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Abstract

Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP).
The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced
arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate
dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics
remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP.
We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular
myocyte models. By simulating populations of myocytes with varying properties and analyzing population results
statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average
of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates.
The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their
mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-
dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified
inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP
prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-
dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have
considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this
study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and
illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs.
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Introduction

Prolongation of the ventricular action potential (AP), the action

of class III antiarrhythmic drugs, is an antiarrhythmic strategy

with a checkered past. Theoretically, increasing the action

potential duration (APD) should be antiarrhythmic; a longer

APD will increase the refractory period of the myocardium,

thereby inhibiting the pathological re-entry of excitation that

underlies many arrhythmias. However, a large-scale clinical trial

that tested the Class III antiarrhythmic d-sotalol demonstrated

increased rather than decreased mortality with this agent,

presumably due to increased ventricular arrhythmias [1]. More-

over, multiple lines of evidence implicate a long QT interval, the

electrocardiographic marker for prolonged APD, in arrhythmo-

genesis, including the increased incidence of torsades de pointes

(TdP) and sudden cardiac death in both congenital and acquired

long QT syndromes [2]. Indeed, safety pharmacology screens

routinely test for QT prolongation as an unwanted side effect of

novel candidate pharmaceutics [3]. How can AP prolongation

simultaneously be both antiarrhythmic in principle and an

indicator of proarrhythmia in practice? More nuanced analyses

have suggested that QT and AP prolongation are not per se

arrhythmogenic, but become so when accompanied by reverse

rate dependence [4].

Reverse rate dependent (RRD) action potential prolongation

refers to the phenomenon that drugs will prolong the APD to a

greater extent at slow heart rates than at fast [5]. RRD

prolongation is an unfortunate yet common property of Class III

antiarrhythmics. This is doubly problematic, as it not only

weakens the ability of these drugs to suppress re-entrant

tachyarrhythmias, but also, because of the exaggerated action at

slow heart rates, increases proarrhythmic potential. The excessive

increase in APD at slow heart rates, when the APD is naturally

longer to begin with, allows for recovery of inactivated calcium

channels, increasing the likelihood of an early afterdepolarization

[6], a cellular event that can precipitate TdP [7–8].

This lack of efficacy at rapid rates and arrhythmogenic potential

at slow rates makes reverse rate dependence undesirable and

reduces the therapeutic potential of class III agents. An ideal class

III agent would instead prolong APs in a forward rate dependent

(FRD) manner. That is, it would prolong the APD at fast heart

rates but induce minimal prolongation at slow heart rates [5].
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Current class III agents prolong the APD primarily through

inhibition of the rapid delayed rectifier K+ current (IKr), and IKr

block specifically has been shown to be RRD [9]. Since inhibition

of any repolarizing current, or accentuation of any depolarizing

current, could theoretically prolong the APD and increase the

refractoriness of the myocardium, targets other than IKr have been

under investigation [10]. Yet FRD agents have remained elusive.

In fact, not only have many drugs been shown to exhibit reverse

rate dependence, there is evidence that RRD behavior is not

unique to IKr-block, but instead occurs with multiple perturbations

that affect the APD, including injection of membrane current [11–

13].

Zaza has provided an elegant explanation, based on the rate of

change of the membrane potential [14], for why multiple

pharmacological agents exhibit RRD behavior. This idea is based

on the observation that APD will be naturally shorter at faster than

at slower heart rates in most mammals, including human, canine,

and guinea pig. Because of the shortened APD, the rate of

repolarization, dV/dt, will be larger in magnitude at faster rates.

Zaza describes how a given change in membrane current that

prolongs APD will inherently have a smaller effect when working

against a larger rate of repolarization. Thus, at faster heart rates,

any AP-prolonging perturbation must act against a stronger

repolarizing force, and this attenuates the resulting prolongation,

resulting in reverse rate dependence [14]. This explanation,

combined with the RRD behavior seen in response to a variety of

agents, has led to the idea that this is an inherent property of

ventricular preparations [13].

The implication that reverse rate dependence is an inherent

property of myocytes leads to the question of whether the search

for an effective class III agent is hopeless. In other words, are all

antiarrhythmic strategies based on prolonging APD destined to fail

due to reverse rate dependence? In the present study, we have

addressed this question by performing a comprehensive analysis of

ventricular myocyte models. By simulating heterogeneous popu-

lations of ventricular myocytes and analyzing population results

statistically [15], we simultaneously predicted the rate-dependent

effects of changes to all model parameters. Our results show that,

while ventricular cell models often display reverse rate depen-

dence, a variety of ionic current perturbations do in fact produce

the desired forward rate dependence. The perturbations we

identify provide potential drug targets for FRD APD prolongation,

and further simulations of these perturbations provide insight into

how FRD behavior can be produced. Additionally, a comparison

between mathematical models demonstrates that rate-dependent

changes in AP shape play a central role in determining a myocyte’s

capacity for forward versus reverse rate dependence. Through these

simulation results, this study provides new insight into the

determinants of APD rate dependence and illustrates a strategy

for the design of potentially beneficial antiarrhythmic drugs.

Results

Ventricular cell models can exhibit reverse rate
dependence

Reverse rate dependence occurs when a perturbation that

changes APD does so to a greater extent at a slow heart rate than

at a fast. In other words, as the heart rate slows, the degree of

change to the APD increases. Reverse rate dependence has been

observed experimentally in response to both several APD altering

drugs and to injection of current [12–13], and has also been seen

in simulation studies [16]. We first confirmed that RRD AP

prolongation can be produced in ventricular cell models when

parameters representing ion channel properties are altered.

Figure 1 shows two examples simulated with the LR09 guinea

pig model [17]: decreased slow-delayed rectifier maximal conduc-

tance (parameter GKs, Figure 1A), and increased L-type Ca2+

channel maximal conductance (parameter GCaL, Figure 1B). As

expected, both perturbations (a decrease in repolarizing current

and an increase in depolarizing current, respectively), prolong the

AP. In either case, this prolongation also displays clear reverse rate

dependence: the AP prolongation is greater at slow pacing

(0.2 Hz) than at fast (2 Hz) for each degree of perturbation, in

both absolute and in percent change. Similar effects can be

produced in all models that were tested.

