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Abstract

Reaction networks are systems in which the populations of a finite number of species evolve through predefined
interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology,
epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population
sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The
tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this
gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction
dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics,
which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the
statistical moments of the underlying process remain bounded with time and when they converge to their steady state
values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory.
We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient
theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is
notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the
efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology,
epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological
network are also discussed.
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Introduction

Reaction networks are used as modeling tools in many areas of

science. Examples include chemical reaction networks [1], cell

signalling networks [2], gene expression networks [3], metabolic

networks [4], pharmacological networks [5], epidemiological

networks [6] and ecological networks [7]. Traditionally, reaction

networks are mathematically analyzed by representing the

dynamics as a set of ordinary differential equations. Such a

deterministic model is reasonably accurate when the number of

network participants is large. However, when this is not the case,

the discreteness in the interactions becomes important and the

dynamics inherently noisy. This random component of the dynamics

cannot be ignored as it can strongly influence the system’s

behavior [8–10]. To understand the effects of this randomness,

stochastic models are needed, and the most common approach is

to model the reaction dynamics as a continuous-time Markov

process, whose states denote the current population size. Many

recent works have employed such stochastic models to study the

impact of noise [11–14].

In stochastic models, the underlying Markov process (X (t))t§0

is a pure-jump process whose state space S contains all the

population size vectors that are reachable by the random dynamics.

The probability distribution of (X (t))t§0 evolves according to a

system of linear ordinary differential equations (ODEs), known as

the Chemical Master Equation (CME) or Forward Kolmogorov

Equation [15]. The dimension of the system of ODEs is equal to

the number of elements in the state space S, with each element

representing a possible combination of reacting species abundanc-

es. When S is finite and small in size, the CME can be solved

analytically since it is simply a small and finite system of linear

differential equations. However, for infinite state-spaces an exact

solution to the CME is difficult to obtain except in some special

cases [16,17]. Beyond these special cases, current methods often

rely on truncating the infinite state-space to obtain finite

approximations of the CME [18], and then resorting to efficient

numerical methods for their solutions. Such methods include

Expokit [19], which is based on Krylov Subspace Identification, or

the backward Euler method proposed in [20], among others. Such

an approach works well only for relatively small systems, as the

curse-of-dimensionality renders the numerical solution of the

truncated master equation of larger systems prohibitive. Never-

theless, recent methods based on Tensor Train (TT) and
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Quantized Tensor Train (QTT) representations [21,22] show that

for CME problems that admit bounded TT ranks, storage costs

and computational complexity that grow linearly in the number of

species may be achieved. These and other methods for the

numerical solutions of the CME remain active topics of research.

When S is infinite or very large in size, the most common

approach for approximating the solutions of a CME is by

simulating a large number of trajectories of the underlying Markov

process (X (t))t§0, and using the sample values of X (t) to estimate

the distribution at time t. Such simulations are performed using

Monte Carlo procedures such as Gillespie’s stochastic simulation

algorithm (SSA) or its variants [23–25]. Since the simulation time of

SSA depends linearly on the number of reactions that occur

during the simulation time period, these procedures can be

cumbersome for large networks. It is well-known that the

stochastic effects caused by the random timing of reactions

become less important when the population size is large. The

dynamical law of large numbers proved by Kurtz [26] shows that

under an appropriate scaling relationship between the population

size, reaction rates and the system size, the stochastic model of a

reaction network converges to the deterministic model, as the

system size goes to infinity. Under this scaling relationship, one can

also approximate the stochastic dynamics with certain stochastic

differential equations (SDEs) that are easier to simulate and

analyze [27,28]. However, these SDE approximations can only

work when the population sizes of all the species in the reaction

network are large, which is often not the case. For a detailed

survey on the topic of estimating the solution of a CME, we refer

the readers to the paper [29] which contains an exhaustive list of

methods for this purpose.

In many biological applications, one in interested in analyzing

the long-term behavior or stability properties of a reaction

network. This is fairly straightforward for deterministic models

because many tools from the theory of ordinary differential

equations can be used for this analysis [30]. However, the stability

properties of stochastic models for reaction networks are difficult

to verify for the following reasons. Let us consider a stochastic

reaction network whose dynamics is represented by the Markov

process (X (t))t§0 with state space S. The evolution of the

distributions of this Markov process is given by (p(t))t§0 which is

the solution of the CME corresponding to the reaction network.

Heuristically, we regard the stochastic dynamics to be stable when

the family of distributions (p(t))t§0 is ‘‘well-behaved’’ with time. In

this paper, we consider several notions of ‘‘well-behaved’’

dynamics. The strongest of these notions is the concept of ergodicity

[31] which means that there exists a unique stationary distribution

p for the Markovian dynamics, such that p(t)?p as t??,

irrespective of the initial distribution p(0). This is analogous to

having a globally attracting fixed point in the deterministic setting.

If S is finite, the process is ergodic if and only if it is irreducible, in

the sense that all the states in S are reachable from each other. It is

hence enough to check irreducibility of the process using, for

example, matrix methods [32,33]. Contrary to this situation, our

main interest in this paper is in analyzing the stability properties of

stochastic reaction networks with an infinite state space S. Note

that in such cases, irreducibility no longer implies ergodicity, since

the trajectories of the Markov process may blow up with time (see

the carcinogenesis example in the discussion section). In this

regard, ergodicity cannot be considered as a generic property of

reaction networks with infinite state-spaces since both ergodic and

non-ergodic processes can be found in nature. Assuming ergodicity

without verifying it beforehand seems to be therefore unreasonable

from both theoretical and practical perspectives. The direct

verification of stability properties like ergodicity is generally not

possible as the CME cannot be explicitly solved, except in some

restrictive cases [16,17]. The common approach of using Monte

Carlo simulations for estimating the solutions of a CME is

inadequate for assessing the long-term behavior and stability

properties of a stochastic reaction network, because one can only

simulate finitely many trajectories and those too for a finite

amount of time. Some methods for analyzing stability properties

without the need for simulations exist, but they either work for

specific networks [17,34], very special classes of networks such as

zero-deficiency networks [35], or assume system size approxima-

tions where the stochastic dynamics is represented by an SDE

[36,37]. Such system size approximations do not hold when some

species are present in low copy numbers, and even if they hold, the

approximation error generally blows up with time [28]. Hence the

stochastic dynamics and the corresponding SDE may have

completely different long-term behaviors. Our aim, in this paper,

is to develop a theoretical and computational framework for

analyzing the long-term behavior and stability properties of

stochastic models for reaction networks that do not rely on

computationally expensive Monte Carlo simulations or on system

size approximations of the stochastic dynamics. A similar goal is

also achieved in the works [38,39] where results on stability and

moments bounds are also obtained. The approach proposed in

[40] is built upon a Foster-Lyapunov criterion [31] and a

quadratic Foster-Lyapunov function in order to estimate the

location of the stationary distribution. In the same, yet different,

spirit, the proposed approach also relies on a Foster-Lyapunov

condition but using a linear Foster-Lyapunov function that allows

us to establish ergodicity, moment bounds, moment convergence

and the existence of attractive sets for moments. While the

approach in [40] is fully computational, the one we propose is also

theoretical and allows us to conclude on structural properties of

classes of networks such as structural ergodicity, structural boundedness of

moments and structural convergence of moments. Our approach relies on a

mixture of simple ideas from stochastic analysis, linear algebra,

polynomial analysis and optimization. Even though our conditions

are only sufficient, we demonstrate their broad applicability by

Author Summary

In many biological disciplines, computational modeling of
interaction networks is the key for understanding biolog-
ical phenomena. Such networks are traditionally studied
using deterministic models. However, it has been recently
recognized that when the populations are small in size, the
inherent random effects become significant and to
incorporate them, a stochastic modeling paradigm is
necessary. Hence, stochastic models of reaction networks
have been broadly adopted and extensively used. Such
models, for instance, form a cornerstone for studying
heterogeneity in clonal cell populations. In biological
applications, one is often interested in knowing the long-
term behavior and stability properties of reaction networks
even with incomplete knowledge of the model parame-
ters. However for stochastic models, no analytical tools are
known for this purpose, forcing many researchers to use a
simulation-based approach, which is highly unsatisfactory.
To address this issue, we develop a theoretical and
computational framework for determining the long-term
behavior and stability properties for stochastic reaction
networks. Our approach is based on a mixture of ideas
from probability theory, linear algebra and optimization
theory. We illustrate the broad applicability of our results
by considering examples from various biological areas. The
biological implications of our results are discussed as well.

