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Abstract

Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it
is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The
mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We
show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in
cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of
the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not
lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks.
We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that
synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex.
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Introduction

Cortical neurons respond to repeated presentations of the same

stimulus in a remarkably idiosyncratic way, and no identical

responses are observed twice [1,2,3,4]. Although the spike count

responses are on average reproducible (ibid.), they display high

variability. It is well established that in evoked conditions the

variance of the spike count over time windows of a few hundreds

of milliseconds is closely proportional to the mean spike count,

which in turn implies that the Fano factor –variance to mean

ratio– is approximately constant as a function of firing rate

[2,3,5,6,7]. Approximate Fano factor constancy is not only found

for a small range of evoked firing rates, but rather it holds for the

whole observable dynamic firing range of cortical neurons, which

covers from a few to hundreds of spikes per second [2,5,7,8]. In

addition, Fano factor constancy is not just a property of the

distribution of a neuronal population, but every single neuron in

the population displays Fano factor constancy over its whole

dynamical range [3,7]. This single-cell, whole dynamical range

property is referred here to as Poisson-like firing, in analogy to the

Poisson process, whose Fano factor is rate-independent.

Theoretical neuronal network models often invoke a balance

between excitatory and inhibitory inputs to describe the high

spiking variability observed in cortex, a mechanism that leads to

complex or chaotic firing behavior that is Poisson-like at low firing

rates [3,9,10,11]. These networks can also be adapted to display

bistable dynamics to model working memory tasks, and it has been

shown that they can generate Poisson-like firing during persistent

activity even at moderately high firing rates [12,13,14,15,16,17].

Relatively less attention, however, has been paid to study

the origin of Poisson-like variability over a full continuum

(non-discrete) of firing rates ranging from a few to hundreds of

spikes per second [18], as observed experimentally in sensory areas

[3,9,10,11]. As we show below, although balanced excitatory and

inhibitory networks are well suited to generate Poisson-like firing

at low rates, balanced networks fire with low variability as their

firing rate increases continuously unless connectivity parameters

are fine-tuned [12] or inputs to the network are themselves

Poisson-like [18]. Introducing Poisson-like inputs to obtain

Poisson-like outputs is a valid solution to the problem of how

variability is generated in cortex. However, this solution might

seem unsatisfactory because it does not address the problem of

how and where Poisson-like inputs are originated in the first place.

Moreover, the notion of Poisson-like inputs to sensory cortical

areas fails to find strong experimental support, because LGN spike

train inputs to V1 display Fano factors decreasing by two-fold or

more as a function of firing rate [19,20]. In summary, although

there is a solid understanding of how Poisson-like variability arises

from the chaotic balanced dynamics of neuronal networks at low

rates [3,9,10,11], or in discrete high rate persistent states

[12,13,14,15], the mechanisms underlying single-cell Poisson-like

variability over a broad continuum of rates have not yet been

elucidated.

Other sources of noise in neuronal networks that have so far

been largely neglected might be responsible for cortical spiking

variability, in particular at high firing regimes. A well-documented

source of variability in the central nervous system is synaptic

transmission failures [21,22,23]. Synaptic vesicle recovery and

release has complex time history dependences [24,25,26,27], but

at the finest level synaptic transmission is fundamentally proba-

bilistic [21,22]. In this paper, we show that amplification of

synaptic noise generated by realistically small postsynaptic
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potentials through recurrent connections is sufficient to generate

Poisson-like spiking over several orders of magnitude in the firing

rate. Other variability-inducing mechanisms, such as random

synaptic delays or intrinsic spike generation jittering [28,29],

constitute negligible sources of spiking variability at high rates.

Results

A single neuron case
To understand under what conditions Poisson-like firing can be

generated, we simulated a single leaky integrate-and-fire neuron

with various types of input white noise. We first considered the

case where the mean input variance is constant as the mean input

rises (Fig. 1, dashed lines). In correspondence to the responses of

sensory cells to stimuli with increasing intensity (e.g. contrast in V1

[5,30]), boosting the mean input drive of the neuron increases its

firing rate and mean membrane potential (Fig. 1a,d). Although the

Fano factor is close to one at low input drive (Fig. 1b, dashed line),

when the input drive is above the threshold mh (vertical line) the

Fano factor drops to very small values. This in turn implies that

the Fano factor decreases to low values at high rates (.50 Hz)

(Fig. 1c, dashed line). At low rates the mean current is below the

threshold current (sub-threshold regime) and spiking is induced by

membrane potential fluctuations (Fig. 1e, light green trace), while

at high rates the mean current is above the threshold current

(supra-threshold regime) and spiking is mainly induced by voltage

threshold crossings around the mean membrane potential

trajectory (dark green trace), leading to a very regular spike train

with low Fano factor.

As constant input noise was not able to keep high the Fano

factors at high rates, we considered next the scenario where the

input variance grows in proportion to the mean input current

(s2!m). This manipulation corresponds to the case where inputs

are Poisson-like because a rate-independent Fano factor in the

input spike trains implies proportionality between input variance

and mean [31]. In this scenario, the output Fano factor remains

approximately constant even at very high rates (.100 Hz) (Fig. 1c,

solid line). Like the constant input noise case, at low rates spikes

are induced by small membrane potential excursions around the

mean membrane potential trajectory that sporadically reach

spiking threshold (Fig. 1e, light blue trace). However, unlike the

constant input noise case, at high rates the membrane potential

undergoes large fluctuations that cause bursts of spikes followed by

silence periods (dark blue trace), leading to high spiking variability

even at elevated firing.

The two scenarios described above are a priori possible in

recurrent networks. If the Fano factor of the afferent spike trains to

a neuron in the network decays with firing rate as FN!1=r (as in

dashed line of Fig. 1c), the input noise becomes approximately

Author Summary

Neurons in cortex fire irregularly and in an irreproducible
way under repeated presentations of an identical stimulus.
Where is this spiking variability coming from? One
unexplored possibility is that cortical variability originates
from the amplification of a particular type of noise that is
present throughout cortex: synaptic failures. In this paper
we found that probabilistic synapses are sufficient to lead
to cortical-like firing for several orders of magnitude in
firing rate. Moreover, the resulting variability displays the
property that variance of the spike counts is proportional
to the mean for every cell in the network, the so-called
Poisson-like firing, a well-known property of sensory
cortical firing responses. We finally argue that far from
being harmful, probabilistic synapses allow networks to
sample neuronal states and sustain probabilistic popula-
tion codes. Therefore, synaptic noise is not only a robust
mechanism for the type of variability found in cortex, but it
also provides cortical circuits with computational proper-
ties to perform probabilistic inference under noisy and
ambiguous stimulation.