Parameter sensitivities in populations of models identify
RRD and FRD perturbations

In order to understand RRD behavior more comprehensively,

we took a systematic approach to analyze the influence of the

dozens of parameters that characterize the expression levels and

gating of the ion channels in ventricular cell models. We

performed a parameter sensitivity analysis, as described previously

[15] and in Methods, that allowed us to examine this multitude of

parameters in concert and to extract the influence of each on the

APD. For each ventricular cell model, we generated a virtual

population of hundreds of model variants, in which each

individual is defined by a randomly varied set of parameter

values. We simulated each model variant at both a fast pacing rate

of 2 Hz and a slow pacing rate of 0.2 Hz. We applied this analysis

to 7 independent ventricular cell models: TNNP04 [18], TP06

[19], OVVR [20], FMG [21], HR [22], LR91 [23], and LR09

[17] (abbreviations defined in Methods). Additionally, in the

human models (TNNP04, TP06, and OVVR), we conducted the

analysis on each of the 3 transmural tissue layers: epicardial, mid-

myocardial, and endocardial. In all, 13 ventricular myocyte

formulations were tested. Distributions of APD across the virtual

populations, and a comparison with experimental APD data, are

displayed in Figure 2. This shows that faster pacing led to shorter

APs in most models, with the notable exceptions of LR91 and

Author Summary

Several drugs intended to treat cardiac arrhythmias have
failed because of unfavorable rate-dependent properties.
That is, the drugs fail to alter electrical activity at fast heart
rates, where this would be beneficial, but they do affect
electrical activity at slow rates, where this is unwanted. In
targeted studies, several agents have been shown to
exhibit these unfavorable properties, suggesting that
these rate-dependent responses may be intrinsic to
ventricular muscle. To determine whether drugs with
desirable rate-dependent properties could be rationally
designed, we performed comprehensive and systematic
analyses of several heart cell models. These analyses
calculated the rate-dependent properties of changes in
any model parameter, thereby generating simultaneously
a large number of model predictions. The analyses showed
that targets with favorable rate-dependent properties
could indeed be identified, and further simulations
uncovered the mechanisms underlying these behaviors.
Moreover, a quantitative comparison of results obtained in
different models provided new insight in why a given drug
applied to different species, or to different tissue types,
might produce different rate-dependent behaviors. Overall
this study shows how a comprehensive and systematic
approach to heart cell models can both identify novel
targets and produce more general insight into rate-
dependent alterations to cardiac electrical activity.

Overcoming Reverse Rate-Dependence
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Figure 2. Rate dependence action potential duration across a population of models. APD distributions for models paced at 2 Hz (colored
histograms) and 0.2 Hz (black histograms). Shaded regions represent experimental ranges estimated from the following sources: canine [11,55],
guinea pig [12,56–57], and human [20,58–61]. Colored shading indicates the range at 2 Hz, gray shading the range at 0.2 Hz, and an intermediate
color the range overlap.
doi:10.1371/journal.pcbi.1003543.g002

Figure 1. Reverse rate dependence of action potential prolongation. Reverse rate dependence is observed with perturbations to ionic
current properties in a ventricular cell model, LR09. (A) Slow delayed rectifier K+ current (IKs) block through decreased maximal conductance
(parameter GKs) at fast (2 Hz) and slow (0.2 Hz) pacing. (B) L-type Ca2+ current (ICaL) enhancement through increased channel permeability (parameter
GCaL) at fast (2 Hz) and slow (0.2 Hz) pacing.
doi:10.1371/journal.pcbi.1003543.g001
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TNNP04. This also shows that some models, such as HR, FMG,

and OVVR, did notably well in matching the experimentally-

observed range of APD.

To quantify the rate dependence of how the model parameters

influence APD, we performed multivariable regression analysis on

the population data to statistically relate the model parameters to

the simulation outputs. The accuracy of this linear approximation

in describing the population behavior has been previously

demonstrated [15,24–26] and is quantified in Table 1, which

shows R2 values resulting from the each model’s regression

analysis. This analysis generated two sensitivity values for each

parameter, Bfast and Bslow, characterizing that parameter’s

influence on the APD at the two rates. If the effect of a

perturbation on APD is rate-dependent, the corresponding

parameter sensitivity will differ with rate. We summarize this by

calculating BRD, which indicates the difference between the

parameter sensitivities at the two rates. Figure 3A illustrates some

hypothetical possibilities. If the two parameter sensitivities are

approximately equal (example b), then BRD is close to zero and

changes in the parameter are essentially neutral with respect to

rate. On the other hand, positive BRD indicates an RRD

perturbation: altering that parameter changes the APD more at

a slow rate (example c). Conversely, negative BRD indicates an

FRD perturbation: changing that parameter affects the APD more

at a fast rate (example a). Finally, example d is a parameter for

which Bfast and Bslow have opposite signs. This indicates that

perturbing the parameter will prolong the AP at one rate but

shorten it at the other. As discussed in Methods, this behavior does

not necessarily fit the RRD/FRD paradigm, but it does represent

a perturbation that can lengthen the APD at fast pacing but not at

slow. Thus we categorize such parameters with the FRD

parameters by assigning a negative BRD. For a given ventricular

cell model, the BRD plot summarizes the rate dependencies of that

model’s parameters (Figure 3B).

Figure 3C shows the results of this analysis in the TP06

epicardial model. Some parameters are strongly RRD, as

expected, but, surprisingly, the majority of parameters are mildly

FRD, and some are even strongly FRD. Simulations in which one

parameter was varied at a time validate BRD as a quantification of

the rate-dependence of a parameter. For example, Figure 3D

shows that decreasing GKs prolongs the AP with reverse rate

dependence, as predicted by that parameter’s large, positive BRD,

whereas increasing GCaL prolongs the APD with forward rate

dependence, as predicted by that parameter’s large, negative BRD.

BRD was further validated as a measure of rate dependence

through single-variable simulations of perturbations to other

parameters (Figure S1).

Capacity for reverse and forward rate-dependence is
highly model-dependent

The distributions of BRD values varied greatly between models.

