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Abstract: Genome-Wide Association Studies (GWAS),
whole genome sequencing, and high-throughput omics
techniques have generated vast amounts of genotypic
and molecular phenotypic data. However, these data have
not yet been fully explored to improve the effectiveness
and efficiency of drug discovery, which continues along a
one-drug-one-target-one-disease paradigm. As a partial
consequence, both the cost to launch a new drug and the
attrition rate are increasing. Systems pharmacology and
pharmacogenomics are emerging to exploit the available
data and potentially reverse this trend, but, as we argue
here, more is needed. To understand the impact of
genetic, epigenetic, and environmental factors on drug
action, we must study the structural energetics and
dynamics of molecular interactions in the context of the
whole human genome and interactome. Such an ap-
proach requires an integrative modeling framework for
drug action that leverages advances in data-driven
statistical modeling and mechanism-based multiscale
modeling and transforms heterogeneous data from
GWAS, high-throughput sequencing, structural genomics,
functional genomics, and chemical genomics into unified
knowledge. This is not a small task, but, as reviewed here,
progress is being made towards the final goal of
personalized medicines for the treatment of complex
diseases.

Introduction

Drug discovery, as broadly practiced, suffers from several

shortcomings. First, although the vast amounts of genotypic and

molecular phenotypic data generated from Genome-Wide Asso-

ciation Studies (GWAS); whole genome sequencing (WGS) [1];

and high-throughput techniques such as RNA-seq [2], ChIP-seq

[3], BS-seq [4], and DNase-seq [5] provide an unprecedented

opportunity to understand the etiology of complex diseases and to

discover safe and potent personalized medicines, to date these data

have not been fully explored to improve the effectiveness and

efficiency of drug discovery. Second, modern target-based drug

discovery is characterized as a one-drug-one-gene paradigm, and

has been of limited success in attacking complex diseases. Third,

phenotypic screens and cell-based assays generate a large number

of active compounds relevant to disease treatment, but give few

hints as to what their molecular targets are [6–9]. As a result of

these shortcomings, the cost to launch a new drug is typically more

than US$1 billion, and that cost continues to increase, with only

around one-third of drugs in phase III clinical trials reaching the

market. The emerging field of systems pharmacology is addressing

these shortcomings and beginning to change the way we think

about drug action in multigenic, complex diseases [10–15].

As illustrated in Figure 1, a drug commonly not only interacts

with its intended molecular target (on-target) but also binds to and

affects other targets (off-targets) that are often unknown [16]. Each

drug–target interaction modifies the conformational dynamics of

the target structure and results in the alternation of the functional

states (e.g., activation versus inhibition). Consequently, the

changing conformational and functional states of both on-targets

and off-targets directly or indirectly affects other molecular

components and their interactions through the interplay of

complex signal transduction, gene regulation, and metabolic

networks that collectively mediate the system-level response to

the drug, leading to either therapeutic or adverse effects [10]. A

variety of genetic, epigenetic, and environmental factors define the

initial pathophysiological state of the molecular components and

their interactions, which then dynamically evolve when perturbed

by a drug. Stated another way, both target- and non-target

associated genetic and/or epigenetic alternations could impact the

drug response. In addition to inherited genetic and/or epigenetic

factors, cellular, tissue, and organism environments may have

significant effects on drug efficacy and side effects [17–21]. For

example, tumor–stromal interactions play key roles in anticancer

drug sensitivity [22].

The underlying hierarchical organization of living organisms

makes it essential to model drug actions from DNA to gene, to

protein and its molecular ensemble, to cell, to tissue, to organ, to

whole organism, and to population. Data-driven, network-based

association studies and physical- or mathematical-based multiscale

modeling are two pillars of the existing paradigm of systems

pharmacology. Network-based association studies provide a

promising avenue to realize personalized medicine. The
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reconstruction and analysis of genome-scale molecular interaction

networks, including protein–protein interactions; protein–nucleic

acid interactions; epistasis interactions, as found in signal

transduction; gene regulation; and metabolic networks, have

emerged as a powerful framework to integrate heterogeneous

DNA variation and omics data in associating genotypes with

phenotypes under various environmental and drug-induced

conditions [16]. By taking advantage of the progress in network

and systems biology, mechanism-based multiscale modeling that

spans different temporal and spatial scales has already been able to

predict genotype-phenotype associations in a whole cell model of

Mycoplasma genitalium [23] and quantitatively simulate drug actions

at the organism level [24].

However, several challenges remain in the application of

systems pharmacology. First, data-driven network-based associa-

tion studies primarily rely on sophisticated statistical techniques.

Although great efforts have been made to address the n%p

problem, where the number of observations n is much smaller than

the number of variables or parameters p, the power of these

statistics-based techniques remains limited if sample sizes are

small. The ‘‘causal’’ relationships inferred from these methods are

simply mathematical correlations. They may not provide biolog-

ical insight into the underlying molecular mechanisms that enable

the development of actionable models for understanding the drug-

response phenotype. Second, the existing paradigm of multiscale

modeling is to isolate subsystems (or parameters) from a phenotype

space. These subsystems are first studied independently and then

combined to infer their synergistic behavior. It is noted that the

subsystem itself can be considered as a phenotype. Thus, this

isolation/combination process could be multilevel and recursive.

However, current organism-level physiological models are often

too complex to be supported by existing data and computational

power. The mathematical model is often nonidentifiable; that is,

there is not a unique parameter set to explain the experimental

observations [25]. On the other hand, physical models are often

too computationally intensive to readily model the global behavior

of the physiological system. Fundamentally, isolated parameter

space may be not sufficient to ‘‘identify and elucidate the guiding

principles of control and communication defining the behavior of

an organism’’ [11]. Such a guiding principle is fundamental to

reliably predict human behavior by scaling up animal models.

Third, the enormous investment in molecular libraries and target-,

cell-, and organism-based high-throughput compound screening

has generated a massive amount of chemical genomics data [26–

28]. There is no doubt that these data are invaluable in

understanding how drugs work at the molecular, cellular, and

organismal levels. However, this arguably most important dataset

for systems pharmacology has not been fully incorporated into

either the network-based association studies or multiscale model-

ing frameworks, partly due to a lack of computational tools to map

bioactive chemical space to its global target and pharmacological

space. Lastly, it has been recognized that one of the critical hurdles

in multiomics data integration and multiscale modeling is the lack

of a common language and standard to annotate, exchange, reuse,

and update computational models [29–31]. Due to the dynamic,

complex, and multiscale nature of datasets and computational

models needed to simulate a drug response under diverse genetic,

epigenetic, and environmental conditions, an open and reusable

conceptual framework that is able to link multilevel biological

concepts and relationships is needed to realize the promise of

community-driven predictive modeling of human physiology and

pathology [32–35].

Although macromolecular structure is at the foundation of any

molecular interaction, adding the structural and associated

energetics and dynamics of the interplay between drugs, biomo-

lecular targets, genetic and epigenetic variations, and environ-

mental factors has not been fully exploited in systems pharmacol-

ogy to date. A global three-dimensional macromolecular structure

view of the biological system under study may offer new insights to

address the aforementioned challenges. Stated more explicitly, a

mechanistic understanding of how individual molecular compo-

nents work together in a system and how the molecular

interactions are affected and adapted to genetic and epigenetic

variants and environmental perturbations requires knowledge of

the underlying molecular structures and their conformational

dynamics [36]. The information derived from the atomic details of

molecular interactions, in principle, will enhance the power of

statistical inference in data-driven systems biology and alleviate the

current inability to fully characterize parameter space in

mathematical modeling, revealing the guiding principles of

systematic control and communication. Moreover, as a bridge to

connect chemical and genomics space, macromolecular structure

will allow us to link drugs, targets, and biological pathways,

thereby providing a common framework to correlate molecular

interactions with cellular functions. Leveraging the vast investment in

chemical genomics, functional genomics, structural genomics, and structure-

based drug discovery, together with efforts in systems pharmacology, may open a

new door to developing personalized medicines for complex diseases. Thus,

here we advocate and then justify a new paradigm of structural

systems pharmacology. Structural systems pharmacology will

model, on a genome scale, the energetic and dynamic modifica-

tions of macromolecules (proteins, RNA, DNA) by drugs. The

modeling accounts for genetic/epigenetic and environmental

factors as well as the subsequent collective effects on the

information flow in biological systems.

Some advances have been made in incorporating macromolec-

ular structure modeling into systems pharmacology. We review

them in this article. We demonstrate that integrative modeling of

drug action—from the structural and energetic basis of genome-

wide molecular interactions to the clinical outcomes at the

organism level—provides new insights into both therapeutic

effects and side effects while taking into account genetic

differences. In terms of scope, we first propose a hybrid modeling

approach to integrate mechanism-based multiscale modeling and

Figure 1. A network view of drug action. Dark blue lines represent
drug–target interactions. Green arrows are protein–protein interactions
or biological reaction pathways. Yellow nodes represent genes affected
by genetic variation. These variations will impact drug action by
changing the information flow of drug–target interactions in the
biological network, even when these genes are not themselves the
direct drug targets.
doi:10.1371/journal.pcbi.1003554.g001
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simulation with a data-driven systems biology approach and

suggest that macromolecular structure is an essential component to

glue diverse technologies together into a unified framework. We

demonstrate the potential of macromolecular structures in

enhancing the capability of systems biology through enriching

the connectivity of context-specific biological networks and

resolving non-identifiable parameter space during network simu-

lation. Then we focus on three aspects of structural systems

pharmacology that link genetic events and drug–target interac-

tions to the drug response phenotype. First, we focus on traditional

pharmacodynamics, now in the context of structural systems

pharmacology. Second, and in a similar fashion, we focus on

traditional pharmacokinetics in the context of structural systems

pharmacology. Third, we explore the role of structural systems

pharmacology to enhance the power of pharmacogenomics and

GWAS. Thus, this review complements several recent reviews that

focus on a network view of systems pharmacology and its

connection to phenotype [10–15]. Physical-based multiscale

modeling will not be covered in detail, since this is presented

elsewhere [37–40]. Ultimately, we argue, structural systems

pharmacology should be incorporated into the modeling and

simulation of macromolecular ensembles, tissues, and organisms.

Structural Systems Pharmacology—Structure-
Enabled Integrative Modeling of Drug Action

As stated in the introduction, several challenges remain in

systems pharmacology, limiting the ability to predictively model

complex drug action under the influence of diverse genetic,

epigenetic, and environmental factors. To address these challeng-

es, we suggest an integrative structural systems pharmacology

approach to understanding and predicting individual- and

context-specific drug response phenotypes. In this proposed

modeling framework, macromolecular structure is an indispens-

able component to link chemical space to genomic space, to

associate genotypes with phenotypes, and to account for the

environmental impact on biological systems. To demonstrate the

proposed model, we use the predictive modeling of drug-induced

arrhythmia as an example (Figure 2). Drug-induced arrhythmia is

a potentially life-threatening side effect that is a major concern in

clinical trials. QT interval prolongation that can be measured by

electrocardiogram (ECG) waves has been widely accepted as a

biomarker for arrhythmia. Both multiscale physical and mathe-

matical models [41–42] and network-based predictive models [43]

have been developed to predict QT interval prolongation with the

aim of predicting the drug side effect of arrhythmia at an early

stage (blue-colored box in Figure 2). However, several key

components are missing in these models. As a result, their

prediction power is limited. Given a new or existing drug, we at

least need to address the following issues in order to predict

whether or not the drug may induce arrhythmia under a specific

physiological context for a specific individual (Figure 2):

(1) Identification of genome-wide drug–target interactions. The

QT interval prolongation involves not only multiple ion

channels (e.g., hERG, Kv7.1, Nav1.5, and Cav1.2) but also

multiple other genes that are functionally associated with the

ion channel [43]. In addition, the interaction of a drug with

metabolizing enzymes and regulatory genes may alter the

concentrations of proteins that play roles in arrhythmia and

the pharmacokinetic profile of the drug molecule.