Long-Term Behavior of Stochastic Reaction Networks
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successfully establishing stability properties of several reaction

networks taken from the literature.

We mentioned before that the stochastic and the deterministic

models of a reaction network are connected through the

dynamical law of large numbers [26]. It might be tempting to

think that the stability properties of a stochastic model can be

assessed by studying the stability properties of the corresponding

deterministic model. However in general, the stochastic and

deterministic models can have very different stability properties.

This is because a deterministic model cannot capture noise

induced effects which may have a significant impact on the long-

term behavior of a system. For example, in the synthetic Toggle

Switch by Gardener [41], the deterministic model exhibits

bistability and hence starting from different initial values, the

system can converge to two different steady states. On the other

hand, the corresponding stochastic model is ergodic (see network

(35)) and hence the solution of the CME converges to the same

stationary distribution irrespective of the initial distribution. A

similar phenomenon occurs with the repressilator (see [42] and

network (36)), where the stochastic model is ergodic while the

deterministic model exhibits oscillations. On the other hand, it is

also possible to find networks for which the deterministic model

has a locally asymptotically stable equilibrium point, implying

that whenever the initial condition is contained within its region

of attraction, the trajectories converge to it. If the initial condition

lies outside this region of attraction, then the trajectories of such a

network become unbounded with time. In the stochastic setting,

the randomness causes each trajectory to leave the region of

attraction in finite time, and then become unbounded suggesting

that there is no stationary distribution for the dynamics (see

network (22) and Figure 1). This lack of stationary distribution is

because the stochastic dynamics can jump potential wells from

one macroscopic fixed point which is stable to another fixed point

which is unstable [43]. A more striking example of divergent

deterministic and stochastic behaviors is given by network (26)

(see also Figure 2). While the deterministic model has a unique

globally stable fixed point, the stochastic model is non-ergodic

and all the moments grow unboundedly with time. In this

example it is impossible to predict the stochastic behavior from

the deterministic model. The above examples illustrate that the

stability properties of the stochastic dynamics can, in general, not

be assessed from the stability properties of the deterministic

dynamics.

Our results can help in understanding the stability properties of

the moments of a Markov process (X (t))t§0 representing a

reaction network. In particular, we present a method to check if

these moments remain bounded with time and if they converge to

their steady state values as time goes to infinity. Such results can

help in verifying the suitability of a model for a given system and

in designing biological controllers that drive the moments to

specific steady state values. We provide easily computable bounds

for the moments that hold uniformly in time. We also determine

bounds for the steady state moment values, which can help in

understanding the properties of the steady state distribution, even

if this distribution is not explicitly computable. In many biological

applications, it is of great interest to explicitly compute the first

few moments of the process (X (t))t§0 without solving the

corresponding CME. One can easily express the dynamics of

these moments as a system of ordinary differential equations, but

generally this system is not closed when the network has

nonlinear interactions. Many moment closure methods that

suggest schemes to close these equations to obtain approxima-

tions for the moments have been proposed (see e.g. [44,45] and

references therein). The results obtained in this paper can be used

to ascertain the correctness of a given moment closure method for

a specific network (see the example based on the network (29)).

Furthermore, several moment closure methods are developed

under an implicit assumption that the moment-generating function

corresponding to the solution of the CME exists for all times. One

of our results provides a way to easily check that this assumption

is indeed valid.

Reaction networks
Let us now formally describe reaction networks. Motivated by

the literature on chemical kinetics, we refer to the network

participants as molecules which may belong to one of d species

S1, . . . ,Sd. There are K reactions in the network and for any

k~1, . . . ,K , the stoichiometric vector fk~(fk,1, . . . ,fk,d ) denotes the

change in the number of molecules in each of the species due to

the k-th reaction.

Figure 1. Trajectory of the state of the deterministic system
(23) with initial condition k0~0 (top); Sample path of the
Markov process describing the network (22) with initial
condition x0~0 (bottom). Whereas the trajectory of the state of
the deterministic model converges to a stationary value, the trajectory
of the state of the stochastic model goes unbounded.
doi:10.1371/journal.pcbi.1003669.g001

Figure 2. Comparison of the trajectories of the deterministic
and stochastic (first-order moments) models of the reaction
network (22) with initial condition k1(0)~0, k2(0)~2, X1(0)~0
and X2(0)~2 for the deterministic (top) and stochastic dynam-
ics (bottom), respectively. We can see that while the deterministic
trajectories converge to their equilibrium point, the first-order moments
grow without bound.
doi:10.1371/journal.pcbi.1003669.g002

Long-Term Behavior of Stochastic Reaction Networks
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Deterministic models
Consider the deterministic model for the reaction network

described above. In this setting, the state of the system is described

by a vector of concentrations of the d species which we denote by

k[Rd
§0. The concentration of a species is simply its molecular count

divided by the system volume. Let ~llk(k) be the flux associated with

the k-th reaction (see [8]). To ensure positivity of the system, we

require that ~llk(k)~0 whenever ki~0 and fk,iv0. If the initial state

is k0, then the evolution of concentrations is given by (wk0
(t))t§0

which satisfies the Reaction Rate Equations (RRE) of the form

dwk0
(t)

dt
~
XK

k~1

~llk(wk0
(t))fk with wk0

(0)~k0: ð1Þ

We are interested in the long-term behavior and stability of our

reaction dynamics. More precisely, we would like to check if the

following conditions are satisfied.

DC1 For any k0, there is a compact set K(k0) such that

wk0
(t)[K(k0) for all t§0.

DC2 There exists a compact set K0 such that for any k0, we

have wk0
(t)[K0 for large values of t.

DC3 There is a keq such that for any k0 we have wk0
(t)?keq as

t??.

The first condition, DC1, says that for any k0, the entire

trajectory (wk0
(t))t§0 stays within some compact set. We would

expect this to be true for most realistic systems. Hence a violation of

this property may suggest a flaw in the deterministic model. The

second condition, DC2, says that there is an attractor set for the

dynamics, where all the trajectories eventually lie, irrespective of

their starting point. The last condition, DC3, says that there is a

globally attracting fixed point for the deterministic model. Using

techniques from the theory of dynamical systems [30,46], one can

verify these conditions, without the need of simulating the

deterministic model. There is also a general theory to check

condition DC3 for reaction networks satisfying mass-action

kinetics (see [47–50]). Broadly speaking, these three conditions

present different ways of saying that the reaction dynamics is

‘‘well-behaved’’. Our goal in this paper is to develop a theoretical

and computational framework for verifying conditions similar to

DC1, DC2 and DC3 for stochastic models of reaction networks.

Stochastic models
Consider the stochastic model corresponding to the reaction

network described above. In this setting, the firing of reactions are

discrete events and the state of the system refers to the vector of

molecular counts of the d species. When the state is x, the k-th

reaction fires after a random time which is exponentially

distributed with rate lk(x). The functions l1, . . . ,lK are known

as the propensity functions in the literature. To ensure positivity of

the system, we require that if xzfk 6[Nd
0 , then lk(x)~0, where N0

is the set of non-negative integers. The dynamics can be

represented by the Markov process (Xx0
(t))t§0 where x0 is the

initial state. Note that if Xx0
(t)~(X1(t), . . . ,Xd (t)), then Xi(t) is

the number of molecules of Si at time t.

It is important to select a suitable state space S for the Markov

process representing the reaction dynamics. We choose S to be a

non-empty subset of Nd
0 satisfying the following properties:

(A) If x[S and lk(x)w0 for some k~1, . . . ,K , then xzfk[S.

(B) There is no proper subset S15S satisfying part (A).