Most models showed a preponderance of RRD parameters,

consistent with the hypothesis that reverse rate dependence is

intrinsic to any alteration to the APD [13–14]. For example, LR09

has mostly RRD parameters (Figure 4A). Of the parameters that

are not RRD, most have small BRD magnitude, indicating

minimal rate sensitivity. However, several models have a majority

of FRD parameters. For instance, we found that most parameters

in the HR model are FRD, including, in contrast to LR09, GCaL

(Figure 4B). Furthermore, the parameters KNCX (maximal Na+-

Ca2+ exchange current), GNa (maximal fast Na+ conductance), and

KNaK (maximal Na+-K+ pump current) all displayed forward rate

dependence in the HR model. Results obtained in all models

studied are shown in Figures S1–S13 in Text S2.

Capacity for forward rate dependence is related to the
rate-dependence of AP morphology

The dramatic differences observed between models led us to

wonder what characteristics of the models accounted for these

divergent behaviors. We reasoned that if AP shape does not

change with rate, then shorter APs at faster rates simply

correspond to a faster rate of repolarization. In this case, prior

studies have suggested that all perturbations may be inherently

RRD [14]. Thus we hypothesized that the number of RRD versus

FRD parameters may be related to the changes in AP shape

observed with changes in pacing rate. Indeed, we observed that

models with larger rate-dependent changes in AP shape have a

stronger potential for FRD perturbations, whereas those with

minimal rate-dependent changes in AP shape have primarily RRD

parameters. For instance, the LR09 model, with almost exclusively

RRD parameters (Figure 4A), shows little change in AP shape with

rate (Figure 5A) whereas the HR model, with many FRD

parameters (Figure 4B), exhibits a substantial change in AP shape

with rate (Figure 5A).

To determine if this was generally true across models, we

quantified the degree of rate-dependent AP morphology change

for each model by calculating the root mean square deviation

(RMSD) between AP traces at slow and fast pacing (Figure S2).

Before computing RMSD, the simulated AP at the fast rate was

rescaled with respect to time to match the duration seen at the

slow rate (see Text S1 for details). Each model’s capacity for FRD

perturbations was quantified by the percent of that model’s

parameters that are FRD. We found a strong positive correlation

(R2 = 0.8366) between the RMSD and the percentage of FRD

parameters; that is, a greater change in AP shape corresponds to a

greater capacity for forward rate dependence (Figure 5B).

We found that the two canine models, HR and FMG, displayed

both the highest degree of rate-dependent AP shape change and

the highest proportion of FRD parameters. In the HR model, the

Table 1. Coefficient of determination (R2) for linear
regression models.

Model R2, Slow R2, Fast

FMG 0.9839 0.9035

HR 0.9103 0.8159

LR09 0.85241 0.97246

LR91 0.9732 0.9817

TNNP04 epi 0.99257 0.9945

TNNP04 mid 0.9918 0.9864

TNNP04 endo 0.9934 0.99466

TP06 epi 0.99619 0.9929

TP06 mid 0.9944 0.97871

TP06 endo 0.9969 0.99229

OVVR epi 0.9853 0.9882

OVVR mid 0.9355 0.9878

OVVR endo 0.9773 0.9917

For each model and pacing rate, the accuracy of the linear regression is
quantified by the coefficient of determination (R2) between the action potential
duration values obtained through numerical integration (action potential
model) and those computed by matrix multiplication (regression model). The
mean R2 is 0.968 with a range of 0.816–0.997.
doi:10.1371/journal.pcbi.1003543.t001

Overcoming Reverse Rate-Dependence

PLOS Computational Biology | www.ploscompbiol.org 4 March 2014 | Volume 10 | Issue 3 | e1003543



rate-dependent AP shape change is largely due to the transient

outward current (Ito), which is greater at slow pacing and creates

the dramatic phase 1 notch seen at this rate. This effect is present

but less prominent in the FMG model. Therefore, we hypothe-

sized that blocking Ito in either model would: (1) decrease the rate-

dependent AP shape change, and, consequently, (2) reduce the

model’s capacity for forward rate dependence. We evaluated rate-

dependent behaviors in the two models after blocking Ito (75%

reduction of maximal conductance). This attenuated the phase 1

notch in either model, thereby resulting in a smaller rate-

dependent change in AP shape (Figure S3A). This also resulted

in a smaller percentage of FRD parameters in either model (Figure

S3B). Thus, differences in Ito contribute substantially to differences

between models.

Individual parameters exhibit consistency between
models

To examine the consistency of specific predictions across

models, we performed two analyses. For these we selected a

subset of parameters that are present in almost all models and that

correspond to currents generally thought to be important in

determining APD. Figure 6 illustrates the rate dependence of these

parameters across all the models tested. For this display we do not

compare magnitudes of rate dependence across models but instead

show whether each parameter is RRD (red), FRD (blue), or non-

rate dependent (NRD) (white) in each model. The results show

that altering either the magnitude of slow delayed rectifier current

(GKs) or the speed of its gating (pxs) produces RRD prolongation,

suggesting that therapeutic targeting of this current may produce

undesirable effects. In contrast, perturbing the magnitudes of

either inward rectifier K+ current (GK1) or the Na+-K+ pump

(KNaK) could produce desirable FRD behavior, although this was

not true in all models.

For the second analysis we ranked the parameters in each model

from the most RRD parameter to the most FRD parameter. We

then averaged the relative rank of these parameters across models

to generate a rate-dependence consensus list (Table 2). This largely

confirms the visual impression of Figure 6, that parameters related

to IKs produce RRD behavior whereas IK1 and INaK may represent

legitimate targets for producing FRD prolongation of the AP.

