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Abstract

The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular
grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat
MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative
mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or
single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that
accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path
integration even when the recurrent connections are subject to random perturbations.
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Introduction

Responses of grid cells recorded in medial entorhinal cortex

(MEC) provide accurate population codes for the positions in an

environment [1], and could result from path-integration mecha-

nism [2]. Attractor network models of MEC spatial representa-

tions have been proposed, based on two foundations. First, they

assume surround-inhibition recurrent connections, such as in

Mexican-hat type connection profile, between grid cells [3–7].

When sufficiently strong, surround-inhibition connections endow

recurrent networks with stationary hexagonal patterns of activity

patches even when driven by uniform external inputs [3,5,8]. In

the absence of external cues, this pattern can have an arbitrary

spatial phase and orientation, a hallmark of a continuous attractor

model. In order to generate individual cells with an hexagonal

pattern of firing fields from an hexagonal pattern of network

activity, the latter has to flow across the network with a velocity

vector proportional to the velocity of the animal, up to a fixed

rotation. In [5], this movement is emerging in the network via a

combination of two additional mechanisms: (i) each neuron

receives a speed-modulated input that is tuned for a particular

direction of movement; and (ii) the neuron’s outgoing connections

are slightly shifted in the direction reflecting the neuron’s preferred

direction. As a result, when the animal is moving in a certain

direction, the neurons that prefer this direction are slightly more

active than their counterparts, and generate the appropriate flow

across the network sheet. While the model of [5] was shown to

generate robust grid cells, it cannot account for cells that are

strongly directionally tuned (‘‘conjunctive cells’’) [9]. Moreover, in

order to produce stable firing fields, the flow speed should be

precisely proportional to the animal velocity, which can only be

achieved by the abovementioned mechanism with threshold-linear

neurons, not a realistic assumption given strong nonlinearities of

neuronal firing mechanism.

In order to develop a robust continuous attractor model of grid

system, we suggest that MEC networks contain intrinsic repre-

sentations of arbitrary conjunctions of positions and movements of

the animal. To achieve such representations, we construct a

network with grid-like activity patterns that are intrinsically

moving with different velocities, as opposed to stationary patterns

in the earlier models. Individual neurons in the network are

labeled with different position/velocity combinations, and con-

nectivity is configured in such a way that activity bumps, when

centered on neurons with particular velocity labels, are intrinsi-

cally moving at the corresponding speed and direction. The

appropriate positioning of the activity bumps is assumed to be

achieved by the velocity-dependent input as in [5]. The mapping

between the animal movement and the position of the bumps on

the velocity axis can be learned by the network during

development, such that the velocity of the bumps in the neural

space is proportional to the velocity of the animal in the physical

space. The network thus performs path-integration and forms

stable grid maps in the environment. We demonstrate that this

model does not require precise tuning of recurrent connections

and naturally accounts for the co-existence of pure grid cells and

strongly directional, conjunctive cells.

Results

Each unit in the network is assigned a set of coordinates on a

manifold embedded in a patch of MEC. The dimensions of the

neuronal manifold represent the position or velocity of the animal

in its environment. The activity of the units is governed by the

dynamics of the interactions between units conveyed by recurrent
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connections. To illustrate the basic ideas of the model, we first

consider a one-dimensional environment, i.e. a linear track on

which the animal runs back and forth. The results for two

dimensional environments are presented in Results - Two dimensional

environment.

Neural representation of position and velocity
On a linear track, the network only needs to encode one-

dimensional locations and integrate one-dimensional velocity.

Each unit is labeled by its coordinates (h,v) on an abstract 2-

dimensional neuronal manifold. h[½{p,p) is an internal repre-

sentation of the positions of the environment. For simplicity we

assume periodic boundary conditions in h. Note that the physical

environment has fixed boundary conditions, and the simulated

animal can not go beyond the boundaries. Both h and v are

dimensionless quantities, but they reflect physical position and

velocity of the animal (see below). We choose the connections

between the units such that the network has multiple bumps in the

position dimension and a single bump in the velocity dimension.

In this paper we consider the simplest choice for the connections

from unit (h’,v’) to unit (h,v) in the following form (but we expect

the precise form not to be important for the qualitative behavior of

the network):

J(h,vDh’,v’)~J0zJk cos(k(h{h’{v’)) cos(l(v{v’)), ð1Þ

where J0v0 is uniform inhibition, Jkw0 defines the range of

interaction strengths, lw0 is the strength of velocity tuning and

kw0 is an integer, determining the number of bumps in the

dimension of h. Note that for each value of v’ connections are

asymmetric in the position dimension, which results in the bumps

moving along this dimension with the speed and direction

determined by v’. Throughout the paper we choose k~2 and

l~0:8. The former choice was taken in order to be consistent with

the 2D case described below, where several activity bumps are

required for the neurons to exhibit triangular grid fields, without

endowing the abstract neural tissue with twisted torus boundary

conditions necessary for previous models [10,11]. The range of v is

chosen to be ½{ p

2k
,

p

2k
�, since for values of v beyond this range the

moving bump solution disappears (see Eq. 14 and Methods - Speed

estimation in the asymmetric ring model).

The outgoing weight profile of a unit is not centered at its own

spatial label, but is shifted by an amount determined by its velocity

label (Fig. 1A). The weight profile is broadly modulated in the

velocity dimension by the second cosine term of Eq. 1. The

incoming weights of a unit is shifted in the spatial axis by amounts

determined by presynaptic units, showing tilted patterns (Fig. 1B),

a structure imposed by the term v’ in the first cosine term of Eq. 1.

Intrinsic network dynamics
We first consider the intrinsic activity of the network without a

velocity tuned input. The firing rate of the unit at (h,v) is denoted

by m(h,v). The dynamics of the network activity is described by

t _mm(h,v)~{m(h,v)zf

ðð
DhDvJ(h,vDh’,v’)m(h’,v’)zI

� �
, ð2Þ

where I is a uniform input current, f (x) is a transfer function

typically defined as a threshold-linear function if not stated

explicitly: f (x):½x�z~x when xw0 and 0 otherwise. The

notations

ð
Dh~

1

2p

ðp

{p

dh, and

ð
Dv~

k

p

ð p
2k

{ p
2k

dv.

The coupling can be rewritten as

J(h,vjh0,v0)~J0z
Jk

2
cos(khzl(v{v0)

{k(h0zv0))z
Jk

2
cos(kh{l(v{v0){k(h0zv0)):

ð3Þ

This model is mathematically similar to the model discussed in

[12], but with k bumps and asymmetrical connections in h.

Order parameters
The properties of the network activity m(h,v) can be charac-

terized by an appropriately chosen set of order parameters.

