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Abstract

Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions
among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell
eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is
informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA
binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer
fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a
simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of
the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints
imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding
site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-
DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios
of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending
on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of
all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions.
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Introduction

A powerful concept in evolution is the fitness landscape: for

every possible genotype there is a number, known as the genotypic

fitness, that characterizes the evolutionary success of that genotype

[1]. Evolutionary success is typically quantified as the probability

of surviving to reproduce, number of offspring, growth rate, or a

related proxy [2,3]. The structure of the fitness landscape is key to

understanding the evolutionary fates of populations.

Most traditional studies of molecular evolution rely on

simplified models of fitness landscapes [3–6] or empirical

reconstructions of landscapes based on limited experimental data

[3,7–10]. However, fitness landscapes are fundamentally shaped

by an intricate network of interactions involving DNA, RNA,

proteins, and other molecular species present in the cell. Thus we

should be able to cast these landscapes in terms of biophysical

properties such as binding affinities, molecular stabilites, and

degradation rates. The increasing availability of quantitative high-

throughput data on in vitro and in vivo molecular interactions has

led to growing efforts aimed at developing models of evolution that

explicitly incorporate the underlying biophysics [11–25]. These

models combine evolutionary theory with physical models of

molecular systems, for example focusing on how protein folding

stability or specificity of intermolecular interactions shapes the

ensemble of accessible evolutionary pathways and steady-state

distributions of biophysical phenotypes.

Evolution of gene regulation is particularly well-suited to this

type of analysis. Gene activation and repression are mediated by

binding of transcription factors (TFs) to their cognate genomic

sites. These binding sites are short nucleotide sequences, typically

5–25 bp in length, in gene promoters that interact specifically with

TF DNA-binding domains [26]. In eukaryotes, a given TF can

have numerous binding sites in the genome, and many genes are

regulated by several TFs [26,27]. Understanding TF-mediated

regulation is key to understanding complex regulatory networks

within eukaryotic cells 2 one of the main challenges facing

molecular biology. Moreover, the availability of high-throughput

data on the genomic locations of TF binding sites [28–31] and on

TF-DNA energetics [32–35] make it possible to develop biophys-

ical models of evolution of gene regulation.

Here we consider evolution of TF binding sites in the yeast

Saccharomyces cerevisiae. We study how energetics of protein-DNA

interactions affect the structure of the binding site fitness

landscape. In a significant extension of previous work which

analyzed a single yeast TF [22], we consider a collection of 25 S.

cerevisiae TFs for which models of TF binding energetics were built

using high-throughput in vitro measurements of TF-DNA interac-

tions [35]. We focus on 12 TFs for which sufficient data on

genomic sites [31] are also available. We use a model of

monomorphic populations undergoing consecutive substitutions

[19,36–38] to infer fitness landscapes, as functions of TF-DNA
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binding energy, from observed distributions of TF binding sites in

the yeast genome [22]. In contrast to the previous work [22], we

rationalize these fitness landscapes in terms of a simple parametric

model based on thermodynamics of TF-DNA binding, obtaining

explicit values of effective evolutionary parameters. Our analysis

sheds light on the genome-wide importance of TF-DNA interac-

tions in regulatory site evolution.

Moreover, we investigate the hypothesis that universal biophys-

ical constraints, rather than site-specific selective pressures,

dominate evolution of regulatory sites. We test the relationship

between TF binding energies and various biological properties,

such as the essentiality of the corresponding gene [39]. We find no

clear relationship between physical and biological properties of TF

sites, which indicates that evolution of site energetics is largely

insensitive to site-specific biological functions and is therefore

driven by global biophysical constraints.

Results

1 Biophysical model of TF binding site evolution
1.1 Energetics of TF-DNA binding. The probability of a

binding site to be bound by a TF is given by the Fermi-Dirac

function of the free energy E of TF-DNA interaction [40]:

pbound(E)~
1

1ze
bphys(E{mphys)

, ð1Þ

where bphys is the physical inverse temperature (&1:69

(kcal=mol){1 at room temperature), and mphys is the physical

chemical potential, a function of the TF concentration. The

binding energy E~E(s) of a site is a function of its nucleotide

sequence, s~(s1, . . . ,sL), where L is the length of the site and

si[fA,C,G,Tg. Note that pbound(E)&e
{bphys(E{mphys)

if

E&mphys. In the mean-field approximation, each nucleotide

makes an additive contribution to the total energy of the site

[32]. These contributions are parameterized by an energy matrix,

whose entries Esi
i give the contribution to the total energy from the

nucleotide si at position i:

E(s)~
XL

i~1

Esi
i : ð2Þ

Energy matrices can be readily generalized to more complex

models of sequence-dependent energetics, such as those with

contributions from dinucleotides, although here for simplicity we

focus on the additive model.

1.2 Evolutionary model. We consider a population with a

locus in the monomorphic limit: mutations in the locus are

infrequent enough that each new mutation either fixes or goes

extinct before a second mutation arises [36]. This approximation

is valid in the limit u%(LN log N){1, where u is the mutation rate

(probability of mutation per base per generation), L is the number

of bases in the locus, and N is an effective population size [41].

Indeed, in the monomorphic limit the expected time between new

mutations, (LNu){1, must be longer than the expected time over

which fixation occurs, which is O(N) generations with probability

1=N for mutants that fix, and O(log N) with probability

(N{1)=N for mutants that go extinct. Thus the total expected

time before the mutant either fixes or goes extinct is O(log N)

generations for N&1 [42]. Thus we must have (LNu){1&log N

or, equivalently, u%(LN log N){1. We also assume that the locus

is unlinked to the rest of the genome by recombination, and thus

we can consider its evolution independently. In evolutionary

steady state, the probability that the population has genotype s at

the locus is given by [19,37,38]

p(s)~
1

Z
p0(s)F (s)n, ð3Þ

where F (s) is the multiplicative fitness (defined so that the total

fitness of a set of independently evolving loci is a product of

fitnesses for each one), p0(s) is the neutral distribution of

sequences (steady state under no selection), and Z is a

normalization constant. The exponent n is a ‘‘scaling’’ effective

population size which is closely related to the standard variance

effective population size [38]. For example, n~2(N{1) in the

Wright-Fisher model and n~N{1 in the Moran model of

population genetics [43]. Conceptually, both n and N measure the

strength of genetic drift [36].

The distribution in Eq. 3 is valid for a wide class of population

models [38] (see Methods for details). An analogy with statistical

mechanics is suggested by rewriting Eq. 3 as a Boltzmann

distribution [37]:

p(s)~
1

Z
p0(s)en logF (s): ð4Þ

Here the logarithm of fitness plays the role of a negative

Hamiltonian, and the neutral distribution p0(s) plays the role of

entropy. Typically we expect relatively few sequences with high

fitness and many with low fitness; thus mutations will drive the

population toward lower fitness, while selection will favor higher

fitness. The balance between these two competing forces depends

on the effective population size n, which controls the strength of

random fluctuations and is analogous to inverse temperature in the

Boltzmann distribution.