Figure 3. Action potential parameter sensitivity rate dependence. (A) Sensitivities (B) for hypothetical parameters a–d indicate how much
each parameter influences the APD. Black bars represent that parameter’s influence at slow pacing, and blue bars its influence at fast pacing. (B) BRD is
calculated from sensitivities B for each parameter in (A) as described in Methods. Positive BRD indicates a parameter that lengthens the APD with
reverse-rate dependence (parameter c), negative BRD indicates a parameter that lengthens the APD with forward rate dependence (parameters a and
d), and near-zero BRD indicates neutral rate dependence (parameter b). (C) BRD for parameters in the TP06 model, derived from parameter sensitivities
calculated from a population of 600 virtual myocytes. (D) Single perturbation simulation results for parameters GKs and GCaL (slow delayed rectifier K+

channel and L-type Ca2+ channel conductance, respectively). Decreasing GKs increases the APD with reverse rate dependence, and increasing GCaL

increases the APD with forward rate dependence, as predicted by each parameter’s BRD (C).
doi:10.1371/journal.pcbi.1003543.g003

Overcoming Reverse Rate-Dependence

PLOS Computational Biology | www.ploscompbiol.org 5 March 2014 | Volume 10 | Issue 3 | e1003543



Simulations uncover mechanisms underlying rate-
dependent perturbations

To understand how a given perturbation affects the APD at

different rates, we need to examine not only the ionic current

directly affected by the perturbation, but all of the other ionic

currents in the system. Each current may be indirectly affected by

a perturbation, through changes to the AP shape or changes in

intracellular ion concentrations, and the sum of their resulting

behavior will produce the observed changes in APD.

We developed an analysis method to identify which indirect

effects of a perturbation may account for rate dependent AP

prolongation. This involved integrating each current from the

beginning to the end of the AP under four conditions: with and

without the perturbation, at fast and slow rates. The change in the

integrated current is denoted DQ. If a perturbation changes an

integrated current by the same amount at both fast and slow rates,

then the current does not contribute substantially to the

perturbation’s rate dependence. However, if the change in the

integrated current varies with rate, then the current may underlie

the resulting rate dependence of how the perturbation affects the

APD. For example, consider the hypothetical case illustrated in

Figure 7. If a perturbation causes a large increase in an inward

current, but exclusively at the slow rate, then this current would

prolong the APD only at the slow rate, and contribute to reverse

rate dependence. Thus by comparing the DQ at slow and fast

rates, we can determine whether a particular current contributes

to rate dependence.

Using this analysis, we were able to identify indirectly-affected

currents that are responsible for rate-dependent behavior. In the

TP06 epicardial model, we investigated three ionic current

perturbations that prolong the APD: an increase in ICaL current

density (increased GCaL), slowing of IKs activation (decreased pxs),

and shifting ICaL activation to more negative membrane potentials

(decreased Vd). All of these changes prolong the APD, but each

with a different rate dependence. Increased GCaL produces FRD

changes, slower activation of IKs produces RRD changes, and

shifting ICaL activation produces rate-neutral changes. To probe

the mechanisms behind these differing rate dependencies, we

examined the secondary effects of each perturbation by calculating

DQ for each current (Figure 8A). This analysis revealed that IKs in

particular displays distinctive rate-dependent behavior with each

perturbation, indicating that changes in IKs contribute to the rate

Figure 4. Inter-model comparison of APD parameter sensitivity rate dependence. Ventricular cell models were found to vary greatly in rate
dependencies, which is apparent from variations in BRD plot structure. (A) BRD for the LR09 guinea pig model, showing largely RRD parameters. (B)
BRD for the HR canine model, showing a majority of FRD parameters. BRD plots for all models studied can be found in Figures S1–S13 in Text S2.
doi:10.1371/journal.pcbi.1003543.g004
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dependence of these specific perturbations. Thus, we examined

changes in IKs time course produced by the different perturbations

to gain insight into underlying mechanisms.

Slowing the activation of IKs (decreasing pxs) reduced total IKs

more at slow pacing compared to fast, causing greater AP

prolongation at slow than at fast (Figure 8B, middle). This

indicates that the RRD effects of slowing IKs activation depend

directly on the rate-dependent behavior of IKs itself. Shifting the

voltage dependence of ICaL activation, a NRD perturbation,

caused a small increase in IKs, but the magnitude of the increase

Figure 5. Rate-dependent change in AP contour corresponds to capacity for forward rate-dependence. (A) AP traces for a model with
mostly RRD parameters (LR09) and a model with mostly FRD parameters (HR). Each trace was calculated after pacing to steady state at each rate. For
each model, the fast AP was rescaled with respect to time such that APDslow = APDfast, to isolate AP contour changes independent of APD changes.
Rate-dependent contour change is quantified by the root mean square deviation (RMSD) between the rescaled AP traces at fast and slow pacing. (B)
A strong correlation (R2 = 0.8366) was observed between the RMSD and the percentage of model parameters that are FRD.
doi:10.1371/journal.pcbi.1003543.g005

Table 2. Parameter rate dependence consensus list.

Parameter Corresponding current Average rank

pxs IKs 0.13

GKs IKs 0.25

pf ICaL 0.35

GKr IKr 0.36

Vd ICaL 0.42

GCaL ICaL 0.52

KNCX INCX 0.53

Gto Ito 0.55

GNa INa 0.56

KSERCA SERCA pump 0.56

Vm INa 0.57

Va,to Ito 0.63

GK1 IK1 0.68

KNaK INaK 0.70

To obtain a consensus ranking of rate dependence, parameters within each
model were ranked from the most FRD to the most RRD, and this ranking was
normalized by the number of parameters per model and averaged across
models. Parameter with consensus ranks close to 0 or 1 are consistently RRD or
FRD, respectively, across models.
doi:10.1371/journal.pcbi.1003543.t002

Figure 6. APD parameter sensitivity rate dependence in 13
ventricular myocyte models. For 14 selected parameters that were
common to most myocyte models, the heat map shows the rate
dependence of these parameters (BRD) across the various models. BRD$
0.03 is considered reverse rate dependent (red), BRD#20.03 forward
rate dependent (blue), and 20.03,BRD,0.03 non-rate dependent
(white). Epi = epicardial, mid = midmyocardial, and endo = endocardial.
doi:10.1371/journal.pcbi.1003543.g006
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was similar at the two rates (Figure 8B, right). Thus, changes in IKs

in this case do not contribute to rate-dependence, consistent with

the overall NRD effects of this perturbation. In contrast,

increasing GCaL led to an indirect increase in IKs, but with

marked rate dependence (Figure 8B, left). Because IKs increases

dramatically more at slow pacing than at fast, this current

therefore contributes to the forward rate dependence of enhanced

GCaL.