Thanks to the ring connectivity structure used, we introduce five

order parameters (a,c,s,yz,y{) to describe the network activity

[12,13]. The dynamics of the firing rate can be rewritten in terms

of these order parameters as (see Methods - Order parameters for the

detailed derivation)

t _mm(h,v)~{m(h,v)zaIg(h,v), ð4Þ

where g(h,v), the rescaled input (see Eq.27 below), is defined by

g(h,v)~

cos(kh{yz)cos(lv{y{){c sin(kh{yz)sin(lv{y{)zs
� �

z
:
ð5Þ

The dynamics of the order parameters are governed by

following equations:

t _cc~

{Jk

ðð
DhDvg(h,v)(sin(k(hzv){yz)sin(lv{y{)

zc cos(k(hzv){yz) cos(lv{y{))

Author Summary

How do animals self-localize when they explore the
environments with variable velocities? One mechanism is
dead reckoning or path-integration. Recent experiments
on rodents show that such computation may be per-
formed by grid cells in medial entorhinal cortex. Each grid
cell fires strongly when the animal enters locations that
define the vertices of a triangular grid. Some of the grid
cells show grid firing patterns only when the animal runs
along particular directions. Here, we propose that grid cells
collectively represent arbitrary conjunctions of positions
and movements of the animal. Due to asymmetric
recurrent connections, the network has grid patterns as
states that are able to move intrinsically with all possible
directions and speeds. A velocity-tuned input will activate
a subset of the population that prefers similar movements,
and the pattern in the network moves with a velocity
proportional to the movement of the animal in physical
space, up to a fixed rotation. Thus the network ‘imagines’
the movement of the animal, and produces single cell grid
firing responses in space with different degree of head-
direction selectivity. We propose testable predictions for
new experiments to verify our model.

Continuous Attractor Model for Grid Cells
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t _aa~a({1zJk

ðð
DhDvg(h,v) cos(k(hzv){yz) cos(lv{y{))

t _ss~
1

a
zJ0

ðð
DhDvg(h,v)

{Jks

ðð
DhDvg(h,v) cos(k(hzv){yz) cos(lv{y{))

ð6Þ

t _yyz~

Jk

1{c2

ðð
DhDvg(h,v)(sin(k(hzv){yz) cos(lv{y{)

{c cos(k(hzv){yz) sin(lv{y{))

t _yy{~

Jk

1{c2

ðð
DhDvg(h,v)(cos(k(hzv){yz) sin(lv{y{)

{c sin(k(hzv){yz) cos(lv{y{)):

c[½{1,0� defines the slant of the bumps, s[½{1,1� is the

threshold that sets the size of the bumps, a§0 is the amplitude of

the bumps in the network.
yz

k
and

y{

l
indicate the peak location

of the bumps in h and v dimensions respectively.

Solutions
The solutions to the system in Eq. 2 show qualitatively different

forms depending on the parameters Jk and J0. If Jk is small, the

network activity is uniform (homogeneous regime, Fig. 2A). When

Jk increases, the network activity converges to k bumps, localized

at the arbitrary stationary position yz=k in h dimension and

spanning the whole range in v dimension (static bumps regime;

y{~0, see Fig. 2B). The forces from the units with positive

(negative) velocity labels in propagating the bumps to right (left)

balance each other, therefore the bumps are static.

For sufficiently large Jk, the bumps become localized also in

the velocity dimension at the position y{=l (Fig. 2C). Due to

the asymmetry of the coupling in the spatial axis, the bumps

start to move intrinsically along the spatial axis with velocity

dependent on their position on the velocity axis (traveling

bumps regime). Since the network forms a continuous attractor

manifold in v dimension, the bumps are free to be stabilized in

the velocity axis and are able to move with a range of possible

velocities along the spatial axis. In the traveling bumps regime,

the network activity m(h,v) does not have any steady state, but

the order parameters c,s and a converge to fixed points. J0

should be sufficiently negative in order to keep the network

activity from explosion (amplitude instability regime). Through-

out the paper, we assume inhibitory connections (i.e. J0zJkv0)

for convenience, although using excitatory connections will lead

to similar results.

In this section, we analyze the fixed point solutions to the

dynamics of the order parameters, and perform simulations to

confirm the solutions found. Before analyzing the moving bumps

regime, we briefly mention the homogeneous regime and static

bumps regime for the sake of completeness.

Homogeneous solution. A trivial solution of the firing rate

dynamics is a uniform activity in the network. We directly analyze

the steady state of the system in Eq. 2. The steady state is

m(h,v)~
I

1{J0

, imposing the condition

J0v1: ð7Þ

Figure 1. Weights of two example units on a neural manifold of position and velocity (parameters: k~2,l~0:8). The weight profile has k
periods along the spatial dimension. (A) The outgoing weight (left panel) and the incoming weight (right panel) of the unit at (h,v)~(0,0:15) (marked
by white dots). The outgoing weight profile of the unit is not centered at its own location in the position dimension, but rotated 0.15 radians to the
right (white triangle). The amount of the shift is determined by the velocity label of the unit, as indicated by the black arrow. In the velocity
dimension, the connections show broad modulation (the peak of the weight profile marked by the white triangle). The incoming weights (right
panel) to the same unit (white circle) is tilted, since the unit receives strong connections from units in the left/right with a positive/negative shift
determined by the projection units, among which the maximal activation comes from the unit 0.15 to the left (marked by white triangle) due to the
modulation in the velocity dimension; (B) The outgoing weight (left panel) and the incoming weight (right panel) of the unit with negative velocity
label, (h,v)~(0:35,{0:24) (marked by white dots). The outgoing weight profile is centered (white triangle) to the left of the unit in the spatial
dimension, due to the negative velocity label of the unit. The incoming weight of the unit is tilted, with the maximal connection coming from the
right.
doi:10.1371/journal.pcbi.1003558.g001
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The line separating the homogeneous regime from the static

bumps regime is

Jkv
1

C
~

2p

1z
k2 cos(lp=k)

k2{4l2

: ð8Þ

where C is defined as

C:
ðð

DhDv cos(kh) cos(k(hzv)) cos2 (lv): ð9Þ

The derivation of this result is detailed in Methods - Stability of a

homogeneous solution.

Stationary activity bumps. When Jk goes beyond 1=C,

stationary bumps emerge in the network, that span the whole

range of v’s. In this case, y{~0, and yz is a free parameter,

defining the spatial position of the bumps. In the following, we

choose yz~0. At the steady state, the network activity takes the

form

m(h,v)~aI cos(kh) cos(lv){c sin(kh) sin(lv)zs½ �z: ð10Þ

One example of static bumps is shown in Fig. 2B, simulated

according to the rate dynamics in Eq. 2 (ref. Methods - Network

simulations for details of simulations). The k bumps in the network

are tilted, corresponding to negative c (Ref. Methods - Order

parameters). The degree of the slant is proportional to the absolute

value of c.

The first three order parameters (c,a,s) in Eqs. 6 converge to

fixed point solutions:

1

Jk

~

ðð
DhDvg(h,v) cos(k(hzv)) cos(lv)

0~Jk

ðð
DhDvg(h,v) sin(k(hzv)) sin(lv)zc ð11Þ

1

a
~s{J0

ðð
DhDvg(h,v):

Here g(h,v)~ cos(kh) cos(lv){c sin(kh) sin(lv)zs½ �z.