Observe that part (A) ensures that if x0[S then Xx0
(t)[S for all

t§0 and hence S can be taken to be the state space of all the

Markov processes describing the stochastic reaction network with

an initial state x0 in S. Part (B) implies that the reaction dynamics

cannot be contained in a proper subset of S. The role of this

assumption will become clear in the next section, when we discuss

the issue of state space irreducibility. Note that in certain cases, such

as the pure-birth network 1IS1, a suitable state space satisfying

the above criteria cannot be found. There also exist cases where

the above criteria restricts the choice of state space. For example,

for the pure-death network S1I1, the only possible choice for state

space is S~f0g. Finally we remark that if the reactions in a

network satisfy a conservation relation then the state space must be

chosen with an initial condition in mind. For example, for the

network S1'S2, the sum of molecular counts of S1 and S2 is

preserved by the reactions. Hence if we wish to study the stochastic

dynamics with the initial sum as n, then the correct choice for state

space is S~f(x1,x2)[N2
0 : x1zx2~ng.

Let P(S) denote the space of probability distributions over S,

endowed with the weak topology which is metrized by the

Prohorov metric (see [51]). For any x,y[S let px(t,y) denote the

following probability

px(t,y)~P Xx(t)~yð Þ: ð2Þ

Defining px(t)(A)~
P

y[A px(t,y), for any A5S, we can view px(t)

as an element inP(S). In fact, px(t) is the distribution at time t of the

Markov process (Xx(t))t§0. The dynamics of px(t) is given by the

Chemical Master Equation (CME) which has the following form:

dpx(t,y)

dt
~
XK

k~1

px(t,y{fk)lk(y{fk){px(t,y)lk(y)ð Þ, ð3Þ

where px(0,y)~1 if x~y and px(0,y)~0 for all y=x. Theoreti-

cally, one can find px(t,y) for any t§0 and y[S, by solving this

system. However this system consists of as many equations as the

number of elements in S. Hence an explicit solution is only possible

when S is finite, which only happens in very restrictive cases where

all the reactions preserve some conservation relation. Typically, S is

infinite and solving this system analytically or even numerically is

nearly impossible, except in some restrictive cases (see [16]). From

now on, we assume that S is infinite.

The above discussion shows that at the level of distributions, we

can view the stochastic dynamics (Xx0
(t))t§0 as the deterministic

dynamics (px0
(t))t§0, which satisfies the CME. However, the major

difficulty in analyzing this deterministic dynamics is that it occurs over

an infinite dimensional space P(S). Nevertheless we can recast the

conditions DC1, DC2 and DC3 in the stochastic setting as below.

SC1 For any x0, there is a compact set K(x0)5P(S) such that

px0
(t)[K(x0) for all t§0.

SC2 There exists a compact set K05P(S) such that for any

x0[S we have px0
(t)[K0 for large values of t.

SC3 There is a p[P(S) such that for any x0 we have px0
(t)?p

as t??.

Each of the above conditions give an important insight about

the long-term behavior and stability of the stochastic dynamics.

The first condition, SC1, says that for every E[(0,1) we can find a

finite set AE5S such that each px0
(t) puts at least (1{E) of its mass

in AE. In other words, the probability that the state of the

underlying Markov process at any time t is inside AE is greater

than (1{E). We would expect this to be true for most realistic

models. If condition SC2 holds then the evolution of distributions

have a compact attractor set in P(S), where all the trajectories

eventually lie irrespective of their starting point. This suggests that

Long-Term Behavior of Stochastic Reaction Networks
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in the long run, the family of processes f(Xx0
(t))t§0 : x0[Sg,

spend most of their time on the same set of states. The last

condition SC3 says that the evolution of distributions have a

globally attracting fixed point p. If this holds, then the Markov

process representing the reaction dynamics is ergodic with p as the

unique stationary distribution. For understanding the long-term

behavior of a stochastic process, ergodicity is a desirable property

to have. In the long-run, the proportion of time spent by any

trajectory of an ergodic process, in any subset of the state space is

equal to the stationary probability of that subset (see (12)). In other

words, information about the stationary distribution can be

obtained by observing just one trajectory for a sufficiently long

time. Such a result can have important applications. For example,

consider a culture with a large number of identical cells with each

cell having the same reaction network. If we can show that this

intracellular network is ergodic, then by observing the long-term

reaction dynamics in a single cell, using for example. time-lapse

microscopy, we can obtain statistical information about all the cells

at stationarity. Conversely, ergodicity allows us to obtain the

stationary distribution of a single-cell by observing the distribution

over the population, using for example flow cytometry.

In this paper we develop a general framework for checking

conditions SC1, SC2 and SC3. However, the scope of our paper

is broader than that. As mentioned in the introduction, we obtain

easily computable bounds for the statistical moments of the

underlying Markov process and investigate when these moments

converge with time. We also present conditions for the distribution

of the process to be light-tailed.

Results

Preliminaries
In this section we discuss the main results of our paper. In

particular, we explain how conditions SC1, SC2 and SC3 can be

verified without having to simulate the trajectories of the Markov

process representing the reaction dynamics. Intuitively, these

conditions can only hold if the Markov process has a low

probability of hitting states that have a very large size. In our case,

the states are vectors in Rd and so we can measure their size by

using any norm on Rd . The central theme of this paper is to

demonstrate that for many networks, long-term behavior can be

easily analyzed by choosing the right norm for measuring the state

sizes. This right norm has the form

ExEv~
Xd

i~1

vi Dxi D, ð4Þ

where v is a positive vector in Rd satisfying the following condition.

Condition 1 (Drift-Diffusivity Condition). For a positive

vector v[Rd , there exist positive constants c1,c2,c3,c4 and a nonnegative

constant c5 such that for all x[S

XK

k~1

lk(x)Sv,fkTƒc1{c2Sv,xT and ð5aÞ

XK

k~1

lk(x)Sv,fkT
2
ƒc3zc4Sv,xTzc5Sv,xT2: ð5bÞ

Here S:,:T denotes the standard inner product on Rd . If we

consider the process (EXx0
(t)Ev)t§0, then its dynamics can be seen

to have two components drift and diffusion which have the formPK
k~1 lk(x)Sv,fkT and

PK
k~1 lk(x)Sv,fkT

2 respectively when

Xx0
(t)~x (see page 2 in the Supplementary Material S1).

Condition 1 gives upper-bounds for the magnitude of these two

components and hence we call it the drift-diffusivity condition

(abbreviated to Condition DD from now on; the abbreviations

DD1 and DD2 stand for the first and second inequality,

respectively). Observe that when the process (EXx0
(t)Ev)t§0 goes

above c1=c2 then it experiences a negative drift, suggesting that it

will move downwards. This fact will be crucial for our analysis.

For now, we assume that a vector v satisfying Condition DD has

been found. In later sections we demonstrate how v can be

determined for a large class of networks by solving suitably

constructed optimization problems.

For any positive integer r, let mr
x0

(t) denote the r-th moment of

EXx0
(t)Ev defined by

mr
x0

(t)~E EXx0
(t)Er

v

� �
~
X
y[S

EyEr
vpx0

(t,y): ð6Þ

Similarly let Yr(x0,t) denote the r-th moment of Xx0
(t) at time t.

Then Yr(x0,t) is a tensor of rank r whose entry at index

(i1, . . . ,ir)[f1,2, . . . ,dgr
is given by

Yr
i1...ir

(x0,t)~
X
y[S

yi1
. . . yir px0

(t,y), ð7Þ

where y~(y1, . . . ,yd ) and px0
(t) is the distribution of Xx0

(t).

Suppose that for some positive constants r and Cr(x0) we have

sup
t§0

mr
x0

(t)ƒCr(x0): ð8Þ

For any Mw0, let KM be the compact (finite) set defined by

KM~fx[S : ExEvƒMg and let Kc
M denote its complement.

Markov’s inequality (see [52]) implies that for any Ew0 we can

choose M large enough to satisfy

sup
t§0

px0
(t,Kc

M )~ sup
t§0

P EXx0
(t)Er

vwMr
� �

ƒ

sup
t§0

E EXx0
(t)Er

v

� �
ƒ

Cr(x0)

Mr
vE:

Hence Prohorov’s theorem (see Chapter 3 in [51]) ensures that

condition SC1 holds. Similarly we can prove that condition SC2

will hold if for some rw0 there exists a constant ĈCr such that

lim sup
t??

mr
x0

(t)ƒĈCr for all x0[S: ð9Þ

Relations (8) and (9) give uniform and asymptotic upper-bounds

for mr
x0

(t). Using these relations we can also obtain uniform and

asymptotic upper-bounds for the entries of Yr(x0,t). Such moment

bound results have applications in queuing theory and control

theory (see [53]). In Theorem 2 we show that under certain

conditions, (8) and (9) hold and the upper-bounds can be easily

computed.