We tested the hypothesis that changes in IKs underlie the

forward rate dependence of increased GCaL through a ‘‘double

perturbation analysis.’’ This was done by conducting simulations

in which we perturbed ICaL as before, but also blocked IKs. Indeed,

50% block of IKs attenuated the forward rate dependence of ICaL

enhancement, and 80% block actually reversed it, resulting in

RRD changes to the APD (Figure 8C). Hence, rate-dependent

changes in IKs are critical for the FRD behavior of enhancing

GCaL.

Discussion

In this study, we have systematically evaluated rate dependent

AP prolongation in silico. We analyzed ventricular myocyte models

from multiple species and cell types. Our evaluation involved a

multivariate approach to parameter sensitivity analysis [15,24,26–

30] that allowed us to both: (1) make global observations in the

context of many possible variations, and (2) comprehensively assess

all major ionic currents at once. The procedure included a wide

range of parameters, representing not only conductances and rates

of ion transport but also gating kinetics and voltage dependencies

of major ion channels. Through this approach we are able both to

generate specific predictions regarding mechanisms of rate-

dependent AP prolongation in particular cell types, and to

develop more general hypotheses about differences between

models and between cell types.

General principles of AP prolongation uncovered
through comparisons between models

At a broad level, a primary finding is that the capacity for

forward rate dependence correlates with the extent of rate-

dependent changes in the AP contour. Models that exhibit small

changes in AP shape with pacing rate have few FRD parameters

whereas those that display dramatic changes in AP shape have

many more possibilities for FRD perturbations. Further analysis

suggests that transient outward current, Ito, is a major factor

underlying the differences between models. For instance, in either

the HR or the FMG canine model [21–22], blocking Ito

attenuated, in parallel, both rate dependent changes in AP

contour and the number of FRD parameters. Similarly, models of

guinea pig myocytes [17,23], which lack Ito, tended to show small

rate dependent changes in AP shape and to have few FRD

parameters. Finally, in all three human models [18–20], endocar-

dial cells had both the lowest Ito and the fewest FRD parameters

compared to mid-myocardial and epicardial myocytes. These

observations indicate that the relationship between AP shape

change and capacity for forward rate dependence is a general

principle, and that Ito contributes prominently to differences

between models.

The large differences seen between models can both provide

new insight into physiological differences and identify discrepan-

cies that need to be resolved, as several recent studies have

emphasized [31–33]. Most differences between models seem to

reflect true physiological differences, such as between canine and

guinea pig myocytes, with prominent and minimal Ito, respective-

ly. On the other hand, differences between models representing

the same species and tissue type indicate possible inaccuracies in

specific model formulations. These differences can be seen in both

global measures of behavior, such as the percentage of FRD

parameters, and in specific predictions. For example, block of IKr

had opposite rate-dependent effects in TP06 compared to OVVR.

IKr block was the most RRD perturbation in OVVR (Figures S9–

S11 in Text S2), but slightly FRD in TP06 (Figures S6–S8 in Text

S2). These findings illustrate that results from a single model

should be interpreted cautiously, and they demonstrate the

strengths of identifying predictions that are consistent across

several models (Figure 6, Table 2, and [26]).

The large set of FRD parameters we identified in several models

may appear at odds with the contention that reverse rate

dependence is intrinsic [11–14]. These results, however, are in

fact consistent with and complementary to those predictions.

Intrinsic reverse rate dependence has been explained as a

consequence of the inverse relationship between net membrane

current and APD, whereby a change in membrane current will

have a smaller effect on shorter compared with longer APs due to

the relative differences in repolarization velocity [11,14]. In the

derivation of this relationship, APD changes with rate, but the AP

contour is not otherwise modified. Moreover, simulations to

validate intrinsic reverse rate dependence consider the injection of

current rather than alterations to any specific ion channels [11,14].

It is thereby a generic property of the AP. However, this property

does not preclude rate dependencies of individual currents or of

the effects of perturbations to individual currents. Differing rate-

dependent behavior in different currents creates the possibility for

non-RRD APD prolongation despite a baseline RRD response.

Furthermore, dramatic rate-dependent behavior in individual

Figure 7. Quantitative contributions of individual ionic cur-
rents to AP rate dependence. (A) Hypothetical APs before (solid)
and after a perturbation that causes RRD prolongation of the AP. (B) A
specific hypothetical ionic current under the conditions shown in (A).
This inward (i.e. depolarizing) current increases with the perturbation at
the slow rate (gray shaded area) but barely changes at the fast rate
(blue shaded area). (C) DQ is the integral of the difference in current
between control and perturbation (shaded areas in (B)) in units of pC/
nF. The large, negative DQ at slow pacing (gray bar) indicates that this
current will prolong the AP at this rate, whereas the small, negative DQ
at fast pacing (blue bar) indicates a minimal alteration of the AP at this
rate. This current will therefore contribute to RRD AP prolongation.
Figure S4 shows additional hypothetical examples of DQ that can
contribute to either RRD or FRD behavior.
doi:10.1371/journal.pcbi.1003543.g007
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currents is likely to manifest as rate-dependent changes in the AP

contour. It follows that the rate-dependent change in AP contour

and the capacity for forward rate-dependence should be strongly

correlated, as we found (Figure 5B). We can therefore extend and

refine previous ideas [14] by noting that intrinsic reverse rate

dependence can in principle be overcome if rate-dependent

changes to the AP contour are sufficiently large.

Specific mechanistic predictions
At a more mechanistic level, our simulations have generated

new predictions about how particular perturbations lead to rate-

dependent changes in APD. Although these predictions are mostly

specific to particular models, they nonetheless offer new mecha-

nistic insight. For instance, we found that enhanced ICaL density

produced FRD AP prolongation in the TP06 epicardial model. By

systematically examining the behavior of each major current after

this perturbation (DQ analysis), we were able to identify the

indirect, rate-dependent increase in IKs as the basis of the forward

rate dependence (Figure 8). Closer examination of the APs

revealed that increased ICaL raises plateau voltage at slow pacing

only (Figure S1), resulting in the greatly increased activation of IKs

at slow pacing. While this result may be model-specific, it

demonstrates two important points. First, rate-dependent changes

in plateau voltage may be an indirect strategy to achieve forward

rate dependence via activation of IKs. Second, more generally, a

global analysis of parameter sensitivities followed by more fine-

grained simulations is an efficient method for elucidating novel

and potentially counterintuitive mechanisms [15,26,30].