From the last Eq. in 11, the condition for J0 to avoid amplitude

instability is

Figure 2. Depending on the parameters, the network operates in different regimes. (A) The amplitude instability (A) is separated from the
homogeneous regime (H) and localized activity regimes (S and T) by Eq. 7 and 12. Localized regimes are separated from the homogeneous regime by
Eq. 8. The regime of traveling bumps (T) is separated from the regime of static bumps (S) by Eq. 35; (B) An example of the network state in localized
activity regime (Jk~50,J0~{60,I~60,l~0:8). (C) An example of traveling bumps (Jk~250,J0~{260,I~60,l~0:8); (D–E) Fixed point solutions of
order parameters c and a for various Jk . The square markers correspond to the order parameters of the examples shown in (A). With larger Jk , the
bumps in the network are less tilted (larger c) and smaller (smaller s).
doi:10.1371/journal.pcbi.1003558.g002

Continuous Attractor Model for Grid Cells

PLOS Computational Biology | www.ploscompbiol.org 4 April 2014 | Volume 10 | Issue 4 | e1003558



J0ƒJc
0:

sðð
DhDvg(h,v)

: ð12Þ

The fixed point equations 11 are not easy to deal with analytically.

Instead, we resort to numerical integration to calculate the fixed-point

solutions. Since the first two of the Eqs. 11 are decoupled from a, we

solve c and s from the first two equations and then determine the range

of J0 according to Eq. 12. Fig. 2D–E shows the fixed point solutions of

c and s. The critical value Jc
0 is plotted in Fig. 2A. The order

parameters of the simulations in Fig. 2B–C match the numerical

solutions (square markers in Fig. 2D–E).

Traveling bumps. The regime we are most interested in is

the one in which multiple traveling bumps exist in the neural

space. This requires the size of the bumps to be sufficiently small so

that they can move freely along the v axis. The condition for this is

svs�, where (see Methods - Onset of traveling bumps)

s�~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 (

lp

2k
)zc2 sin2 (

lp

2k
)

r
: ð13Þ

Comparing Eq. 13 with the fixed point solution of s from the

first two of Eqs. 11 allows defining the Jk above which nonzero

y{ emerges and the bumps start to move. Fig. 2C shows one

example of traveling bumps.

The velocity of the traveling bumps is given by _yyz in Eqs. 6. It

depends on the center u:
y{

l
of the bumps on velocity axis.

Although a closed form of the functional relation between _yyz and

u is not tractable, it can be approximated by the velocity of the

bumps when the manifold is reduced to a ring defined on h for a

fixed u (see Methods - Speed estimation in the asymmetric ring model)

_yyz& _YY(u):
tan(ku)

kt
: ð14Þ

We calculate the intrinsic velocity of the bumps by simulating

the network with uniform input (I~60, ref. Methods - Estimating the

intrinsic velocity of the bumps). Indeed, the instantaneous velocity of the

bumps, as a function of the center of the bump positions on the

velocity axis, fits well with the approximation (solid curve in Fig. 3)

given in Eq. 14. The bumps are stable in the velocity axis (see

Fig. 3).

Velocity tuned input
In order to perform path-integration, or equivalently to form

stable firing maps, the velocity of the bumps has to be kept

proportional to the velocity of the animal

S

V
~

2p

k
_YY(u)

, ð15Þ

where V is the velocity of the animal, u is the desired position on

the velocity axis, S, the spacing between grid fields, is a scaling

factor between the velocity of the animal in physical space and the

velocity of the bumps in neural space. Eq. 15 means that for any

velocity of the animal the time it takes for the animal to travel in

physical space between two grid fields is equal to the time it takes

for the bumps in neural space to flow for one period with desired

velocity _YY(u). For a given V , Eq. 14, 15 can be solved for

u(V )~
1

k
arctan(

2ptV

S
): ð16Þ

The function u(V ) therefore tells where the bumps should be

located in v dimension given the velocity V of the animal, i.e.

where the velocity tuned external input should be pointing. We

choose the velocity-tuned input to the network given by Gaussian

tuning

I(vDV )~I ½1{EzE exp({
(v{u(V ))2

2s2
)�: ð17Þ

Here E~0:8 is the strength of the velocity tuning, s~0:1 is the

sharpness of the tuning, I is the amplitude of the input as before.

Note that in the brain the function I(vDV ) can be implemented by

a neural network, the connections of which may be learned during

development of the MEC. For simplicity, we assume in this paper

that such a network has already been formed during appropriate

developmental stages [14–16]. In all the simulations presented in

this paper, we only consider inputs that are untuned in the spatial

dimension, in order to study the ability of the network to perform

path integration in the absence of sensory cues. Adding such cues

will make the grid fields more robust.

Path integration on linear track. We simulated an animal

running back and forth on a two-meter-long linear track. The

velocity of the virtual animal is simulated according to a

continuous random walk with the constraint that the animal can

not leave the boundaries of the track and that the peak speed is

100 cm/s (ref. Methods - Network simulations and Video S1). Fig. 4A

shows one minute trajectory from the simulation. Due to

velocity-tuned input, the size as well as the slant of the bumps in

the network is reduced (Fig. 4B vs. 2C). The bumps are shifted

along the velocity axis by the velocity-tuned input to desired

locations. As a result, the velocity of the bumps is approximately

proportional to the velocity of the animal (Fig. 4C). The slope of

the linear relation is 2p
kS

as given by Eq. 15. We estimate the

position of the animal by considering the phase history of the

Figure 3. The instantaneous velocity of the traveling bumps is

well described by the approximation
tan(ku)

tk
(solid curve). The

bumps are put at 11 different positions on the velocity axis. Each circle

shows the instantaneous velocity of the bumps during a 1 ms step in

the one-second simulation. Overlapping circles demonstrate stable

intrinsic velocity of the bumps. For the parameters used, the bumps

cannot be put to positions DvDw*0:22 on the velocity axis since the

bumps touch the border v~+
2p

k
.

doi:10.1371/journal.pcbi.1003558.g003
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bumps. The difference between the estimated and the actual

position of the animal is bounded during the whole simulation

(Fig. 4D), demonstrating accurate path-integration in the

network.

The position-by-velocity maps of three example units on the

linear track are shown in Fig. 4E. In the 20-minute simulation, all

units develop stable fields. The spacing between the fields in the

spatial dimension is 30 cm, as dictated by the parameter S in the

simulation. Depending on their position on the velocity axis of

the neural space, units respond to different range of movements

of the virtual rat. For example, units shown in the first two rows of

Fig. 4E are only active when the animal runs along one direction,

since these two units prefer high speed in one direction. In

contrast, the unit shown below is not directional, because its

velocity label is close to zero on the velocity axis, therefore it is

active in both directions.

The center of the spatial fields is shifted towards the running

direction (Fig. 4E). This is due to the slant of the bumps in the

network (negative c). Each unit will be active when the bumps

are placed more upper right or lower left relative to the unit. In

the simulation shown in Fig. 4B, the slant of the bumps is

rather weak due to strong input tuning, resulting in a weak

shift of the spatial fields. If however, the velocity input tuning

were reduced (smaller E), this slant effect of the fields would be

stronger, since the shape of the bumps would be more similar

to the case of uniform input.

The firing rates of conjunctive units are smaller than the firing

rates of grid cells, as can be seen from the peak rates of the units in

Fig. 4E. This is consistent with the analysis of the bump amplitude

(see Eq. 57).