Figure 1. Poisson-like output firing requires Poisson-like inputs in a single neuron. (a) Firing rate as a function of mean input drive with
constant noise (dashed lines) and Poisson-like input noise s2!m (solid lines). (b,c) Fano factor as a function of mean input drive (b) and firing rate (c).
Vertical red line indicates threshold current mh , defined as the minimal current to elicit firing in absence of input noise. (d) Mean membrane potential
as a function of mean input drive. (e) Membrane potential traces corresponding to color dots in the previous panels: low (light green) and high (dark
green) firing rate with constant input noise, and low (light blue) and high (dark blue) firing rate with Poisson-like input noise. Low and high firing
rates conditions were chosen such that firing rates were comparable for the two input noise types.
doi:10.1371/journal.pcbi.1003522.g001
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constant because s2!FNr*O(1) [31]. In this scenario we find

that the Fano factor of the output spike train is FN!1=r, and

therefore the Fano factor displays the same firing rate scaling as

that in the inputs. If, in contrast, the Fano factor of the afferent

spike trains is constant with firing rate, FN*O(1), then the input

noise becomes Poisson-like because s2!FNr!r. In this scenario

the Fano factor of the output spike train is approximately

independent of firing rate, FN*O(1) (solid line in Fig. 1c), like

the Fano factor in the input, and it again displays the same firing

rate scaling as that in the inputs. Therefore the two scenarios are

potentially self-consistent in the sense that the same type of

variability that is introduced in the inputs is recovered in the

outputs.

Breakdown of Fano factor constancy
We sought to determine what type of neuronal variability is self-

consistent and stable in recurrent networks, that is, whether the

Poisson-like input noise scenario or the constant input noise

scenario described above is stable in a recurrent network. We

simulated a balanced recurrent spiking network [9,10,32] that

generated strong excitatory and inhibitory currents. We also

stimulated the network with external inputs. The external inputs

were designed to be non-Poisson-like because the central question

is whether Poisson-like variability can be self-generated by

neuronal networks when the external inputs are not in the same

Poisson-like family (Fig. 2a, top). The results shown below

correspond to networks with non-Poisson-like inputs modeled

with constant variance to enforce the experimental constraint that

the input Fano factor decreases with firing rate [19,20].

As the input drive increases, the mean firing rates (Fig. 2b,

dashed lines) for the excitatory (red) and inhibitory (green)

populations increase accordingly. At low firing rates the Fano

factor is high (Fig. 2c,d, dashed lines), a standard property in

neuronal networks in the balanced regime [9,10,32]. However, the

Fano factor drops monotonically to very low values as the mean

population rate increases (above 50 spikes per second). As long as

the network holds a single stable state (see Methods), the

breakdown of approximate Fano factor constancy at high rates

occurs regardless of the connectivity matrix of the network,

including sparsely, densely and fully connected networks (see

below); it also occurs regardless the overall connection strength,

that is, the type of synaptic strength scaling used as the network

becomes large, and regardless of the intensity of the constant noise.

If the network is multi-stable, transitions between different states

can exist, but conditioned on each state, the Fano factor is very

low. These results are shown analytically for an even broader

family of spiking neuronal networks in the Methods (see eqs. (11)

and (22)). In particular, for sparse and randomly connected

balanced networks the dynamics displays elevated Fano factors at

low rates [9,10,33], but at high rates (.50 spikes per second) Fano

factors fall off (Fig. 3a). This is because the neurons in the network

enter in the supra-threshold regime, in which firing is mainly

induced by mean membrane potential threshold crossings; as a

result variability becomes progressively lower as firing rates

increases (Fig. 3a). The same results hold when the network is

randomly but densely connected and when the network is fully

connected (see Fig. 2d, dashed lines). In addition, if the value of the

reset membrane potential is raised, the variability increases at low

rates, but the Fano factor does not remain steady at high rates

(Fig. 3b). In conclusion, the previous analysis manifests that under

a broad range of situations and network designs, the constant input

noise scenario (corresponding to Fano factor decreasing mono-

tonically with firing rate) becomes the only stable scenario in

recurrent networks.

Figure 2. Approximate Fano factor constancy with probabilistic synapses. (a) Scheme of a balanced recurrent network with excitatory and
inhibitory neurons driven by non-Poisson-like inputs. Bottom: the network is embedded with probabilistic synaptic transmission. The scheme shows
how a presynaptic spike train generates stochastic currents on several postsynaptic neurons. (b) Mean firing rate for excitatory (red) and inhibitory
(green) populations for a network with probabilistic synapses and noiseless inputs (solid lines) and for a network without probabilistic noise and
constant input noise (dashed lines) as a function of the mean input drive. (c–d) Spike count variance and Fano factor as a function of firing rate. Open
circles correspond to mean values, and black dots correspond to individual neurons. Line and color codes are as in panel b. (e) Raster plots of 20
randomly selected excitatory and inhibitory neurons for the high firing rate network corresponding to the point marked in blue in panels b–d. Center:
sample traces of excitatory and inhibitory current leading to the net input current (black), magnified on the right. Yellow line corresponds to zero net
current, and blue trace shows the membrane potential of a randomly selected excitatory neuron. (f) Coefficient of variation of the ISIs, CVISI ,as a
function of the mean ISI. (g) Distribution of ISIs for the selected neuron. (h) Auto-correlogram (ACG) of the spike train for that neuron.
doi:10.1371/journal.pcbi.1003522.g002
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Poisson-like variability in networks with probabilistic
synapses

The previous results suggest that, at least at high rates,

additional sources of variability are required to account for

Poisson-like spiking. A well-known source of noise in cortex is

probabilistic synaptic transmission. Neurotransmitter release at a

synapse upon arrival of an action potential is fundamentally

stochastic [21,22] and thus it will result in spiking variability

(Fig. 2a, bottom). However, it is not obvious that this source of

noise can account for most of the spiking variability observed in

cortex. The average number of contacts that a cortical neuron

makes on postsynaptic targets is 2–6 [22] and synaptic release is

independent across contacts. Therefore it could occur that

synaptic noise is mostly averaged out, leaving very little room

for its contribution to spiking variability. Whether strong

amplification of synaptic noise can be achieved with realistic

neurophysiological parameters and whether probabilistic synapses

can give rise to Poisson-like variability is unknown.

We studied a balanced recurrent network with probabilistic

synapses where the probability that an action potential generated a

post-synaptic current underwent stochastic short-term-depression

(STD) (see Methods). The network can generate high spiking

variability for its full dynamical range when the connections are

sufficiently strong even when the external input to the network is

noiseless (Fig. 2c, solid lines; see also Fig. 2e, left panel). In the

network, a presynaptic spike caused postsynaptic potentials

between 0.2 and 1 mV on average, within the neurophysiological

range [34,35]. Therefore weak, independent noise across synaptic

contacts can be amplified by strong synapses to generate high

fluctuations at the spiking level. The network was not only able to

generate high variability, but the Fano factor was approximately

constant for at least two orders of magnitude range in firing rate

(Fig. 2d, solid lines). Importantly, the Fano factor was not only

constant on average over the population (white dots), but also

individually for each neuron (black dots) as a function of firing

rate.