Parameters relating to IKs were the most consistently RRD

across models; slowed activation of current (decreased pxs) and

smaller maximal conductance (decreased GKs) ranked as the first

and second most RRD perturbations, respectively, in a consensus

list based on results from all models (Table 2). We investigated

slowed IKs activation in the TP06 model and found that, at slow

Figure 8. Ionic current changes underlying rate dependence of perturbations in the TP06 epicardial model. (A) DQ analysis of major
ionic currents under 3 perturbations: increase in L-type Ca2+ channel maximal conductance, GCaL (271% of baseline, a FRD perturbation), slowed
activation of the slow delayed rectifier K+ channel (38% of baseline pxs, a RRD perturbation), and a negative shift in the voltage dependence of L-type
Ca2+ activation (5 mV decrease in Vd, a NRD perturbation). DQ quantifies the change in current flux with the perturbation, and is calculated at fast and
slow pacing. (B) Slow delayed rectifier current (IKs) under each perturbation, at fast and slow pacing. (C) APD under increased GCaL (271% baseline)
and varying degrees of IKs block. The APD rate dependence of ICaL enhancement is reversed by simultaneous block of IKs, as predicted by DQ analysis
(A).
doi:10.1371/journal.pcbi.1003543.g008
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pacing, this perturbation resulted in considerably smaller peak IKs

and delayed repolarization (Figure 8B). At fast pacing, however,

this perturbation caused an immediate rise in IKs at the beginning

of the AP (Figure 8B), and this tempered the effect of the slower

activation, resulting in less AP prolongation at this rate. This

occurred because slower IKs activation simultaneously retarded IKs

deactivation. This in turn led, at fast rates, to accumulation of

channels in the open state. This particular effect is similar to rate-

dependent changes in IKs that are proposed to occur in some

[9,34] but not all species [35–37]. These observations, combined

with the known role of IKs in repolarization reserve [26,38–39]

and its heightened importance in repolarization during b-

adrenergic stimulation [38,40–43], warrant caution when target-

ing this current therapeutically.

Experiments to gain additional insight suggested by
these simulations

The substantial capacity for forward rate dependence seen in

this study appears to conflict with experimental data examining a

wide range of pharmacologic agents in multiple species, which

support the conclusion that reverse rate dependence is an almost

universal response to diverse APD-modifying perturbations [11–

13]. As noted above, rate-dependent changes in AP contour are

the key determinant of differences in forward rate dependence

capacity between models. Consistent with this idea, in the study

that proposed intrinsic reverse rate dependence [11], canine AP

recordings show little change in shape with pacing rate, and

recordings at a slow rate (0.2 Hz) lack the prominent phase 1

notch that we observed at the same pacing rate in the HR and

FMG models. A possible reason for the discrepancy could

therefore be that experimental recordings were primarily from

endocardial myocytes whereas the HR [22] and FMG [21] models

were developed to represent epicardial and midmyocardial

myocytes, respectively. Prior experimental studies show that

canine epicardial cells exhibit larger rate-dependent changes in

AP contour than endocardial cells [44], and our simulations

predict that reverse rate dependence would be less universal in

these myocytes. These findings point to the need for additional

experiments to determine whether the degree of intrinsic reverse

rate dependence varies between cells isolated from different

transmural layers.

The comparison of particular parameters between models

(Figure 6) and the consensus list of parameter rate-dependences

(Table 2) suggest additional targets that should be tested to

determine whether they produce FRD or RRD AP prolongation.

In particular, the simulations suggest that inhibition of either IK1

or INaK can produce FRD behavior in several models. The high

rank of Na+-K+ ATPase is consistent with recent studies

demonstrating the importance of this current in determining

rate-dependent AP shortening in ventricular myocytes [20,45], as

recently reviewed [46], but the potential for therapeutic interven-

tions to produce beneficial AP prolongation has not been

thoroughly explored. These examples again illustrate how a

systematic analysis of models can suggest novel and perhaps

unexpected experimental tests.

Limitations and future work
The limitations of this study offer suggestions for future research

that can provide additional insight into rate-dependent AP

prolongation. One limitation is that our regression-based sensitiv-

ity analysis implicitly assumes that linear relationships between

parameters and model outputs are reasonably accurate. Although

our calculations demonstrated that this approximation describes

the behavior of our virtual populations quite well (Table 1),

non-linear effects may need to be considered when simulating

either particular parameter combinations or more extreme

changes to parameters. A second limitation is that we examined

isolated cell models at steady-state pacing. This strategy allowed us

to elucidate a fundamental relationship between the AP contour

and the propensity for FRD or RRD changes. To examine how

perturbations influence the rate-dependence of proarrhythmia

biomarkers such as dispersion of repolarization between transmu-

ral layers, simulations would have to be performed with a

multicellular model. For instance, Sadrieh et al. used a similar

sensitivity analysis approach to examine how ionic conductances

influence metrics derived from a simulated pseudo-electrocardio-

gram [47]; this strategy can be extended to search for perturba-

tions that affect tissue-level biomarkers with desirable rate

dependence.

A third limitation is that we did not consider the effects of b-

adrenergic stimulation, which almost always accompanies a

physiological increase in heart rate. In addition to increasing

heart rate via its effects on the sinoatrial node, b-adrenergic

stimulation modulates several ionic currents in ventricular cells

[43,48]. This alters the rate dependence of the APD in a manner

that is dependent on AP contour and the rate dependencies of

specific underlying currents [49–50]. Therefore, the rate-depen-

dent effects of at least some perturbations, particularly those that

alter IKs and ICaL, are likely to change in the context of b-

adrenergic stimulation.

Fourth, we have modeled each perturbation as either a decrease

in a maximum rate of ion transport, a voltage-independent change

in gating kinetics, or a shift in steady-state activation or

inactivation along the voltage axis. We have not considered the

fact that the interaction of a drug with a channel may itself be rate

dependent due to the fact that drugs bind to some channel states

more strongly than to other states [51–52]. In future studies it

would be interesting to investigate how these effects conspire with

the cellular-level effects we have identified to make particular

drugs either more FRD or more RRD.