Robustness of the network. The wiring of the neural

circuits of the brain can be irregular and imprecise. It was

Figure 4. The units develop stable position-by-velocity maps on a two-meter linear track in a simulation of 20 minutes (parameters:
Jk~250,J0~{260,l~0:8,I~60,E~0:8,s~0:1,S~30cm). (A) Part of the trajectory of the virtual animal. (B) One snapshot of the network activity
during the simulation. (C) The velocity of the bumps is linearly related to the velocity of the virtual rat. Every 100 ms, the instantaneous velocities of

the bumps and the animal during 1 ms interval is shown by a dot in the plot. The line shows the slope
2p

kS
, ref. Eq. 15; (D) The tracking error (the

difference between the estimated position and the actual position of the animal) is small compared to the spacing (S~30 cm). (E) Position-by-
velocity maps of two conjunctive units (top two rows) and a grid unit (bottom). The coordinate (h,v) in the neural space is indicated at the top of
each panel. Non-sampled bins are represented by white color.
doi:10.1371/journal.pcbi.1003558.g004
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shown that continuous attractor networks are structurally

unstable to perturbations in recurrent connections, which

break the symmetry of the model and result in small number of

discrete attractors [17]. Here we show that since we consider

the moving activity bumps resulting from asymmetric connec-

tions, the network is robust to such perturbations in the

recurrent weights.

We add to the entries of the weight matrix random numbers

sampled from Gaussian distributions with zero mean and

standard deviation equal to 2% or 10% of the range of the

original weights (i.e. 10 or 50 for Jk~250). After Gaussian

perturbations, the velocity of the bumps is kept roughly linear

with respect to the velocity of the animal (Fig. 5A for 2% and C

for 10% perturbation), showing small dispersions. In both

simulations, units form stable grid field (Fig. 5B and D). The

tracking errors are limited to up to 16% relative to the spacing

(S~30 cm), although in the simulations with 10% perturba-

tion the error shows larger fluctuations (Fig. 5E). We quantify

Figure 5. The network performs robust path-integration against perturbations in weights (par ameters :
Jk~250,J0~{260,l~0:8,I~60,E~0:8,s~0:1,S~30cm). (A–F) Perturbation by Gaussian random noise with zero mean and standard deviation
2% or 10% relative to the weight range. A,C: Scatter plots of the velocity of the bumps with respect to the velocity of the virtual animal for 2%
perturbation (A) or 10% perturbation (C). Every 100 ms in the simulation, the instantaneous velocities of the bumps and the animal during 1 ms
interval is marked by a dot. The line indicates the slope 2p

kS
derived from Eq. 15; B,D: Spatial fields of two example units in the network with 2% (B) or

10% Gaussian perturbation (D); E: Tracking error, i.e. the difference between the estimated position from the network activity and the actual position
of the animal; F: Drift, defined as the absolute value of tracking error, averaged across eight independent simulations. (G–L) Dilution of connectivity
by p~20% or 40%. The weights are rescaled by 1=(1{p) after the dilution to keep the strength of the connections comparable to the original
connections. G,I: The relation between the velocity of bumps and the velocity of the animal. The same legends are used as in A; H,J: Spatial fields of
two example units from the network with 20% (H) or 40% dilution; K: Tracking error; L: Drift.
doi:10.1371/journal.pcbi.1003558.g005
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the performance of path-integration by averaging drift, i.e. the

absolute tracking error, across eight independent simulations

with different random number sequence. With 10% Gaussian

perturbation, the network is able to path-integrate for about

five minutes before the drift reaches half of the spacing

(Fig. 5F). For smaller perturbation, the network is able to path

integrate for longer time.

We dilute the wiring of the network by randomly setting 20% or

40% of the elements in the weight matrix to zeros. In both

simulations, the velocity of the bumps varies approximately in

a linear fashion with respect to the velocity of the animal

(Fig. 5G,I). For 20% dilution, the units in the network form

sharp fields (Fig. 5H), and the tracking error of the network is

small. In the simulation with 40% dilution of connections,

however, units do not show clear firing field on the track

(Fig. 5J). This is because tracking errors can accumulate over

time, due to the lack of exact linear relationship between the

velocity of the bumps and the velocity of the animal. After

three minutes the network looses track of the position of the

animal (Fig. 5K). When averaged across eight trials, the

network is able to path-integrate for about five minutes with

40% dilution in connections (Fig. 5L).

The robustness of the velocity of the bumps in the network

comes from the fact that it is intrinsically determined by the

asymmetry of the connections and does not depend on the

amplitude of the movement input. Moreover, the network forms

continuous attractor manifold in the velocity dimension, allowing

the bumps pinned to the desired position on the velocity axis to let

the bumps travel with the appropriate velocity.

Nonlinear network. The firing rate of a neuron in the brain

can be a highly nonlinear function of the afferent input. A more

general transfer function of the model in Eq. 2 would be the

threshold-sigmoid

f (x)~H(x)½ 2

1zexp({mx)
{1�, ð18Þ

Figure 6. The network is able to perform accurate path-integration even when the firing response is nonlinear in the input and the
velocity input is of finite resolution (parameters: Jk~5000,J0~{5200,l~0:8,I~60,E~0:8,s~0:1,S~30cm,m~0:1). (A) Snapshot of the
network activity at one example step in the simulation. The firing of the units in the network saturates due to nonlinearity of the transfer function; (B)
Firing maps of the units, as a function of the actual position and velocity of the simulated rat, show that the top two units are conjunctive grid units
while the unit at the bottom is a pure positional grid unit. The coordinate (h,v) in the neural space is indicated at the top of each panel. The spacing is
30 cm, determined by the parameter S put in the simulation. Non-sampled bins are represented by white color.
doi:10.1371/journal.pcbi.1003558.g006
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where H(x) is the Heaviside function and m is the gain of the

transfer function. The maximal firing rate is normalized to be 1.

In general, an analytical form of the mapping between the

animal movement and the position of the bumps on the velocity

axis as Eq. 16 is intractable. In the model, the mapping can be

realized by a neural network that connects movement-selective

units to the units of the model. For simplicity we use a lookup

table, which has 201 bins of equal width in the range

½{100,100� cm/s, as a substitute of the mapping. We compute

the velocity of the bumps as a function of the position on the

velocity axis from simulation. It turns out that the velocity of the

bumps matches Eq. 16 for different m even when m goes to infinity

(i.e. binary units). We build the lookup table containing for each

velocity bin the mapped position on the velocity axis calculated

according to Eq. 16, using the center of the corresponding velocity

bin as the argument. To compensate for the effect of the

normalized activity, we scale up the strength of the connections by

20 times, so that the size of the bumps is similar to the linear case

(Jk~5000, J0~{5200, Fig. 6A).

We feed such a nonlinear network with velocity-tuned input

given as in Eq. 17 but with u(V ) replaced by the lookup table. The

units in the network still express stable grid fields during the

20 minutes simulation (Fig. 6B), meaning that the network is able

to perform accurate path-integration even when the firing

response is nonlinear in the input and the velocity input is of

finite resolution.