The neurons’ Fano factors increase with the strength of the

recurrent connections, but in all cases they remain constant at high

rates (shown analytically for general neuronal networks in the

Methods). The Fano factor was high and sustained for a broad

region of scaling factors of the synaptic strength and input drives

(Fig. 4, top panel), but this region vanished at moderately high

input drives when the network lacked probabilistic synapses (lower

panel). These results hold when synapses display STD dynamics as

Figure 3. Sparse connectivity, high reset voltage or deterministic STD does not necessarily produce Poisson-like firing. (a) Sparse
and randomly connected networks display low spiking variability at high rates. (b) Raising the reset membrane potential of the neurons increases the
Fano factor at low rates but does not generate Poisson-like firing for a broad range of firing rates. (c) Networks with deterministic STD fail to generate
Poisson-like variability at high firing rates. (d) Networks with random spike jittering display low firing variability at high rates. (e) Exact analytical
predictions for networks with probabilistic synapses without STD (blue lines) for the firing rate (left) and Fano factor of the spike counts (right). Red
and green points correspond to simulations results for excitatory and inhibitory neurons, respectively. Blue solid lines correspond to theoretical
predictions.
doi:10.1371/journal.pcbi.1003522.g003
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long as synaptic transmission does not saturate for a very broad

range of firing rates [23,36] (see Methods). When STD is modeled

without stochastic release [26,27] the Fano factor decreases

monotonically to very low values at high rates (Fig. 3c). Although

high reset and STD are required in some models of delayed

persistent activity to generate high variable binary attractor states

[13], these mechanisms do not guaranty high variability for a

broad continuum of rates, as it has been shown above (Fig. 3b,c).

Finally, Poisson-like variability also holds for a stochastic model of

synaptic transmission without STD (Fig. 3d; see eqs. (11) and (22)

in Methods). In summary, the probabilistic nature of synaptic

transmission is sufficient to robustly generate Poisson-like firing at

high rates.

At elevated rates (blue dots in Fig. 2b–d), as it is the case at low

rates, the network generates strong excitatory and inhibitory

currents (Fig. 2e, red and green traces in the middle panel,

respectively) that approximately cancel, leading to a balanced net

input current (black trace) that wanders around zero (yellow line).

However, the net input current is on average above zero and close

to the threshold current (mean 0:115nA; threshold current

mh~0:125nA). For the rightmost point in the solid lines of

Fig. 2b–d, the mean current is supra-threshold. As it has been

shown for single neurons (see Fig. 1), supra-threshold currents or

currents around threshold generate low Fano factors unless the

input noise is Poisson-like. Here, at elevated rates the net current is

close or within the supra-threshold regime, and therefore the

network must have generated spontaneously a current that is in

the Poisson-like family (see next section).

Further support for our theory arises from the puzzling

dependences of other statistical measurements of variability with

firing rate. It is well established that the coefficient of variation

(CVISI ) of the inter-spike-intervals (ISIs) of cortical neurons (s.d. to

mean ratio) decreases at high firing rates [3,4]. The rate

dependence of CVISI seems to be at odds with the Fano factor

constancy at the same high firing rates. In fact, if spike trains were

renewal processes, one would expect that the Fano factor were

equal to CV2
ISI . Although renewal point processes with absolute

spiking refractory periods could explain the drop of CVISI at very

high rates [4], they cannot explain why the Fano factor does not

decay at high rates in the same way. In our recurrent networks

with probabilistic synapses, the CVISI increases with the mean ISI

(Fig. 2f), implying that it decreases as a function of the firing rate.

This is so even when the Fano factor remains approximately

constant for the whole range of firing rates, particularly at high

rates (see Fig. 2d). The reason for this behavior is that the network

dynamics generates temporal correlations that make the spike

trains non-renewal, with experimentally consistent ISI distribu-

tions and auto-correlations functions (Fig. 2g,h). Therefore, a

network effect that cannot be understood at the single neuron level

gives rise simultaneously to approximate Fano factor constancy

and the drop of CVISI at high rates (equivalently, at short mean

ISIs). Finally, although no fit of the experimental data was

performed, the dependence of the CVISI as a function of the mean

ISI followed well the values and the mean ISI dependence

previously reported [4], with values close to one above mean ISIs

of 30 ms, and a reduction of variability up to a value of around 0.6

at mean ISIs shorter than 20 ms.

Mechanism for Poisson-like variability
To understand how Poisson-like firing arises from networks with

probabilistic synapses, we used a simplified network model where

transmission probability is time-independent (Fig. 5a; see Meth-

ods). A neuron in the network (pre) receives a barrage of spikes per

presynaptic neuron with spike count Nin and variance Var(Nin)
and generates an output spike train whose spike count Ns has

variance Var(Ns). This spike train in turn evokes post-synaptic

currents (PSCs) with variance Var(Nout) on postsynaptic cells

(post). The evoked PSCs are replicas of the same presynaptic spike

train that has been diluted by a fraction p, corresponding to the

probability of synaptic transmission.

There are two competing forces that affect the variability of the

spike trains and series of PSCs (Fig. 5b). The first one is the

integration step of the neuron, which tends to lower the input

variance. And the second one is the probabilistic synaptic step,

which increases the variance. These two forces have to cancel out

precisely when the network reaches equilibrium, because at

equilibrium Var(Nout) should equal Var(Nin). More precisely, it

can be shown (see Methods) that Var(Ns) is proportional to the

input variance Var(Nin) at fixed input firing rate (dashed red line,

Fig. 5c) and that the effect of probabilistic synapses is shifting this

line upwards regardless of the value of the input variance (solid red

line). The point at which the input and output variances are the

same (red dot) corresponds to the equilibrium state of the network.

The crucial question is to determine how this equilibrium point

depends on the rate of the network. If the firing rate of the network

increases, the crossing point moves at higher values linearly with

the population rate (Fig. 5d). Because the spike count variance is

proportional to the output variance at equilibrium (see dashed line

Figure 4. Poisson-like variability from probabilistic synapses
does not require fine-tuning of the parameters. The plots display
the iso-Fano factor lines on the synaptic scaling factor g vs. input drive
plane for a network with (top) and without (bottom) probabilistic
synapses. The region for which the Fano factor is high and sustained
(shaded area) is broad for a network with probabilistic synapses, but
this region vanishes at moderately high rates for a network without
probabilistic synapses. Network parameters are as in Fig. 2. The shaded
areas are defined as the areas of the planes with Fano factors lying
between 0.8 and 1.2.
doi:10.1371/journal.pcbi.1003522.g004
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in Fig. 5c), the spike count variance increases linearly with

population rate (Fig. 5e). Therefore, the ratio between variance

and mean in the spike count is constant in this network, leading to

Fano factor constancy. The same Poisson-like generation mech-

anism takes place in more biophysically realistic networks (Fig. 2),

and holds exactly for networks of spiking neurons with probabi-

listic synapses with constant transmission probability (Fig. 3e; see

Methods).

This mathematical exercise (see details in Methods) shows that

the presence of both excitation and inhibition is not strictly

necessary for Poisson-like variability, since it is possible to obtain

high sustained variability in large networks with pure excitation

and sufficiently weak synapses. However, although balancing

strong excitation with inhibition is not required per se for Poisson-

like variability at moderately high rates, the presence of both

excitation and inhibition is required to avoid runaway excitation in

networks with more realistically strong excitatory synapses [9,37]

(see Fig. 2).