Despite these limitations, our study provides novel insight into

the clinically-relevant phenomenon of RRD AP prolongation in

ventricular myocytes. FRD prolongation can be produced if a

perturbation causes indirect effects to other ionic currents that

have appropriate rate-dependent properties. Additionally, a

myocyte’s capacity for FRD prolongation depends on the extent

to which its AP contour changes with rate. More generally, the

study illustrates the benefits of the computational approach we

have taken. As this work and other recent studies have shown,

significant advantages can be gained by evaluating parameter

sensitivities thoroughly [47,53–54] and by comparing results

from multiple models [33,52]. Examining models compre-

hensively provides a wealth of predictions and allows for the

identification of counterintuitive behaviors. Moreover, systematic

comparisons between models can provide novel insights into

mechanisms underlying divergent behaviors. Such modeling

strategies will undoubtedly lead to additional breakthroughs in

the future.

Methods

Models and software
We conducted the rate-dependent parameter sensitivity analysis

in 7 ventricular cell models, representing human, canine, and

guinea pig myocytes. The complete set of models examined is as

follows: ten Tusscher, Noble, Noble & Panfilov (TNNP04) [18],

ten Tusscher & Panfilov (TP06) [19], O’Hara, Virag, Varro, &

Rudy, (OVVR) [20], Fox, McHarg, & Gilmour (FMG) [21],
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Hund & Rudy (HR) [22], Luo & Rudy Phase 1 (LR91) [23], and

Livshitz & Rudy (LR09) [17]. Additionally, in each human model

(TNNP04, TP06, and OVVR), we conducted the analysis on each

of the 3 myocardial transmural tissue layers: epicardial, mid-

myocardial, and endocardial. Model formulation changes that

differentiate tissue layers include several parameter baseline values

and channel gating variables (see Tables S6c, S7c, and S8c in Text

S1). All models were implemented in MATLAB (The MathWorks,

Natick, MA) and numerically integrated using a solver for stiff

systems (ode15s).

Stimulation protocol
At the beginning of each simulation, the cell was allowed to

rest for 30–60 s before the stimulus was applied at regular

intervals (2 Hz or 0.2 Hz) until steady state was reached. Pacing

rate and model formulation could have dramatic effects on the

number of stimuli required to reach steady state. Text S1 describes

the algorithms that were used to determine steady state conditions

in each model. Table S1 in Text S1 describes how many

stimuli were necessary to reach steady state conditions in each

model.

Multivariable regression analysis
To determine the influence of each parameter on the action

potential duration (APD), we performed a multivariable regression

analysis, as described elsewhere [15,25]. For each model at each

pacing rate, we ran 300 trials, each with a different set of randomly

varied parameters. Three categories of parameters were varied: (1)

maximum conductance and rates of ion transport (G and K), (2)

‘‘p’’ values that scale gating time constants, and (3) voltage

shifts, which determine the voltage dependencies of gating.

Definitions of all parameters and baseline values can be found in

Tables S2–S8 in Text S1. For parameter types ‘‘G’’, ‘‘K’’, and

‘‘p,’’ each random set was generated by multiplying the baseline

value of each parameter by a log-normally distributed pseudoran-

dom scale factor. The scale factors had median of 1 and the log-

transformed scale factors had a standard deviation (s) of 0.1

(FMG, LR91, TNNP04, TP06) or 0.1823 (HR, OVVR, LR09),

meaning that about 95% of parameters are between 82–122%

(s= 0.1) or 70–144% (s= 0.1823) of control. Parameter type ‘‘V’’,

is an additive rather than a multiplicative factor, so each

pseudorandom set was generated from a normal distribution with

a mean of 0 and a standard deviation of 2 mV. Trials that

displayed AP alternans, APs that failed to repolarize, or an APD

more than 3 standard deviations from the mean were removed

from the population before regression analysis. From each

population of 300, we removed an average of 3.38 trials

(range = 0–25).

The regression analysis generates a matrix of parameter

sensitivities, B, such that changes in model outputs (Y) can be

approximated as the change in parameters (X) times B (i.e.,

Ŷ = XB<Y). For each parameter, if B is positive, increasing the

parameter prolongs the APD, and if B is negative, decreasing it

prolongs the APD. Bfast and Bslow are the parameter sensitivities

calculated at fast and slow pacing. When the regression is initially

performed, parameter sensitivities are defined relative to the

standard deviation of the log-transformed output, i.e. the

variability in APD across the simulated population. In order to

directly compare results obtained with fast and slow pacing, we

scale the values in Bfast by the ratio of the two output standard

deviations. In other words, each value is multiplied by sAPD,fast/

sAPD,slow, and this allows for a direct comparison between the

parameter sensitivities obtained at the two rates.

Rate dependence of parameter sensitivity and AP
morphology

A vector that we call BRD quantifies the rate dependence how

each parameter influences APD. If Bslow and Bfast have the same

sign,

BRD~ Bslowj j{ Bfast

�� �� ð1Þ

Parameters for which |Bslow|.|Bfast| have a larger effect on the

APD at slow pacing, and thus are RRD and are assigned a positive

BRD. Parameters for which |Bslow|,|Bfast| have a larger effect

on the APD at fast pacing, and thus are FRD and are assigned a

negative BRD.

If Bslow and Bfast have opposite signs,

BRD~{ Bslow{Bfast

�� �� ð2Þ

All parameters with opposite signs of Bslow and Bfast are assigned

a negative BRD value because they can be perturbed in such a

way as to lengthen the APD at fast but not at slow pacing. For

example, if Bfast is positive and Bslow is negative, increasing this

parameter will lengthen the APD at fast pacing and shorten it at

slow. Conversely, if Bfast is negative and Bslow is positive,

decreasing this parameter will lengthen the APD at fast pacing

and shorten it at slow. In either case, it is possible to

achieve the desired outcome of preferential AP prolongation at

fast pacing.

The threshold for rate dependence was set at 0.01, so BRD.

0.01 was considered RRD, BRD,20.01 was considered FRD, and

20.01 #BRD#0.01 was defined as NRD.