Two dimensional environment
In a high-dimensional environment, the neural space is

expanded to represent position and velocity in each dimension

of the physical space. For a two-dimensional environment, units in

the neural space are labeled by coordinates (h
I

,~vv). h
I

~(hx,hy) and

~vv~(vx,vy) jointly represent the four-dimensional space of position

and velocity in a two dimensional environment. For mathematical

convenience, h
I

is assumed to have periodic boundary conditions,

i.e. hx,hy[½{p,p). vx and vy are in the range of ½{ p

2k
,

p

2k
�.

The weight matrix between units is defined as an extension of

the one-dimensional case

J~J0zJk cos k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[fx,yg

Ehi{h
0
i{v

0
iE

2

s0
@

1
Acos l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[fx,yg

(vi{v
0
i )

2

s0
@

1
A,ð19Þ

where EdE is the distance on a circle

EdE~mod(dzp,2p){p: ð20Þ

Here mod(x,y) [½0,y) gives x modulo y. As can be seen from Eq.

19, the velocity label v
0
i of the presynaptic units in the first cosinus

term introduces an asymmetry to the weight matrix in the spatial

axis. The second cosinus term is responsible for velocity selectivity.

We simulate a network with units uniformly arranged in 9|9
velocity bins and 25|25 spatial bins in the neural space, summing

up to 50,625 units in total in the network. Fig. 7 shows the weights

between one example unit at (0,0,0:15,0) and units with velocity

label (0:23,0:23) on the neural tissue.

In two-dimensional environments, the state of the network

shows similar transitions as in the case of one dimensional

environments. For small Jk, the activity of the network is

homogeneous. When Jk increases, multiple bumps appear

forming a triangular lattice in the spatial dimensions, however

the activity of the network is not localized in velocity axis, and the

network state is static. When Jk is sufficiently large, the network

activity is localized in the velocity axis, and due to the asymmetry

in connections, the bumps start to move along the spatial axis. As

shown in Fig. 8, the maximal activity of the units with the same

velocity label changes from a homogeneous solution (light gray

lines) to a localized solution (black lines) as Jk increases.

The input to the network is given by

I(~vvD~VV)~I ½1{EzE exp({

X
i[fx,yg (vi{u(Vi))

2

2s2
)�, ð21Þ

where Vi is the component of the velocity vector of the animal in x

or y axis of the physical space. u(Vi), defined in Eq. 16, gives the

Figure 7. Weight matrix in four dimensional neural space
(hx,hy,vx,vy). Only the slices at ~vv~(0:23,0:23) of the outgoing weights
(A) from and incoming weights (B) to the example unit (0,0,0:15,0) are
shown. (A) The asymmetry in the outgoing weights is determined by
the projecting unit (white dot). The triangle marks the unit that is
maximally activated among the units in the slice by the projecting unit.
(B) The asymmetry in the incoming weights depends on the velocity
labels of presynaptic units. Among the unit in the slice, the unit marked
by the triangle has the strongest connection to the example unit (white
dot).
doi:10.1371/journal.pcbi.1003558.g007

ð19Þ
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location of the bumps on the corresponding velocity axis in the

neural space. E~0:8 and s~0:1 are the strength and the width of

velocity tuning.

Grid maps in two-dimensional environment. An animal

is simulated to explore a 1|1m2 square environment by a smooth

random walk (Fig. 9). The velocities in x and y directions vary

independently between ½{100,100� cm/s as in the case of the

linear track.

Since it is difficult to visualize the activity in a four-dimensional

neural space, Fig. 10 only shows the activity of the units with

vy~0. The population activity of the units on each velocity

slice has the same triangular lattice structure. In each slice with

non-zero activity, the number of bumps is four, because the

network accommodates exactly two bumps on each spatial axis.

The network activity is centered at the desired position in the

velocity dimensions of the neural space and falls off on two sides

due to motion-specific input in the Eq. 21.

The average spatial responses of the units in the network during

20-minute exploration show grid patterns with the same spacing

and orientation but variable spatial phases (Fig. 11 left). In

addition, the units that are away from the origin of the velocity

axes of the neural space show modulation in head directions

(Fig. 11A–B middle), similar to the conjunctive cells observed from

layer III–VI of MEC [9]. The speed maps of the example

conjunctive units verify their preference for fast movements to the

west and northeast respectively (Fig. 11A–B right). For compar-

ison, units that are located close to the origin at the velocity axes

develop pure positional firing maps (Fig. 11C).

Elliptical grid maps. During postnatal development of

MEC, the mapping shown in Eq. 21 may not be identical for

each velocity component. If the scaling factor in y direction is

reduced by 20% (S = 24 cm for y direction vs. S = 30 cm for x

direction), the activity bumps in the network travel faster in y

compared to x dimension. The grid maps formed are compressed

by a factor of about 1.2 in the y dimension (Fig. 12 vs. Fig. 11 left).

The bias in the velocity mapping leads to distorted grids. This

might be the underlying mechanism for the observed elliptical

arrangement of the surrounding fields instead of perfect circular

arrangement seen in an ideal grid [18].

Robustness of the network in two dimensional

environments. In order to test the robustness of path-integra-

tion in two dimensional environments, we perform simulations

with random perturbations in the weights. Fig. 13A shows one

simulation after adding to the weights of the network random

numbers from a Gaussian distribution with zero mean and

standard deviation 10% relative the the range of the weights. We

reconstruct the position of the animal from the network state and

calculate the drift in path integration as the distance between the

reconstructed and the actual position of the animal. The drift is

kept within half of the grid spacing for three minutes, and the units

in the network show grid fields in the environment (Fig. 13A,

middle panel). After six minutes, the drift accumulates beyond the

grid spacing, and the grid fields start to loose periodic lattice

structure (Fig. 13A, right panel). The simulation shown in Fig. 13B

is subject to the deletion of 20% of the weights. The drift in path

integration is smaller than half grid spacing during the simulation,

and grid fields of the units in the network are stable. The network

is able to path integrate robustly in two dimensional environments

for about 2 minutes with 10% Gaussian perturbation or 20%

random dilution in weights (Fig. 13C–D).

Figure 8. The network activity changes from homogeneous to localized profile in the velocity dimensions with increasing Jk

(parameters: J0~{Jk{10,I~200,l~0:8). (A) The maximal activity of the units with the same vx labels for different Jk ; (B) The maximal activity of
the units with the same vy labels for different Jk . Due to the symmetry in velocity labels, the plots in (A) and (B) are the same.
doi:10.1371/journal.pcbi.1003558.g008

Figure 9. A sample trajectory of the simulated animal in a two-
dimensional square environment. The animal is not allowed to
move beyond the boundary of the environment. The speed of the
animal varies between [0, 100] cm/s.
doi:10.1371/journal.pcbi.1003558.g009
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Discussion

In this study, we presented a robust continuous attractor network

model to explain the responses of pure grid cells and conjunctive

grid-by-head-direction cells in MEC. The main novel assumption of

our model is that grid cell system represents different conjunctions of

positions and movements of the animal. Neurons in our network

occupy a manifold spanned by spatial axis and velocity axis, and are

interconnected by asymmetric recurrent connections. Multiple

regularly spaced activity bumps localized in all dimensions emerge

in the network, and are able to move intrinsically with a range of

possible speeds in all directions. The velocity of the bumps depends

on their position on the velocity axis. A motion-specific input shifts

the bumps along the velocity axis to the corresponding position, so

that the velocity of the bumps in the neural space is proportional to

the velocity of the animal in the physical space. This linear relation

is robust against random perturbations in connections. Thus our

model is able to perform robust path-integration. We note that the

network model similar to the one corresponding to one-dimensional

environment and having one activity bump (k~1, see Eq. 1) could

also describe the head-direction system which performs integration

of angular velocity.