(2) Conformational dynamics and energetics of multiple ion

channels under drug and genetic perturbation. The dynamic

change of ion channel conformations (open and closed) during

gating is the primary determinant of the membrane current

during the action potential. Both drug binding and unbinding

kinetics, as well as amino acid mutations, may impact the

conformational change of the ion channel, leading to the

change of action potential. The events of conformational

dynamics can be modeled by Molecular Dynamics (MD)

simulation. As genome-scale MD simulation is not feasible at

this time, evolutionary and functional constraints that could

be derived from sequencing and multiple omics data will be

an invaluable asset to significantly reduce the conformational

sampling space of MD simulation [44].

(3) Determination of the in vivo concentrations of relevant drugs

and metabolites (e.g., ebastine [45]) that may affect the

activity of ion channels. In principle, this could be achieved

using a whole-body physiologically based pharmacokinetics

(PBPK) model that incorporates tissue-specific, genome-scale

metabolic models. However, to date, little attention has been

paid to adjusting PBPK models using information from

genome-wide drug–target interactions.

(4) Identification of individual- and context-specific parameter

spaces for PBPK and systems biology models. To predict

individual- and context-specific (e.g., normal tissue versus

inflamed tissue) drug responses, it is critical to define

molecular states, network architectures, and dynamic param-

eters at the molecular level under the physiological conditions

that exist during drug treatment. Although a vast amount of

GWAS and multiple types of omics data provide abundant

opportunities for this purpose, these data have not been fully

explored to define biological networks at molecular resolution.

(5) Most importantly, it is necessary to integrate the above

information into a coherent computational model across

temporal and spatial scales. As these tasks traditionally span

multiple disciplines and require different techniques, such as

statistical machine learning [46], MD simulation, Ordinary

Differential Equation (ODE)-based kinetics simulation, con-

straint-based modeling, discrete logic models, etc., they may

need to be implemented as independent functional modules

and subsequently assembled into a complete framework.

Consequently, these functional modules need clearly defined

interfaces and metadata for bi-directional communication.

For example, the PBPK model determines the fate of drug

molecules. In turn, drug–target interactions may regulate the

expression level of CYP450 (as detailed later), thus altering the

parameter space of the PBPK model. It has been suggested

that ontology-driven, rule-based modeling may facilitate the

integrative modeling of drug actions [11]. The integration of

rule-based semantic modeling and Bayesian statistical mod-

eling [47–49], which can establish cause–effect relationships

across temporal and spatial scales, could be a useful tool in

combining diverse techniques and multiple sequencing,

molecular, and omics data. Such a scheme is depicted in

Figure 3. It combines information and biological knowledge

from DNA variants and their associated genes; drug–target

interactions; protein conformational states; biological path-

ways; cellular networks, such as protein–protein interaction

networks; molecular phenotypes, such as gene expression

profiles; and different organism phenotypes. Using these

individualized drug response phenotypes, the probability of

causal mutations, involved targets, conformational states,

molecular complexes or functional modules, and biological

pathways and their links can be established by a priori

knowledge from mechanism-based modeling or estimated

using a Bayesian statistical framework.
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Although we use the arrhythmia example for illustrative

purposes, the framework described in Figure 2 should be

generalizable for the understanding and prediction of drug response

phenotypes. As detailed in the remaining text, we will show that

macromolecular structures play critical roles in reconstructing

genome-scale, high-resolution molecular interaction models, simu-

lating the conformational dynamics of drug–target complexes,

enabling context-specific pharmacokinetics modeling, resolving

nonidentifiable parameters in mathematical modeling, and enhanc-

ing the predictive power of network-based association studies. Thus,

the structure-enabled integrative modeling of drug actions may

facilitate transforming conventional drug discovery process to a new

paradigm based on systems pharmacology.

Molecular Resolution of the Biological Network
and Its Parameter Space

Reconstruction of individual- and context-specific genome-scale

biological networks (e.g., drug–target, protein–protein interaction

(PPI), metabolism, gene regulation, and signal transduction) is the

foundation of systems pharmacology. Concurrently, protein

structure-based PPI networks [50–55] have already made signif-

icant contributions to reliably expanding genome-scale PPIs [51–

52], understanding the molecular mechanism of signal transduc-

tion [56–57], revealing the evolutionary origin of pathogen–host

interactions [58], elucidating the molecular basis of disease

mutations [59], and designing novel molecular therapeutics to

target the network, PPI interfaces, and allosteric modulation, as

summarized by Duren-Frigola et al. [60].

When kinetic parameters are lacking, constraint-based Flux

Balance Analysis (FBA) presents an alternative approach to

compute the phenotypic properties of whole cells, especially

genome-scale metabolic networks [61]. New biological insights

have been gained when incorporating protein structural informa-

tion into metabolic network modeling of bacteria, which cannot be

achieved by FBA alone [62–63]. For example, structure-based

reconstruction of a genome-wide metabolic network makes it

possible to determine bacteria growth in response to temperature

Figure 2. A structure-enabled integrative framework to model drug action. Given a set of inputs—a new or existing drug, known bioactive
chemical space, the whole human proteome, an individual’s genotypic data, and context-specific phenotypic data—it is possible, in principle, to
construct a structure-enabled integrative model of drug action. Such a model comprises multiple integrated functional modules (rounded boxes) that
span multiple levels of biological organization and can be used to infer drug-induced arrhythmia. Solid and open arrows indicate current workflows
and missing links, respectively. Blue boxes represent two existing methods: multiscale ventricular electrophysiological modeling [41–42] and protein–
protein interaction (PPI) network-based predictive modeling [43] for the prediction of drug-induced arrhythmia represented as a pseudo
electrocardiography (ECG). The other boxes represent functional modules that are critically important but have not been fully developed or
incorporated into the modeling process.
doi:10.1371/journal.pcbi.1003554.g002
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changes [64]. This opens a new door to understanding the impact

of the environment on drug action. It is noted that when protein

structures are used, they are often treated as a single chain or as

simply forming binary interactions during network analysis. In

reality, under physiological conditions, proteins perform their

functions through biological assemblies that may consist of

multiple proteins. In a recent study, the 3-D structure of biological

assemblies has been explicitly considered in the context of the

genome-scale metabolic network. Novel drug targets and thera-

peutics are expected to be identified through such an integrative

modeling strategy [65]. Beyond microorganisms, the first recon-

struction of a genome-scale human metabolic network (Recon-1)

by Duarte et al. provided the foundation for applying FBA to

complex disease modeling [66]. By taking advantage of the rapidly

increasing omics data, new methods have been developed to

model cell-specific [67], tissue-specific [68–69], and context-

specific [70–71] human metabolic networks.

Several recent efforts have made progress in reconstructing

genome-scale high-resolution protein–chemical interaction models

[72–76]. As shown in Figure 4A, the targets identified from

chemical genomics and functional genomics data analysis mainly

include existing known drug targets and their homologs, which

only cover a small portion (,8%) of the human genome [77–95].

A large number of proteins whose cognate or designed ligands are

less characterized (or unknown) or who have low-affinity bindings

to drugs are very likely to be important or even critical to

pathophysiological processes under consideration [16]. The target

space can be significantly extended to ,50% of human genes

using structural genomics data [96]. As illustrated in Figure 4B,

when integrating chemical genomics data analysis and molecular

modeling on a structural genome scale, it is possible not only to

greatly extend the existing target space to ,50% of human and

pathogen genomes (a five to 50 times increase over existing

targets), but also to construct genome-wide high-resolution

protein–chemical interaction models for millions of bioactive

compounds [72,97]. Although it remains a challenge to accurately

determine, under physiological conditions, the binding affinity and

binding/unbinding kinetics of these interaction models, these

models provide a basis to simulate the conformational dynamics of

protein targets perturbed by a drug (see details in next sections)

[44,98]. Consequently, the physiological drug response (therapeu-

tic effect or side effect) can be predicted by mapping the

conformational states of drug targets into biological pathways

and networks [44,98]. We expect that the integration of chemical

genomics, structural genomics, and functional genomics will

significantly enhance the capability of systems pharmacology for

molecular target identification of bioactive compounds, drug

repurposing, polypharmacological drug design, and side effect

prediction.

In the context of personalized medicine in the treatment of

complex diseases, a critically important but less-addressed problem

is the need to reconstruct genome-scale, structure-based gene

regulatory networks. In the major groove of DNA, every base pair

has a unique hydrogen-bonding signature, and the ‘‘direct

readout’’ mechanism, in which the formation of a series of amino

acid base-specific hydrogen bonds contributes to the protein-DNA

binding specificity, has been commonly accepted [99]. Recently,

Rohs et al. found that the binding of arginine residues to narrow

minor grooves is a widely used mode for protein–DNA recognition

[100–101]. Differing from the ‘‘direct readout’’ mechanism, their

findings indicate that the minor groove can also provide

information, such as local variations in DNA shape and

electrostatic potential for protein–DNA recognition, and offer

new insights into the structural and energetic origins of protein–

DNA binding specificity. These studies highlight the importance of

the role of macromolecular structures in understanding gene

regulation.

The reconstruction of the biological network is only the first step

in understanding the dynamic and stochastic nature of cellular

processes [102]. +When the network topology and kinetic

parameters are defined, time-dependent deterministic functions,

including Ordinary Differential Equations (ODEs) and Partial

Differential Equations (PDEs) [103], are commonly employed to

analyze the dynamics of signaling and metabolic pathways upon

drug treatment [104]. For instance, ODEs have been successfully

applied to investigate the effects of multitarget inhibition [105–

106], to search for optimal target combinations for safe and

effective anti-inflammation therapy [107], and to predict the

network response to target inhibition [108]. PDEs can be used to

model the concentration change of each component as a function

of both time and space [103]. Such a technique is important in

determining the effective concentration of a drug when it reaches

its targets and off-targets in an essentially nonlinear, non-

equilibrium cellular and microenvironment. Stochasticity is one

of the fundamental properties of cellular processes [102].

Moreover, in vivo drug action involves a series of stochastic

Figure 3. Hierarchical cause-effect semantic modeling to
understand and predict drug action across temporal and
spatial scales by using diverse techniques and integrating
multiple sequencing, molecular, and omics data. Arrowed edges
represent cause-effect relationships between biological entities: genetic
variation, ligand (allosteric or orthosteric), drug target, conformational
state of the drug target, biological pathway, molecular phenotypes
from multiple omics data, integrated biological network, and organism
phenotype (e.g., disease). The thickness of the arrow indicates the
degree of probability. And the + and 2 signs represent positive (or
activated) and negative (or inhibited) regulation, respectively. For
example, an allosteric ligand may interact with target 1 to induce its
active conformation that positively regulates pathway 1. The positively
regulated pathway 1 can be derived from an observed molecular
phenotype 1 (e.g., gene expression profile). A context-specific biological
network can be inferred by integrating multiple molecular phenotypes
and be used to understand and predict an organismal phenotype.
doi:10.1371/journal.pcbi.1003554.g003
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processes such as prodrug transport and efflux [109]. Thus,

stochastic models will be important tools in modeling drug action

[110].

However, dynamic modeling is hampered by the lack of reliable

kinetic parameters. In many cases, the kinetic parameters for

enzyme reactions can be estimated from protein structures [111].

The computational techniques required are dependent on the

reaction mechanism. Quantum Mechanics (QM) or Quantum

Mechanics/Molecular Mechanics (QM/MM) is needed if bond-

breaking is the rate-limiting step. Whereas, Brownian dynamics is

more efficient if the reaction is fast and the diffusion rate is the

determinant. Nevertheless, these computational techniques are

time-consuming and cannot be easily extended to a genome scale.