1.3 Biophysical model of binding site evolution. Since we

are primarily interested in the biophysical aspects of binding site

evolution, it is more convenient to consider evolution in the space

of binding energies by projecting Eq. 3 via the sequence-energy

mapping of Eq. 2:

p(E)~
1

Z
p0(E)F (E)n: ð5Þ

Here the binding site fitness F (E) depends only on the binding

energy E. As a general ansatz, we will assume that the fitness

Author Summary

Specialized proteins called transcription factors turn genes
on and off by binding to short stretches of DNA in their
regulatory regions. Precise gene regulation is essential for
cellular survival and proliferation, and its evolution and
maintenance under mutational pressure are central issues
in biology. Here we discuss how evolution of gene
regulation is shaped by the need to maintain favorable
binding energies between transcription factors and their
genomic binding sites. We show that, surprisingly, tran-
scription factor binding is not affected by many biological
properties, such as the essentiality of the gene it regulates.
Rather, all sites for a given factor appear to evolve under a
universal set of constraints, which can be rationalized in
terms of a simple model inspired by transcription factor –
DNA binding thermodynamics.
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depends on the binding energy through the physical binding

probability pbound : F (E)~F (pbound(E)). Further, we assume

that an organism with an always-bound site (pbound~1, E?{?)

has fitness 1, while an organism with a site that never binds

(pbound~0, E?z?) has fitness f0v1. Since real sites are

somewhere in between these extremes, a simple hypothesis for

the fitness function is an average of these two fitness values

weighted by the thermodynamic probabilities of the site being

bound or unbound:

F (E) ~pbound(E)zf0(1{pbound(E))

~(1{f0)pbound(E)zf0

~
1zf0e

bphys(E{mphys)

1ze
bphys(E{mphys)

:

ð6Þ

Equation 6 assumes that the fitness function depends linearly on

the TF binding probability pbound, which equals the site’s average

occupancy. However, this linear dependence may be too

restrictive. For example, it does not account for the scenario in

which a cell only requires pbound to be above some minimum

threshold pmin, such that the fitness equals 1 when pboundwpmin,

and 0 otherwise. To include a wider range of fitness functions, we

extend our model in Eq. 6 by treating b and m as effective fitting

parameters (beff and meff ) that may deviate from their physical

counterparts:

F (E)~
1zf0ebeff (E{meff )

1zebeff (E{meff )
: ð7Þ

When beff~bphys and meff~mphys, Eq. 7 is equivalent to Eq. 6 and

fitness is linearly proportional to pbound, but deviations between

these effective and physical parameters introduce nonlinear

dependence of fitness on pbound. For example, the case in

which pbound must only exceed a minimum threshold pmin is

equivalent to Eq. 7 with f0~0, beff??, and meff~mphyszb{1
phys

log((1{pmin)=pmin). For the remainder of the paper, we will focus

on the effective fitness function of Eq. 7 and infer its parameters

from data. Thus for simplicity we will drop the explicit ‘‘eff’’ labels

on b and m.

An important feature of Eq. 3 is that we may invert it to obtain

the fitness function in terms of the observed steady-state distribu-

tions p(s) and p0(s), or p(E) and p0(E) in energy space [19]:

log
p(s)

p0(s)

� �
~n logF (s){log Z [

log
p(E)

p0(E)

� �
~n logF (E){log Z:

ð8Þ

Thus, given a distribution of evolved binding site sequences p and a

neutral distribution p0, we can use Eq. 8 to infer the logarithm of the

fitness landscape up to an overall scale and shift. This can be done

without any a priori knowledge of the shape of the fitness function.

Moreover, given a specific functional form of F (E), such as the

effective Fermi-Dirac fitness in Eq. 7, we can perform a maximum

likelihood fit of the observed sequence distribution to infer values of

parameters b, m, n, and f0. The resulting fitted function can be

evaluated by comparison to the general inference in Eq. 8.

When 1{f0%1, F (E)n contains an approximate degeneracy in

terms of n(1{f0):c, i.e., all fitness functions with constant c are

approximately equivalent. Indeed, the steady-state distribution in

Eq. 5 depends on the quantity F (E)n, which can be written as

F (E)n~ 1{
c

n
(1ze{b(E{m)){1

� �n

&e{c(1ze{b(E{m)){1 ð9Þ

if c(1ze{b(E{m)){1%n or, since 0ƒ(1ze{b(E{m)){1
ƒ1, if

1{f0%1. Therefore in this limit, the steady-state distribution

p(s) depends only on the parameter c and not on f0 and n
separately.

This degeneracy in the steady-state distribution is not

surprising in light of the underlying population genetics, which

also provides an interpretation of c. The quantity 1{f0 is the

selection coefficient s between the two phenotypes of the system,

e.g., the bound and unbound states of the TF binding site. As

discussed above, the quantity n is an effective population size,

which sets the strength 1=n of genetic drift. When s%1 and n&1,

steady-state properties of the population (e.g., allele frequency

distribution, fixation probability) are described by the diffusion

limit and mathematically depend only on Ns, or in our model,

n(1{f0)~c [43,44], which quantifies the strength of selection

relative to the strength of drift. When cw1, selection is strong

relative to drift, while cv1 indicates that selection is relatively

weak. Note that only the absolute magnitude of the selection

coefficient s~1{f0 is required to be small for this degeneracy to

hold; the selection strength relative to drift, quantified by c, may

still be large.

Two regions of parameter space also exhibit a degeneracy

between m and c. If m&E for all site energies E, all of the observed

sites are predicted to be highly occupied and pbound(E)&
1{eb(E{m). We may thus approximate

F (E)n & 1{(1{f0)eb(E{m)
� �n

&1{n(1{f0)eb(E{m)~1{(ce{bm)ebE ,
ð10Þ

and thus all fitness functions with constant A1~ce{bm are

approximately equivalent. One can thus make m arbitrarily large

(while holding A1 fixed by varying c) without breaking the

degeneracy. If m is decreased the degeneracy will eventually break

as m&E is violated. A similar degeneracy appears when m%E, as

then pbound(E)&e{b(E{m); if additionally 1{f0%1, then

F (E)n & f0z(1{f0)(e{b(E{m))
� �n

&1{n(1{f0)e{b(E{m)~1{(cebm)e{bE :
ð11Þ

(We can remove an overall factor of f n
0 because the distribution

p(E) in Eq. 5 is invariant under an overall rescaling of fitness.)

Therefore all fitness functions with A2~cebm are approximately

equivalent in this case. Here, m can be made arbitrarily negative

without breaking the degeneracy.

Thus, parameter fits fall into three cases for different TFs: If

m%E, TF-DNA binding energies fit to the right (exponential) end

of the Fermi-Dirac function, and we cannot infer a unique m.

Similarly, if m&E, TF-DNA binding energies fit to the left (high

occupancy) side of the Fermi-Dirac function, and we again cannot

infer m precisely. However, if m&E, neither degeneracy holds and

a unique m can be inferred. Despite the fact that m cannot always

be predicted, we can unambiguously classify each fit into one of

these three cases.

1.4 Selection strength and its dependence on biophysical

parameters. We now consider how changes to biophysical

parameters of the model affect the strength of selection on binding

sites. The selection coefficient for a mutation with small change in

energy DE is

Biophysics and Evolution of Gene Regulation
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s(E)~
F (EzDE)

F (E)
{1&

d logF
dE

DE: ð12Þ

Therefore we can characterize local variations in the strength of

selection by considering ~ss(E)~Dd logF=dED, the per-unit-energy

local selection coefficient. For the Fermi-Dirac landscape, we

obtain

~ss(E)~
d

dE
logF (E)

����
����~ b(1{f0)z

(1zz)(1zf0z)
, where z~eb(E{m):ð13Þ

We use the absolute value here since the sign of the selection

coefficient is always unambiguous, as the Fermi-Dirac function

decreases monotonically with energy.