Origin of conjunctiveness
Our model accounts for the conjunctive position-by-movement

responses of the cells find in deep layers of MEC [9]. This is

because the recurrent weights between units are modulated in the

velocity axis (Eq. 1), so that in each activity patch only units with

similar velocity labels and similar position labels are active. In

previous models [3,5] the incoming weights of the units with the

same position labels do not depend on their velocity tuning,

therefore they must be active together. Units may gain weak

degree of conjunctiveness by scaling up the amplitude of velocity

input, so that units that are not driven by strong velocity input will

be less active. But since this is not a stable attractor state of the

network, strong conjunctiveness will push the network out of the

stable regime.

In rodent MEC, pure grid cells and conjunctive cells coexist in

the same module [18]. Conjunctive cells exist in layer III, V and

VI. Pure grid cells are found in layer II, and are mixed with

conjunctive cells in deep layers [19]. Overall, the proportion of

conjunctive cells among all grid cells is no more than 50%. In our

model, the conjunctiveness of a unit is correlated with its absolute

velocity label. Grid cells have velocity labels close to the origin

(closer than half the size of the bump), hence they are active for all

movement directions. Cells that are further away from origin in

the velocity axis are only active when the animal moves in a

particular direction, thus resulting in head-direction selectivity in

addition to position response as pure grid cells. The ratio between

the number of pure grid units and the number of conjunctive units

depends on the size of the bumps: the larger the size of the bumps,

the larger the number of pure grid cells.

Velocity input
The model requires precise velocity input indicating the

direction and speed of animal movement. MEC may receive

velocity-tuned input from posterior parietal cortex and retro-

splenial cortex [20–24]. These regions integrate multimodal

sensory information, such as movement information from

vestibular system relayed by thalamus and optical flow information

from visual cortex, and play an important role in spatial navigation

[25–28]. In rodents, many of the cells in posterior parietal cortex

have been found to respond to velocity and acceleration [29].

Therefore, posterior parietal cortex can be one possible source of

self-motion signal for MEC network [30].

The connections from movement-selective cells in posterior

parietal cortex to MEC cells can be tuned during postnatal

development, and map animal movement to the position of the

activity bumps on the velocity axis (Eqs. 16 and 21). The possibility

Figure 10. A snapshot of the network activity of the units that prefer zero velocity in y direction (vy~0) when the animal runs with
velocity Vy~0:6 cm/s and Vx~55:9 cm/s. Each panel shows the activity of the units on the slice with the fixed velocity labels. The velocity labels of
the slice are shown at the top of each panel.
doi:10.1371/journal.pcbi.1003558.g010
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to precisely learn such a mapping allows for the flexibility in MEC

intrinsic connectivity and neural firing mechanisms. The coupling

between units is not necessarily restricted to a cosine shape, as

analyzed here. The firing rate of each unit can depend nonlinearly

on its input, e.g. as a sigmoid transfer function.

The parameter S that defines the ratio between the flow of the

activity pattern and the velocity of the animal (see Eq. 15)

determines the grid scale of a MEC module. From dorsal to

ventral, MEC units are arranged into local modules with increasing

discrete values of S, resulting in discretized grid scales [18]. If there

is a bias in the connectivity, e.g. movement-selective cells are

systematically connected to MEC cells with larger absolute velocity

labels along one velocity axis of the neuronal space, MEC cells will

express elliptical grids (Fig. 12), as observed experimentally [18].

Different modes of navigation
Accumulating experimental evidence shows that mammals

adopt two types of navigation. Path-integration is useful when

landmarks are not available, e.g. in the darkness or when a

cognitive map representation is being learned after entering in

a novel environment. Map-based navigation is able to reset the

error in path-integration, calibrating the internal spatial

representation according to the external landmarks. The

dynamics of the spatial representation in the brain depend

on the interaction between these two modes of navigation.

Integration of these two modes in a network model may better

explain the responses of grid cells in novel environments or

after environment changes [31].

Predictions of the model
Several testable predictions can be derived from the model. To

verify these predictions, new experiments and analysis should be

carried out to examine the selectivity of the responses of MEC

principle cells.

Gradient of head-direction selectivity. The assumption of

the intrinsic representations of conjunctions of positions and

Figure 11. Mean activity of three example units in the network during 20-minute exploration depicted as a function of position
(left), head direction (middle) and velocity (right) of the simulated animal (parameters: Jk~250,J0~{260,l~0:8,I~30,E~0:8,s~0:1,
S~30cm). (A,B) Conjunctive units; (C) Grid unit.
doi:10.1371/journal.pcbi.1003558.g011
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movements of the animal would predict that MEC principle cells

show continuous gradient of head-direction selectivity. Cells with

strong head-direction selectivity would fire preferentially at fast

speed, and cells with weak head-direction selectivity would prefer

low speed. There would be substantial amount of grid cells

showing intermediate head-direction selectivity, firing maximally

at an intermediate speed.

Conjunctive cells have lower firing rates compared to

grid cells. Both the peak activity and the mean activity of the

network are smaller when the bumps moves with faster

intrinsic velocity (Fig. 14B). This leads to the prediction that,

on short time scale, the peak firing rate of a conjunctive cell

along its preferred head direction would be lower than the

peak firing rate of a grid cell. On long time scale, the multiple

place fields of a conjunctive cell in an environment would have

lower peak activity along its preferred firing direction than

those of pure grid cells.

Traveling waves in the absence of self-motion input. In

the model, when movement-specific input is absent (i.e.

uniform input), the bumps are free to stabilize at arbitrary

positions on the velocity axis of the neural space. Afferent

input from posterior parietal cortex and vestibular system has

been shown to be important for path-integration [32,33]. In

animals with damaged connections from posterior parietal

cortex to MEC, or bilateral vestibular deafferentation, spon-

taneous traveling waves would appear in MEC. It could be

possible to record sequences of bursting activity in MEC cells

from these animals when they are stationary.

Shift of spatial fields in running directions. In the

simulations, the position-by-velocity fields expressed by a unit

are slanted in the spatial dimension (Fig. 4E and 6B). The peak

position of the spatial fields in different velocity ranges shows a

shift toward running directions. The shift results from asymmetric

connections between MEC units. As a prediction, the spatial fields

of a grid cell when the animal runs along one direction would be

offset slightly toward the running direction as compared with the

spatial fields of the opposite direction.