Finally, other types of noise, such as random synaptic delays [1]

with arbitrary distributions or ion-channel noise that jitters

randomly the timing of the evoked action potentials [38,39] do

not lead to Poisson-like variability (Fig. 3d; see also Methods).

Although random synaptic delays, a broad static distribution of

synaptic delays [40], or spike jittering can improve the stability of

Poisson-like variability, these types of noise are not sufficiently

amplified by recurrent neuronal networks at high rates, and

therefore they constitute a negligible source of noise.

Membrane potential and synaptic conductance
fluctuations

Because probabilistic synapses introduce multiplicative noise at

the synaptic level, the membrane potential and synaptic conduc-

tances of neurons must show some characteristic statistical

properties. We studied these statistical properties in recurrent

networks of conductance-based spiking neurons in the high-

conductance regime [11,41]. We found that the standard

deviation of the neuron membrane potential is approximately

constant as a function of firing rate (Fig. 6a) for both networks with

(full line) and without (dashed) probabilistic synapses, consistent

with experimental observations [5,30]. The fact that the constancy

of the standard deviation of the membrane potential naturally

arises in neuronal networks can be used as a justification of

Gaussian rectification models of single cell spiking variability,

where the standard deviation is assumed to be constant with firing

rate [5]. Both excitatory and inhibitory synaptic conductances

increased linearly with rate (Fig. 6b). Interestingly, the Fano factor

(FF, variance to mean ratio) of the conductances was approxi-

mately constant as a function of firing rate for networks with

probabilistic synapses, but it was much smaller and decreasing

rapidly with firing rate for networks without probabilistic synapses

(Fig. 6c). These results show that the size constancy of the

membrane potential fluctuations arises as a result of the shunting

effect of mean conductances on the conductance fluctuations

[11,41,42], while the FF constancy of the synaptic conductances is

a natural consequence of the multiplicative noise introduced by

probabilistic synapses. The FF constancy of synaptic conductances

is an experimentally testable prediction of our theory.

Discussion

We have shown that spiking networks endowed with probabi-

listic synapses lead to Poisson-like variability for several orders of

magnitude in firing rate, in line with extensive experimental

observations in sensory areas [2,3,4,6,7]. Poisson-like spiking

variability naturally arises from the multiplicative nature of

synaptic noise and its amplification through strong recurrent

connections and does not require fine-tuning of the network

parameters. The multiplicative noise implies that that the size of

membrane potential fluctuations is relatively constant with firing

Figure 5. The mechanism for Poisson-like variability in a network with probabilistic synapses. (a) Scheme of the transformation between
input variance Var(Nin) in the spike counts of the presynaptic spike trains and output variance Var(Nout) of the post-synaptic currents in an open
loop network with probabilistic synapses. (b) Precise balancing of two competing forces in a closed-loop network: the integration step tends to lower
spiking variance, while the probabilistic synaptic step increases spiking variability. (c) Output variance (solid red line) and the variance of the spike
train, Var(Ns) (dashed) increase linearly as a function of input variance for fixed input firing rates. Solid line is vertically shifted respect to the dashed
line due to the increase of variance by probabilistic synapses, which is uniform for all input variances. The equilibrium point of the network (red point)
corresponds to the state where the input and output variances match. (d) The equilibrium point moves linearly with firing rate because the vertical
shift induced by probabilistic synapses increases linearly with rate. (e) Spike count variance increases linearly with rate, leading to Fano factor
constancy.
doi:10.1371/journal.pcbi.1003522.g005
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rate while the size of synaptic conductance fluctuations grows in

proportion to their means.

Other sources of variability could also contribute to evoked

cortical spiking variability. Experimentally uncontrolled external

variables might artificially introduce spiking variability that is not a

property of the system per se. However, even when eye movements

are controlled [6] or paralyzed [43], or when the statistical

properties of the stimulus are fixed [44], cortical neurons still

respond with high Poisson-like variability at all registered neuron

firing rates. Photon noise and intrinsic receptors’ noise can partly

explain cortical spiking variability [45], but at high stimulus

intensities this variability is unlikely to represent a major

contribution. Internal variables such as attention and arousal

might also be at place, but even when they are controlled

experimentally, spiking responses are still highly variable [46,47].

Therefore, the hypothesis that variability is intrinsically generated

by neuronal networks with probabilistic synapses is favored against

other less specific alternatives in view of the very little explanatory

power that the presence of uncontrolled external or internal

variables has on the type of spiking variability that is observed in

cortex.

At the mechanistic level, a balance between strong excitatory

and inhibitory inputs that sets the membrane potential below

threshold has become the prevalent model for high cortical spiking

variability [3,9,10]. Experimental evidence supports that cortical

networks are in the balanced regime [48]. In evoked conditions,

sensory stimulation drives individual cortical neurons to a state

where the mean membrane potential increases with contrast and

firing rate is high [5,30]. As it has been shown (see Fig. 1), in this

condition Fano factors are low even in the balanced regime unless

input spike trains are themselves Poisson-like, raising the question

as to how input Poisson-like variability is generated in the first

place and whether this type of inputs is realistic. Precise

cancellation of the input currents can potentially clamp the

membrane potential to a value below threshold for a broad range

of firing rates, but this exquisite cancellation requires fine-tuning of

the network parameters for very large networks [12]. It has also

been suggested that to produce in vivo high spiking variability,

presynaptic spikes need to be synchronous [49], but it was

unknown how large input variability caused by synchrony can be

generated in recurrent networks. Previous models have also

explored the role of synaptic noise in neuronal computations

[50,51,52,53], in up-down state transitions [54] and in the spiking

variability of single cells or pairs of cells [50,55,56,57], but the role

of probabilistic synapses on Poisson-like variability in large

recurrent networks or over a broad continuum of firing rates

was not studied. As we have shown here, probabilistic synapses

generate multiplicative noise that is amplified by recurrent

connections without fine-tuning of the network parameters. This

mechanism underlies a sufficient requisite for large multiplicative

input fluctuations that guarantees Poisson-like spiking for several

orders of magnitude in firing rate.

Probabilistic synapses have also the potential to explain at the

mechanistic level the origin of high spiking variability in a much

broader context than the one that we have considered here. High

activity states during delayed persistent activity in working

memory tasks are characterized by high spiking variability

[16,17]. Although bistable attractor networks have been shown

to display high variability at both spontaneous and moderately

high rate persistent activity states [12,13,14,15], the contribution

of probabilistic synapses to spiking variability in these networks has

not been studied. We have shown that probabilistic synapses

stabilize Poisson-like firing for a broad continuum of firing rates in

single-attractor networks because this type of noise introduces

multiplicative noise. Clearly, probabilistic synapses have also

potential to account by itself for the high variability observed

during persistent activity in working memory tasks. Therefore in

future studies it will be important to elucidate the role of

probabilistic synapses on spiking variability and stability of

working memory states in bistable attractor networks.