We can also ask how variations in b affect the local strength of

selection. Variation of ~ss(E) with b depends qualitatively on both

E{m and whether f0 is zero or nonzero. In Fig. 1 we show

logF (E), ~ss(E), and the derivative

L~ss

Lb
~

z(1{f0)

(1zz)2(1zf0z)2
½(1{f0z2)log zz(1zz)(1zf0z)�: ð14Þ

For f0~0 (Fig. 1A–C), increasing b increases selection strength for

E{m§0. Here the fitness function drops to zero exponentially,

and increasing b steepens the exponential drop. However, for

E{mv0, the effect of changing b depends on the value of b
relative to E{m. For large b, increasing b actually decreases

selection strength; this is because b sets the rate at which the

Fermi-Dirac function converges to unity, and hence increasing b
flattens the landscape in that region. However, for sufficiently

small b, the threshold region is large enough that increasing b still

increases selection. The boundary between positive and negative

values of L~ss=Lb are the solutions of the equation L~ss=Lb~0:

b(E{m)~log W (e{1)&{1:278, where W is the Lambert W-

function (Fig. 1C).

This situation changes qualitatively in the regime E{mw0
when f0=0 (Fig. 1D–F). In this case, for sufficiently large b,

increasing b weakens selection. This is different in the case of

nonzero f0 because on the high-energy tail, the fitness is

converging to a nonzero number f0, and thus selection becomes

asymptotically neutral. Hence, when f0=0, increasing b only

strengthens selection very close to E{m~0. Using Eq. 14, the

boundaries in Fig. 1F are given by the solutions of

(f0z2{1)log z~(1zz)(1zf0z). This equation can be solved

numerically to obtain two solutions, z�1v1 and z�2w1. The

boundaries in Fig. 1F are thus given by the curves

b(E{m)~log z�1 for E{mv0 and b(E{m)~log z�2 for E{mw0.

1.5 Assessment of model assumptions. Two main as-

sumptions inherent in our evolutionary model are monomorphism

and steady state. Here, we assess how violating these assumptions

affects inference of evolutionary parameters b, m, n, and f0. To test

this, we generate simulated data sets of binding site sequences

evolving under a haploid asexual Wright-Fisher model with the

Fermi-Dirac fitness function (Eq. 7; see Methods for details).

Deviations from the monomorphic limit. To test the effects of

polymorphism on the accuracy of our predictions, we perform a

set of simulations for a range of mutation rates u. Each simulation

in the set follows the Wright-Fisher process to the steady state. We

construct the observed distribution pobs by randomly choosing a

single sequence from the final population of each simulation,

which may not be monomorphic for larger u (Fig. 2A). From pobs,

we carry out maximum-likelihood inference of the fitness

landscape as a function of energy using Eq. 5 (Fig. 2B), as

described in Methods.

Additionally, for each u we record the average number of

unique sequences present in the population in steady state and

compute the total variation distance (TVD; Eq. 25 in Methods)

between pobs(E) and the monomorphic prediction p(E) using Eq.

5 (Fig. 2C). The TVD ranges from zero for identical distributions

to unity for completely non-overlapping dis tributions. As

expected, at low mutation rates the steady-state distribution and

the fitness function match monomorphic predictions well. At

higher mutation rates, the TVD starts to increase and Eq. 3

overestimates the fitness of low-affinity sites. The population

becomes polymorphic in this limit. With very high mutation rates,

pobs approaches the neutral distribution p0 since the population is

largely composed of newly generated mutants which have not

experienced selection. A condition for monomorphism in a

neutrally evolving population is u%(LN log N){1 [41]. Using

N~1000 and L~10 as in our simulations yields u%1:4|10{5 in

the monomorphic limit, consistent with the results in Fig. 2C.

We also infer parameters b, m, and c with a maximum likelihood

fit. As expected, all parameters converge to the exact values in the

monomorphic limit (Fig. 3A–C). When the population is not truly

monomorphic, m and b tend to be underestimated on average,

with larger variation in inferred values (larger error bars in

Fig. 3A,B). For c, polymorphism has no clear bias on the average

inferred value, although it also appears to increase the variation.

Deviations from evolutionary steady state. We perform another set of

simulations to test the accuracy of our predictions in a population

that has not yet reached steady state. We use the same fitness

landscape and population size, but fix u to 10{6, within the

monomorphic limit. At each point in time (measured as the

number of generations), we construct pobs as described in Methods

(Fig. 2D), and infer the fitness function (Fig. 2E). We also compute

the TVD between the observed distribution pobs and the steady-

state prediction (Fig. 2F). Over time pobs converges to the steady

state (Eq. 3) and the TVD decays to zero, enabling accurate

reconstruction of the fitness function in the region E{m&0
(although it still diverges from the exact function in the high-

energy tail, where few sequences are available at steady state). The

relaxation time is expected to be proportional to u{1, or 106

generations, which is in agreement with Fig. 2F. As the population

reaches steady state, accurate inference of the fitness function

parameters becomes possible (Fig. 3D–F). We see that parameters

inferred from a population out of steady state tend to underes-

timate m and c, and overestimate b.

2 Transcription factor binding sites in yeast
We now turn to considering the evolution of TF binding sites in

S. cerevisiae. How well does S. cerevisiae satisfy the assumptions of our

evolutionary model? First of all, S. cerevisiae is not a purely haploid

organism but rather goes through haploid and diploid stages. In S.

paradoxus, most of the reproduction is haploid and asexual with

1000 generations spent in the haploid stage for each generation in

the diploid stage, and heterozygosity is low [45]. Based on the

analysis of yeast genomes, wild yeast populations show limited

outcrossing and recombination and are geographically distinct

[46]. Thus, S. cerevisiae may be regarded as haploid to a reasonable

approximation, with sufficient recombination during the diploid

stages to unlink TF binding sites. This is consistent with our model,

which assumes a haploid population and independent evolution of

binding sites.