Synaptic plasticity in the projections from posterior

parietal cortex to MEC. In the model, the mapping

between movement-sensitive units and MEC units should be

setup during some learning phase. The projections from

regions like posterior parietal cortex to MEC may function

as such a mapping. These projections are likely to mature in

postnatal day 16 to 25, during which grid cells develop

periodic grid firing pattern [14–16]. Two predictions can be

made about the interaction between MEC and posterior

parietal cortex. First, during appropriate developmental stage,

strong synaptic plasticity in these projections should be

observed in juvenile animals as compared to adult rats.

Second, the synchrony between the cells in posterior parietal

cortex and MEC cells should increase during development,

because the information flow between these two regions

becomes more evident when the connections between them

become stronger and more accurate.

Methods

Order parameters
The network activity can be characterized by a set of order

parameters derived from its Fourier transform

ZA~

ðð
DhDvei(k(hzv){lv)m(h,v):rAeiyA

ZB~

ðð
DhDvei(k(hzv)zlv)m(h,v):rBeiyB ð22Þ

g~

ðð
DhDvm(h,v):

The dynamics of the network activity can be written as

t _mm(h,v)~{m(h,v)z~gg(h,v), ð23Þ

where ~gg(h,v) is the total input to a unit given by

~gg(h,v)~

J0gzIz
Jk

2
rB cos(khzlv{yB)z

Jk

2
rA cos(kh{lv{yA)

� �
z

:
ð24Þ

Fourier transforming the firing rate dynamics Eq. 23 reveals the

dynamics of the order parameters ZA,ZB, and g

Figure 12. Elliptical grids form if the mapping u(Vi) is different for each velocity component (parameters:
Jk~250,J0~{260,l~0:8,I~30,E~0:8,s~0:1). The scaling factor S is 30 cm for the mapping in x direction, and is 24 cm for y direction, reduced
by 20%. A–C: three different units.
doi:10.1371/journal.pcbi.1003558.g012
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t _ZZB,A~{ZB,Az

ðð
DhDvei(k(hzv)+lv)~gg(h,v) ð25Þ

t _gg~{gz

ðð
DhDv~gg(h,v):

The solutions of the dynamics can be better described by

recombining the order parameters in Eqs. 22 into the following

dimensionless quantities

c~
rB{rA

rBzrA

Figure 13. Robustness of path-integration in two dimensional environments when the weights are perturbed by Gaussian random
numbers (A) or are deleted randomly (B). Parameters: Jk~250,J0~{260,l~0:8,I~60,E~0:8,s~0:1,S~30 cm. (A) One simulation with the
weights perturbed by 10% Gaussian random numbers. Left: drift. middle: fields of a unit in the network after three minutes of exploration. Right:
fields of an example unit in the network after six minutes of exploration; (B) One simulation with the weights diluted by 20%. Left: drift. middle: fields
of a unit in the network after three minutes of exploration. Right: fields of an example unit in the network after six minutes of exploration; (C)
Averaged drift across 8 independent simulations; the network is able to path integrate for 2 minutes (the mean drift within 15 cm, i.e. half of the grid
spacing, light gray line) with 10% Gaussian perturbation in the weights, relative to the range of the weights. The black and dark gray lines show the
drifts with no and 2% perturbation respectively. Error bars show + standard deviations; (D) When 20% of the weights are set to zero, the network is
able to path-integration for 2 minutes on average (the mean drift across 8 independent simulations kept within half of the grid spacing, dark gray
line). The black and light gray lines show the drifts with zero and 40% dilution respectively.
doi:10.1371/journal.pcbi.1003558.g013
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a~
Jk

I

rBzrA

2

s~
IzJ0g

aI
ð26Þ

yz~
yBzyA

2

y{~
yB{yA

2
:

With this set of order parameters and by defining the rescaled

gain function

g(h,v):
1

aI
~gg(h,v), ð27Þ

Eq. 23 results in Eq. 4.

Differentiating Eqs. 26 and combining Eqs. 25 lead to the

dynamics for the reduced order parameters in Eqs. 6.

Due to the asymmetry of the coupling in h,c is not zero. This

can be seen by linear expansion of the integrand at h in the first

Eq. of 6 and assuming y{~yz~0.

t _cc~{Jk

ðð
DhDvg(h,v)(sin(kh)sin(lv)zc cos(kh)cos(lv)){

kJk

ðð
DhDvg(h,v)(cos(kh)v sin(lv){c sin(kh)v cos(lv)):

ð28Þ

c~0 does not satisfy the second term of the right hand side of the

above equation, since v sin(lv) is an even function.

Stability of a homogeneous solution
In the homogeneous regime, the order parameter a vanishes at

the steady state. We introduce a new order parameter b, being the

size of the bumps

b:as~
IzJ0g

I
: ð29Þ

yz and y{ are two free parameters. We choose them to be

yz~yz~0. It is sufficient to consider the dynamics of b and a.

By using the derivative chain rule, the dynamics of b and a can be

obtained from Eq. 29 and Eqs. 6,

t _bb~{bz1zJ0

ðð
DhDvh(h,v),

t _aa~{azJk

ðð
DhDvh(h,v) cos(k(hzv)) cos(lv), ð30Þ

where h(h,v)~a cos(kh) cos(lv)zb.

The stability of the homogeneous solution can be inspected by

linearizing Eqs. 30 at the fixed point (a~0, b~
1

1{J0

). The

matrix governing the linear dynamics of perturbations reads

J0{1 0

0 JkC{1

� �
, ð31Þ

where C is given in Eq. 9. Therefore, the conditions for the

homogeneous solution to be stable are J0v1 and Jkv1=C, as

shown in Eqs. 7–8.

Onset of traveling bumps
We analyze the onset of the freedom of choice of y{. In this

case, the bumps just touch the boundaries of the v range. Posing

y{~0, and the steady state activity at at v~
p

2k
is

m(h,
p

2k
)~aI ½cos(kh) cos(

lp

2k
){c sin(kh) sin(

lp

2k
)zs�z: ð32Þ

The angle h� at which this activity is maximal is

h�~arctan({
c

k
tan

lp

2k
): ð33Þ

Figure 14. Estimated order parameters of the traveling
multiple bumps. (A) Estimated velocity of the bumps (filled circles)
for different v matches the theoretical values (solid line, Eq. 55). The
linear approximation of the velocity of the bumps is plotted as the
dashed line; (B) When the absolute value of v goes to the limit, the
network has homogeneous activity, with finite mean activity r0 (square
markers) and vanishing amplitude of the bumps rk (triangular markers).
doi:10.1371/journal.pcbi.1003558.g014
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So the maximal activity at the v boundaries is

m�~aI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 (

lp

2k
)zc2 sin2 (

lp

2k
)

r
zs

" #
z

: ð34Þ

For m� to vanish,

s~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 (

lp

2k
)zc2 sin2 (

lp

2k
)

r
v0: ð35Þ

Network simulations
The time constant t is set to 10 ms throughout the paper.

Differential equations are numerically integrated according to the

fourth order Runge-Kutta method. The time-step for numerical

integration is Dt~1 ms.