Instead of the r-th moment of the process (EXx0
(t)Ev)t§0, one

can ask if the exponential moment of this process is uniformly

bounded from above. This will happen if for some cw0 we have
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sup
t§0

E ecEXx0
(t)Ev

� �
~ sup

t§0

X
y[S

ecEyEv px0
(t,y)v?: ð10Þ

If (10) holds, then the distribution px0
(t) is light-tailed (a distribution

is called light-tailed if its tails are majorized by an exponential

decay) uniformly in t. This shows that all the cumulants of the

distribution px0
(t) exist, which is an important result for the

following reason. There is a considerable body of research

dedicated to estimating the moments of the process (Xx0
(t))t§0

directly without computing the distribution functions px0
(t). For

any integer rw0, one can easily write the differential equations for

the dynamics of the first r moments. However when the reaction

network has nonlinear interactions, this system of equations is not

closed for any r. Various moment closure methods (see [54,55])

exist that specify ways to close these equations artificially and

estimate the moments approximately. A popular moment closure

method is the cumulant-neglect method which ignores the higher

order cumulants of the distribution px0
(t) for all t§0. Of course

this method is only valid when the higher order cumulants exist.

This is guaranteed if (10) holds. In Theorem 3 we give conditions

for verifying (10).

We now come to the question of checking condition SC3 which

says that the process (Xx0
(t))t§0 is ergodic. This can only happen

if the state space S is irreducible, which means that all the states are

accessible from each other. Recall the definition of px(t,y) from (2).

Mathematically, we say that S is irreducible if for all x,y[S, we

have px(t1,y)w0 and py(t2,x)w0 for some t1,t2w0. In order to

check the irreducibility of S, one has to verify that there is no

proper subset S15S, such that once the process reaches a state in

S1, it stays in S1 forever. For reaction networks with mass-action

kinetics, methods for checking irreducibility have recently been

reported in [56] and [57]. These methods can be extended to

situations where the propensity functions are positive in the

positive orthant. When the propensity functions vanish inside the

positive orthant, the problem of checking irreducibility can

become much more complicated, and to the best of our knowledge

no methods exist in the literature for this purpose.

We mentioned before that the vector v is chosen so that the

process (EXx0
(t)Ev)t§0 has a negative drift at large values.

Assuming irreducibility, this is sufficient to verify ergodicity of

(Xx0
(t))t§0 (see Proposition 4).

Suppose that condition SC3 is satisfied and the process

(Xx0
(t))t§0 is ergodic with stationary distribution p. For any

positive integer r, let Pr denote the r-th moment of the stationary

distribution p. Then Pr is a tensor of rank r defined in the same

way as Yr(x0,t) (see (7)), with px0
(t,y) replaced by p(y). Using

Theorem 2 we can determine the values of r for which Pr is finite

(componentwise) and Yr(x0,t)?Pr as t?? (see Theorem 5). We

can also identify functions f : S?R for which

lim
t??

E(f (Xx0
(t)))~

X
y[S

f (y)p(y)v? ð11Þ

holds for any x0[S. If f is such a function, then the ergodic

theorem for Markov processes (see [58]) says that

lim
t??

1

t

ðt

0

f (Xx0
(s))ds~

X
y[S

f (y)p(y) almost surely, ð12Þ

for any x0[S. Lastly, we also obtain conditions to check if the

stationary distribution p is light-tailed (see Theorem 6).

General results
In this section, we formally present the main results of our

paper. Their proofs are given in the Supplementary Material S1.

Moment bounds. Our first result establishes that for certain

values of r, we can obtain uniform and asymptotic moment

bounds for the r-th moment of the process (EXx0
(t)Ev)t§0.

Theorem 2 Assume that Condition DD holds. Let rmax be given by

rmax~
1z

2c2
c5

if c5w0

? if c5~0:

(
ð13Þ

For any positive integer r, if rvrmax then there exist positive  constants

Cr(x0) and ĈCr such that (8) and (9) hold.

The values of the constants Cr(x0) and ĈCr can be explicitly

computed using a recursive relationship (see the Supplementary

Material S1). Note that if v~(v1, . . . ,vd ), then for any

y~(y1, . . . ,yd )[S we have yiƒ EyEv=vi for any i. Hence for any

i1, . . . ,ir[f1,2, . . . ,dg we have Yr
i1...ir

(x0,t)ƒmr
x0

(t)=Pr
j~1 vij

Therefore using Theorem 2, we can obtain uniform and

asymptotic moment bounds for the reaction dynamics

(Xx0
(t))t§0 (see the Supplementary Material S1).

Observe that if c5~0 then rmax~?. In this case, Theorem 2

says that for each positive integer r and x0[S there exists a

constant Cr(x0) such that (8) holds. By showing that we have a

Cw0 such that Cr(x0)ƒr!Cr for all positive integers r, we obtain

our next result, which gives sufficient conditions to check (10).

Theorem 3 (Uniform Light-Tailedness) Suppose that

Condition DD holds with c5~0. Given an initial state x0[S there exists

a cw0 such that

sup
t§0

E ecEXx0
(t)Ev

� �
~ sup

t§0

X
y[S

ecEyEv px0
(t,y)v?:

Ergodicity and Moment Convergence. The next result

verifies the ergodicity of a reaction network satisfying Condition

DD. It follows from Theorem 7.1 in Meyn and Tweedie [59].

Proposition 4 (Ergodicity) Assume that the state space S of the

Markov process (Xx0
(t))t§0 is irreducible and Condition DD1 holds. Then

this process is exponentially ergodic in the sense that there exists a unique

distribution p[P(S) along with constants B,cw0 such that for any x0[S

sup
A5S

px0
(t,A){p(A)

��� ���ƒBe{ctfor all t§0:

This result says that as t??, the distribution px0
(t) converges

to p exponentially fast. Henceforth we assume that the process

(Xx0
(t))t§0 is ergodic with stationary distribution p.

Let f : S?R be a function such that for some positive integer

rv(rmax{1), there exists a Cw0 satisfying Df (x)DƒC(1zExEr
v)

for all x[S. Using Theorem 2 we can prove that for such a f , the

relations (11) and (12) hold. As a consequence we obtain the

following result about the convergence of moments with time.

Theorem 5 (Moment Convergence) Assume that Condition

DD holds. Let r be any positive integer satisfying rv(rmax{1). Then Pr is

finite (componentwise) and Yr(x0,t)?Pr as t??.

If f (x)~ ExEr
v then Theorem 2 and (11) imply that for any

positive integer rv(rmax{1) there exists a positive constant ĈCr

such that
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X
y[S

EyEr
vp(y)ƒĈCr: ð14Þ

In particular, if c5~0 then rmax~? and (14) holds for each r. By

proving the existence of a constant Cw0 such that ĈCrƒr!Cr for

all positive integers r we get our last result which shows that the

stationary distribution is light-tailed.

Theorem 6 (Light-Tailedness at stationarity) Suppose that

Condition DD holds with c5~0. Then there exists a cw0 such that

X
y[S

ecEyEv p(y)v?:

The framework described above is very general and can be

applied to any network that satisfies Condition DD. In what

follows, we specialize the results for two wide classes of networks

with mass-action kinetics, namely reaction networks with mono-

molecular and bimolecular reactions. It will be, however, pointed

out in the examples that the scope of our approach is much

broader since more general propensities, such as those involving

Hill functions or more general mass-action kinetics, can be

considered.

Methods

Using the analytical tools developed in the previous sections,

several general results can be stated for the class of unimolecular

reaction networks and bimolecular reaction networks. In what

follows, when we say that a moment is bounded, we mean that it is

bounded uniformly in time (as in (8)). This can be established using

Theorem 2 once Condition DD is verified. Furthermore, when we

say that a moment is globally converging, we mean that it

converges to its equilibrium value as time tends to infinity,

irrespective of the initial state x0. Once, Condition DD is verified,

this can established using Theorem 5.