We next consider whether natural populations of S. cerevisiae are

within the mutation rate limits required for monomorphism. The

Biophysics and Evolution of Gene Regulation
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Figure 1. Fitness and selection strength as functions of energy and inverse temperature. Energy E is measured with respect to the
chemical potential m. Top row uses f0~0; bottom row uses f0~0:99. (A,D) Logarithm of Fermi-Dirac fitness versus energy for several values of b; note
that the high-energy tail looks distinctly different when f0 is nonzero. (B,E) Per-unit-energy selection strength ~ss versus energy for several values of b;
note that the relative ordering of selection strength curves depends on the value of E{m. (C,F) Sign of derivative of selection strength with respect to
b, as a function of E{m and b. Black boundary in (C) is the curve b(E{m)~log W (e{1)&{1:278, where W is the Lambert W-function; the
boundaries in (F) are the curves b(E{m)~log z�1&{1:541 and b(E{m)~log z�2&1:545 where z�1 , z�2 are the solutions to L~ss=Lb~0 (Eq. 14) with
f0~0:99.
doi:10.1371/journal.pcbi.1003683.g001

Figure 2. The monomorphic limit and steady state of a Wright-Fisher model of population genetics. In (A)–(C) we show results from
simulations at various mutation rates, using a fitness function with f0~0:99, b~1:69 (kcal=mol){1 , and m~{2 kcal=mol. Each mutation rate data
point is an average over 105 independent runs, as described in Methods. Colors from green to orange correspond to increasing mutation rates. (A)
Observed steady-state distributions pobs(E) for various mutation rates. The steady state p(E) predicted using Eq. 3 is shown in gray. (B) Fitness
functions F (E) predicted using observed distributions pobs(E) in Eq. 8. The exact fitness function is shown in gray. Inferred fitness functions are
matched to the exact one by using the known population size N , and setting the maximum fitness to 1.0 for each curve. (C) For each mutation rate,
the total variation distance (TVD) D between pobs(E) and p(E), and the average number of unique sequences in the population Nunique (the degree of

polymorphism) are shown. The predicted bound (NL log N){1 on mutation rate required for monomorphism is shown as a dashed line. In (D)–(F) we
show simulations in the monomorphic regime which have not reached steady state, with the same parameters as in (A)–(C) and u~10{6 . Colors from
blue to red correspond to the increasing number of generations.
doi:10.1371/journal.pcbi.1003683.g002
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mutation rate for S. cerevisiae has been estimated to be 0:22|10{9

mutations per bp per cell division [45]. Assuming binding site loci of

length L~10, the bound on the effective population size N is

2:7|107, below which the population will be monomorphic. This is

close to the estimated effective population size of S. cerevisiae of &107

individuals [45], based on the analysis of neutral regions in the yeast

genome. Thus it is plausible that S. cerevisiae population sizes are

below or near the limit for monomorphism, justifying the use of Eq.

3. Furthermore, in S. cerevisiae and S. paradoxus the proportion of

polymorphic sites in a population has been found to be about 0.001

[45,47,48], generally with no more than two alleles segregating at

any one site [45]. According to this estimate, we expect about 1% of

binding sites of length 10 bp to be polymorphic, corresponding to

an average polymorphism of 1.01 in Fig. 2C.

For S. cerevisiae, the equilibration time estimate is u{1&5|109

generations, or about 2|106 years with 8 generations per day

[49]. This is several times less than the 5–10 million years of

divergence time for the most recent speciation event with S.

paradoxus [50]. Thus steady state may plausibly be reached over

evolutionary times scales for a fast-reproducing organism like S.

cerevisiae.

2.1 Site-specific selection. We obtain curated binding site

locations in S. cerevisiae from Ref. [31] and energy matrices (EMs)

from Ref. [35], as described in Methods. Besides the assumptions

of monomorphism and steady state, we also require an ensemble

of binding sites evolving under universal selection constraints if we

are to infer the fitness landscape using Eq. 5. A collection of sites

binding to the same TF is an obvious candidate, since these sites all

experience the same physical interactions with the TF. However, it

is possible that selection is largely site-specific: rather than evolving

on the same fitness landscape, different sites for the same TF may

be under different selection pressures depending on which genes

they regulate, their position on the chromosome, etc. For example,

genes under strong selection might require very reliable regulation,

so that their upstream binding sites are selected for tight binding to

TFs. In less essential genes, the requirement of high-affinity

binding might be relaxed. Before directly applying the evolution-

ary model, we investigate several of these site-specific scenarios to

determine if any are supported by the available data. We perform

several direct tests of site-specific selection by searching for

correlations between site TF-binding energies and other properties

of the site or the gene it regulates.

We classify fitness effects of genes using knockout lethality,

which is available in the Yeast Deletion Database [39,51]. This

database classifies genes as either essential or nonessential based on

the effects of gene knockout, and provides growth rates for

nonessential gene knockouts under a variety of experimental

conditions. We divide binding sites of each TF in our data set into

two groups: those regulating essential genes and those regulating

nonessential genes.

In Fig. 4A we compare mean binding energies of sites regulating

essential genes with those regulating nonessential genes for each

TF. Using a null model as described in Methods, we find no

significant difference (at p~0:05 level) between the two groups of

sites for any TF except RPN4 (p~0:048). The mean p-value of the

null model over all TFs is 0.530; a small number of individually-

significant p-values is expected as a consequence of multiple

testing. In Fig. 4B we compare the variance of the energy of the

sites regulating essential and nonessential genes; sites regulating

essential genes may be selected for more specific values of binding

energy if precise regulation is required. We find no overall trend:

for some TFs sites regulating essential genes have more energy

variation than those regulating nonessential genes, but for other

TFs the situation is reversed.

For the sites regulating nonessential genes, we also correlate the

site binding energy with the growth rate of a strain in which the

regulated gene was knocked out (Table S1, column B). The

Spearman rank correlation between each site’s binding energy and

the regulated gene’s effect on growth rate produces a mean p-value

of 0.562. We find no significant correlation for any TF at p~0:05
level except MSN2, with p~0:046.

Figure 3. Fitted parameters of the Fermi-Dirac function from Wright-Fisher simulations. In (A)–(C) the fitted values of m, b and c~n(1{f0)

are shown as functions of mutation rate u. For each mutation rate, we generate 200 random samples of 500 sequences from the 105 sequences
generated in simulations used in Fig. 2A–C. We fit the parameters of the fitness function on each sample separately by maximum likelihood (see
Methods). Shown are the averages (points) and standard deviations (error bars) over 200 samples at each mutation rate. The exact values used in the

simulation are represented by horizontal green lines. The predicted bound (NL log N){1 on mutation rates required for monomorphism is shown as
a vertical dashed line. In (D)–(F) the fitted values of m, b, and c are shown as functions of the number of generations t for the non-steady state
simulations used in Fig. 2D–F. The sampling procedure, the maximum likelihood fit, and the representation of parameter predictions are the same as
in (A)–(C).
doi:10.1371/journal.pcbi.1003683.g003
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It is also possible that regulation of highly-expressed genes may

be more tightly controlled. Indeed, gene expression level is weakly,

though significantly, correlated with gene essentiality [52]. We

compare the binding energy of sites to the overall expression level

of their regulated genes measured in mid-log phase yeast cells

cultured in YPD [52] (Table S1, column C), and again find no

correlation using the Spearman rank correlation except for

DAL80 (p~0:030), with mean p-value of 0.537.

Another measure of the selection pressures on genes is their rate

of evolution as measured by KA=KS , the ratio of nonsynonymous

to synonymous mutations in a given gene between species.

According to the neutral theory of evolution, genes which evolve

slowly must be under higher selective pressure, and therefore the

sites regulating them might likewise experience stronger selective

pressures. As described in Methods, we measure the KA=KS ratio

between S. cerevisiae and S. paradoxus protein coding sequences, and

compare it to the binding energy of the sites regulating those genes

(Table S1, column D). We find very weak Spearman rank

correlations for RPN4, GAT1, CAD1, and ATF2, all roughly with

p~0:020. We find no other significant correlation at the p~0:05
level, with a mean p-value of 0.404.