It has been proposed that the electrostatic potential in the active

site determines not only the stability of transition states [112] but

also the diffusion association rate [113]. Thus, it is proposed that

the comparison of the Molecular Interaction Field (MIF),

including the electrostatic potentials and other physical charac-

teristics of structurally similar proteins, may assist in the estimation

of the kinetic parameters [114]. A similar strategy has been applied

to predict the association/disassociation rate of protein–protein

interactions [115–117], which are essential for the dynamic

modeling of signal transduction pathways. Furthermore, it is

possible to extend the scope of MIF to a structural proteome scale

for structurally unrelated proteins by analyzing and comparing

the evolutionary, dynamical, physiochemical, geometric, and

Figure 4. Reconstruction of genome-wide, high-resolution protein–chemical interaction networks. (A) Distribution of existing drug
targets, PDB structures, and homology models in the human genome. (B) A schema to reconstruct 3-D drug–target interaction networks by
integrating chemical genomics, structural genomics, and functional genomics. Novel drug off-targets could be identified by using the drug–target
interaction models from chemical genomics analysis, and followed by searching for entire human or pathogen structural genome. In addition to
sequence and global structural comparison, ligand binding site comparison is a valuable method, as it can identify binding promiscuity across fold
space [119–121,231–238]. After putative off-targets have been identified from structural genomics analysis, sophisticated molecular modeling
techniques such as protein-ligand docking and Molecular Dynamics (MD) simulation can be applied to determine high-resolution interaction models
and their binding affinity and conformational space. To correlate drug–target interactions with their physiological response, the conformational state
of the drug–-target complex can be mapped to biological pathways, integrated networks, and physiological models. Several examples are shown in
the figure. Semantic-based modeling is able to establish cause-effect from drug to target to pathways and, ultimately, to clinical outcomes [98].
Biological pathway analysis will provide the mechanistic understanding of information flow caused by drug modulation [44]. Critical components and
interactions involved in drug modulation can be identified through integrated protein–protein interaction (PPI) network analysis [212]. Here, blue and
green nodes represent drug targets and genes with observable changes, respectively. The target inhibition or activation along with genetic
perturbations can be simulated using reconstructed physiological models [71]. In turn, the information from pathway and network analysis can be
used to verify or falsify the drug–target interaction models and to constrain their conformational space.
doi:10.1371/journal.pcbi.1003554.g004
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transition-state binding properties of the binding interfaces [118–

122]. The use of estimated kinetics parameters is particularly

promising when coupled with a kinetic hybrid model [123]. In

these models, detailed rate equations are only used to describe

essential enzymes. Simplified and approximate rate equations are

applied to the majority of enzymes. A recent study has shown that

37% of enzymes in Escherichia coli are promiscuous and evolution-

arily retained and catalyze 65% of known metabolic reactions

[124]. With higher catalytic capability, specific enzymes tend to be

essential and more frequently coupled with gene regulation than

promiscuous enzymes. This finding provides additional support for

the structure-based hybrid model. It is noted that the kinetic

parameters are often experimentally measured under three-

dimensional conditions, which do not reflect the two-dimensional

dynamic processes occurring when a drug binds to a receptor. Wu

et al. presented a theoretical multiscale simulation approach that

converts three-dimensional affinities to two dimensions, account-

ing directly for the structure and dynamics of the membrane-

bound molecules [125]. In summary, multiscale mathematical

modeling and network-based association studies in systems

pharmacology will benefit from the information derived from

macromolecular structures in terms of the identification of reliable

network connectivity as well as the enrichment of individual- and

context-specific kinetic parameters.

Pharmacodynamics in the Era of Structural Systems
Pharmacology

A major focus of pharmacodynamics is to quantitatively

understand drug–target interactions and their effects on the whole

organism. It is clear that drug action cannot be fully understood by

a conventional one-drug-one-target paradigm. A systematic view

of all proteome drug–target interactions is often necessary [16]. A

drug molecule may act more than to inhibit or activate a target in

a binary manner. Recent studies in biased agonism (or biased

signaling, functional selectivity) [126] and partial agonism add a

new dimension to understanding pharmacodynamics. For exam-

ple, it has been recognized that a G-protein coupled receptor

(GPCRs) pleiotropically regulates multiple signaling pathways. An

endogenous or designed agonist for a GPCR may selectively

activate one of its regulated pathways, leading to therapeutic

efficacy or, alternatively, to unwanted side effects. At the

molecular level, biased agonism originates from the selection of

specific conformational states of the target protein, which are

dynamically coupled with ligand binding. Fundamentally, the

molecular mechanism of biased agonism may be similar to that of

partial agonism observed in nuclear receptors (NRs). The

transcriptional activity modulated by NR agonists is not dependent

on the binding affinity but rather the ensemble of both protein

conformations and ligand orientations [127–128]. Moreover,

allosteric interaction can shift the conformational ensembles,

thereby modulating the activity of agonist binding [36].

These findings provide both new opportunities and impose

challenges in linking in vitro drug binding with associated in vivo

activity. In addition to identifying proteome-wide drug binding

promiscuity and specificity, it is necessary to sample the

conformational ensemble associated with these drug–target

interactions and to link their conformational state with biological

pathways. Although a number of state-of-the-art computational

techniques (e.g., those reviewed in [16] and Figure 4) are able to

predict drug binding cross-reactivity, few of them provide a high-

resolution landscape for the complete conformational space of

drug–target interactions. State-of-the-art methods accounting for

conformational flexibility are not capable of mapping the

conformational ensembles to the signaling pathways that they

modulate [129]. New concepts and techniques are needed to

include the influence of protein dynamics on functional activity of

drug binding in the context of biological networks.

At the molecular level, conventional single-target, single-state

virtual screening and quantitative structure-activity relationships

(QSAR) should be extended to a multitarget, multiconformation

model. A wide array of experimental techniques, such as

fluorescence spectroscopy [130], plasmon waveguide resonance

spectroscopy [131], bioluminescence resonance energy transfer

[132], circular dichroism [133], X-ray crystallography [134], site-

directed mutagenesis [135], and 19F-NMR spectroscopy [136],

have been developed to determine active conformations associated

with biased and partial agonism. These data provide a foundation

for developing multistate models of pharmacodynamics. Structure-

based molecular modeling may play a critical role in understand-

ing the biased signaling. For example, dynamic protein-ligand

homology modeling coupled with site-directed mutagenesis data is

used to determine the dimerization and activation models for

GPCRs [137–138].

In the context of personalized medicine, the functional selectivity

of drug binding can be modulated by mutations in the protein

target, which directly impact orthosteric or allosteric interactions.

Thus, it is important to assess the importance of the mutation on the

energetics and dynamics of proteome-scale drug–target interactions.

Protein structure may provide critical insights into how the

mutation alters the drug response. The genetic predisposition to

adverse drug reactions (ADR) can be rationalized through the

atomic details of the interaction between the drug and its potential

off-target using structural modeling. For example, Li et al. have

discovered that an R41Q mutation in human cytosolic sialidase

(HsNEU2), which is predisposed in a small portion of the Asian

population, links ADRs to oseltamivir (Tamiflu) [139]. In addition

to mutations that directly involve drug binding, the mutations that

disrupt allosteric interactions are some of the major determinants of

disease but have been little studied [140]. Several structure-based

techniques have been developed to predict the effect of mutations

on allosteric regulation. They include correlated mutation analysis

[141–146], the detection of pairwise dynamic [147–148] or

energetic coupling [149] between residues, and analysis of the

global topology of protein structures [150–151]. These methods

may eventually contribute to the design of allosteric drugs [36,152].

Dynamic simulation of drug unbinding kinetics is another area

that may significantly impact personalized medicine. Drug–target

interactions in vivo are different from those in vitro. In target or cell-

based assays, the concentrations of both drug and target are fixed

and the binding affinity is measured by thermodynamic equilibrium

constants such as IC50 values, which reflect binding potency.

However, in a living organism, the concentration of the drug, the

target, and the other molecules constantly changes with time, rarely

reaching equilibrium. Thus, the drug binding affinity is not an

appropriate indicator of drug potency in vivo [153]. An increasing

body of evidence suggests that drug efficacy correlates more strongly

with drug–target residence time than with binding affinity [154–

157]. Long residence time can lead to sustained pharmacological

effect and may also alleviate off-target toxicity. The residence time

of a drug on its target can be greatly influenced by conformational

adaptation [158]. Recent studies suggest that the in vivo duration of

drug efficacy not only depends on macroscopic pharmacokinetic

properties like plasma half-life and the time needed to equilibrate

between the plasma and the effect compartments, but is also

influenced by long-lasting target binding and rebinding [159].

Experimental approaches to studying drug binding and

unbinding to proteins have limitations in temporal and spatial

resolution. It was reported recently that a computational network
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analysis combined with explicit water MD simulations of the

unbinding of small inhibitors from the enzyme FK506 Binding

Protein (FKBP) provided a clear picture of the free energy

landscape (both thermodynamics and kinetics) of ligand dissoci-

ation [160]. The dissociation kinetics were characterized as a

simple (i.e., single-exponential) time dependence with multiple

dissociation pathways. A computational methodology using

trajectory data from multiple Brownian dynamics simulations of

ligand diffusion has been developed for characterizing the kinetics

of drug–receptor interactions in terms of the encounter complex

[161]. A computational approach named metadynamics has been

used both for reconstructing the free energy and for accelerating

rare events in systems described by complex Hamiltonians, at the

classical or at the quantum level [162]. All-atom metadynamics

simulations of a peptide substrate interacting with wild-type HIV-1

protease in explicit solvent rendered accurate calculations of

binding affinity and kinetics constant compared to the experi-

mental data [163].

Ultimately, drug–target interactions and genetic events should

be studied in the context of biological networks. Existing biological

network analysis is conformationally stateless. Thus, these

networks are not sufficient to model the influence of protein

dynamics on the drug response phenotype. The integrative

modeling depicted in Figures 2 and 3 provides a possible solution

to incorporating conformational dynamics into network modeling.

It is worth mentioning that this integrative modeling framework

could also be a powerful tool in studying the pharmacodynamics of

drug–drug interactions. Due to the robust nature of biological

systems, drug combinations are often necessary and proven to be

successful in treating complex diseases and combating drug

resistance [164–165]. However, the Adverse Drug Reaction

(ADR) resulting from drug–drug interaction is a serious problem

in developing combination therapies. In addition to the pharma-

cokinetics (see next section), the pharmacodynamics of the drug–

drug interaction may play a critical role in the ADR [166].

Existing state-of-the-art methods for the prediction of drug–drug

interactions are data-driven, which mainly establish statistical

association from empirical observations but provide little infor-

mation on the mechanism of drug–drug interaction. Thus, they

may not be sufficient for the predictive modeling of drug–drug

interactions during the early stages of drug development [167–

168]. Using the proposed integrative modeling framework, it may

be possible to predict drug–drug interactions de novo.

Pharmacokinetics in the Era of Structural Systems
Pharmacology

The Absorption, Distribution, Metabolism, and Excretion

(ADME) properties of a drug, i.e., absorption and distribution to

its target(s), detoxification by metabolism and excretion of the drug

from the human body, are the primary concerns of pharmaco-

kinetics. At the molecular level, ADME properties are strongly

influenced by the abundance and activity of transporters and

metabolizing enzymes such as CYP450, UDP-glucuronosyltrans-

ferases, sulfotransferases, N-acetyltransferases, glutathione S-trans-

ferases, and methyltransferases. Much effort has gone into

developing computational methods for in silico prediction of

ADME properties. These methods initially only addressed the

small drug molecule. Based on chemical structures, quantitative

structure-activity relationship (QSAR)-based approaches have

been extensively used to correlate the physiochemical properties

of lead molecules with their ADME profiles [169–170]. Shifting

from the ligand to the receptor, structure-based methods have

been developed which leverage the ever-increasing number of 3-D

structures of ADME related proteins. Similarity searches and

traditional pharmacophore approaches are enhanced by more

advanced molecular descriptors and 3-D pharmacophores that

encode the details of ligand-target binding [171]. Dynamic

properties of ligand-target binding could be incorporated into

the pharmacophore with conformational sampling techniques.