The main aim of the section is to develop a theoretical and

computational framework for checking Condition DD.

Results for stochastic unimolecular reaction networks
Let us then consider a unimolecular reaction network which

involves d species that interact through K reaction channels of the

form:

1 I
ki

0
Si, Si I

k0
i

1, Si I
k‘

i Pd
j~1

nj‘
i Sj ð15Þ

where i~1, . . . ,d, ‘[f1, . . . ,Nig, Niw0 and nj‘
i [N0. The reaction

rates ki
0, k0

i and k‘i are positive real numbers. In accordance with

(3), the reactions are indexed from n~1 to K , and corresponding

propensities and stoichiometries are denoted by ln(x) and fn,

respectively.

Motivations. The unimolecular case may seem quite restric-

tive at first sight and not of particular practical interest. We

demonstrate below that, on the contrary, the proposed results on

unimolecular reaction networks complete existing ones and are,

therefore, of practical and theoretical interests. Although some

explicit solutions for the CME are indeed known for some particular

unimolecular reactions [16], it is still unknown whether the CME

admits an closed-form solution for all possible type of unimolecular

reactions. Note that no simplification nor assumption is made on the

problem in our work. Hence, we are dealing with the very general

unimolecular case.

The results developed of this section are useful in several ways.

First of all, all types of unimolecular reactions can be handled with

the proposed approach, making it more general than existing ones

in this regard. Moreover, given a specific reaction network, the

method allows one to establish whether a unique stationary

distribution exists without solving the CME. This is particularly

important since unimolecular networks may not be ergodic. In this

case, the network can exhibit unstable behaviour which may

suggest a flaw in the model if the considered real-world system

exhibits stable trajectories. Moreover, in certain design applica-

tions such as those in synthetic biology, it seems natural to design

networks that have well-behaved dynamics. Checking ergodicity

provides a convenient way to determine if the network dynamics is

well-behaved. Note, furthermore, that it is, in general, difficult to

infer ergodicity directly from the solution of the CME (when it is

known) since proving the existence of a unique globally attractive

stationary distribution amounts to checking convergence of the

solution to the CME to the same distribution for all possible initial

distributions, which are in infinite number in our setup. This fact is

even more true when large networks are considered since the

explicit form of the solution to the CME is, in this case, very

intricate [16]. The proposed results allow one to circumvent this

difficulty and demonstrate that ergodicity can be assessed by very

simple means, i.e. using basic notions of linear algebra. The results

can be furthermore used to assess the structural ergodicity of a

reaction network, that is, the ergodicity of a network for any

combination of the rate parameters, by very simple means. This

very strong and practically relevant notion is extremely difficult,

again, to check from the solution of the CME since it would

require to check the convergence of the solution of the CME to the

same stationary distribution for all initial conditions and all

positive values of the rate parameters, a very cumbersome task,

even for small networks. Finally, the results pertaining to

unimolecular networks will also turn out to play an important

role in the ergodicity analysis of bimolecular reaction networks.

Theoretical results. Let us start with several theoretical

results that characterize the long-term behavior of unimolecular

networks of the form (15).

Proposition 7 (Ergodicity of unimolecular networks)
Let us consider the general unimolecular reaction network (15) and assume that

the state-space of the underlying Markov process is irreducible. Let the matrices

A[Rd|d and b[Rd
§0, DDbDD=0, be further defined as

XK

n~1

ln(x)Sv,fnT~x>Avzb>v: ð16Þ

Then, the following statements are equivalent:

1. The matrix A is Hurwitz-stable, i.e. all its eigenvalues lie in the open left

half-plane.

2. There exists a vector v[Rd
w0 such that Avv0.

Moreover, when one of the above statements holds, the Markov process

describing the reaction network is exponentially ergodic and all the moments are

bounded and globally converging.

The above result shows that, for unimolecular networks,

ergodicity and the existence of moment bounds can be directly

inferred from the properties of the matrix A defined in (16). The

second statement, which characterizes the Hurwitz-stability of A

in an implicit way, will turn out to play a key role in the analysis of
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unimolecular and bimolecular reaction networks since checking

whether Avv0 for some vw0 is a linear programming problem.

It is important to stress that, in the result above, if we simply

demand that the moments be bounded and converging, then A
may be allowed to have zero eigenvalues in certain cases. Note,

however, that the moments will converge to values that may

depend on the initial conditions.

In the case that the structure of the network (the reactions and

the stoichiometries) is exactly known, but that the reaction rates

are subject to uncertainties, the above theorem can be robustified to

account for these uncertainties. To this aim, suppose that the

matrix A depends on a vector d[½{1,1�g where g[N is the

number of distinct uncertain parameters. We write this matrix as

A(d) and assume that there exists a matrix Az[Rd|d satisfying

the following properties:

1. A(d)ƒAz (in the componentwise sense) for all d[½{1,1�g

2. There exists a d�[½{1,1�g such that Az~A(d�).

Note that such a matrix Az may not exist, especially when

some entries are not independent. However, when Az exists we

have the following result.

Proposition 8 (Robust ergodicity) Let us consider the general

unimolecular reaction network (15) described by some uncertain matrices A(d)
and b(d), DDb(d)DD=0. Assume further the matrix A(d) admits the upper-

bound Az defined above and that the state-space of the underlying Markov

process is irreducible for all uncertain parameter values d[½{1,1�g. Then, the

following statements are equivalent:

1. The matrix A(d) is Hurwitz-stable for all d[½{1,1�g.

2. The matrix Az is Hurwitz-stable.

3. There exists a positive vector v[Rd such that Azvv0.

Moreover, when one of the above statements holds, the Markov process

describing the reaction network is robustly exponentially ergodic and all the

moments are bounded and globally converging.

Observe that checking the Hurwitz-stability property of each

A(d) is equivalent to checking it for only Az. Hence we can

conclude that, in this case, checking ergodicity of a family of networks is

not more complicated than checking ergodicity of a single network. The case

when the matrix Az is not defined is more complicated and is

discussed in the supplementary material S1.
Computational results. We now present several computa-

tional results that accompany the theoretical results of the previous

section. It is possible to extract many computational results from

our general framework, but for simplicity we only address the

problems of checking ergodicity and computing the first-order

moment bounds. The asymptotic first-order moment bound,

defined in Theorem 2, is given by Ĉ1~c1=c2. So the question

arises: what is the smallest value for such a ratio? Or, in other

words, what is the smallest attractive compact set for the first-order

moment of Sv,X (t)T? Several numerical methods, solving exactly

or approximately this problem, are discussed in the supplementary

material S1. One of them is the following optimization problem

which is fully equivalent to Proposition 7:

Optimization problem 9 Let us consider the general unimolecular

reaction network (1 and assume that the state-space of the underlying

Markov process is irreducible. Assume further that the optimization problem

maxz,vz s:t: zw0,vw

(zIzA)vƒ0
ð17Þ

is feasible with (z�,v�) as minimizer. Then, we have Ĉ�1ƒb>v�=z� and

Proposition 7 holds.

A striking feature about the above optimization program is that

the numbers of variables and constraints are given by dz1 and

2dz1, respectively. This means that the optimization problem

scales linearly with respect to the number of species (d) in the

network, and is independent of the number of reactions K .

Therefore, from the point of view of this optimization problem, the

size of a unimolecular network can be identified with the number

of species, and not the number of reactions. The above

optimization problem can be efficiently solved using a bisection

algorithm over z that is globally and geometrically converging to

z�. Each iteration consists of solving a linear program, a class of

optimization problems known to be very tractable, and for which

numerous advanced solvers exist [60]. These properties, altogeth-

er, make the overall approach highly scalable, which is necessary

for dealing with very large networks.

Results for stochastic bimolecular reaction networks
Similar results are now presented for stochastic bimolecular reaction

networks which, in addition to the unimolecular reactions (15), also

involve bimolecular reactions of the form:

SizSj I
k‘

ij Pd
m~1 nm‘

ij Sm, SizSj I
k0

ij
1 ð18Þ

where i,j~1, . . . ,d, ‘[f1, . . . ,Nijg, Nijw0, and nm‘
ij [N0. The

reaction rates k‘ij and k0
ij are positive real numbers.