Similarly, one might expect sites regulating essential genes to be

more conserved. However, we find that the average Hamming

distance between corresponding binding sites in S. cerevisiae and S.

paradoxus [31] is no different for sites regulating essential genes than

for those regulating nonessential genes, as shown in Fig. 4C. Using

the null model described in Methods, most TFs are above p~0:05
with the exceptions of PDR3 (p~0:033), with an average p-value

of 0.651. Similarly, there is no significant difference in the binding

energies of these orthologous sites as determined from the EMs, as

shown in Fig. 4D, except for PDR3 (p~0:014), with mean p-value

of 0.691.

We can also consider how the essentiality of the TFs themselves

affects the sequences of their binding sites; for example, essential

TFs may constrain their binding sites to a more conserved

sequence motif. We divide 125 TFs from Ref. [31] which had 10

or more sequences and for which essentiality information was

available into 16 essential and 109 nonessential TFs using the

Yeast Deletion Database [39,51], and calculate the sequence

entropy of binding sites for each TF. The distribution of sequence

entropies in Fig. 4E shows no significant difference between

essential and nonessential TFs (p~0:9 for the null model).

Finally, it is possible that sites experience different selection

pressures depending on their distance to the transcription start site

(TSS). Again, we find no significant correlations between binding

energy and distance to the TSS: Spearman rank correlation yields

mean p-value of 0.560 and all p-values above 0.05 except RPN4

(p~0:032) (Table S1, column E). Overall, we find no systematic

evidence that site-specific properties of binding sites determine

their binding energies. These findings are in broad agreement with

a previous report [22], which suggested that site-specific selection

can be ruled out because of the significant variation in binding

Figure 4. Tests of site-specific selection. We divide binding sites for each TF into two groups: those regulating essential genes and those
regulating nonessential genes. (A) Comparison of mean binding energies of sites regulating essential (SETessential) and nonessential genes
(SETnonessential) for each TF in the data set. (B) Comparison of variance in binding energies for sites regulating essential (Vessential) and nonessential
(Vnonessential) genes. (C) Mean Hamming distance between corresponding sites in S. cerevisiae and S. paradoxus for sites regulating essential
(SdTessential) versus nonessential genes (SdTnonessential). (D) Mean squared difference in binding energy between corresponding sites in S. cerevisiae and
S. paradoxus for sites regulating essential (SDE2Tessential) versus nonessential genes (SDE2Tnonessential). In (A)–(D), 25 TFs were used; black diagonal
lines have slope one. In (A),(C),(D), vertical and horizontal error bars show the standard error of the mean in each group. Points lacking error bars have
only one sequence in that group. (E) Normalized histogram of TF binding site sequence entropies, divided into 16 essential and 109 nonessential TFs,
for 125 TFs in Ref. [31].
doi:10.1371/journal.pcbi.1003683.g004
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affinity between orthologous sites of different species, which was

found to be consistent with the variance predicted by a model

including only drift and site-independent selection.

2.2 Inference of biophysical fitness landscapes. The

above analysis indicates that the evolution of binding site energies

does not depend significantly on site-specific effects, suggesting

that more universal principles govern the observed distribution of

sites binding a given TF. Thus, we will fit a single fitness function

to a collection of TF-bound sites via Eqs. 3 and 8. Of the 25 TFs

considered in the previous section, here we focus on 12 TFs with

§13 unique binding site sequences.

First we derive the neutral distribution p0(E) of site energies

based on mono- and dinucleotide frequencies obtained from

intergenic regions of the S. cerevisiae genome, as described in

Methods. It has been suggested that L-mers not functioning as

regulatory sites (e.g., located outside promoters) may be under

evolutionary pressure not to bind TFs [53]; however, consistent

with previous reports [22,54], we find that sequences sampled

from the intergenic regions of the genome are close to the neutral

distribution expected from mono- and dinucleotide frequencies,

except for the expected enrichment at low energies due to

functional binding sites. This distribution is shown in Fig. 5A for

REB1 and in Table S2, column B for all other TFs.

Assuming the observed set of binding site energies for a TF

adequately samples the distribution p(E), we can use our estimate

of the neutral distribution p0(E) in Eq. 8 to reconstruct the fitness

landscapes as a function of TF binding energy up to an overall

scale and shift (Fig. 6). Although the fitness functions may be noisy

due to imperfect sampling of p(E), they nevertheless provide

important qualitative insights. In particular, in all cases fitness

decreases monotonically as binding energy increases, indicating

that stronger-binding sites are more fit. That is, we observe no

fitness penalty for binding too strongly, at least within the range of

energies spanned by p(E).

Fitted Fermi-Dirac landscapes. For each TF we perform a

maximum-likelihood fit of the binding site data to the distribution

in Eq. 3 with the Fermi-Dirac landscape of Eq. 7 (Fig. 5 for the

REB1 example, Table S2 for all other TFs; see Methods for

details). The model of Eq. 7 has four fitting parameters: b, m, n,

and f0. However, as shown in Sec. 1.3, in the 1{f0%1 limit the

fitness function depends on c~n(1{f0) rather than f0 and n
separately. Thus we also carry out constrained ‘‘non-lethal’’

Fermi-Dirac fits in which f0 is fixed at 0.99. Note that due to the c-

m degeneracy, in some cases m effectively fits to the limiting cases

m?? or m?{? rather than a specific value. Because we only fit

in the range {20vmv0 (see Methods), a value of m&{20 shows

that the fit is subject to the m%E degeneracy, while m&0 shows

that it is subject to the m&E degeneracy. As mentioned above, the

input to each fit is a collection of genomic TF binding sites fsg
[31] and the EM predicted on the basis of high-throughput in vitro

Figure 5. Parametric inference of REB1 fitness landscape. (A) Histogram of energies of intergenic sites calculated using the REB1 energy
matrix (dashed line) and the neutral distribution of sequence energies expected from the mono- and dinucleotide background model (solid line; see
Methods for details). The color bar on the bottom indicates the percent deviation between the two distributions (red is excess, green is depletion
relative to the background model). The vertical bars show the distribution of functional sites [31], which correspond to the low-energy excess in the
distribution of intergenic sites. (B) From top to bottom: REB1 energy matrix, the sequence logo obtained from the energy matrix by assuming a
Boltzmann distribution at room temperature at each position in the binding site (pi(si)~pi

0(si)e
{bEsi

i =Zi), and the sequence logo based on the
alignment of observed REB1 genomic sites. (C) Histogram of binding site energies and its prediction based on the three fits (Eq. 5). (D) Fitness
function inference. Dots represent data points (as in Fig. 6); also shown are the unconstrained fit to the Fermi-Dirac function of Eq. 7 (‘‘UFD’’; solid red
line), constrained fit to Eq. 7 with f0~0:99 (‘‘CFD’’; dashed black line), and fit to an exponential fitness function (‘‘EXP’’; dashed green line). Error bars
in (D) are calculated as in Fig. 6.
doi:10.1371/journal.pcbi.1003683.g005
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TF-DNA binding assays [35]. The EM allows us to assign a

binding energy E(s) to each site.

A summary of maximum-likelihood parameter values for all TFs

is shown in Tables 1 and S2, column D. The variation of log-

likelihood with fitting parameters is shown in Table S2, columns G

and H. Since for many TFs relatively few binding sites are available,

in Table S3 we evaluate the goodness of fit using randomly chosen

subsets of binding sites and Hessian analysis. Six of the TFs (REB1,

ROX1, MET32, PDR3, CUP9, and MCM1) are in the 1{f0%1
regime where only c can be inferred unambiguously. Indeed, non-

lethal Fermi-Dirac fits with f0~0:99 yield very similar values of log-

likelihood and c (Table S2, column D). In all of these cases, c is

considerably greater than 1, implying that selection is strong

compared to drift and the effective population size is large (the s%1,

Ns&1 regime in population genetics).