Protein-ligand docking based on virtual screening for millions of

compounds can now be accomplished with ease [172]. However,

applying molecular docking to ADME related proteins is

complicated by the existence of large and flexible binding cavities

in CYP450 and phase II metabolizing enzymes, which can

accommodate more than one ligand [172]. Consequently, the

correlation between the docking score obtained for the best poses

with experimentally determined binding free energies is usually

poor. Nevertheless, in a recent study, Schlessinger et al. used a

homology model of a norepinephrine transporter and molecular

docking to successfully predict the prescription drugs which

specifically bind to it [173]. With the availability of data from

chemical genomics and high-throughput screening [28,174], the

combination of multiple flexible docking tools with chemoinfor-

matics may boost the performance of structure-based virtual

screening [175]. Although more accurate in deriving binding free

energy, a more rigorous thermodynamic approach is unfortunately

more computationally demanding and not applicable to large-

scale virtual screening. Besides molecular docking based virtual

screening or molecular dynamics simulation, quantum mechanical

and hybrid quantum mechanical/molecular mechanical (QM/

MM) methods have emerged as powerful tools for modeling

reaction rates of drug metabolism. The whole reaction profile for

benzene hydroxylation by CYP2C9 was studied with such a

hybrid approach; a combined docking-MD-QM calculation was

used to simulate the activation energy of CYP3A4 [176]. The

challenge is to extend this technique to a structural proteome scale,

as discussed in the previous sections.

So far, pharmacogenomics prediction of ADME properties has

mainly focused on the genotypic variations and polymorphisms in

metabolizing enzymes—the overall contribution of pharmacoge-

nomics to personalized medicine remains limited [177]. The

pharmacokinetics of a drug is the interplay between the inherent

physiochemical properties of the drug and its physiological

environment. The expression of metabolizing enzymes and

transporters is highly regulated by multiple factors, including

genetic polymorphisms, xenobiotics induction, cytokines, hor-

mones, and pathophysiological states, as well as gender and age of

families [178]. Multi-allelic genetic polymorphisms depend signif-

icantly on ethnicity and imply disparate clinical phenotypes

including ADR, drug efficacy, drug resistance, and dose require-

ment. A mechanistic understanding of these regulators is essential

for the predictive modeling of pharmacokinetics. It is well

established that CYP genes are directly regulated by nuclear

receptors [179]. Multiple genes, such as p53, AP-1, Ras, and APC,

are involved in the regulation of multiple drug-resistance

transporters (ABC transporters) [180]. If a drug itself, or another

drug, interacts with these genes, undesirable pharmacokinetics

profiles or drug–drug interactions may arise. Thus, the pharma-

cokinetics regulatory genes are potential drug off-targets that affect

the fate of drug molecules in vivo. We call them ‘‘pharmacoki-

netics off-targets’’ to distinguish them from those related to

pharmacodynamics. The fact that the activity of direct pharma-

cokinetics regulatory genes can be modified by their upstream

genes adds a new layer of complexity to the problem. Therefore, to

fully understand the molecular mechanisms underlying the

ADME properties of a drug, it is necessary to identify the

pharmacokinetics off-targets as well as the regulatory network of
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pharmacokinetics genes on a proteome scale. Figure 5 shows a

regulatory pathway of CYP3A, whose substrates include several

hundred drugs [181]. LCMT1 is a methyltransferase that

methylates the PP2A catalytic subunit and promotes its functional

association with the PP2A regulatory subunits. PP2A is a major

protein phosphatase that dephosphorylates PRMT1, thus inhib-

iting PRMT1 enzymatic activity. PRMT1 is essential for the PXR

transcription process. PXR dimerises with RXR to induce the

gene expression of CYP3A. It is clear that genetic variations or

drug perturbations on any one of the genes along this pathway

may affect the abundance and activity of CYP3A, thereby leading

to a change in the ADME properties. Using a structure-based off-

target identification pipeline, LCMT1 has been identified as the

off-target of several antibiotics [182], highlighting the potential

power of proteome-scale structural modeling in predicting novel

pharmacokinetics profiles and drug–drug interactions.

Noncoding DNA may play important roles in the regulation of

transporters and metabolizing enzymes. For example, the CYP

family includes 58 pseudogenes that do not encode functional

protein [183]. An increasing body of evidence suggests that

pseudogenes have diverse functions that influence not only their

parent genes but also apparently unrelated genes [184]. For

example, one of the CYP450 genes, CYP2A6, has a pseudogene,

CYP2A7. CYP2A7 may transfer a fragment of DNA to its parent

gene CYP2A6, leading to a change in its sequence. It is observed

that individuals who smoke have a mutated gene CYP2A6*1B that

is converted from a CYP2A7 polymorphism. CYP2A6*1B

stabilizes its mRNA, thereby increasing first its expression level,

then its activity in metabolizing nicotine [185]. The functional

roles of most pseudogenes still remain elusive. Structural systems

biology, as discussed in the next section, may shed new light on the

functional relevance of noncoding DNA in pharmacokinetics.

Drug metabolism is strongly dependent on the physiological

state (e.g., obesity and diabetes) and environment (e.g., gut-

microbiome). The prediction of inter-individual pharmacokinetics

variation requires the coupling of pharmacogenomics and

pharmacometabonomics [186]. In principle, mechanism-based

modeling of drug interactions with transporters and metabolizing

enzymes can be integrated with pharmacogenomics, pharmaco-

metabonomics, and other omics data using the integrative

modeling framework proposed in the previous section. Physiolog-

ically based pharmacokinetics modeling has been developed in the

past four decades. Although it is resource consuming in obtaining

input parameters, progress made in in silico technologies has

greatly facilitated the prediction of oral absorption and hepatic

metabolism as well as mechanistic models of tissue distribution

based on pharmacokinetics models. The bottleneck for physiolog-

ically based pharmacokinetics modeling resides in the limited data

available. As discussed in the previous section, dynamic simula-

tions involving comprehensive metabolic pathways, signaling

pathways, and cell physiology are being studied together with

multiscale modeling at the cellular, organ, and whole-body levels

[187]. The sparse number of available kinetic parameters calls for

more structure-based modeling efforts in order to enable further

multiscale systems pharmacology analysis.

Pharmacogenomics and GWAS in the Era of
Structural Systems Pharmacology

Recent advances in pharmacogenetics and pharmacogenomics

have identified genetic variants in several hundreds genes, notably

drug metabolizing enzymes (e.g., CYP450), transporters, and drug

targets [188]. The knowledge derived from such data has already

resulted in individualized therapy. For example, the appropriate

initial dose of the anticoagulation drug warfarin can be estimated

using a pharmacogenomics algorithm [189]. Similarly, certain

mutations can be used to predict alternative responsiveness to

drugs in cancer therapy [190–194]. Acknowledgment of the

emerging role of pharmacogenomics can be found in the labels of

the Food and Drug Administration (FDA)-approved drugs

montelukast [195] and cetuximab [196] and in FDA-approved

diagnostic tests, for example, the microarray-based Roche

AmpliChip for cytochrome P450 polymorphisms and the Invader

UGT1A1 Molecular Assay for detecting polymorphisms that

increase the risk of neutropenia when using the colon cancer drug

irinotecan [15,197].

In spite of these advances, much more is needed for predictive

modeling of individual drug responses. It is critical to understand

the impact of genetic variation beyond direct drug interactions

with on-targets, off-targets, metabolizing enzymes, and transport-

ers. Many nontarget-associated genetic factors may affect the drug

response phenotype. As shown in Figure 1, if a critical node, edge,

or feedback loop is modified in a drug modulation pathway, the

drug efficacy or side effect profile can change accordingly. One

example is the mutation of K-RAS located downstream of the

EGFR pathway, which causes resistance to the anticancer activity

of EGFR inhibitors [198–199]. In another situation, genes aside

from the drug target may regulate the same biological pathway

where the system-level drug response is the result of their

combinatorial control. The mutation or expression changes of

such genes may enhance or reduce the drug response. The gain- or

loss-of-function of mutations that are associated with drug action

may come from genetic variations in both coding and noncoding

regions. Recently, the 1,000 Genomes Project has identified 38

million single nucleotide polymorphisms (SNPs), 1.4 million short

insertions and deletions, and more than 14,000 larger deletions

from 1,092 individuals belonging to 14 ethnic groups. The

individual-specific, rare, coding variants are located across a broad

array of biological pathways. Moreover, there are hundreds of

functionally annotated, rare, noncoding variants for each individ-

ual [200]. It is expected that these variants will alter the

pharmacokinetics, pharmacodynamics, and responsiveness to drug

therapy [15]. The extremely large, multidimensional datasets from

these studies present an exciting opportunity to expand the

horizon of pharmacogenomics by identifying causal variants and

Figure 5. A proposed pathway that modulates the abundance
and activity of CYP3A. LCMT1 is a potential off-target for antibiotics.
The inhibition of LCMT1 will activate PXR, thereby increasing the
activity of CYP3A.
doi:10.1371/journal.pcbi.1003554.g005
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genes, and predicting pathways likely to be involved in drug

response. The challenge is how to associate these data with a

predicted drug response a priori.

Many disease-associated variants and drug-response cryptic

genetic factors remain uncharacterized; hence, new methods are

urgently needed to annotate DNA variants, their functional roles,

and their associations with drug actions. How to annotate the

functional roles of DNA variants, especially for noncoding

variants, is a challenge because of the diversity of noncoding

functions, the incomplete annotation of regulatory elements, and

unknown mechanisms of regulatory control. Several large-scale

studies have been performed to annotate the noncoding genome

and regulatory elements. These studies integrate the high-

throughput functional genomics and comparative genomics

datasets [3–5] to map the functional noncoding elements on a

genome-wide scale. Variants on these elements can result in the

different regulation of their target genes. For example, studies from

the Encyclopedia of DNA elements (ENCODE) [201] and model

organism Encyclopedia of DNA elements (modENCODE) [202–

204] projects provide comprehensive maps of transcription

binding for select cell lines and DNase maps for many primary

cells and highlight the importance of noncoding DNAs in the

regulation of complex phenotypes. With known functional

elements and motifs, methods have been developed to predict

the effect of newly observed rare and private mutations by

integrating models of sequence motifs, chromatin states, and

expression patterns in model organisms and in cultured human

cells [205–208]. For example, quantitative sequence-activity

models (QSAMs) [209] are trained based on these data in a

massively parallel reporter assay (MPRA) developed to enable

systematic dissection and optimization of transcriptional regulato-

ry elements [208].

Since annotated pharmacogenomics biomarkers are incomplete

and biased, the conventional ‘‘guilt-by-association’’ approach may

not be sufficient to identify novel drug-response genetic markers

[43]. The power of statistical analysis of pharmacogenomics and

GWAS data is often limited by the moderate effect size of samples.

As a result, a number of rare variants could be missed.

Fundamentally, the genotype–phenotype relations established by

statistical or machine learning approaches may be merely

mathematical correlations. Macromolecular structures and their

interactions may provide critical mechanistic insight into the

functional roles of DNA variants and their impact on drug action.

The modeling and analysis of macromolecular structures has

already made significant contributions to our understanding of

how mutations affect the stability, folding, and binding of

macromolecules [210–211]. Several recent structure-based studies

have provided high-resolution pictures for how variants rewire

biological networks through allosteric regulation, protein–protein

interaction (PPI), and protein–nucleic acid interaction (PNI)

[59,140,212–213]. Kowarsch et al. showed that co-evolving

residues can influence each other through allosteric regulation

and are significantly more likely to be disease-associated than

expected by chance [140]. By mapping the mutations on the

structures, Wang et al. found that in-frame mutations are enriched

on the interaction interfaces of proteins associated with the

corresponding diseases and that the disease specificity for different

mutations can be explained by their location within an interface

[59]. Similar findings were observed in David et al.’s work [213]

by combining a database of the 3-D structures of human protein/

protein complexes [214] and the humsavar database of non-

synonymous Single Nucleotide Polymorphisms (nsSNPs) [215].