Theoretical results for bimolecular networks. When

bimolecular reaction networks of the form (15)–(18) are considered,

the left-hand side of condition (5a) can be expressed as

XK

i~1

lk(x)Sv,fkT~x>M(v)xzx>Avzb>v ð19Þ

where M(v)[Rd|d is symmetric, A[Rd|d and b[Rd
§0. Let

S : ~ f1 . . . fK½ � be the stoichiometry matrix of the bimolecular

reaction network (15)–(18), and let Sq be the restriction of S to

bimolecular reactions, only. Further define a set

N q : ~ v[Rd : vw0, v>Sq~0
� �

:

When v[N q, the quadratic term x>M(v)x in (19) vanishes, and

equation (19) reduces to

XK

i~1

lk(x)Sv,fkT~x>Avzb>v

which is exactly the same expression as in the case of unimolecular

networks. This means that, with the additional constraint that

v[N q, all the results derived for unimolecular networks directly

apply to bimolecular networks as well. This allows us to obtain the

following result.

Proposition 10 (Ergodicity of networks) Let us consider the

bimolecular reaction network of the form (15)–(18) such that DDbDD=0 in (19)
and assume that the state-space of the underlying Markov process is irreducible.

Assume further that the network admits a non-empty N q.

If there exists a vector v[N q such that the inequality Avv0 holds, then the

stochastic bimolecular reaction network (15)–(18) is ergodic and all the

moments are bounded and globally converging.

It is important to mention that the existence of a non-empty

set N q is a prerequisite for utilizing the above result. Non-

emptiness of N q is equivalent to the existence of a conservation
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relation for all the bimolecular reactions, i.e. the value of (at

least) a positive linear combination of the species populations

remains unchanged when any of the bimolecular reactions fires.

Note that this definition extends to more general mass-action

kinetics as well. A necessary condition for the non-emptiness ofN q

is that Sq is not full-row rank. This non-emptiness condition may

seem restrictive at first sight, but it will be shown that several

important reaction networks from the literature satisfy this

condition.

Whenever N q is empty or there is no v[N q such that Avv0

holds, the next result can be used.

Proposition 11 (Ergodicity of bimolecular networks)
Let us consider the bimolecular reaction network of the form (15)–(18) such

that DDbDD=0 in (19) and assume that the state-space of the underlying

Markov process is irreducible. Assume further that one of the following

statements holds:

1. There exists v[Rd
w0 such that Avv0 and M(v)ƒ0 hold.

2. There exists v[Rd
w0 such that M(v) is negative definite.

Then, the stochastic bimolecular reaction network (15)–(18) is ergodic and

all the moments up to order (t1z2c2=c5s{2) are bounded and globally

converging.

In the above result, the first statement can be checked using a

linear program since the inequalities are componentwise. Check-

ing the second statement, however, requires a semidefinite

program, which is a more general convex program, that can be

solved using solvers such as SeDuMi [61] and SDPT3 [62]. More

details on the above result can be found in the supplementary

material S1.

Computational results for bimolecular networks. It is

shown here that, once again, the theoretical results can be easily

turned into linear programs that can be checked in a very efficient

way. The following result is the numerical translation of

Proposition 10.

Optimization problem 12 Let us consider a bimolecular reaction

network (15)–(18) and assume that the state-space of the underlying Markov

process is irreducible. Assume further that N q=1 and that the optimization

problem

maxz,vz s:t: zw0,vwE

(zIzA)vƒ0

v>Sq~0:

ð20Þ

is feasible with (z�,v�) as minimizer. Then, we have Ĉ�1ƒb>v�=z� and

Proposition 10 holds.

The computational complexity of this optimization problem

scales linearly with the number of species and can therefore be

solved for large networks. The following optimization problem is

the computational counterpart of the first statement of Proposition

11.

Optimization problem 13 Let us consider a bimolecular reaction

network of the form (15)–(18) and assume that the state-space of the

underlying Markov process is irreducible. Assume further that the nonlinear

optimization problem

maxz,vz s:t: zw0,vwE

(zIzA)vƒ0

M(v)ƒ0:

ð21Þ

is feasible with (z�,v�) as minimizer. Then, we have Ĉ�1ƒb>v�=z� and

Proposition 11 holds.

The above optimization problem does not scale as nicely as (20)

since, in the worst case, the number of constraints related to M(v)
is quadratic in the number of species. The problem, however,

remains tractable due to the linear programming structure.

Qualitative differences between deterministic and
stochastic dynamics

In this section we illustrate that stochastic and deterministic

models of the same reaction network may exhibit very different

qualitative behaviors. Therefore assessing ergodicity or the

convergence of moments of a stochastic model from the stability

properties of the corresponding deterministic model is, in general,

incorrect. To support this claim, we consider two reaction

networks.

Jumping potential wells. Our first example shows that

stochastic dynamics can jump potential wells and leave the stability

regions of the deterministic dynamics, resulting in an unstable

behavior. Consider the following reaction network:

1 I
ab

S

S I
azb

1

SzS I
1

3S

ð22Þ

where 0vavb. The deterministic dynamics for this network is

given by

_kk~f (k) : ~k2{(azb)kzab ð23Þ

where k[R§0 denotes the concentration of S. The fixed points for

the dynamics are k{~a and kz~b, respectively. From the graph

f(k,f (k))[R§0|R : k[R§0g, it is immediate that the fixed point

k{~a is locally asymptotically stable with the region of attraction

as ½0,b) while the other fixed point kz~b is unstable.

We now consider the stochastic version of this network and let A

be the generator of the corresponding Markov process. For the

identity function f (x)~x we have

Af (x)~
1

2
x2{ azbz

1

2

� �
xzab: ð24Þ

The polynomial on the right-hand side has two positive roots that

are

x+~azbz
1

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
azbz

1

2

� �2

{2ab

s
: ð25Þ

This means that for all x[N0 satisfying x§1zxz, we have

Af (x)§ , for some w0, implying that the drift is positive. So if

the state of the state of the network reaches a value that is greater

than 1zxz, then there is a possibility that the trajectories become

unbounded with time.

To demonstrate this, we pick a~7=2 and b~21=2. In such a

case, the largest root of the polynomial on the right-hand side of

(24) is xz~ 29z
ffiffiffiffiffiffiffiffi
547
p
 �

=2^26:194wb. We can see that the

region where the drift Af (x) is negative is actually larger than the

region of attraction of the locally asymptotically stable fixed point

for the deterministic dynamics. This is due to the fact that the
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propensity function of the bimolecular reaction differs from

whether we are in the deterministic or in the stochastic setting.

Let us now set the initial condition k0~0 for the deterministic

model and x0~0 for the stochastic one. Note that they both lie

within the region of attraction of the fixed point of the

deterministic dynamics and in the region of negative drift for the

stochastic dynamics. We then perform 1000 SSA runs over

100 seconds and stop the simulation when the propensity function

x(x{1)=2 of the bimolecular reaction exceeds the value

corresponding to 15000 molecules (approx. 1:12|108). At this

rate value, the bimolecular reaction fires, on average, every 10{8

seconds, leading to an explosion of the state of the system and to

unbounded trajectories. Out of 1000 SSA runs, all were stopped

before the end of the simulation time-period (100 seconds). This

behavior strongly indicates that the system is not ergodic despite the

fact that the deterministic model has a locally asymptotically stable

fixed point. Figure 1 illustrates the above discussion.

Globally stable deterministic dynamics does not imply

moments stability. In the previous example, the stochastic and

deterministic behaviors were different, but one can still understand

stochastic instability through the deterministic model. The

deterministic dynamics possesses a region in which the solutions

explode and the randomness in the stochastic dynamics allows it to

enter this region in finite time and grow unbounded thereafter. We

now present an example which is more striking in the sense that

the deterministic model cannot be used in any way to infer the

instability of the stochastic model. In this example, the determin-

istic dynamics has a unique fixed point which is exponentially

stable, while the stochastic dynamics is not ergodic with all its

moments growing unboundedly with time.

