sampled sequence S
depends on the probability of sampling S from the proposal

distribution and the number of times the sequence is resampled.

Using this, (35) and (34) we find the expected learning rate

associated with a state sequence S to be given by

SjTq(S’ X,hj )
~

j0
:r(S)

Sr(S’)Tq(S’ X,j h)

: ð36Þ

The constant c in (34) can be used to control the average

number of rejected samples. We used a simple linear tracking

algorithm for c in the logarithmic domain. Whenever a path was

accepted log c was decreased by L�:10{4, if the path was rejected

log c was increased by 10{4. As learning proceeds the network

converges to an equilibrium acceptance rate, determined by L�.
Throughout the experiments this parameter was tuned to achieve

the desired mean number of samples over the whole training

session. A quantitative comparison between the learning perfor-

mances achieved with the batch algorithm and this tracking

mechanism, is given in Fig. 8.

In the batch version of the algorithm a set of sampled paths with

a fixed size L was used to compute c directly, which was chosen

such that the distribution over the L paths was correctly

normalized. Using (34) we find this to be fulfilled for

c~
1PL

l~1 r Slð Þ
: ð37Þ

A sequence S was then chosen at random from the set of L

sampled sequences. The importance sampler was realized by

directly weighting the synaptic changes by the scalar value of the

normalized importance weight, i.e. j~
j0
:r Sð ÞPL

l~1
r Slð Þ

.

Simulations and data analysis
All simulations were done in Matlab (Mathworks), directly

implementing the derived equations without discrete time

approximations. The population output rate n̂n was tuned to give

an average output rate of 5–20 Hz per neuron. Prior to learning

all weights were set to small equally distributed random values.

The weight updates were incorporated using a constant learning

rate j~0:005.
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Other than in the theoretical analysis where synaptic delays

were neglected for the sake of simplicity, we used synaptic delays of

5 ms for the lateral excitatory synapses in the numerical

experiments. We also used a more realistic double exponential

EPSP kernel of the form [28]

e sð Þ~ exp {s=tsð Þ{exp {s=trð Þð Þ:H(s) ð38Þ

where ts~2ms and tr~20ms are the time constants of the falling

and rising edges of the EPSP kernel, respectively. The above

theoretical analysis applies equally to this kernel, but would be

slightly more complex since each of the two exponential decay

terms comprises a piece of memory which has to be reflected in the

network state sm.

The diagonal of the weight matrix vkk was set to zero and these

weights were excluded from learning. Instead, a refractory

mechanism was used with a kernel given by [28]

g sð Þ~g0
:exp {s=trefr

� �
ð39Þ

where g0~10 is the maximum amplitude of the refractory kernel,

trefr~5ms is the refractory time constant and s is the time elapsed

since the last output spike. Equation (39) was subtracted from the

membrane potential (1).

Details to Learning to predict spike sequences through

STDP. The input patterns were generated by drawing for each

afferent neuron and each pattern a value from the Beta

distribution with parameters a~0:2, b~0:8 and multiplying this

value with the maximum rate of 75Hz. Using these rate patterns,

input spikes were then generated by creating independent spike

events from a Poisson process.

To facilitate the interpretability of the network output, we

applied a smoothing and sorting algorithm. The spike statistics

were estimated using the perievent time histogram (PETH) on the

network output [6]. The network output rates were computed for

time bins of 1 ms and then filtered with a Gaussian filter function

(s~10ms) to give the smoothed single-trial estimated rates �nnk(t).
These spike histograms were averaged over 100 trial runs to give

the time estimated rates nPETH
k (t) for each neuron k. For neuron

sorting we evaluated the point in time with the highest activity

t�k~ arg max
t

nPETH
k (t): ð40Þ

This was used as criterion to determine the rank index of the

output neurons for sorting. The PETHs for all sequences of a

learning problem were concatenated before evaluating the

maximum firing time (40) to ensure a visual separation between

neurons that fired preferentially during one specific sequence. This

neuron order was also used to sort the rows and columns of the

synaptic weight matrix shown in Fig. 2 (neurons that fired on

average less than one spike per sequence were excluded from this

plot).

To quantify the similarity between spontaneous and evoked

network activity we used Spearman’s rank correlation [6]. The

correlations were computed by evaluating the rank correlation

between the PETH computed on a single spontaneous sequence

and the evoked activity averaged over 100 trial runs. For the

evaluation only the neurons that produced at least one spike

during the spontaneous run were used. The firing rates in Fig. 4A,B

were estimated over 100 input sequences. Only the time window

during which pattern a was present on the input was analyzed.