As shown in Figure 1, proteome-wide drug–target interactions

and genome-wide genetic variants may collectively affect the

functional state of complex biological networks that mediate the

system-level response to the drug, leading to both therapeutic and

adverse effects. Few computational tools are able to model the

collective effects of drug perturbation and genetic variants in the

context of the whole human genome and biological network, which

is essential for the development of personalized medicines. Pathway

analysis such as gene-set enrichment analysis (GSEA) [216] can be

applied to pharmacogenomics data to concentrate the genetic

perturbation along the annotated biological pathways. Another way

to use prior knowledge of gene interrelationships is to incorporate

the information into the association study itself through Bayesian

techniques [217] or by using boosting to prioritize disease networks

[218]. By integrating the atomic details of molecular interactions,

co-evolution information, protein–protein interaction networks,

transcriptional profiles, and pathway enrichment analysis, Xie et al.

developed a structural systems biology approach to identifying the

functional role of DNA variants and causal mutations with an

extremely small sample size [212]. Through this approach, the

driver mutations that confer hypoxia tolerance in Drosophila

melanogaster were identified. Furthermore, the functional roles of

several nsSNPs, which are predominantly involved in allosteric

regulation, protein–protein interaction, and protein–nucleic acid

interaction, were determined [212]. The power of variation-

mediated pathway analysis can be further enhanced by incorpo-

rating other regulatory and signaling network components, such as

microRNA–target interactions, protein–nucleic acid interactions,

and phosphorylation events, etc., and taking advantage of advanced

graph mining algorithms [219–220].

The systematic perturbation of sequence variants can be

introduced into the dynamics simulation of pathways and

genome-scale modeling of biological networks through macromo-

lecular structures. Recently, Cheng et al. developed a computa-

tional framework to integrate missense mutation, protein struc-

tural modeling, and ODE [221]. They introduced the Systemic

Impact Factor (SIF) as a measurement of phenotype changes

resulting from the mutation. SIF is a function of the free energy

change caused by the mutation and systemic control coefficient.

The free energy change in a protein directly leads to the change in

its kinetic parameters. The control coefficient quantifies the

sensitivity of the phenotype readout to the change in kinetic

parameters. They tested their models on two cases: G2-M

transition control in yeast and the human mitogen-activated

protein kinase (MAPK) pathway. The SIF from the simulation is

well correlated with the experimental results. The missense

mutations in this study are mainly associated with protein stability.

In the future, it will be interesting to quantify the systematic

impact of broad types of mutations that modify allosteric

regulation, molecular interaction, and gene expression. Chang et

al. have integrated a reconstructed kidney model with structural

bioinformatics and molecular modeling to predict the side effect

profile of cholesterylester transfer protein (CETP) inhibitors and to

identify genetic risk factors that cause adverse drug reactions [71].

An interesting finding from this study is the synthetic effect of

drug–target interactions and nontarget-associated genetic modifi-

cations. Serious side effects are caused by the combination of the

drug treatment and the genetic alteration but not by either alone.

It is anticipated that the identification of nontarget genetic factors

that affect drug action will have a significant impact on

personalized medicine.

Conclusion

The holistic, adaptive, and evolving nature of biological systems

makes the quest for a simple and elegant mechanistic model to
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explain and predict biological phenomena less than fruitful. At the

same time, the emergence of big data should significantly shift our

approach to biomedical research. Given these data and increased

computer power, useful predictive statistical models are possible.

The question then becomes, how can we discover new knowledge

from these statistical models under conditions that are constantly

changing?

A complex disease state is not static under drug treatment, but

evolves to new states in adapting to the drug-induced environ-

ment. When enough data are collected to describe one disease

state and a successful model can be built, the disease may already

be different from the one used to build the model. In such a

temporal situation, a data-driven model is essentially retrospective

but not prospective. Another major question is how much data are

enough to build an accurate predictive model given the genetic,

epigenetic, and clinical heterogeneity of complex diseases? Will the

model still work if the individual has an unobserved new mutation?

Moreover, genetic and/or epigenetic events and drug actions are

rooted in the fundamental principle of physics and chemistry.

Indifference to the detailed physical and chemical nature of

biological processes in the modeling of big biological data could

eventually hinder scientific advances in biomedicine. Discovery of

new knowledge requires more than just a query of a big reference

table built from data. Macromolecular structure plays an

irreplaceable role in linking the physical and chemical origins of

genetic events and drug action to the systematic response at the

cellular, tissue, and organism levels. Thus, the incorporation of

physiochemical-based macromolecular structure modeling with

data-driven and mathematical-based pharmacodynamics, phar-

macokinetics, pharmacogenomics, and systems pharmacology will

not only enhance the power of modeling a predictive personalized

drug response but will also shed new light on our understanding of

living systems in a broad sense.

One of the barriers in applying macromolecular structure to

pharmacogenomics and systems pharmacology is that the struc-

tural coverage of macromolecules and their complexes has been

limited. Recent progress in both experimental and computational

techniques has dramatically improved the structural coverage of

the human genome. In addition to continuous efforts in structural

genomics [222], breakthroughs in the crystallography of mem-

brane proteins make representative 3-D structures of pharmaceu-

tically important proteins such as G-protein coupled receptors

(GPCR) [223] and transporters available [224–226]. Moreover,

complexes of protein-ligand, protein-protein, and protein-nucleic

acid structures, as found in the Research Collaboratory for

Structural Bioinformatics (RCSB) Protein Data Bank (PDB), are

increasing rapidly in both number and complexity [227]. Using

the increased number of structural templates, and given the

availability of high-performance computing, structure prediction

has become routine for data from next generation sequencing.

Even without structural templates, novel protein folds can be

predicted with increasing accuracy [228]. Using co-evolutionary

information from amino acid residues, high-quality structural

models can now be built for proteins that are not amenable to

conventional homology modeling or other methods of ab initio

prediction [229]. Integrative modeling using different experimen-

tal techniques has contributed significantly in constructing

macromolecular ensembles of unprecedented complexity [230].

Similarly, novel computational techniques have been developed to

predict proteome-scale, 3-D interaction models of protein–protein

interactions from medium to high resolution [50–52,58]. Collec-

tively, these advances provide new opportunities to use macro-

molecular structures in pharmacogenomics and systems pharma-

cology.

References

1. Jones SJ (1995) An update and lessons from whole-genome sequencing projects.

Curr Opin Genet Dev 5: 349–353.

2. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for

transcriptomics. Nat Rev Genet 10: 57–63.

3. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology.

Nat Rev Genet 10: 669–680.

4. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, et al. (2005)

Reduced representation bisulfite sequencing for comparative high-resolution

DNA methylation analysis. Nucleic Acids Res 33: 5868–5877.

5. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, et al. (2008) High-

resolution mapping and characterization of open chromatin across the genome.

Cell 132: 311–322.

6. Eggert US (2013) The why and how of phenotypic small-molecule screens. Nat

Chem Biol 9: 206–209.

7. Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification

and mechanism of action in chemical biology and drug discovery. Nat Chem

Biol 9: 232–240.

8. Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, et al. (2010)

Chemical genetics of Plasmodium falciparum. Nature 465: 311–315.

9. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, et al. (2010) Thousands of

chemical starting points for antimalarial lead identification. Nature 465: 305–

310.

10. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology.

Bioinformatics 25: 2466–2472.

11. Sorger PK, Allerheiligen SRB, Abernethy DR, Altman RB, Brouwer KLR, et

al. (2011) Quantitative and Systems Pharmacology in the Post-genomic Era:

New Approaches to Discovering Drugs and Understanding Therapeutic

Mechanisms. Ward R, editor. NIH White Paper. Available: http://www.

nigms.nih.gov/Training/Documents/SystemsPharmaWPSorger2011.pdf. Ac-

cessed 7 April 2014.

12. Yang R, Niepel M, Mitchison TK, Sorger PK (2010) Dissecting variability in

responses to cancer chemotherapy through systems pharmacology. Clin

Pharmacol Ther 88: 34–38.

13. Hansen J, Zhao S, Iyengar R (2011) Systems pharmacology of complex

diseases. Annals New York Acad Sci 1245: E1–5.

14. Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome

medicine: a future perspective. Genome Med 1: 11.

15. Zhao S, Iyengar R (2012) Systems pharmacology: network analysis to identify

multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 52: 505–521.

16. Xie L, Kinnings SL, Bourne PE (2012) Novel Computational Approaches to

Polypharmacology as a Means to Define Responses to Individual Drugs. Annu

Rev Pharmacol Toxicol 52: 361–379.

17. Sun Y, Campisi J, Higano C, Beer TM, Porter P, et al. (2012) Treatment-

induced damage to the tumor microenvironment promotes prostate cancer

therapy resistance through WNT16B. Nat Med 18: 1359–1368.

18. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, et al. (2012)

Tumour micro-environment elicits innate resistance to RAF inhibitors through

HGF secretion. Nature 487: 500–504.

19. Wilson ID (2009) Drugs, bugs, and personalized medicine: pharmacometabo-

nomics enters the ring. Proc Natl Acad Sci U S A 106: 14187–14188.

20. Gutiu IA, Andries A, Mircioiu C, Radulescu F, Georgescu AM, et al. (2010)

Pharmacometabonomics, pharmacogenomics and personalized medicine.

Rom J Intern Med 48: 187–191.

21. Nicholson JK, Wilson ID, Lindon JC (2011) Pharmacometabonomics as an

effector for personalized medicine. Pharmacogenomics 12: 103–111.

22. McMillin DW, Negri JM, Mitsiades CS (2013) The role of tumour-stromal

interactions in modifying drug response: challenges and opportunities. Nat Rev

Drug Discov 12: 217–228.

23. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, et al. (2012) A

whole-cell computational model predicts phenotype from genotype. Cell 150:

389–401.

24. Krauss M, Schaller S, Borchers S, Findeisen R, Lippert J, et al. (2012)

Integrating cellular metabolism into a multiscale whole-body model. PLoS

Comput Biol 8: e1002750.

25. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, et al. (2007)

Universally sloppy parameter sensitivities in systems biology models. PLoS

Comput Biol 3: 1871–1878.

26. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, et al. (2010) An

overview of the PubChem BioAssay resource. Nucleic Acids Res 38: D255–266.

27. Li Q, Cheng T, Wang Y, Bryant SH (2010) PubChem as a public resource for

drug discovery. Drug Discov Today 15: 1052–1057.

28. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, et al. (2012) ChEMBL:

a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:

D1100–1107.

PLOS Computational Biology | www.ploscompbiol.org 11 May 2014 | Volume 10 | Issue 5 | e1003554

http://www.nigms.nih.gov/Training/Documents/SystemsPharmaWPSorger2011.pdf
http://www.nigms.nih.gov/Training/Documents/SystemsPharmaWPSorger2011.pdf


29. Palsson B, Zengler K (2010) The challenges of integrating multi-omic data sets.
Nat Chem Biol 6: 787–789.

30. Joyce AR, Palsson BO (2006) The model organism as a system: integrating

‘omics’ data sets. Nat Rev Mol Cell Biol 7: 198–210.

31. Wiley HS (2011) Integrating multiple types of data for signaling research:

challenges and opportunities. Sci Signal 4: pe9.

32. Derry JM, Mangravite LM, Suver C, Furia MD, Henderson D, et al. (2012)

Developing predictive molecular maps of human disease through community-
based modeling. Nat Genet 44: 127–130.