Five TFs (RPN4, MET31, YAP7, BAS1, and AFT1) have very

small values of f0 (Table 1), indicating that on average, removing

their binding sites is strongly deleterious to the cell. In these cases,

the global maximum occurs in the vicinity of f0~0, away from the

degenerate region of parameter space (Table S2, column H,

insets). Note however that the likelihood surface is always

degenerate in the region of parameter space with 1{f0%1 and

c~ constant; this is true even when the global maximum

likelihood does not occur in that region, as observed for these

five TFs. Since 1{f0&1, n&c, which is a small value in all five

cases (Table 1). Given the strength of selection, small effective

population sizes (which indicate that genetic drift is strong) are

necessary to reproduce the observed variation in binding site

sequences. Finally, sites for STB5 have an intermediate value of

f0~0:401, which means they are under strong selection but are

not necessarily essential.

The fits to the Fermi-Dirac fitness landscapes also provide

estimates of the effective inverse temperature b (Table 1). The

inferred values of b can be compared to the physical value at room

temperature, bphys&1:69 (kcal=mol){1: Ten of the TFs (REB1,

ROX1, MET32, MET31, PDR3, YAP7, BAS1, STB5, CUP9,

MCM1) have b’s lower than the physical value, while in the other

two (RPN4, AFT1) bwbphys: In most TFs the fitted inverse

temperature b is far from its physical counterpart, although in

several cases the likelihood function is fairly flat in the vicinity of

the peak, indicating that a wider range of b values is admissible

(Table S2, column G).

The inferred value of m relative to the distribution of energies E
of the binding sites tells us in which qualitative regime of the

Fermi-Dirac fitness landscape the sites lie. For five TFs (ROX1,

MET32, PDR3, CUP9, MCM1) E{mw0, so the sites reside on

the exponential tail of the landscape; since 1{f0%1 as well, they

are subject to the m%E degeneracy. For a group of six TFs (REB1,

RPN4, MET31, YAP7, BAS1, AFT1), E{m&0, so that the sites

lie on the bound-unbound threshold. In this regime, changing the

energy of the site through mutations may lead to a large change in

fitness. Finally, E{mv0 for STB5, so the sites lie on the high-

fitness plateau and are subject to the m&E degeneracy. The

degeneracies in m are also illustrated in Table S2, column G.

What does b=bphys say about the nature and strength of

selection? We address this question using the local selection

Figure 6. Qualitative behavior of fitness landscapes. Shown are plots of log(p(E)=p0(E)) for 12 TFs, which, according to Eq. 8, equals the
logarithm of fitness up to an overall scale and shift. For each TF, sequences are grouped into 15 equal-size energy bins between the minimum and
maximum energies allowed by the energy matrix. Shown also are the total number of binding sites for each TF. Error bars are calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(1{p)=n
p

, where p is the fraction of sites falling into a given bin out of n total sites, as would be expected if the sequences were randomly
distributed according to the observed distribution.
doi:10.1371/journal.pcbi.1003683.g006
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coefficient, ~ss(E)~Dd logF=dED (Eq. 13). The magnitude of the

selection coefficient depends qualitatively on both E{m and whether

f0 is zero or nonzero (Fig. 1). For five of the TFs (ROX1, MET32,

PDR3, CUP9, MCM1), f0=0, bvbphys, and E{mw0. Thus these

TFs are in a regime where decreasing b strengthens selection (Fig. 1F).

In other words, selection is stronger for these binding sites than

expected from purely biophysical considerations. For RPN4 and

AFT1, f0&0, bwbphys, and E&m. Hence L~ss=Lbw0, and selection

is again stronger than expected. STB5 exhibits bvbphys and lies on

the high fitness plateau (E{mv0), and thus selection is also stronger

than expected. In contrast, REB1, MET31, YAP7, and BAS1 exhibit

bvbphys and lie on the threshold E{m&0, and hence selection is

weaker than expected in these four cases.

Fitness landscape model selection. Since the constrained Fermi-Dirac

fits have one fewer adjustable parameter than the unconstrained

fits, it is more consistent to do model selection on the basis of the

Akaike information criterion (adjusted for finite-size samples) [55]

rather than log-likelihoods:

AIC~2(k{logL)z
2k(kz1)

n{k{1
, ð15Þ

where k is the number of fitting parameters, L is the likelihood,

and n is the number of data points. For each model we can

calculate the AIC, which accounts for both the benefits of higher

log-likelihood and the costs of additional parameters. The model

that provides the best fit for the fewest parameters will have the

lowest AIC value.

Table 2 shows the AIC differences between the unconstrained

Fermi-Dirac fits (UFD, k~4) and the constrained Fermi-Dirac fits

with f0~0:99 (CFD, k~3) for each TF. Positive AIC differences

indicate that UFD is more favorable. We also calculate the Akaike

weights w!e{AIC=2, which give the relative likelihood that a given

model is the best [55].

For five of the six TFs in the 1{f0%1 regime, the constrained

Fermi-Dirac fits perform somewhat but not drastically better than

the unconstrained Fermi-Dirac fits (Table 2). Indeed, the Akaike

weights for the constrained Fermi-Dirac fits exceed the full fits for

these TFs consistently by about a factor of e&2:7, since their raw

likelihoods are essentially equivalent and they only differ in the

number of fitted parameters k. Out of the five TFs for which

f0&0, YAP7, BAS1, and AFT1 fit slightly better to the

constrained Fermi-Dirac, suggesting that their small fitted values

of f0 are not significant. For RPN4 the AIC analysis shows

preference for the fits with low f0; however RPN4 is listed as

nonessential in the Yeast Deletion Database [39,51], suggesting

either an inconsistency in our analysis or that growth media tested

in Refs. [39,51] do not reveal essentiality of this TF.

We may also consider a purely exponential fitness landscape of

the form F (E)~eaE . The reasons for including this case are

threefold. First, exponential fitness emerges in the limit E{m&0
of the Fermi-Dirac landscape, the regime into which many of the

TF binding sites fall. Second, the fitness landscapes in Fig. 6

appear close to linear on the logarithmic scale, implying that to a

good approximation fitness depends exponentially on energy.

Third, the model has just one fitting parameter, making it a useful

null case for AIC evaluation.

The steady-state distribution p(s) with exponential fitness is

given by

p(s)~
1

Z
p0(s)enaE(s)~ P

L

i~1

pi
0(si)

Zi

e
naE

si
i , ð16Þ

where E(s) is given by Eq. 2, p0(s) is the neutral probability of

sequence s, pi
0(si) is the background probability of nucleotide si at

position i, and Zi is a single-site partition function:

p0(s)=Z~PL
i~1 pi

0(si)=Zi:Here we assumed that the background

probability of a sequence is a product of probabilities of its

constituent nucleotides. In this case, positions in the binding site

decouple and the distribution of sites p(s) completely factorizes.