It has been recently shown that stimulus onset reduces the

average Fano factor across a broad variety of cortical areas and

conditions [58], a reduction that is specific to the transition from

spontaneous to evoked activity. This reduced variability has been

hypothesized to arise because of the redirection of the system to a

particular state configuration during stimulation [58]. It is

important to realize however that despite the reduction of

variability relative to spontaneous activity, the responses in evoked

conditions are still highly variable and the Fano factor is

approximately constant with neuron’s firing rate, as it has been

shown by many previous studies [2,3,4,6,7]. Simulated neuronal

networks based on balanced inputs with weak multi-attractor states

can account for the finding that variability is reduced at stimulus

onset [12,33,59,60], but they leave unanswered why the Fano

factor remains approximately constant in a broad range of firing

rates in evoked conditions. In the general condition as in the

specific networks studied in those works, increasing the input will

eventually guide neurons to the supra-threshold regime, where

Figure 6. Theoretical predictions: Fano factor constancy of synaptic conductances. (a) The standard deviation of the membrane potential
is approximately constant as a function of firing rate for networks with (full line) and without (dashed) probabilistic synapses. (b) The mean excitatory
(red) and inhibitory (green) conductances increase linearly with firing rate. (c) The Fano factor of the synaptic conductances (FF, variance to mean
ratio) for a network with probabilistic synapses is constant as a function of the firing rate (full lines), indicating that the variance of the conductance is
proportional to the mean conductance. The FF of the synaptic conductances for a network without probabilistic synapses is lower than in the
previous case and strongly decreases with firing rate (dashed lines). For all panels, open circles correspond to mean values and black dots correspond
to sampled neurons. Error bars represent s.e.m.
doi:10.1371/journal.pcbi.1003522.g006

Poisson-Like Firing with Probabilistic Synapses

PLOS Computational Biology | www.ploscompbiol.org 7 July 2014 | Volume 10 | Issue 7 | e1003522



firing is due to quasi-deterministic membrane potential threshold

crossings and Fano factors decrease with increasing firing rate (see

Fig. 1b). As we have demonstrated, balanced neuronal networks

with probabilistic synapses can generate Fano factor constancy for

a wide range of firing rates in evoked conditions even in the supra-

threshold regime because synaptic noise is multiplicatively scaled

up with firing rate.

Finally, injecting noise in the brain with probabilistic synapses

might seem harmful at a first glance. Therefore it can appear that

we have presented a ‘‘solution’’ to the Poisson-like variability

problem, but we have ‘‘created’’ a new one: boosting neuronal

variability. However, noisy systems can have an advantage against

deterministic systems in detecting sub-threshold stimuli [61],

learning more quickly [62], and displaying larger memory capacity

[63]. Injecting noise through probabilistic synapses is particularly

relevant in view of the new computational capabilities that

neuronal networks with Poisson-like firing acquire, allowing

neuronal codes to be in the appropriate format to perform

optimal cue combination [64] and sampling cortical states over the

whole dynamical range [65]. Therefore, synaptic noise is not only

a robust and sufficient mechanism for the type of variability found

in cortex, but it can also provide cortical circuits with computa-

tional tools to perform probabilistic inference under noisy and

ambiguous conditions.

Methods

Spiking network with probabilistic synapses
We consider a network of leaky integrate-and-fire (LIF) neurons

with N cells, NE of which are excitatory and NI are inhibitory

[10,66,67,68]. The membrane potential of neuron i below the

spiking threshold obeys

Cm
d

dt
Vi(t)~{gL(Vi(t){VL)zIi(t), ð1Þ

where Cm is the membrane capacitance, gL is the passive leak

conductance and VL is the resting state potential. The membrane

time constant of the neuron is defined as tm~Cm=gL.The neuron

emits a spike when the membrane potential reaches the threshold

Vth~hi, after which the potential is reset to Vreset~Hi. The total

synaptic current Ii(t) delivered to the neuron is

Ii(t)~
X
j,k

Jijk

X
m

sm
ijkhj(t{tm

j )zmizsigi(t), ð2Þ

where the first term corresponds to the currents generated by other

cells in the network, while the two last ones correspond to the

current generated by external sources to the network. Jijk is the

connectivity strength of contact k between the presynaptic neuron

j and the postsynaptic neuron i. We typically consider 2–6 contacts

per pair of connected neurons. Auto-synapses are not included in

the network, i.e. Jiik~0 for all i. The sum over m corresponds to

the spikes times of each presynaptic cell j, denoted tm
j , m~1,2:::.

Each spike from neuron j can potentially generates a stereotyped

current after a delay d on the postsynaptic cell proportional to the

synaptic kernel hj(t{tl
j), such that

hj(t)~0, for tvd,ð?
0

hj(t)dt~1:
ð3Þ

With this choice, the total charge injected in the neuron due to a

presynaptic spike at time tm
j is determined by

P
k

Jijksm
ijk, where sm

ijk

is the synaptic variable that specifies the amount of neurotrans-

mitter released at contact k between postsynaptic neuron i and

presynaptic neuron j at the time of the presynaptic spike tm
j . The

dynamics of the synaptic variables are described by the end of this

section. As synaptic kernel, we choose

hj(t)~
e{t=tj

tj

, ð4Þ

where tj is the synaptic decay time constant of the postsynaptic

current, which can be excitatory with time constant tj~tE or

inhibitory with time constant tj~tI . The external current consists

of a deterministic component (mean drive) mi, and a white noise

process sigi(t) with variance s2
i . Here gi(t) is a white noise process

with zero mean and unit variance independent across neurons, i.e.

Sgi(t)T~0 and Sgi(t)gj(t’)T~dijd(t{t’), where dij is the Kro-

necker’s delta, and d(t{t’) is the Dirac’s delta function.

We endowed synapses with a probabilistic transmission model

where the synapses evoke successfully postsynaptic currents with a

fixed probability upon presynaptic spike arrival if a vesicle is ready

to be released, and the replenishment of the vesicle is stochastic

with an exponential distribution over time [50]. This model is

based on deterministic models of short-term-depression (STD) in
vitro [26,27]. We further modified the deterministic models of

STD for in vitro slices to incorporate the lack of depression

observed at high rates in vivo [23,25,36] and in some neuronal

population in vitro [69] as follows: upon vesicle release, a new

vesicle is immediately ready to be released with the same

probability, but with a lower neurotransmitter load. This model

creates effectively a lower bound in synaptic efficacy, allowing for

non-saturating responses at high firing rates. Other biophysical

implementations of non-saturation and stochastic release at high

rates (,100–200 Hz) are also possible (such as, simply, very fast

vesicle replenishment times), but the results of our work do not

depend on the particularities of this implementation. Neuronal

networks with STD models without the experimentally motivated

non-saturating synapses cannot display firing above ,50 Hz due

to synaptic exhaustion with standard in vitro parameters, a firing

rate condition in which Poisson-like variability is commonly

observed in sensory areas [2,4,8]. Full details of the model are

given next.