33. Oku Y (2010) Future perspectives - proposal for Oxford Physiome Project. Adv

Exp Med Biol 669: 57–60.

34. Noble D (2009) Systems biology, the Physiome Project and oriental medicine.

J Physiol Sci 59: 249–251.

35. Hunter PJ, Crampin EJ, Nielsen PM (2008) Bioinformatics, multiscale

modeling and the IUPS Physiome Project. Brief Bioinform 9: 333–343.

36. Nussinov R, Tsai CJ, Csermely P (2011) Allo-network drugs: harnessing
allostery in cellular networks. Trends Pharmacol Sci 32: 686–693.

37. White R, Peng G, Demir S (2009) Multiscale modeling of biomedical,
biological, and behavioral systems (Part 1). IEEE Eng Med Biol Mag 28: 12–

13.

38. White RJ, Peng GC, Demir SS (2009) Multiscale modeling of biomedical,
biological, and behavioral systems (part 2). IEEE Eng Med Biol Mag 28: 8–9.

39. Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems
biology. Integr Biol (Camb) 3: 86–96.

40. Flores SC, Bernauer J, Shin S, Zhou R, Huang X (2012) Multiscale modeling

of macromolecular biosystems. Brief Bioinform 13: 395–405.

41. Silva JR, Pan H, Wu D, Nekouzadeh A, Decker KF, et al. (2009) A multiscale

model linking ion-channel molecular dynamics and electrostatics to the cardiac
action potential. Proc Natl Acad Sci U S A 106: 11102–11106.

42. Obiol-Pardo C, Gomis-Tena J, Sanz F, Saiz J, Pastor M (2011) A multiscale

simulation system for the prediction of drug-induced cardiotoxicity. J Chem Inf
Model 51: 483–492.

43. Berger SI, Ma’ayan A, Iyengar R (2010) Systems pharmacology of
arrhythmias. Sci Signal 3: ra30.

44. Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug Discovery Using

Chemical Systems Biology: Weak inhibition of multiple kinases may contribute
to the anti-cancer effect of Nelfinavir. PLoS Comp Biol 7: e1002037.

45. Rico S, Antonijoan R, Barbanoj M (2009) Ebastine in the light of CONGA
recommendations for the development of third-generation antihistamines.

J Asthma Allergy 2: 73–92.

46. Murphy RF (2011) An active role for machine learning in drug development.

Nat Chem Biol 7: 327–330.

47. Chen B, Dong X, Jiao D, Wang H, Zhu Q, et al. (2010) Chem2Bio2RDF: a
semantic framework for linking and data mining chemogenomic and systems

chemical biology data. BMC Bioinformatics 11: 255.

48. Lemons NW, Hu B, Hlavacek WS (2011) Hierarchical graphs for rule-based

modeling of biochemical systems. BMC Bioinformatics 12: 45.

49. Ashby D (2006) Bayesian statistics in medicine: a 25 year review. Stat Med 25:
3589–3631.

50. Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-
protein interactions on a proteome scale by matching evolutionary and

structural similarities at interfaces using PRISM. Nature Protocols 6: 1341–

1354.

51. Zhang QC, Petrey D, Garzon JI, Deng L, Honig B (2013) PrePPI: a structure-

informed database of protein-protein interactions. Nucleic Acids Res 41:
D828–833.

52. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, et al. (2012) Structure-based

prediction of protein-protein interactions on a genome-wide scale. Nature 490:
556–560.

53. Mosca R, Ceol A, Aloy P (2013) Interactome3D: adding structural details to
protein networks. Nat Methods 10: 47–53.

54. Kim PM, Lu LJ, Xia Y, Gerstein MB (2006) Relating three-dimensional

structures to protein networks provides evolutionary insights. Science 314:
1938–1941.

55. Kiel C, Beltrao P, Serrano L (2008) Analyzing protein interaction networks
using structural information. Annu Rev Biochem 77: 415–441.

56. Kuzu G, Keskin O, Gursoy A, Nussinov R (2012) Constructing structural
networks of signaling pathways on the proteome scale. Curr Opin Struct Biol

22: 367–377.

57. Kar G, Keskin O, Nussinov R, Gursoy A (2012) Human proteome-scale
structural modeling of E2-E3 interactions exploiting interface motifs.

J Proteome Res 11: 1196–1207.

58. Franzosa EA, Xia Y (2011) Structural principles within the human-virus

protein-protein interaction network. Proc Natl Acad Sci U S A 108: 10538–

10543.

59. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, et al. (2012) Three-dimensional

reconstruction of protein networks provides insight into human genetic disease.
Nat Biotechnol 30: 159–164.

60. Duran-Frigola M, Mosca R, Aloy P (2013) Structural systems pharmacology:

the role of 3D structures in next-generation drug development. Chem Biol 20:
674–684.

61. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat Rev Microbiol 2: 886–897.

62. Shen Y, Liu J, Estiu G, Isin B, Ahn YY, et al. (2010) Blueprint for antimicrobial

hit discovery targeting metabolic networks. Proc Natl Acad Sci U S A 107:

1082–1087.

63. Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, et al. (2009) Three-

dimensional structural view of the central metabolic network of Thermotoga

maritima. Science 325: 1544–1549.

64. Chang RL, Andrews K, Kim D, Li Z, Godzik A, et al. (2013) Structural systems

biology evaluation of metabolic thermotolerance in Escherichia coli. Science

340: 1220–1223.

65. Chang RL, Xie L, Bourne PE, Palsson BO (2013) Antibacterial mechanisms

identified through structural systems pharmacology. BMC Syst Biol 7: 102.

66. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. (2007) Global

reconstruction of the human metabolic network based on genomic and

bibliomic data. Proc Natl Acad Sci U S A 104: 1777–1782.

67. Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N (2010) Insight

into human alveolar macrophage and M. tuberculosis interactions via

metabolic reconstructions. Mol Syst Biol 6: 422.

68. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-

specific metabolic models: application to human liver metabolism. Mol Syst

Biol 6: 401.

69. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-

based prediction of human tissue-specific metabolism. Nat Biotechnol 26:

1003–1010.

70. Becker SA, Palsson BO (2008) Context-specific metabolic networks are

consistent with experiments. PLoS Comput Biol 4: e1000082.

71. Chang RL, Xie L, Xie L, Bourne PE, Palsson B (2010) Drug Off-Target Effects

Predicted Using Structural Analysis in the Context of a Metabolic Network

Model. PLoS Comput Biol 6: e1000938.

72. Ng C, Hauptman R, Zhang YL, Bourne PE, Xie L (2014) Anti-infectious drug

repurposing using an integrated chemical genomics and structural systems

biology approach. Pac Symp Biocomput 19: 136–147.

73. Kinnings SL, Xie L, Fung K, Xie L, Bourne PE (2010) The Mycobacterium

tuberculosis Drugome and Its Polypharmacological Implications. PLoS

Comput Biol 6: e100976.

74. Luo H, Chen J, Shi L, Mikailov M, Zhu H, et al. (2011) DRAR-CPI: a server

for identifying drug repositioning potential and adverse drug reactions via the

chemical-protein interactome. Nucleic Acids Res 39: W492–498.

75. Kufareva I, Ilatovskiy AV, Abagyan R (2012) Pocketome: an encyclopedia of

small-molecule binding sites in 4D. Nucleic Acids Res 40: D535–540.

76. Kalinina OV, Wichmann O, Apic G, Russell RB (2012) ProtChemSI: a

network of protein-chemical structural interactions. Nucleic Acids Res 40:

D549–553.

77. Nasr RJ, Swamidass SJ, Baldi PF (2009) Large scale study of multiple-molecule

queries. J Cheminform 1: 7.

78. Swamidass SJ, Azencott CA, Lin TW, Gramajo H, Tsai SC, et al. (2009)

Influence relevance voting: an accurate and interpretable virtual high

throughput screening method. J Chem Inf Model 49: 756–766.

79. Baldi P, Nasr R (2010) When is chemical similarity significant? The statistical

distribution of chemical similarity scores and its extreme values. J Chem Inf

Model 50: 1205–1222.

80. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, et al. (2007)

Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25: 197–

206.

81. Takarabe M, Kotera M, Nishimura Y, Goto S, Yamanishi Y (2012) Drug

target prediction using adverse event report systems: a pharmacogenomic

approach. Bioinformatics 28: i611–i618.

82. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008)

Prediction of drug-target interaction networks from the integration of chemical

and genomic spaces. Bioinformatics 24: i232–240.

83. Nagamine N, Shirakawa T, Minato Y, Torii K, Kobayashi H, et al. (2009)

Integrating statistical predictions and experimental verifications for enhancing

protein-chemical interaction predictions in virtual screening. PLoS Comput

Biol 5: e1000397.

84. Vina D, Uriarte E, Orallo F, Gonzalez-Diaz H (2009) Alignment-free

prediction of a drug-target complex network based on parameters of drug

connectivity and protein sequence of receptors. Mol Pharm 6: 825–835.

85. Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) PREDICT: a method for

inferring novel drug indications with application to personalized medicine. Mol

Syst Biol 7: 496.

86. Cheng F, Liu C, Jiang J, Lu W, Li W, et al. (2012) Prediction of drug-target

interactions and drug repositioning via network-based inference. PLoS Comput

Biol 8: e1002503.

87. Mei JP, Kwoh CK, Yang P, Li XL, Zheng J (2013) Drug-target interaction

prediction by learning from local information and neighbors. Bioinformatics

29: 238–245.

88. van Laarhoven T, Marchiori E (2013) Predicting Drug-Target Interactions for

New Drug Compounds Using a Weighted Nearest Neighbor Profile. PLoS

ONE 8: e66952.

89. Alaimo S, Pulvirenti A, Giugno R, Ferro A (2013) Drug-target interaction

prediction through domain-tuned network-based inference. Bioinformatics 29:

2004–2008.

90. Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, et al. (2011)

Associating Drugs, Targets and Clinical Outcomes into an Integrated Network

PLOS Computational Biology | www.ploscompbiol.org 12 May 2014 | Volume 10 | Issue 5 | e1003554



Affords a New Platform for Computer-Aided Drug Repurposing. Mol Inform
30: 100–111.

91. Iacucci E, Tranchevent LC, Popovic D, Pavlopoulos GA, De Moor B, et al.

(2012) ReLiance: a machine learning and literature-based prioritization of

receptor-ligand pairings. Bioinformatics 28: i569–i574.

92. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target
identification using side-effect similarity. Science 321: 263–266.

93. Iskar M, Campillos M, Kuhn M, Jensen LJ, van Noort V, et al. (2010) Drug-
induced regulation of target expression. PLoS Comput Biol 6: e1000925.

94. Chiang AP, Butte AJ (2009) Systematic evaluation of drug-disease relationships

to identify leads for novel drug uses. Clin Pharmacol Ther 86: 507–510.

95. Spitzmuller A, Mestres J (2013) Prediction of the P. falciparum target space

relevant to malaria drug discovery. PLoS Comput Biol 9: e1003257.

96. Xie L, Xie L, Bourne PE (2011) Structure-based systems biology for analyzing
off-target binding. Curr Opin Struct Biol 21: 189–199.

97. Martinez-Jimenez F, Papadatos G, Yang L, Wallace IM, Kumar V, et al.
(2013) Target prediction for an open access set of compounds active against

Mycobacterium tuberculosis. PLoS Comput Biol 9: e1003253.

98. Xie L, Li J, Xie L, Bourne PE (2009) Drug discovery using chemical systems

biology: identification of the protein-ligand binding network to explain the side
effects of CETP inhibitors. PLoS Comput Biol 5: e1000387.

99. Garvie CW, Wolberger C (2001) Recognition of specific DNA sequences. Mol

Cell 8: 937–946.