Neurons that fired with average rates less than 10 Hz during these

time windows were excluded from the analysis. Neurons with rates

above 10 Hz for patterns appearing in one sequence, but not the

other, were classified as context specific. Those that fired rates

above 10 Hz during both sequences were classified as context

unspecific.

Details to Mixed selectivity emerges in multiple inter-

connected WTA circuits. Here a linear classifier was used to

identify separating planes in the network activity. We trained a

soft-margin support vector machine with linear kernels [19,72,73]

to classify the network activity during the delay phase of sequence

AB-delay-ab against that of BA-delay-ba. The resulting linear models

were used to classify 50 test samples from each of the two

sequences. Sequences that were at any point in time on the wrong

side of the separating plane were reported as wrongly classified.

The mean classification rates over these test samples were reported.

To illustrate the network state during the holding phase we used

the dynamic PCA (jPCA) method in experiment 2. This method

was recently introduced as an extension to normal PCA, with

better applicability to dynamical data [39]. We applied this

method on the smoothed network activities �nnk(t) of all network

neurons. The jPCA identifies the plane that is aligned with the

fastest rotation in the data set. Briefly, the jPCA first uses a

preprocessing step in which normal PCA is performed on the data

to reduce the dimensionality. We used the first 6 PCA components

as suggested in [39]. Subsequently a projection from the neural

state to its slope is found. A skew-symmetric matrix is constructed

that projects the PCA components into its first order derivatives.

The solution to this constraint optimization problem is a matrix

defining the best-fitting rotational linear dynamical system which

can describe the data set (see the supplementary derivation of [39]

for details). The orthogonal basis of the jPCA is then given by the

real plane associated with the eigenvectors with largest imaginary

eigenvalues of this projection matrix. This plane is aligned with the

fastest rotation in the data set.

Details to Trajectories in network assemblies emerge for

stationary input patterns. In this experiment we employed

homeostatic mechanism to control the excitabilities bk. A detailed

derivation of this intrinsic plasticity was presented in [44].

Following this approach we slowly regulated bk over time to

maximizes the entropy of the network output by demanding

that the overall output rate of each neuron, measured over a

long time window T (H), converges to the target rate
1

K
n̂n, i.e.Ð T (H)

0
nk(t)dt~

n̂n

K
for each neuron k. A stochastic approximation to

that can be achieved by updating the excitabilities bk in (1)

Dbk~

m:
1

K
{1

� �
if neuron k spikes

m:
1

K
else

8>><
>>: ð41Þ

where m is an update rate we have chosen to be m~0:1 in this

experiment. This mechanism assures that all network neurons

participate on average equally in the representation of the hidden

state. If m is chosen small enough this method assures that all

network neurons participate equally in the representation of the

hidden state [44].

Details to Learning the temporal structure of an artificial

grammar model. Here we used two data sets from [27] - the 12

sequences reported there in appendix A for training and the 20

sequences from table 1 for testing. In each training iteration we

randomly drew one example input sequence from the train set. For

testing we created 100 legal and illegal sequences randomly drawn
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from the test set. The sequences were encoded using sparse input

patterns, encoded by 10 input neurons, two of which fired with a

rate of 100Hz for 50 ms for each of the five input pattern, while

the others remained silent. All spike patterns were not kept fixed

but generated newly at each occurrence of the pattern and also

during replay for rejection sampling. In the AGL experiments, the

initial network state was reset to zero x0~0, y0~0 before a new

input sequence was presented. To classify grammatical against

non-grammatical sequences the one-sample approximation of the

log-likelihood (32) was computed for all test sequences. A threshold

was computed by taking the mean of these log-likelihoods.

Sequences S for which log L̂L(S) lied above this threshold were

classified as grammatical, all others as non-grammatical.
Details to Comparison of the convergence speed and

performance of the approximate algorithms. In this exper-

iment, random teacher HMMs were generated by drawing initial

state, observation and transition probability tables from a Beta

distribution with a~0:2 and b~0:8 and then normalizing the

tables to proper conditional probabilities. The models had K~5
states and N~10 discrete observations. These models were then

used to generate observation sequences. We drew a training set of

200 and a validation set of 2000 sequences of length M~25. The

complete training data set was repeatedly present to the network.

We refer to the presentation of the whole batch of training

sequences as an epoch. The weight updates for the WTA circuit

were applied at the end of each training sequence. In each epoch

all sequences were presented in random order. For the Baum-

Welch algorithm (which is not an online algorithm) the updates

were computed over all sequences in each epoch (batch learning).

We generated 50 trials using 50 different teacher HMMs. The

performance of rejection sampling was assessed for the two

algorithms to evaluate the normalizing constant c – the exact

version (37) and the linear tracking algorithm.
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6. Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the realm of

possible sensory responses in neocortical populations. Neuron 62: 413–425.
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