We first specify the dynamics of the synaptic variable sm
ijk,

defined as the amount of neurotransmitter released at each

synaptic contact k~1,:::,Kij between the postsynaptic neuron i
and the postsynaptic neuron j at the arrival of the m-th spike from

neuron j, tm
j . Associated to this variable, there is a neurotransmit-

ter availability variable cijk(t) that specifies how much neuro-

transmitter is ready for release at any time t.

The stochastic model of synaptic transmission at each synaptic

contact is as follows and independent across contacts: (1) upon

arrival of a spike at time tm
j a vesicle from a readily releasable pool

fuses the membrane and releases its content cijk(tm
j ) with

probability pijk. If neurotransmitter is released, the synaptic

variable equals the amount of neurotransmitter that is released

by the vesicle, sm
ijk~cijk(tm

j ), and sm
ijk~0 otherwise. (2) Immediately

after release, a vesicle from a readily releasable pool with low

neurotransmitter load becomes available. It has an amount of

neurotransmitter cijk(tmz
j )~cmin

ijk , 0vcmin
ijk v1. (3) The time it

takes this vesicle to be replaced by a vesicle with high
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neurotransmitter load, cijk(t)~1, is a random variable following

an exponential distribution with mean tdep.

With the above choice of the maximum value cijk(t)~1, the

synaptic strength at each contact is quantified by Jijk. The

dynamics of probabilistic synapses has been simulated as follows:

for each synaptic contact that has been partially depleted to the

value cmin
ijk , a random exponentially distributed time was generated

as t~{tdepln(x) where x is uniformly distributed in the interval

[0,1]. Once this time has elapsed, the synaptic contact was

replenished to its maximum value cijk~1. When 0vcmin
ijk v1

synaptic transmission is permitted immediately after a successful

transmission. However, the neurotransmitter that can be imme-

diately released is smaller than the maximum allowed value. The

choice cmin
ijk w0 also ensures that the currents generated by the

network do not saturate below 20–50 Hz.

Network of non-leaky integrate-and-fire neurons with
probabilistic synapses

We start by describing a recurrent network with non-leaky

integrate-and-fire neurons (nLIF) and probabilistic synapses. In an

nLIF neuron the leak term (see eq. (1)) has been dropped and the

voltage obeys

d

dt
Vi(t)~Ii(t): ð5Þ

For simplicity in the expression we have taken the membrane

capacitance Cm~1. We also normalize the spiking threshold hi

such that the reset membrane potential Hi is defined to be at zero.

The nLIF neuron is an excellent approximation for a LIF neuron

when inputs are strong and firing rate is high, precisely the

situation where Poisson-like firing breaks down in LIF networks.

Therefore, showing that networks of nLIF neurons with proba-

bilistic synapses give rise to Poisson-like firing will mean that the

same property holds for LIF networks with probabilistic synapses.

In the main text we show that the qualitative results derived for

networks of nLIF neurons also apply to networks of LIF neurons.

The total synaptic current Ii(t) delivered to the neuron is

Ii(t)~
X
j,k

Jijk

X
m

sm
ijkhj(t{tm

j )zmizsigi(t), ð6Þ

identical to eq. (2) but where we use instead a simplified model of

probabilistic synapse. Specifically, each synaptic variable sm
ijk in eq.

(6) becomes one with probability p upon spike arrival, and

otherwise it is zero, independently across contacts and time.

Therefore, in this model the temporal dynamics of synapses is

neglected, but the probabilistic nature of synaptic transmission is

preserved. The theory that is presented below is valid for any

arbitrary synaptic kernel with the properties described in eq. (3). It

is worth emphasizing that neglecting the temporal dynamics of

synapses modifies the precise values of the steady-state neurons’

firing rates and their Fano factors, but the qualitative effects about

Poisson-like variability naturally extend to the more realistic case

with synaptic dynamics. In the next section we compute exactly

the mean activity and covariance of the spike counts across

neurons in the network, required to show that a nLIF neuronal

network with probabilistic synapses display exactly Poisson-like

variability.

First, we rewrite eqs. (5) and (6) in a more convenient way that

will highlight the effect of membrane potential resetting. Since the

effect of a spike emitted by neuron i is to decrease its membrane

potential instantaneously from threshold to the reset values, eq. (5)

can be expressed as

d

dt
Vi(t)~Ii(t){hi

X
l

d(t{tl
i), ð7Þ

where tl
i denotes the spike times of neuron i. Eqs. (5) and (6) can be

rewritten in matrix notation as

:
V
!

~{H d
!

(t)z~IIrec(t)z~mmzD~gg(t), ð8Þ

where H and D are diagonal matrices with entries Hii~hi and

Dii~si. In the expression, d
!

, ~IIrec(t) (recurrent part of the total

current) and ~gg(t) are vectors with i-th components

di~
P

l

d(t{tl
i),

Irec,i(t)~
X
j,k

Jijk

X
m

sm
ijkhj(t{tm

j ), ð9Þ

and gi(t), i~1,:::,N, respectively. The advantage of using eq. (8)

instead of eq. (5) is that the non-linear resetting mechanism of the

cells is transformed into a term indistinguishable from self-

inhibition or negative-feedback.

Now we move to compute the mean spike counts over the

neurons in the network. In the following we assume that there is a

single attractor state of the system. We start by taking expected

values (over all realizations of the white noise processes and initial

conditions of the network leading to the same set of active neurons)

in the two sides of eq. (8) to obtain

:
SV
!

T ~S{H d
!

(t)z~IIrec(t)z~mmzD~gg(t)T: ð10Þ

Since the average membrane potential does not change in the

stationary regime if the firing rates of the neurons are positive, the

l.h.s. of the equation is zero. Noting that sm
ijk are random variables

independent of spike times and both across contacts and synapses,

and using that S d
!

T~S h
!

T~~rr, where ~rr is the population firing

rate vector, if the rates are non-negative we find that eq. (10) is

equivalent to the constraint over the population firing rate vector

W~rrz~mm~0, ð11Þ

where the effective connectivity matrix W has diagonal entries

wii~{hi and off-diagonal entries wij~
XKij

k~1
Jijkpijk. The

matrix W explicitly shows the self-inhibitory effect of the reset

mechanism. If W is invertible, eq. (11) can be readily solved to

give an expression for the population firing rate

~rr~{W{1~mm: ð12Þ

Eq. (11), written more generally to include cases where the firing

rates can be zero, becomes

wiirz
X

j=i
wijrjzmi

h iz
~0, ð13Þ

where x½ �z is the linear rectified function ( x½ �z~x if xw0, and

x½ �z~0 otherwise). Although we have assumed the presence of a

single attractor, this equation allows for multiple solutions in
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general. In those cases, multi-stability develops in the network, and

each state obeys an equation like eq. (11) where the connectivity

matrix W becomes the original one but where the columns and

rows corresponding to the inactive neurons have been removed.

The firing properties described below hold for each state but in

addition stochastic transitions between the states are possible.