100. Rohs R, West SM, Sosinsky A, Liu P, Mann RS, et al. (2009) The role of DNA

shape in protein-DNA recognition. Nature 461: 1248–1253.

101. Rohs R, West SM, Liu P, Honig B (2009) Nuance in the double-helix and its

role in protein-DNA recognition. Curr Opin Struct Biol 19: 171–177.

102. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits.
Nature 467: 167–173.

103. Lemerle C, Di Ventura B, Serrano L (2005) Space as the final frontier in
stochastic simulations of biological systems. FEBS Lett 579: 1789–1794.

104. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical

modelling of cell signalling pathways. Nat Cell Biol 8: 1195–1203.

105. Araujo RP, Petricoin EF, Liotta LA (2005) A mathematical model of

combination therapy using the EGFR signaling network. Biosystems 80: 57–69.

106. Araujo RP, Liotta LA, Petricoin EF (2007) Proteins, drug targets and the

mechanisms they control: the simple truth about complex networks. Nat Rev
Drug Discov 6: 871–880.

107. Yang K, Bai H, Ouyang Q, Lai L, Tang C (2008) Finding multiple target

optimal intervention in disease-related molecular network. Mol Syst Biol 4:
228.

108. Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT (2010) Identification of
optimal drug combinations targeting cellular networks: integrating phospho-

proteomics and computational network analysis. Cancer Res 70: 6704–6714.

109. Qi X (2006) Stochastic models for prodrug targeting. 1. Diffusion of the efflux

drug. Mol Pharm 3: 187–195.

110. Khalili S, Monaco JM, Armaou A (2010) Development of a stochastic model
for the efficacy of NRTIs using known mechanisms of action. J Theor Biol 265:

704–717.

111. Stein M, Gabdoulline RR, Wade RC (2007) Bridging from molecular

simulation to biochemical networks. Curr Opin Struct Biol 17: 166–172.

112. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, et al. (2006) Electrostatic

basis for enzyme catalysis. Chem Rev 106: 3210–3235.

113. Wade RC, Gabdoulline RR, Ludemann SK, Lounnas V (1998) Electrostatic
steering and ionic tethering in enzyme-ligand binding: insights from

simulations. Proc Natl Acad Sci U S A 95: 5942–5949.

114. Gabdoulline RR, Stein M, Wade RC (2007) qPIPSA: relating enzymatic

kinetic parameters and interaction fields. BMC Bioinformatics 8: 373.

115. Dell’Orco D (2009) Fast predictions of thermodynamics and kinetics of protein-

protein recognition from structures: from molecular design to systems biology.
Mol Biosyst 5: 323–334.

116. Bai H, Yang K, Yu D, Zhang C, Chen F, et al. (2011) Predicting kinetic

constants of protein-protein interactions based on structural properties.

Proteins 79: 720–734.

117. Moal IH, Bates PA (2012) Kinetic rate constant prediction supports the
conformational selection mechanism of protein binding. PLoS Comput Biol 8:

e1002351.

118. Ren J, Xie L, Li WW, Bourne PE (2010) SMAP-WS: a parallel web service for

structural proteome-wide ligand-binding site comparison. Nucleic Acids Res 38
Suppl: W441–444.

119. Xie L, Bourne PE (2009) A unified statistical model to support local sequence

order independent similarity searching for ligand-binding sites and its

application to genome-based drug discovery. Bioinformatics 25: i305–312.

120. Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing
fold space, using sequence order-independent profile-profile alignments. Proc

Natl Acad Sci U S A 105: 5441–5446.

121. Xie L, Bourne PE (2007) A robust and efficient algorithm for the shape

description of protein structures and its application in predicting ligand binding
sites. BMC Bioinformatics 8 Suppl 4: S9.

122. Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, et al. (2007)
Structure-based activity prediction for an enzyme of unknown function. Nature

448: 775–779.

123. Bulik S, Grimbs S, Huthmacher C, Selbig J, Holzhutter HG (2009) Kinetic

hybrid models composed of mechanistic and simplified enzymatic rate laws–a

promising method for speeding up the kinetic modelling of complex metabolic

networks. FEBS J 276: 410–424.

124. Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, et al. (2012) Network

context and selection in the evolution to enzyme specificity. Science 337: 1101–

1104.

125. Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming

binding affinities from three dimensions to two with application to cadherin

clustering. Nature 475: 510–513.

126. Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery:

detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:

205–216.

127. Bruning JB, Parent AA, Gil G, Zhao M, Nowak J, et al. (2010) Coupling of

receptor conformation and ligand orientation determine graded activity. Nat

Chem Biol 6: 837–843.

128. Kojetin DJ, Burris TP (2013) Small molecule modulation of nuclear receptor

conformational dynamics: implications for function and drug discovery. Mol

Pharmacol 83: 1–8.

129. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex

scheme for receptor flexibility in computer-aided drug design. J Comput Aided

Mol Des 22: 693–705.

130. Kobilka BK, Gether U (2002) Use of fluorescence spectroscopy to study

conformational changes in the beta 2-adrenoceptor. Methods Enzymol 343:

170–182.

131. Hruby VJ, Tollin G (2007) Plasmon-waveguide resonance (PWR) spectroscopy

for directly viewing rates of GPCR/G-protein interactions and quantifying

affinities. Curr Opin Pharmacol 7: 507–514.

132. Lohse MJ, Hein P, Hoffmann C, Nikolaev VO, Vilardaga JP, et al. (2008)

Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol

153 Suppl 1: S125–132.

133. Baneres JL, Mesnier D, Martin A, Joubert L, Dumuis A, et al. (2005) Molecular

characterization of a purified 5-HT4 receptor: a structural basis for drug

efficacy. J Biol Chem 280: 20253–20260.

134. Okada T, Palczewski K (2001) Crystal structure of rhodopsin: implications for

vision and beyond. Curr Opin Struct Biol 11: 420–426.

135. Pellissier LP, Sallander J, Campillo M, Gaven F, Queffeulou E, et al. (2009)

Conformational toggle switches implicated in basal constitutive and agonist-

induced activated states of 5-hydroxytryptamine-4 receptors. Mol Pharmacol

75: 982–990.

136. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling

pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science

335: 1106–1110.

137. Gelis L, Wolf S, Hatt H, Neuhaus EM, Gerwert K (2012) Prediction of a

ligand-binding niche within a human olfactory receptor by combining site-

directed mutagenesis with dynamic homology modeling. Angew Chem Int Ed

Engl 51: 1274–1278.

138. Taddese B, Simpson LM, Wall ID, Blaney FE, Kidley NJ, et al. (2012) G-

protein-coupled receptor dynamics: dimerization and activation models

compared with experiment. Biochem Soc Trans 40: 394–399.

139. Li CY, Yu Q, Ye ZQ, Sun Y, He Q, et al. (2007) A nonsynonymous SNP in

human cytosolic sialidase in a small Asian population results in reduced enzyme

activity: potential link with severe adverse reactions to oseltamivir. Cell Res 17:

357–362.

140. Kowarsch A, Fuchs A, Frishman D, Pagel P (2010) Correlated mutations: a

hallmark of phenotypic amino acid substitutions. PLoS Comput Biol 6:

e1000923.

141. Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of

energetic connectivity in protein families. Science 286: 295–299.

142. Dekker JP, Fodor A, Aldrich RW, Yellen G (2004) A perturbation-based

method for calculating explicit likelihood of evolutionary co-variance in

multiple sequence alignments. Bioinformatics 20: 1565–1572.

143. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, et al. (2008)

Rewiring the specificity of two-component signal transduction systems. Cell

133: 1043–1054.

144. Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, et al. (2008) Surface sites

for engineering allosteric control in proteins. Science 322: 438–442.

145. Lee SY, Banerjee A, MacKinnon R (2009) Two separate interfaces between the

voltage sensor and pore are required for the function of voltage-dependent K(+)

channels. PLoS Biol 7: e47.

146. Ferguson AD, Amezcua CA, Halabi NM, Chelliah Y, Rosen MK, et al. (2007)

Signal transduction pathway of TonB-dependent transporters. Proc Natl Acad

Sci U S A 104: 513–518.

147. Zheng W, Brooks B (2005) Identification of dynamical correlations within the

myosin motor domain by the normal mode analysis of an elastic network

model. J Mol Biol 346: 745–759.

148. Zheng W, Liao JC, Brooks BR, Doniach S (2007) Toward the mechanism of

dynamical couplings and translocation in hepatitis C virus NS3 helicase using

elastic network model. Proteins 67: 886–896.

149. Pan H, Lee JC, Hilser VJ (2000) Binding sites in Escherichia coli dihydrofolate

reductase communicate by modulating the conformational ensemble. Proc Natl

Acad Sci U S A 97: 12020–12025.

150. Chennubhotla C, Bahar I (2006) Markov propagation of allosteric effects in

biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2: 36.

PLOS Computational Biology | www.ploscompbiol.org 13 May 2014 | Volume 10 | Issue 5 | e1003554



151. del Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residues crucial for

maintaining short paths in network communication mediate signaling in
proteins. Mol Syst Biol 2: 2006 0019.

152. Saalau-Bethell SM, Woodhead AJ, Chessari G, Carr MG, Coyle J, et al. (2012)

Discovery of an allosteric mechanism for the regulation of HCV NS3 protein

function. Nat Chem Biol 8: 920–925.

153. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links

between in vitro potency, ADMET and physicochemical parameters. Nat Rev

Drug Discov 10: 197–208.

154. Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time

and its implications for lead optimization. Nat Rev Drug Discov 5: 730–739.

155. Lu H, Tonge PJ (2010) Drug-target residence time: critical information for lead

optimization. Curr Opin Chem Biol 14: 467–474.

156. Braz VA, Holladay LA, Barkley MD (2010) Efavirenz binding to HIV-1 reverse
transcriptase monomers and dimers. Biochemistry 49: 601–610.

157. Lu H, England K, am Ende C, Truglio JJ, Luckner S, et al. (2009) Slow-onset

inhibition of the FabI enoyl reductase from francisella tularensis: residence time

and in vivo activity. ACS Chem Biol 4: 221–231.

158. Copeland RA (2011) Conformational adaptation in drug-target interactions

and residence time. Future Med Chem 3: 1491–1501.

159. Vauquelin G, Charlton SJ (2010) Long-lasting target binding and rebinding as

mechanisms to prolong in vivo drug action. Br J Pharmacol 161: 488–508.

160. Carroll MJ, Mauldin RV, Gromova AV, Singleton SF, Collins EJ, et al. (2012)

Evidence for dynamics in proteins as a mechanism for ligand dissociation. Nat

Chem Biol 8: 246–252.

161. ElSawy KM, Twarock R, Lane DP, Verma CS, Caves LSD (2012)

Characterization of the Ligand Receptor Encounter Complex and Its Potential
for in Silico Kinetics-Based Drug Development. J Chem Theory Comput 8:

314–321.

162. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events

and reconstruct the free energy in biophysics, chemistry and material science.

Rep Prog Phys 71.

163. Pietrucci F, Marinelli F, Carloni P, Laio A (2009) Substrate Binding

Mechanism of HIV-1 Protease from Explicit-Solvent Atomistic Simulations.

J Am Chem Soc 131: 11811–11818.

164. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and

combination therapy in the quest for clinical efficacy. Nat Chem Biol 2: 458–

466.

165. Winter GE, Rix U, Carlson SM, Gleixner KV, Grebien F, et al. (2012)

Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML.
Nat Chem Biol 8: 905–912.

166. Huang J, Niu C, Green CD, Yang L, Mei H, et al. (2013) Systematic Prediction

of Pharmacodynamic Drug-Drug Interactions through Protein-Protein-Inter-

action Network. PLoS Comput Biol 9: e1002998.

167. Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R (2012) INDI: a

computational framework for inferring drug interactions and their associated

recommendations. Mol Syst Biol 8: 592.