Consider the reaction network given by

1 I
1

S1

1 I
1

S2

S1zS2 I
1

1:

ð26Þ

Let k[R2
§0 be the vector of concentrations. The state of the

deterministic model evolves according to

_kk1(t) ~ 1{k1(t)k2(t)

_kk2(t) ~ 1{k1(t)k2(t):
ð27Þ

Assume that the initial conditions satisfy k2(0){k1(0)~a, for

some a[R. Then we have the following result.

Theorem 14 The unique equilibrium point of the dynamics (27) given

by

k�1~
1

2
{az

ffiffiffiffiffiffiffiffiffiffiffiffi
a2z4

p� �
and k�2 ~

1

2
az

ffiffiffiffiffiffiffiffiffiffiffiffi
a2 z4

p� �
: ð28Þ

is globally exponentially stable.

In the stochastic setting, the picture is completely different as the

next result indicates.

Theorem 15 The Markov process corresponding to the stochastic model

of network (26) is not ergodic and all its moments grow unboundedly with time.

Moreover, if X1(0){X2(0)~a for some aw0, we have that

E½X1(t){X2(t)�~a for all t§0.

To illustrate this result, we simulate the deterministic and the

stochastic process (10000 SSA runs) for k1(0)~0, k1(0)~a,

X1(0)~0, X2(0)~a and a~2. The results are shown in Figure 2.

Finding an attractive compact set for the first-order
moments

The goal of this section is to compute a compact set that is

attractive for the first-order moment of Sv,X (t)T using the

optimization problems (17) or (20). Due to the moment closure

problem [54], analytical expressions for the steady-state values of

the moments of bimolecular reaction networks are not available,

and hence this is an important class of networks to analyze.

Consider the following bimolecular reaction network

1 I
k

S1, S1 I
c1 1

S1zS1 I
k12

S2, S2 I
k21

S1 z S1

S2 I
c2 1:

ð29Þ

representing a dimerization process, i.e. S1 dimerizes to S2. It is

easily seen that this network is irreducible since any point in the

state-space can be reached from any other point in a finite number

of reactions having nonzero propensities. Choosing v in N q, e.g.

v>~ 1 2½ �, yields that c�1~k and c�2~minfc1,c2g, hence the

network is exponentially ergodic, and all the moments are

bounded and converging. On solving the optimization problem

(20) with numerical values k~1, c1~c2~0:2, k12~1 and

k21~0:1, we get that ĈC1~c�1=c�2~5 which coincides with the

theoretical value k=minfc1,c2g. One can regard

f(x1,x2)[R2
w0 : v>xƒĈC1g to be an attractive compact set in

which the first-order moments of Sv,X (t)T eventually lie. To

validate this calculation, Monte-Carlo simulations were performed

which yield

lim
t??

E½Sv,X (t)T�~5:024+0:05, ð30Þ

showing the correctness of the attractive compact set. To further

illustrate this result, several trajectories of E½X1(t)� and E½X2(t)� for

different initial conditions are plotted in Figure 3.

We now discuss how the computation of an attractive compact

set for the first-order moments can be used to assess whether a

closure method leads to a result that is consistent with the

Figure 3. Trajectories of the first order moments m1(t)~E½X1(t)�
and m2(t)~E½X2(t)� of network (29) for different initial condi-
tions (averaging is performed over 5000 cells). The trajectories
converge to the unique steady-state value located inside the compact
set (the surface below the dashed line), very close to the boundary.
doi:10.1371/journal.pcbi.1003669.g003
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stochastic dynamics. The idea is to check whether the closed

system converges towards a value which lies within the compact

set. Let us consider the reaction network (29) and close the first-

order moments equations by neglecting the second order

cumulant, i.e. neglecting the variance. By doing so, we get the

model

_~mm~mm1(t) ~ k{c1~mm1(t){k12~mm1(t)(~mm1(t){1)z2k21~mm2(t)

_~mm~mm2(t) ~ k12~mm1(t)(~mm1(t){1){c2~mm2(t)
ð31Þ

where ~mm1 and ~mm2 are the approximate first-order moments of the

system. The unique positive equilibrium point for this model is

given by

~mm�1 ~
1

2k
{c1z

k12c2

c2zk21
z

ffiffiffiffi
D
p� �

~mm�2 ~
k12

2(c2zk21)
~mm�1(~mm�1{1)

ð32Þ

where D~ {c1z
k12c2

c2zk21

� �2

z
4kk12c2

c2zk21
.

With the same parameter values as before, we find that

~mm�1~1:6238 and ~mm�2~1:6881 and therefore v>~mm�~5 for

v>~ 1 2½ �, showing that the state of the closed system converges

to the boundary of the compact set. Note that SSA also predicts

that the trajectories of the first-order moments converge to the

boundary of this set. However the actual equilibrium values for the

first-order moments of the stochastic dynamics are m�1^1:1450

and m�2^1:9350, which differ from the ones obtained with the

closure method. This discrepancy is expected since the variance

has been neglected.

This example shows how attractive compact sets for the

moments can be used as a test for the moment-closure methods

by checking whether the closed system predicts trajectories that

converge inside those compact sets. However, note that in the

current state, these compact sets can only be used to obtain a lower

bound on the closure-error whenever the trajectories of the closed

dynamics converge to a point outside the compact set. In such a

case, the lower bound on the closure-error is simply given by the

distance between the equilibrium point of the closed-system

§ inf
h[C

DD~mm�{hDD2 ð33Þ

where C is the attractive (convex) compact set and ~mm� is the

equilibrium point of the closed dynamics.

Feedback loop
Let us consider the feedback loop network of Figure 4

represented by the reaction network

S1 I
k2

S1 zS2, 1 I
f (S3)

S1

S3 I
k32

S2 zS2, S2zS2 I
k23

S3

Si I
ci

1:

ð34Þ

where S1 is mRNA and S2 is the corresponding protein. The

dimer S3 acts back on the gene expression through an arbitrary

bounded nonnegative function f (:).
We have the following result:

Result 16 For any positive values of the rate parameters and any bounded

nonnegative function f (:), the feedback loop with dimerization (34) is ergodic

and all the moments are bounded and globally converging.

Stochastic switch
Let us consider the stochastic switch of [63] described by the

unimolecular stochastic reaction network

1 I
f1(S1

2
)

S0
1, S0

1 I
k1

S0
1zS1

1

1 I
f2(S1

1
)

S0
2, S0

2 I
k2

S0
2zS1

2

S
j
i I

ci,j
1:

ð35Þ

Above S0
i and S1

i represent mRNAs and proteins of gene i,

respectively. The functions f1(:) and f2(:) are arbitrary bounded

nonnegative functions. We have the following result:

Result 17 For any positive values of the rate parameters and any bounded

nonnegative functions f1(:) and f2(:), the stochastic switch (35) is ergodic and

all the moments are bounded and globally converging.

Repressilator
We consider here the stochastic repressilator of Figure 5 (see

also [42]) involving N genes. The reaction network corresponding

to this N-gene repressilator is given by

Figure 4. Feedback loop with arbitrary feedback rule.
doi:10.1371/journal.pcbi.1003669.g004
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1 I
f1(S1

N
)

S1
1

1 I
f2(S1

1
)

S1
2

1 I
f3(S1

2
)

S1
3

..

. ..
. ..

.

1 I
fN (S1

N{1
)

S1
N

S1
1 I

k1
S1

1zS2
1

S1
2 I

k2
S1

2zS2
2

S1
3 I

k3
S1

3zS2
3

..

. ..
. ..

.

S1
N I

kn
S1

NzS2
N

S1
i I

ci
1, i~1, . . . ,N

S2
i I

di
1, i~1, . . . ,N

ð36Þ

where fi(x)~aizbi=(1zxn), ai,bi,nw0. Above, S1
i and S2

i

are the mRNA and protein corresponding to gene i. We have

the following result:

Result 18 For any positive values of the rate parameters ki,ci,di,ai,bi

and n, the stochastic N-gene repressilator (36) is ergodic and all the moments

are bounded and globally converging.

Stochastic SIR model
We consider here the following SIR-model, similar to the one in

[64], defined as

1 I
ks

S, 1 I
ki

I, S I
cs

1

I I
ci

1, R I
cr 1, SzI I

ksi
2I

I I
kir

R, R I
krs

S:

ð37Þ

where birth and death reactions represent people entering and

leaving the process, respectively. The only bimolecular reaction is

the contamination reaction which turns one susceptible person

into an infectious one. The two last reactions represent how

infectious people are recovering and how recovered people

become susceptible again. We then have the following result:

Result 19 For any positive values of the rate parameters, the SIR-model

(37) is ergodic and all the moments are bounded and globally converging.