The assumption of factorization underlies the common practice of

inferring energy matrices from log-odds scores of observed genomic

binding sites [32]. The log-odds score of a nucleotide si is defined as

S(si)~log
p

si
i

pi
0(si)

~{bEsi
i {log Zi, ð17Þ

where p
si
i is the probability of observing base si[fA,C,G,Tg at

position i within the set of known sites, b is an effective inverse

Table 1. Summary of unconstrained Fermi-Dirac landscape fits to TF binding site data.

TF f0 c = n(12f0) b (in (kcal/mol)21) E2m

REB1 0.999 18.2 0.794 <0

ROX1 0.993 335 0.398 .0

MET32 0.973 133 0.251 .0

RPN4 1.0161024 1.58 2.0 <0

MET31 4.5461025 1.58 1.58 <0

PDR3 0.988 242 0.251 .0

YAP7 4.5461025 1.58 1.0 <0

BAS1 4.5461025 2.51 0.501 <0

STB5 0.401 150 0.316 ,0

AFT1 4.5461025 3.98 5.01 <0

CUP9 0.978 219 0.316 .0

MCM1 0.998 83.1 0.251 .0

Columns show maximum-likelihood value of f0 , c~n(1{f0), and b. The last column shows whether most binding site energies E are lower than the inferred chemical
potential m, near it, or above it (see Table S2 for details).
doi:10.1371/journal.pcbi.1003683.t001
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temperature, and Zi is the normalization constant. Equation 17

shows that the log-odds score, which is computed using observed

nucleotide probabilities, is equivalent to Esi
i (up to an overall scale

and shift) under the assumption of site independence.

We can quantitatively compare the exponential fitness land-

scape with the unconstrained and constrained Fermi-Dirac

landscapes using the Akaike information criterion, Eq. 15. The

AIC analysis shows that the exponential landscape is significantly

poorer than the Fermi-Dirac landscape in all cases except MET31

(Table 2), where the exponential fit is marginally better than the

Fermi-Dirac fits, and STB5, where the exponential landscape

performs much better than the Fermi-Dirac models. This

observation provides statistical support for the fitness landscapes

of Fermi-Dirac type and for the non-lethality of deleting most TFs

(the exponential fitness decays to zero rather than a nonzero f0

found in most of our Fermi-Dirac fits).

Discussion

In this work, we have considered how fitness of a single-cell

eukaryote S. cerevisiae is affected by interactions between TFs and

their cognate genomic sites. Changing the energy of a site or

creating new sites in gene promoters may change how genes are

activated and repressed, which in turn alters the cell’s chances of

survival. Under the assumptions of a haploid monomorphic

population in which the evolution of binding sites has reached

steady state, the fitness landscape as a function of TF binding

energy can be inferred from the distribution of TF binding sites

observed in the genome, using a biophysical model which assigns

binding energies to sites. We use a simple energy matrix model of

TF-DNA energetics in which the energy contribution of each

position in the site is independent of all the other positions. The

energy matrix parameters are inferred from a high-throughput

data set in which TF-DNA interactions were studied in vitro using a

microfluidics device [35]. We consider two types of fitness

functions: Fermi-Dirac, which appears naturally from considering

TF binding as a two-state process (Eq. 1), and exponential, which

is motivated by the observation that for many TFs, the logarithm

of fitness appears to decrease linearly as energy increases.

A single fitness landscape for all genomic binding sites of a given

TF can only exist in the absence of site-specific selection. Indeed, it

is possible that TF sites experience different selection pressures

depending on the genes they regulate: for example, sites in

promoters of essential genes may be penalized more for deviating

from the consensus sequence. In this case, the fitness function is an

average over all sites which evolve under different selection

constraints: as an extreme example, consider the case where each

site i has a Fermi-Dirac fitness function (Eq. 7) with different

parameters mi, bi, and f i
0 . The resulting observed distribution of

energies would then be the average of the distributions predicted

by Eq. 5:

p(E)~
1

Z
p0(E)SF (E; mi,bi,f

i
0)nTi:

1

Z
p0(E)F (E; �mm,�bb,�ff0)�nn, ð18Þ

which defines the ‘‘average’’ fitness function with effective

parameters �mm, �bb, �ff0, �nn. Thus the fit can be carried out even in

the presence of site-dependent selection, but the fitted parameters

correspond to fitness functions of individual sites only in an

average sense.

To gauge the importance of site-specific selection in TF binding

site evolution, we have performed several statistical tests aimed at

discovering correlations between binding site energies and

biological properties of the sites and the genes they regulate.

These tests considered gene essentiality, growth rates of strains

with nonessential genes knocked out, gene expression levels,

KA=KS ratios based on alignments with S. paradoxus, and the

distance of the site to the TSS. We find no consistent correlations

among these properties, indicating that for a given TF, the

evolution of regulatory sites is largely independent of the

properties of regulated genes.

Previously, low correlations have been observed between

essentiality and conservation of protein and coding sequences

[56–62], which has fueled considerable speculation as it contra-

dicts the prediction of the neutral theory of evolution that higher

selection pressures lead to lower evolutionary rates. It has also

been found that the growth rates of strains with nonessential genes

knocked out are significantly (though weakly) correlated with

conservation of those genes [63]. It has therefore been suggested

that selection pressures are so strong that only the most

nonessential genes experience significant genetic drift [56].

Table 2. Comparison of fitness function models.

TF AICCFD–AICUFD AICEXP–AICUFD wUFD wCFD wEXP

REB1 3.054 35.734 0.822 0.178 1.4361028

ROX1 22.042 34.753 0.265 0.735 7.5361029

MET32 22.233 10.540 0.246 0.752 0.001

RPN4 5.674 19.959 0.945 0.055 4.3861025

MET31 21.469 23.869 0.100 0.208 0.692

PDR3 22.124 6.123 0.254 0.734 0.012

YAP7 22.049 10.722 0.264 0.735 0.001

BAS1 22.107 1.061 0.224 0.644 0.132

STB5 22.732 27.145 0.025 0.097 0.879

AFT1 22.069 6.096 0.259 0.729 0.012

CUP9 22.251 1.560 0.220 0.679 0.101

MCM1 23.343 20.175 0.135 0.718 0.147

For each TF, we show the AIC differences between the unconstrained Fermi-Dirac fit (‘‘UFD’’), the constrained Fermi-Dirac fit with f0~0:99 (‘‘CFD’’), and the exponential
fit (‘‘EXP’’). Also shown are Akaike weights w, which indicate the relative likelihood of each model.
doi:10.1371/journal.pcbi.1003683.t002
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Previous studies have also found that gene expression levels are a

more reliable (though still very weak) predictor of selection

pressures than essentiality [60], but we do not find this to be the

case for TF binding sites, nor do we observe a consistently

significant correlation between gene expression levels and TF

binding energies.

Available data does not rule out the possibility of time-

dependent selection in combination with forms of site-dependent

selection for which we have not accounted. In this scenario, the

variation in site binding affinity is not due to genetic drift, but to

variable selection pressures across sites and over time, such that

the sites are strongly tuned to particular binding energies which

change from locus to locus. Indeed, there is evidence that there is

frequent gain and loss of TF binding sites and that the gene

regulatory network is highly dynamic [64–70]. However, it is

possible that rapid turnover of binding sites in eukaryotes may be

due to evolution acting on whole promoters rather than individual

binding sites. Many promoters contain multiple binding sites for a

single TF, and it may be that while individual binding sites are lost

and gained frequently, the overall binding affinity of a promoter to

a TF may be held constant [71–73]. Our evolutionary model can

account for this scenario using a promoter-level fitness function,

which we intend to consider in future work.