168. Tatonetti NP, Ye PP, Daneshjou R, Altman RB (2012) Data-driven prediction

of drug effects and interactions. Sci Transl Med 4: 125ra131.

169. Hansch C, Leo A, Mekapati SB, Kurup A (2004) QSAR and ADME. Bioorg

Med Chem 12: 3391–3400.

170. Hou T, Wang J, Zhang W, Wang W, Xu X (2006) Recent advances in
computational prediction of drug absorption and permeability in drug

discovery. Curr Med Chem 13: 2653–2667.

171. Nettles JH, Jenkins JL, Williams C, Clark AM, Bender A, et al. (2007) Flexible

3D pharmacophores as descriptors of dynamic biological space. J Mol Graph

Model 26: 622–633.

172. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA (2012) Toward in

silico structure-based ADMET prediction in drug discovery. Drug Discov

Today 17: 44–55.

173. Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, et al. (2011) Structure-
based discovery of prescription drugs that interact with the norepinephrine

transporter, NET. Proc Natl Acad Sci U S A 108: 15810–15815.

174. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, et al. (2009) PubChem: a public

information system for analyzing bioactivities of small molecules. Nucleic Acids

Res 37: W623–633.

175. Epstein SL, Yu X, Xie L (2013) Multi-agent, multi-case-based reasoning.

Lecture Note in Comp Sci 7969: 74–88.

176. Sun H, Scott DO (2010) Structure-based drug metabolism predictions for drug

design. Chem Biol Drug Des 75: 3–17.

177. Nebert DW, Jorge-Nebert L, Vesell ES (2003) Pharmacogenomics and

‘‘individualized drug therapy’’: high expectations and disappointing achieve-

ments. Am J Pharmacogenomics 3: 361–370.

178. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug

metabolism: Regulation of gene expression, enzyme activities, and impact of

genetic variation. Pharmacol Ther 138: 103–141.

179. Honkakoski P, Negishi M (2000) Regulation of cytochrome P450 (CYP) genes

by nuclear receptors. Biochem J 347: 321–337.

180. Scotto KW (2003) Transcriptional regulation of ABC drug transporters.

Oncogene 22: 7496–7511.

181. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, et al. (2010)

SuperCYP: a comprehensive database on Cytochrome P450 enzymes including
a tool for analysis of CYP-drug interactions. Nucleic Acids Res 38: D237–243.

182. Zhang QY (2009) Genome-wide off-target binding of Rifampin and its
implications for genetic disposition to drug toxicity. M.S. Thesis, The

University of York.

183. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, et al. (2004)

Comparison of cytochrome P450 (CYP) genes from the mouse and human
genomes, including nomenclature recommendations for genes, pseudogenes

and alternative-splice variants. Pharmacogenetics 14: 1–18.

184. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci
Signal 5: re5.

185. Wang J, Pitarque M, Ingelman-Sundberg M (2006) 39-UTR polymorphism in

the human CYP2A6 gene affects mRNA stability and enzyme expression.
Biochem Biophys Res Commun 340: 491–497.

186. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009)

Pharmacometabonomic identification of a significant host-microbiome meta-
bolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A

106: 14728–14733.

187. Diaz Ochoa JG, Bucher J, Pery AR, Zaldivar Comenges JM, Niklas J, et al.
(2012) A multi-scale modeling framework for individualized, spatiotemporal

prediction of drug effects and toxicological risk. Front Pharmacol 3: 204.

188. Thorn CF, Klein TE, Altman RB (2005) PharmGKB: the pharmacogenetics
and pharmacogenomics knowledge base. Methods Mol Biol 311: 179–191.

189. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. (2009)

Estimation of the warfarin dose with clinical and pharmacogenetic data.

N Engl J Med 360: 753–764.

190. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, et al. (2012)

Systematic identification of genomic markers of drug sensitivity in cancer cells.

Nature 483: 570–575.

191. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, et al.

(2012) The Cancer Cell Line Encyclopedia enables predictive modelling of

anticancer drug sensitivity. Nature 483: 603–607.

192. Yeh CN, Chen TW, Lee HL, Liu YY, Chao TC, et al. (2007) Kinase mutations
and imatinib mesylate response for 64 Taiwanese with advanced GIST:

preliminary experience from Chang Gung Memorial Hospital. Ann Surg
Oncol 14: 1123–1128.

193. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, et al. (2005)

EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.
N Engl J Med 352: 786–792.

194. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, et al. (2005) Acquired

resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a
second mutation in the EGFR kinase domain. PLoS Med 2: e73.

195. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ (2009) Absorption of

montelukast is transporter mediated: a common variant of OATP2B1 is

associated with reduced plasma concentrations and poor response. Pharma-
cogenet Genomics 19: 129–138.

196. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, et al.

(2010) Association of KRAS p.G13D mutation with outcome in patients with
chemotherapy-refractory metastatic colorectal cancer treated with cetuximab.

JAMA 304: 1812–1820.

197. Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, et al. (2001)
Integrating genotype and phenotype information: an overview of the

PharmGKB project. Pharmacogenetics Research Network and Knowledge
Base. Pharmacogenomics J 1: 167–170.

198. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, et al. (2008) Wild-

type KRAS is required for panitumumab efficacy in patients with metastatic
colorectal cancer. J Clin Oncol 26: 1626–1634.

199. Andre T, Blons H, Mabro M, Chibaudel B, Bachet JB, et al. (2013)

Panitumumab combined with irinotecan for patients with KRAS wild-type

metastatic colorectal cancer refractory to standard chemotherapy: a GERCOR
efficacy, tolerance, and translational molecular study. Ann Oncol 24: 412–419.

200. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. (2012) An

integrated map of genetic variation from 1,092 human genomes. Nature 491:
56–65.

201. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. (2012) An

integrated encyclopedia of DNA elements in the human genome. Nature 489:
57–74.

202. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, et al. (2011)

Integrative analysis of the Caenorhabditis elegans genome by the modEN-
CODE project. Science 330: 1775–1787.

203. Muers M (2011) Functional genomics: the modENCODE guide to the genome.

Nat Rev Genet 12: 80.

204. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, et al. Identification
of functional elements and regulatory circuits by Drosophila modENCODE.

Science 330: 1787–1797.

205. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, et al. (2002) A
genomic regulatory network for development. Science 295: 1669–1678.

206. Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, et al. (2012)

Massively parallel functional dissection of mammalian enhancers in vivo. Nat
Biotechnol 30: 265–270.

207. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, et al. (2012) Inferring

gene regulatory logic from high-throughput measurements of thousands of
systematically designed promoters. Nat Biotechnol 30: 521–530.

208. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, et al. (2012)

Systematic dissection and optimization of inducible enhancers in human cells

using a massively parallel reporter assay. Nat Biotechnol 30: 271–277.

PLOS Computational Biology | www.ploscompbiol.org 14 May 2014 | Volume 10 | Issue 5 | e1003554



209. Kinney JB, Murugan A, Callan CG, Jr., Cox EC (2010) Using deep sequencing

to characterize the biophysical mechanism of a transcriptional regulatory
sequence. Proc Natl Acad Sci U S A 107: 9158–9163.

210. Shi Z, Moult J (2011) Structural and functional impact of cancer-related

missense somatic mutations. J Mol Biol 413: 495–512.
211. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Human

Mutation 17: 263–270.
212. Xie L, Ng C, Ali T, Valencia R, Ferreira BL, et al. (2013) Multiscale Modeling

of the Causal Functional Roles of nsSNPs in a Genome-Wide Association

Study: Application to Hypoxia. BMC Genomics 14: S9.
213. David A, Razali R, Wass MN, Sternberg MJ (2012) Protein-protein interaction

sites are hot spots for disease-associated nonsynonymous SNPs. Hum Mutat 33:
359–363.

214. Stein A, Mosca R, Aloy P (2011) Three-dimensional modeling of protein
interactions and complexes is going ’omics. Curr Opin Struct Biol 21: 200–208.

215. Stranger BE, Stahl EA, Raj T (2010) Progress and promise of genome-wide

association studies for human complex trait genetics. Genetics 187: 367–383.
216. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

217. Knight J, Barnes MR, Breen G, Weale ME (2011) Using functional annotation

for the empirical determination of Bayes Factors for genome-wide association
study analysis. PLoS ONE 6: e14808.

218. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing
candidate disease genes by network-based boosting of genome-wide association

data. Genome Res 21: 1109–1121.
219. Huang SS, Clarke DC, Gosline SJ, Labadorf A, Chouinard CR, et al. (2013)

Linking proteomic and transcriptional data through the interactome and

epigenome reveals a map of oncogene-induced signaling. PLoS Comput Biol 9:
e1002887.

220. Huang SS, Fraenkel E (2009) Integrating proteomic, transcriptional, and
interactome data reveals hidden components of signaling and regulatory

networks. Sci Signal 2: ra40.

221. Cheng TM, Goehring L, Jeffery L, Lu YE, Hayles J, et al. (2012) A structural
systems biology approach for quantifying the systemic consequences of

missense mutations in proteins. PLoS Comput Biol 8: e1002738.
222. Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, et al. (2009) PSI-2:

structural genomics to cover protein domain family space. Structure 17: 869–881.
223. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, et al. (2013) The

GPCR Network: a large-scale collaboration to determine human GPCR

structure and function. Nat Rev Drug Discov 12: 25–34.

224. Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the

multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature

490: 566–569.

225. Korkhov VM, Mireku SA, Locher KP (2012) Structure of AMP-PNP-bound

vitamin B12 transporter BtuCD-F. Nature 490: 367–372.

226. Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, et al.

(2013) A vitamin B(1)(2) transporter in Mycobacterium tuberculosis. Open Biol

3: 120175.

227. Berman HM, Coimbatore Narayanan B, Costanzo LD, Dutta S, Ghosh S, et

al. (2013) Trendspotting in the Protein Data Bank. FEBS Lett 587: 1036–1045.

228. Kryshtafovych A, Fidelis K, Moult J (2011) CASP9 results compared to those of

previous CASP experiments. Proteins 79 Suppl 10: 196–207.

229. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, et al. (2011) Protein

3D structure computed from evolutionary sequence variation. PLoS ONE 6:

e28766.

230. Ward AB, Sali A, Wilson IA (2013) Biochemistry. Integrative structural

biology. Science 339: 913–915.

231. Tseng YY, Chen ZJ, Li WH (2010) fPOP: footprinting functional pockets of

proteins by comparative spatial patterns. Nucleic Acids Res 38: D288–295.

232. Gao M, Skolnick J (2013) APoc: large-scale identification of similar protein

pockets. Bioinformatics 29: 597–604.

233. Liu T, Altman RB (2011) Using multiple microenvironments to find similar

ligand-binding sites: application to kinase inhibitor binding. PLoS Comput Biol

7: e1002326.

234. Bryant DH, Moll M, Finn PW, Kavraki LE (2013) Combinatorial clustering of

residue position subsets predicts inhibitor affinity across the human kinome.

PLoS Comput Biol 9: e1003087.

235. Milletti F, Vulpetti A (2010) Predicting polypharmacology by binding site

similarity: from kinases to the protein universe. J Chem Inf Model 50: 1418–

1431.

236. Sael L, Kihara D (2012) Detecting local ligand-binding site similarity in

nonhomologous proteins by surface patch comparison. Proteins 80: 1177–

1195.

237. Ramensky V, Sobol A, Zaitseva N, Rubinov A, Zosimov V (2007) A novel

approach to local similarity of protein binding sites substantially improves

computational drug design results. Proteins 69: 349–357.

238. Xiong B, Wu J, Burk DL, Xue M, Jiang H, et al. (2010) BSSF: a fingerprint

based ultrafast binding site similarity search and function analysis server. BMC

Bioinformatics 11: 47.

PLOS Computational Biology | www.ploscompbiol.org 15 May 2014 | Volume 10 | Issue 5 | e1003554