Circadian clock
Let us consider the circadian oscillator of [65], depicted in

Figure 6, which is a network involving 9 species and 18 reactions.

Applying the developed theory on this model, we obtain the

following result:

Result 20 For any positive values of the rate parameters, the circadian

clock model of [65] is ergodic and all the moments are bounded and globally

converging.

Using, for instance, the values of [65] and solving for the

optimization problem (20) using linprog and Yalmip [66], we find

that c1~402:5768 and c2~0:1992. Typical trajectories for the

proteins A, R and C are depicted in Figure 7 where we can

observe the expected oscillatory behavior. When averaging the

populations of the proteins A, R and C over a population of 2000

cells, we obtain the sample-average trajectories depicted in

Figure 8. Convergence to stationary values is easily seen.

Moreover, from the ergodicity property, we can even state that

these fixed points for the sample-averages are globally attracting

and that they coincide with the asymptotic time-average (dashed

lines). The steady-state average values for the proteins A, R and C
are given by 222.1797, 534.8853 and 549.7195, respectively.

p53 model
Let us consider one of the oscillatory p53 models of [67], which

is described by the reactions

1 I
k1

S1, S1 I
k2 1, S1 I

f (S1,S3)
1

S3 I
k6

1, S2 I
k5

S3, S1 I
k4

S1 z S2:

ð38Þ

where S1 is the number of p53 molecules, S2 the number of

precursor of Mdm2 molecules and S3 the number of molecules of

Mdm2. The function f (x,y)~
k3y

xzk7
implements a nonlinear

feedback on the degradation rate of p53. We have the following

result:

Result 21 For any positive values of the rate parameters, the oscillatory

p53 model (38) is ergodic and all the moments are bounded and globally

converging.

Lotka-Volterra model
We consider here the stochastic reaction network

1 I
ai

Si, Si I
bi

Si z Si

SizSj I
cij

Sj, Si I
di

1
ð39Þ

Figure 5. N-gene repressilator.
doi:10.1371/journal.pcbi.1003669.g005
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which is an open analogue of the deterministic Lotka-Volterra

system of [68]. The first set of reactions represent immigration, the

second one reproduction, the third one competition due to

overpopulation and the last one deaths/migrations. We obtain

then the following result, which is a stochastic analogue of the

results in [69] obtained in the deterministic setting:

Theorem 22 Let us define C(v)~½vicij � and assume that one of the

following conditions hold:

1. there exists vw0 such that the matrix C(v)zC(v)> is positive

definite;

2. there exists vw0 such that the C(v)zC(v)> is copositive, i.e.

xT (C(v)zC(v)>)x§0 for all x§0, and bi{div0 for all

i~1, . . . ,n.

Then, the stochastic reaction network (39) is ergodic and all the moments up

to order t1z 2c2

c5
s{2 are bounded and globally converging.

Schlögl model
In order to illustrate that the method can be applied to systems

with more general mass-action kinetics, we consider the stochastic

version of the well-known Schlögl model [70]:

2S ?
k1XA

3S ?
k2

2S

1 ?
k3

S ?
k4XB 1

ð40Þ

where S is the main molecule in the network. The above model is

derived in the supplementary material S1 where we have assumed

that the other molecular populations do not vary over time. Note

that in the present form the model has an infinite state-space and

involves a single trimolecular reaction. We then have the following

result.

Theorem 23 For any positive values of the rate parameters

k1,k2,k3,k4 and any positive values for XA and XB, the Markov process

describing the Schlögl model (40) is exponentially ergodic.

Note, however, that we cannot say anything on the stability of

the moments (besides the fact that the first order-moment

converges) since the condition DD2 does not hold here due to

the presence of a cubic term. Note that extending the condition

DD2 to handle more general cases, such as this one, might be

possible.

Discussion

The central theme of this paper is to verify the ergodicity and

moment boundedness of reaction networks in the stochastic

setting. Note that even though we mainly consider mass-action

kinetics in this paper, the framework also applies to more general

kinetics described, for instance, by Hill functions (see the examples

on the repressilator and the stochastic switch) and more general

mass-action kinetics. These results have several interesting and

important biological implications.

For example, the ergodicity of a network shows that population-

level information could be obtained by observing a single

trajectory for a long time. Such an insight can be used to leverage

different experimental techniques for a given application. For

example, consider a clonal cell population with each cell having a

gene-expression network that is ergodic. Then the stationary

distribution (at the population level) of the species involved in this

network can be ascertained by observing a single cell over time. In

other words, to obtain stationary distributions one can either

collect samples over time from a single cell (e.g. using time-lapse

microscopy) or one can take a snapshot of the entire cell

population at some fixed time (e.g. using flow-cytometry). Due

to ergodicity, both these approaches will yield the same

information. Hence, far from being a technical condition,

ergodicity can have far reaching experimental implications.

As a property of a network, ergodicity also sheds important light

on the long range behaviors that can be exhibited by that network.

One may expect that most endogenous biochemical networks to

be ergodic in order to achieve robustness with respect to variability

in initial conditions and kinetic parameters, thus ensuring proper

biological functions in spite of environmental disturbances. As also

mentioned in the introduction, ergodicity is a non-trivial property

which needs to be carefully established and cannot be generically

Figure 6. Circadian clock model of [65].
doi:10.1371/journal.pcbi.1003669.g006

Figure 7. Sample-path of the species of the circadian clock
model.
doi:10.1371/journal.pcbi.1003669.g007
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assumed. To illustrate this, let us consider a simplified version of

the model of carcinogenesis considered in [71] which is given by

1 I
k1

S1, S1 I
k12

S2

S2 I
k21

S1, S2 I
f (x)

1
ð41Þ

where f (x)~
c2

azx2
, aw0. When k1wc2, the trajectories of the

species grow unbounded, as shown in Figure 9, emphasizing then

non-ergodicity of the model for this choice of parameters.

The ideas we use for analysis can also be applied for rationally

designing circuits in synthetic biology, where it is important

that the network be (structurally) ergodic in order to ensure that

the dynamics has the desired behavior irrespective of the initial

conditions. Such a design is crucial because the initial conditions

are usually unknown or difficult to control at certain times,

e.g. after cell division or after the transfection of plasmids in the

cell.

Our results on boundedness and convergence of statistical

moments enable verification of the suitability of a stochastic model

and to characterize the properties of its steady-state distributions,

even if such a distribution is not explicitly computable. One

application of this is to provide justifications and insights for using

moment closure techniques which have been extensively used to

study stochastic chemical reaction networks. Some of these

techniques [72,73] are based on manipulations of the moment

generating function of the underlying stochastic process. The

existence of this moment generating function is implicitly assumed

in such techniques but it may not always hold, thereby

Figure 8. Time evolution of the sample averages of the species A (top), R (left) and C (right) of the circadian clock model (2000 cells
averaging). The dashed-lines correspond to the (asymptotic) time-average.
doi:10.1371/journal.pcbi.1003669.g008

Figure 9. State trajectories of the carcinogenesis model (41)
with the parameters k1~5, k12~1, k21~1, c2~4 and a~1. The
dashed lines correspond to the average trajectories computed over
1000 cells.
doi:10.1371/journal.pcbi.1003669.g009
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jeopardizing the validity of the technique. In this article, we show

that under certain conditions, the distribution of the stochastic

process is uniformly light-tailed, which proves that the moment

generating function exists for all time. Certain moment closure

techniques (see [74,75]) prescribe ways to approximate higher

order moments as a function of lower order moments. Such an

approximation is, however, only reasonable if the higher order

moments are bounded over time. This can be easily assessed with

our approach and one can even quantify the error by explicitly

computing the moment bounds as described in this article.

Finally, the techniques developed here will prove invaluable for

designing synthetic biological control systems and circuits whose

objective is to steer the moments of the network of interest to a

specific steady-state value. Until now, no theory has provided

guidance for such a design. The specifics are outside the scope of

this article and will be pursued elsewhere.
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