Eq. (11) expresses the required balance between excitatory (E),

inhibitory (I) and external inputs in the stationary regime. We can

rewrite this equation for the simple but illustrative case where all

neurons in population l~E,I connects with all other neurons but

itself in the population k~E,I with strength Jkl , the mean input

currents to the E and I populations are mE and mI , respectively,

spiking threshold for all neurons is h, and there is a single contact per

neuron pair with the same transmission probability p for all synapses.

In this case eq. (11) it is equivalent to the set of linear equations

({hz(NE{1)JEEp)rEzNI JEI prIzmE~0

NEJIEprEz({hz(NI{1)JII p)rIzmI~0
ð14Þ

Where rE and rI are the firing rates of E and I neurons. The first

(second) equation describes the mean input currents to an E (I)
neuron, and it shows that the mean excitatory, inhibitory and external

mean currents and the effective depolarizing current proportional to h
cancel precisely in such a way that the sum of them is precisely zero.

Therefore, in the stationary regime the network settles down in a set of

firing rates that satisfies precisely this balance equation [9]. Note that if

the connectivity strengths are large (J*O(1=
ffiffiffiffiffi
N
p

)), the cancelation

mainly occurs between a large excitatory mean drive by a large

inhibitory mean drive. Fig. 2e shows how the mean currents are

dynamically cancelled, leading to a state of low firing rates.

As a next step, it is useful to show that the average activity over

realizations of the white noise process equals its temporal average.

We first integrate eq. (8) from time zero to a long time T as

ðT

0

V
!:

tð Þdt~{H~nn(T)z

ðT

0

~IIrec(t)dtz~mmTzD

ðT

0

~gg(t)dt, ð15Þ

where ~nn(T) is the spike count population vector in the time

window ½0,T � with components ni(T)~
Ð T

0

P
m d(t{tm

i )dt,

i~1,:::,N. The integrated current has components

ðT

0

Irec,i(t)dt~
X
j,k

Jijkn�ijk, ð16Þ

where n�ijk is the number of successful synaptic transmissions at

contact k from neuron j to i. This number is a random number

that depends on the number of actual spikes from neuron j, nj(T),

as

n�ijk(T)&nj(T)pijkz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj(T)pijk(1{pijk)

p
eijk, ð17Þ

where eijk is a normally distributed variable independent across

synaptic contacts. The first term in the equation corresponds to

the average number of successful spike transmissions at the

synaptic contact k from neuron j to i, while the second term

correspond to the fluctuations of the number of successful

transmissions around the mean, which becomes a Gaussian

variable for long T . Note that the mean and variances of the

Gaussian are proportional to the mean and variances of a

Bernoulli process with success probability pijk. Strict equality of

eq. (17) holds for T??.

Now it is easy to extract useful information from eq. (15). For

long T the terms proportional to T and to the spike counts

~nn(T)dominate. Therefore, for T?? and positive spike counts eq.

(15) reduces to

0~W~nn(T)z~mmT : ð18Þ

This equation is identical to eq. (11) if the expression is divided by

T , hence showing the equivalence between realization and

temporal averages.

Finally, we compute the covariance matrix of the spike counts

across pairs of neurons using the previous equations. We start by

splitting the recurrent term
Ð T

0
~IIrec(t)dt in eq. (15) into determin-

istic and fluctuation terms and lumping together the normally

distributed random variables across contacts at each synapse. It

can be shown that eq. (15) can be rewritten in a more convenient

way as

~VV (T){~VV(0)~W~nn(T)zWe

ffiffiffi
n
p�!

(T)z~mmTzD

ðT

0

~gg(t)dt, ð19Þ

where We is a random matrix with entries

We,ij~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

J2
ijkpijk(1{pijk)

r
eij

(eij are i.i.d. normally distributed variables), and
ffiffiffi
n
p�!

(T) is a vector

whose components are the squared root of the spike counts up to

time T ,
ffiffiffi
n
p�!

(T)
� �

i
~

ffiffiffiffiffiffiffiffiffiffiffi
ni(T)

p
, i~1,:::,N. Taking expectations in

both sides of eq. (19) we find

S~VV (T)T{~VV (0)~WS~nn(T)Tz~mmT : ð20Þ

Subtracting eq. (20) from eq. (19), and defining the membrane

potential and spike count fluctuations as

D~VV (T)~~VV (T){S~VV (T)Tand D~nn(T)~~nn(T){S~nn(T)T respective-

ly, we obtain

D~VV (T)~WD~nn(T)zWe

ffiffiffi
n
p�!

(T)zD

ðT

0

~gg(t)dt: ð21Þ

This equation is the basis to obtain the covariance matrix of the

spike counts. Solving for D~nn(T) in eq. (21), we find after some

laborious algebra that the covariance of the spike count can be

written up to order T as

Sn(T):SD~nn(T)D~nntr(T)T~W{1 H(~rr)zD2
� �

W{trT , ð22Þ

where H(~rr) is a rate-dependent diagonal matrix with entries

H(~rr)ii~
X
j,k

J2
ijkpijk(1{pijk)rj , ð23Þ

and ‘‘tr’’ stands for matrix transpose.

We note that in eq. (22) the noise introduced by probabilistic

synaptic transmission is multiplicative with the rate (see eq. (23)),

and that it enters as a diagonal matrix that is further amplified and

transformed by the recurrent connections. These results fully and
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exactly describe the first and second-order firing statistical

properties of nLIF recurrent networks, opening in turn the door

to study correlations in spiking recurrent networks with probabi-

listic synapses.

The probabilistic synaptic model that we have considered so far

does not have variability in the amplitude of the synaptic strength.

It is possible to include this source of variability in the present

formalism by replacing H(~rr)ii in eq. (23) by

H(~rr)ii~
X
j,k

J2
ijkpijk(1{pijk)zVar(Jijk)pijk

h i
rj : ð24Þ

where Var(Jijk) is the variance of Jijk across successful synaptic

transmissions at each contact, and by replacing W in eq. (22) by a

matrix with diagonal entries wii~{hi and off-diagonal entries

wij~
XKij

k~1
SJijkTpijk.

The expression for the firing rate and covariance of the spike

counts, eqs. (11) and (22), have been derived for the case where

delays are fixed and there is not jittering during the generation of

the spikes. However, it is possible to show that the same

expressions hold when the delays and jitters are random with

finite first and second order moments. This shows that noise

introduced by random synaptic delays and spike generation

jittering constitute a negligible source of noise in nLIF networks.

From the equation of the mean firing rates, eq. (12), and the

expression for the covariance matrix of the spike counts, eq. (22), it

follows that that the Fano is constant for all firing rates. If the input

drive is scaled by a factor a,~mm?a~mm, then according to eq. (12) the

firing rates are scaled up by the same factor,~rr?a~rr. Similarly, if the

noise from external sources is small, then the covariance matrix of

the spike counts is approximately scaled up by the same factor,

Sn(T)?aSn(T) because the noise introduced by probabilistic

synapses is multiplicative. Since the Fano factor is defined as

Fn,i~Sn(T)ii=(riT), scaling up the input drive can modulate the

firing rate of individual neurons by several orders of magnitude

while their Fano factor remains constant. This finally shows that

Poisson-like variability arises in spiking networks with probabilistic

synapses by virtue of the multiplicative nature of synaptic noise.