For the path-integration simulations on linear tracks, the virtual

animal runs back and forth, and changes its running direction only

at the two ends of the track. The velocity of the animal is

determined according to

tr
_VV (t)~{V (t)zvO(t), ð36Þ

where tr~500 ms is the time constant. v[f{1,1g is the current

running direction. O(t) is a piecewise constant function, whose

values are sampled uniformly in [0,100] cm/s every second. When

the animal is approaching close enough to the end of the track

(distance to the end of the track smaller than trV (t)), O(t) is set to

zero to make sure that the speed of the animal decreases to zero at

the end of the track. In this deceleration phase, once the speed of

the animal drops below 5 cm/s, the animal reverses its direction

v and a new value of O(t) is chosen randomly. The trajectory in a

2D environment is simulated by two such independent random

walkers.

For a spacing S~30 cm, velocity 100 cm/s in physical space

would require the bumps centered at v~0:103 on the velocity

axis. In the path-integration simulations, we reduce the range of

the velocity label v[½{0:3,0:3�, which is enough to cover the

velocities experienced by the rat.

The neural space is discretized into equal-sized bins, with each

bin occupied by one unit. In the model for linear track, the h axis

is divided into 200 bins and the v axis into 51 bins. The network is

composed of N~10,200 units. In the model for two-dimensional

environments, the axes hx and hy are divided into 25 bins each

and the axes vx and vy into 9 bins each, resulting in N~50,625

units in total.

Estimating the intrinsic velocity of the bumps
Initially the network is given stronger input for units with

specified v coordinate to let the network form bumps at the

corresponding position of the v axis. The input is gradually

decreased to uniform. The network is simulated for one second

with uniform input, and the center of the bumps on h axis and v
axis are estimated at each time step by

ŶY(t)~
%
PN

j~1 mj exp({ikhj)=N
h i

k
, ð37Þ

ûu(t)~
%
PN

j~1 mj exp({ilvj)=N
h i

l
: ð38Þ

where (hj ,vj) is the coordinate of unit j in the neural space. N is

the total number of units in the network. mj is the activity of unit j.

Function %(Z) takes the angle of a complex number Z.

The velocity of the bumps is calculated as

_̂YY_YY(t)~
Ek½ŶY(t){ŶY(t{1)�E

kDt
: ð39Þ

Here E:E, defined in Eq. 20, measures the distance considering

periodic boundary condition.

Speed estimation in the asymmetric ring model
Here we consider a simplified case in which the manifold (h,v) is

reduced to a ring on h. On the ring, the units have different labels

in h[½{p,p) but the same label of v.

The interaction between two units (h,v) and (h’,v) is

J(h{h’,v)~J0zJk cos(k(h{h’{v)) ð40Þ

where kw0 is an integer.

The rate dynamics are defined by

t _mm(h,v)~{m(h,v)z

ð
Dh’J(h{h’,v)m(h’,v)zI

� �
z

: ð41Þ

The state of the system can be described in the frequency

domain as in the Fourier transform of the activity m(h,v) reads

r0~

ðp

{p

dh

2p
m(h,t),

M:rk exp({ikY)~

ðp

{p

dh

2p
m(h,v,t) exp({ikh): ð42Þ

The mean activity r0, the magnitude rk and the phase Y of the

k-th component of the Fourier transform are defined as the order

parameters of the system. The dynamics in Eq. 41 can be rewritten

into a simpler form in terms of the order parameters

t _mm(h,v)~{m(h,v)z I0zIk cos(k(h{v{Y))½ �z, ð43Þ

where I0 and Ik are given by

I0~J0r0zI , ð44Þ

Ik~Jkrk: ð45Þ
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Fourier transforming Eq. 43 results in the dynamics governing

the order parameters

t_rr0~{r0z

ð
Dh I0zIk cos(k(h{v{Y))½ �z,

t_rrk~{rkz

ð
Dh cos(k(h{Y)) I0zIk cos(k(h{v{Y))½ �z, ð46Þ

tkrk
_YY~

ð
Dh sin(k(h{Y)) I0zIk cos(k(h{v{Y))½ �z:

Narrow activity profile. For narrow activity, there exists hc

hc~
1

k
arccos({

I0

Ik

), 0vhcv
p

k
ð47Þ

such that Eqs. 46 can be wrriten as

t_rr0~{r0zIkf0(khc),

t_rrk~{rkzIkf2(khc) cos(kv), ð48Þ

tkrk
_YY~Ikf2(khc) sin(kv),

where f0 and f2 are given by

f0(h)~
sin(h){h cos(h)

p
h[(0,p),

f2(h)~
2h{sin(2h)

4p
h[(0,p): ð49Þ

In the range h[(0,p), f0(h) and f2(h) are monotonic functions.

0vf0(h)v1 and 0vf2(h)v1=2.

From Eq. 48, the steady states of order parameters r0 and rk

are

r0~Jkrkf0(khc), ð50Þ

rk~Jkrkf2(khc) cos(kv): ð51Þ

Imposing rkw0 in Eq. 51 leads to the condition for localized

solution of rk

Jkf2(khc) cos(kv)~1: ð52Þ

Considering the upper bound on the function f2(khc), Eq. 52

implies a limited range of v

{

arccos
2

Jk

k
vvv

arccos
2

Jk

k
: ð53Þ

When Jk goes to infinity, this condition is simply

{
p

2k
vvv

p

2k
: ð54Þ

The velocity of the bumps can be derived from Eq. 48 and 52

_YY~
tan(kv)

tk
: ð55Þ

From Eq. 50 and 51

r0~
f0(khc)

f2(khc) cos(kv)
rk: ð56Þ

Putting Eq. 56, 44 and 45 into Eq. 47, the amplitude of the

bump rk is given by (see Fig. 14B for numerical results)

rk~
Cf2(khc) cos(kv)

{cos(khc){f0(khc)J0
, ð57Þ

which leads to the condition from amplitude instability

J0v{
cos(khc)

f0(khc)
: ð58Þ

r0 is given by

r0~
Cf0(khc)

{ cos(khc){f0(khc)J0
: ð59Þ

Finally, putting Eq. 59 and 57 into Eq. 44 and 45, I0 and Ik are

I0~{
C cos(khc)

{ cos(khc){f0(khc)J0
, ð60Þ

Ik~
C

{ cos(khc){f0(khc)J0
: ð61Þ

Speed of traveling bumps. Eq. 41 is simulated to estimate

the speed of traveling bumps. M is estimated by

M̂M~
XN

j~1

mj exp({ikhj)=N:r̂rk exp({ikŶY(t)), ð62Þ

where hj is the position label of unit j and mj is the

corresponding activity. ŶY(t) and r̂rk(t) are determined from

M̂M. The velocity of the bumps is estimated according to Eq. 39.

Fig. 14A shows that the estimated velocity matches the

analytical result in Eq. 55. The bumps exist as long as v does
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not go to the limit (Fig. 14B), in which the amplitude of the

bump vanishes.

Supporting Information

Video S1 Path-integration in a 1D environment. Top-left

panel: virtual animal running back and forth on a two-meter-

long linear track. Top-right panel: time evolution of

network activity. Bottom-left panel: Position of the animal

on the track (red - actual position; black - estimated position).

Bottom-right panel: velocity of the bumps vs. velocity of the

animal.
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