To quantify rate-dependent AP morphology change, we

calculated the root mean square deviation (RMSD) between the

AP time-course at fast and at slow pacing for each model, as

described in Text S1. AP time courses were obtained under

baseline, steady-state conditions. To directly compare the shorter

APs obtained at fast rates with the longer APs seen at slow rates,

fast AP time courses were rescaled with respect to time prior to the

RMSD calculation. The two waveforms compared therefore had

identical APD.

Calculation of parameter rate dependence consensus

rank. For each model, parameters were ranked based on BRD.

First, each parameter was given an integer rank from 1 to the

number of parameters, starting from the highest BRD value (the

most RRD) to the lowest (the most FRD). This was then

normalized by the number of parameters in that model, so the

most FRD parameter had a ranking of 1, and the most RRD

parameter had a value close to 0. To calculate consensus values,

the average of the normalized ranks was calculated for each

parameter (Table 2).

Calculation of DQ. To understand the mechanisms of rate-

dependence in AP prolongation, we need to examine both the

direct and indirect effects of perturbation. Each perturbation, or

variation in a parameter, will affect the APD both directly,

through changes in the current governed by that parameter, and

indirectly, through changes in other currents produced by

differences in membrane potential or intracellular ion concentra-

tions. To determine which indirect effects of a perturbation may

account for rate-dependent prolongation of the AP, we integrated

each of the underlying currents from the beginning to the end of

the AP under four conditions: with and without the perturbation,

at slow and at fast pacing. This integral, termed Q, represents the

amount of electrical charge carried by a particular current over the

course of the AP.

Overcoming Reverse Rate-Dependence

PLOS Computational Biology | www.ploscompbiol.org 11 March 2014 | Volume 10 | Issue 3 | e1003543



Q~

ðtrepol

tstim

I dt ð3Þ

Positive Q indicates net outward current, and negative Q indicates

net inward current. For a given perturbation, we calculated DQ,

the amount by which the integrated current changes with that

perturbation:

DQ~Qperturbation{Qcontrol ð4Þ

Currents with positive DQ contribute to a decrease in APD

whereas currents with negative DQ contribute to an increase in

APD. For instance, positive DQ would be calculated from an

outward current that increases in magnitude with a perturbation,

and this change would contribute to membrane repolarization and

a shorter APD. In contrast, negative DQ would be calculated from

an outward current that gets smaller with a perturbation, thereby

contributing to AP prolongation. Additional examples are

illustrated in Figures 7 and S4. If a perturbation changes an

integrated current by the same amount at fast and slow rates, that

current is considered neutral, i.e. not contributing to rate

dependence. However, if a perturbation changes an integrated

current by different amounts at different rates, that is, DQ changes

with rate, the current may contribute to the rate dependent effects

of the perturbation. We used this analysis to determine ionic

currents contributing to different rate-dependence behaviors in the

model simulations (Figures 7 and 8).

Supporting Information

Figure S1 Validation of specific parameter rate depen-
dence categorization in TP06 epicardial model. (A) BRD of

parameters pxs, GKs, Vd, GKr, and GCaL. (B) APs when each

parameter in (A) is individually perturbed at slow (0.2 Hz) and fast

(2 Hz) pacing. (C) APD as a function of the degree of perturbation

for each simulation in (B).

(TIF)

Figure S2 Rate dependence of AP contour in 13
ventricular myocyte models. (A) Steady-state AP traces at

slow (0.2 Hz, black) and fast (2 Hz, cyan) pacing under baseline

conditions. The fast AP is rescaled with respect to time such that

APDslow = APDfast to isolate AP contour changes independent of

APD. (B) Root mean square deviation (RMSD, in mV) calculated

from each pair of APs in (A).

(TIF)

Figure S3 Ito block in canine models reduces rate-
dependent AP shape change and forward rate depen-

dence capacity. (A) Steady state AP traces at slow (0.2 Hz,

black) and fast (2 Hz, cyan) pacing under baseline conditions

(left) and after 75% Ito block (right). AP traces are rescaled with

respect to time as in Figures 4 and S15. Rate-dependent AP

shape change is reduced by Ito block in both models. (B)

Parameter sensitivity analysis of canine models under Ito block

demonstrates a reduction in the capacity for forward rate

dependence, consistent with the linear relationship defined by

other models (non-Ito block data points and linear fit repeated

from Figure 5).

(TIF)

Figure S4 Illustration of calculation of quantitative
contributions of individual currents to AP rate depen-
dence. Possible responses of a hypothetical, specific current to a

perturbation at fast and slow pacing and the corresponding DQ.

(A) Current responses to a perturbation that contribute to RRD

APD-prolongation include an increase in inward current (I1) or

decrease in outward current (I2) that is greater at slow pacing, or a

decrease in inward current (I3) or increase in outward current (I4)

that is greater at fast pacing. (B) Current responses to a

perturbation that contribute to FRD APD-prolongation include

a decrease in inward current (I5) or increase in outward current

(I6) that is greater a slow pacing, or an increase in inward

current (I7) or decrease in outward current (I8) that is

greater at fast pacing. (C) Current responses that do not change

with rate (I9–I12) do not contribute to rate-dependent APD-

prolongation.

(TIF)

Text S1 Supplemental methods and tables.

(DOC)

Text S2 Parameter sensitivity values (B) and rate
dependence (BRD) in 13 ventricular myocyte models.
(Figure S1 in Text S2) LR91. (Figure S2 in Text S2) LR09.

(Figure S3 in Text S2) TNNP04 epicardial. (Figure S4 in Text
S2) TNNP04 midmyocardial. (Figure S5 in Text S2) TNNP04

endocardial. (Figure S6 in Text S2) TP06 epicardial. (Figure
S7 in Text S2) TP06 midmyocardial. (Figure S8 in Text S2)

TP06 endocardial. (Figure S9 in Text S2) OVVR epicardial.

(Figure S10 in Text S2) OVVR midmyocardial. (Figure S11
in Text S2) OVVR endocardial. (Figure S12 in Text S2) HR.

(Figure S13 in Text S2) FMG.

(DOC)
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11. Bányász T, Horváth B, Virág L, Bárándi L, Szentandrássy N, Harmati G,
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