Mechanism for Poisson-like variability
In this section we provide details for Fig. 3 in the main text. Let

us assume that the output spike train of the presynaptic neuron,

described by the spike count Ns, has a mean count SNsT~rT and

variance Var(Ns), where r is the firing rate of the neuron and T is

the length of the time window. When this spike train passes

through a probabilistic synapse with a probability p of successful

transmission, a sequence of PSCs is generated with mean count

SNoutT~pSNsT~prT and variance Var(Nout)~p(1{p)rTz

p2Var(Ns). Note that the output firing rate has been diluted by

a fraction p, and that the variance contains two terms arising from

a doubly stochastic process: the first term comes from the extra

variability introduced by the probabilistic synaptic transmission,

while the second term is a diluted version of the presynaptic spike

train variability. It is crucial to realize that the first term is

proportional to the firing rate in the network, while the second

term is rate-independent. To close the loop, we need to specify the

way that input mean count and variability are transformed into

the mean spike count and variability of Ns. Assuming an

homogeneous network of C neurons with connectivity strength

J , then a LIF neuron with threshold h generates a spike train with

mean count SNsT*(CJSNinTzmT)=h and variance Var(Ns)*
CJ2Var(Nin)=h2, where m is the mean external input drive to the

neurons in the network. To derive the expression for the mean and

variance, we have assumed that spike trains across neurons are

approximately independent and that the firing rate is high. Finally,

using the relationship between Var(Nout) and both rate and

Var(Ns), and the fact that input and output variances should be

equal in a self-consistent recurrent network, we arrive to the

expression Var(Ns)*CJ2p(1{p)rT=(h2{CJ2p2). Note that this

expression predicts that the spiking variability of the neurons is

Poisson-like because it is proportional to the firing rate r in the

network. Note also that the Fano factor increases with the

connectivity strength, and with the number of connections per

neuron at fixed connectivity strength.

Network and stimulus parameters
Finally, we provide details about the parameters used in each

figure. The parameters for Fig. 1 are as follows. A single neuron

obeying eqs. (1)–(2) was simulated. The membrane capacitance,

leak conductance and leak potential were Cm~0:25nF ,

gL~12:5nS and VL~{64mV respectively. With those choices,

the membrane time constant wastm~Cm=gL~20ms. The spiking

threshold and reset membrane potentials were set at h~{54mV
and Vreset~{59mV respectively [11]. For the case with constant

input noise (dashed lines), the standard deviation of the noise was

set at s~5pA. For the case of Poisson-like inputs (solid lines), the

variance of the noise grew proportionally with the mean input

drive m as s2~s2
0m, where we chose s2

0~320.

The parameters of the network with probabilistic synapses

described in Fig. 2 (solid lines) were as follows. A total of 2000

neurons were simulated, 80% of which were excitatory and 20%

were inhibitory. The connectivity was all to all. The membrane

capacitance, leak conductance, leak potential, and resting potential

were as in Fig. 1, while Vreset~{64mV . The connectivity

strength Jijk of contact k between the presynaptic neuron j in

population E and the postsynaptic neuron i in population E took

the values JEEk~0:041pC, between E and I neurons

JIEk~0:060pC, between I and E neurons JEIk~{0:22pC, and

between I and I neurons JIIk~{0:25pC. There were a fixed

number of 4 contacts between all pairs of neurons. With these

values, a successfully transmitted E presynaptic excitatory spike

generates an EPSP of 0.66 mV on E postsynaptic neurons [34,35].

The synaptic decay time constant of excitatory and inhibitory PSC

(see eq.(4)) was tE~5ms and tI~10ms respectively. The

probability of release was p~0:3 [22], the recovery time constant

of vesicles took the value tdep~100ms [26] and the minimum

vesicle neurotransmitter fractional load was set at cmin
ijk ~0:5

[25,69], identical for all contacts. The mean input current mi in eq.

(2) was the same for all the neurons, and the input variance s2
i was

taken to be zero. Simulations were run for 200 s with a one-step

Euler method with time step 10{2ms. Fano factors were computed

using time windows of 2 s. None of the results presented depend

critically on the values of the parameters chosen.

For the network without probabilistic synapses in Fig. 2 (dashed

lines), the parameters were as above except for the following.

Neurons were driven by noise with constant standard deviation of

the noise si~10pC=s1=2. We set p~1 and cmin~1, and therefore

probabilistic synapses and STD temporal dynamics were absent.

To produce comparable rates to those in the network with

probabilistic synapses we compensated the larger cmin by reducing

by half all synaptic strengths.

In Fig. 3a the parameters were as in Fig. 2 for the network

without probabilistic synapses. The network connectivity was

random and sparse, with every neuron in the network receiving

connections from a small fraction, f ~0:1, of pre-synaptic

excitatory and inhibitory neurons randomly chosen. The strength
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of the connections was as before. In Fig. 3b, the parameters were

as in Fig. 2 for the network without probabilistic synapses, with the

exception that the reset potential was set at a higher value,

Vreset~{56:5mV . In Fig. 3c the parameters were as in Fig. 2 for

the network with probabilistic synapses, but with p~1 and

si~10pC=s1=2. In Fig. 3d, parameters are as in Fig. 3c with the

addition of a random delay independently for each spike (spike

jitter) and uniformly distributed between 0 and 10 ms. In Fig. 3e

the parameters were again as in Fig. 2 for the network with

probabilistic synapses, except that gL~0, cmin~1 and the synaptic

weights were divided by half.

In Fig. 4 parameters were identical as in Fig. 2 when the

synaptic scaling factor g is 1. For the cases of scaling factor

different from one, all connectivity strengths of the network in

Fig. 2 were multiplied by g, keeping fixed all other parameters.

For the conductance-based network with probabilistic synapses

in Fig. 6, parameters were as in Fig. 1, with VL~{65mV and

Vreset~{60mV . Synaptic current were modeled as

Ii(t)~{gi,E(t)(V{VE){gi,I (t)(V{VI ), where gi,k(t) (k = E,I)

is the synaptic conductance and the reversal potentials are

VE~0mV and VI~{80mV . The synaptic conductances follow

an equation identical to eq. (2) with JEE~1:1nSms,

JIE~{1:1nSms, JEI~26:2nSms and JII~21:8nSms. Probabi-

listic synapses without STD were studied with p~0:3. For the

network without probabilistic synapses (p~1) all synaptic strengths

were reduced three-fold to keep firing rates close to those from the

network with probabilistic synapses. In addition, external constant

noise was added to each neuron with standard deviation

si~5pC=s1=2. In both networks, there were 100 neurons with a

single contact between all pairs of neurons, of which 80 were

excitatory and 20 were inhibitory. The synaptic decay time

constant of excitatory and inhibitory PSC (see eq. (4)) was

tE~3ms and tI~10ms respectively. External current-based

inputs were excitatory and identical to all neurons.
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