Out of 12 TFs with sufficient binding site data, five have f0&0,

indicating a large fitness penalty for deleting such sites. However,

this conclusion is strongly supported by the AIC differences

between unconstrained and non-lethal Fermi-Dirac fits for only

one TF, RPN4 (Table 2). RPN4 is classified as nonessential in the

Yeast Deletion Database. It may be that this misclassification is

due to a mismatch between genomic sites, in which the core

GCCACC motif is preceded by TTT, and the energy matrix in

which the binding energies upstream of the core motif are non-

specific (Table S2). We also classify REB1 and MCM1 binding

sites as nonessential, although knocking out these TFs is lethal in

yeast. This discrepancy may be due to a minority of essential sites

being averaged with the majority of nonessential sites to produce a

single fitness function, as described above. In addition, although a

penalty for deleting any single site may be small, the cumulative

penalty for deleting all sites (or, equivalently, deleting the TF) may

be lethal.

We find that in 10 out of 12 cases, fitting an exponential fitness

function is less supported by the data than fitting a Fermi-Dirac

function (Table 2). This is interesting since constructing a position-

specific weight matrix by aligning genomic sites is a common

practice which implicitly assumes factorization of exponential

fitness and independence of each position in the binding site. Our

results show the limitations of this approximation. It is important

to note that a key difference between the Fermi-Dirac fitness

landscape and the exponential landscape is that the former

contains magnitude epistasis [8,25] (i.e., the magnitude of a

mutation’s fitness effect depends on the rest of the site sequence),

while the latter is non-epistatic. Thus, our results indicate that

epistasis is widespread in the evolution of TF binding sites [22].

Finally, we find that depending on the TF, the distribution of

TF binding energies may fall on the exponential tail, across the

threshold region, or on the saturated plateau where the sites are

always occupied (Table 1). In the first two categories, variation of

TF concentration in the cell will lead to graded responses, which

may be necessary to achieve precise and coordinated gene

regulation. In the third regime, TF binding is robust and not

dynamic. We also find that the fitted inverse temperature b is

typically not close to the value based on room temperature

(Table 1). In particular, our analysis of the variation of selection

strength with b indicates that selection appears to be stronger for

most TFs than expected from pure biophysical considerations,

suggesting the presence of additional selection pressures beyond

those dictated by the energetics of TF-DNA binding.

Methods

Distribution of monomorphic population genotypes in
evolutionary steady state

In the limit u%(LN log N){1, where u is the mutation rate per

nucleotide, L is the number of nucleotides in a locus, and N is an

effective population size, mutations are sufficiently rare that each

new mutation either fixes or goes extinct before the next one

arrives [41]. Thus populations evolve by sequential substitutions of

new mutations at a locus, which consist of a single new mutant

arising and then fixing. The rate at which a given substitution

occurs is thus given by the rate of producing a single mutant times

the probability that the mutation fixes [36]:

W (s’Ds)&Nu(s’Ds):w(s’Ds), ð19Þ

where u(s’Ds) is the mutation rate from genotype s to s’ and

w(s’Ds) is the probability that a single s’ mutant fixes in a

population of wild-type s. We will assume that u is nonzero only

for sequences s and s’ differing by a single nucleotide.

Given an ensemble of populations evolving with these rates, we

can define p(s,t) to be the probability that a population has

genotype s at time t. This probability evolves over time according

to the master equation

d

dt
p(s’,t)~

X
s[S
½W (s’Ds)p(s,t){W (sDs’)p(s’,t)�, ð20Þ

where S is the set of all possible genotypes at the locus of interest.

This Markov process is finite and irreducible, since there is a

nonzero probability of reaching any sequence from any other

sequence in finite time. Hence it has a unique steady-state

distribution p(s) satisfying [74]

X
s[S
½W (s’Ds)p(s){W (sDs’)p(s’)�~0: ð21Þ

For population models obeying time reversibility, we can show

that the steady-state distribution p(s) must have the form in Eq. 3

[38]. We assume the fixation probability w depends only on the

ratio of mutant to wild-type fitnesses: w(s’Ds)~w(F (s’)=F (s)).
This occurs in most standard population models and is expected

whenever only relative fitness matters (e.g., when the total

population size is constant). If the population dynamics are time

reversible, the substitution rates and steady state must obey

the detailed balance relation W (s’Ds)p(s)~W (sDs’)p(s’).
Assuming the neutral dynamics also obey detailed balance,

u(s’Ds)p0(s)~u(sDs’)p0(s’), we can show that

p(s’)
p(s)

~
u(s’Ds)

u(sDs’)

w
F (s’)
F (s)

� �

w
F (s)

F (s’)

� �~
p0(s’)
p0(s)

y
F (s’)
F (s)

� �
, ð22Þ

where y(r)~w(r)=w(1=r). Equation 22 implies that

y(r)y(r’)~y(rr’), leading to y(r)~rn for some exponent n. It

can be shown that n must be proportional to the effective

population size [38]; for the Wright-Fisher model, n~2(N{1).
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Now Eq. 3 follows from

p(s’)
p(s)

~
p0(s’)
p0(s)

F (s’)
F (s)

� �n

: ð23Þ

This form of the steady state assumes only time reversibility and

dependence on fitness ratios; otherwise, any form of the fixation

probability must satisfy it. While many population models do not

obey time reversibility exactly, it can be shown that even these

irreversible models satisfy Eq. 3 to a very good approximation [38].

Maximum-likelihood fits of fitness function parameters
For a given TF, let S~fsg be the set of binding site sequences

and h~(b,m,f0,n) the parameters of the fitness function (Eq. 7).

The log-likelihood is given by

logL(SDh)~
X
s[S

log p(sDh)~
X
s[S

log
1

Z(h)
p0(s)(F (sDh))n

� �
,ð24Þ

where F is the fitness function, and Z(h)~
P

s p0(s)(F (sDh))n is

the normalization.

Because the log-likelihood function has degenerate or nearly-

degenerate regions in the parameter space of h, instead of

maximizing by gradient ascent we obtain a global map of the

likelihood by calculating the function over a mesh of points in the

following parameter domain: b[(0:1,10) generated from b~10n

for n running from {1 to 1 in steps of 0:1; m[({20,0) in steps of

0:2; n[(10{3,105) generated from n~10n for n running from {3

to 5 in steps of 0:1; and f0[(4:5|10{5,1{4:5|10{5) generated

from f0~(1ztanh n)=2 for n running from {5 to 5 in steps of

0:1. Our predicted maximum is the maximum likelihood point in

the mesh, which is sufficiently fine to estimate all fitting

parameters. We have made the code for this procedure and for

the analysis of site-specific selection available at www.physics.

rutgers.edu/,morozov/publications.html.

Simulations
We consider a haploid asexual Wright-Fisher process [43]. The

population consists of N~1000 organisms, each with a single

locus of L nucleotides. The new generation is created by means of

a selection step and a mutation step. In the selection step,

sequences from the current population are sampled with

replacement, weighted by their fitness, to construct a new

population of size N. In the mutation step, each position in all

sequences is mutated with probability u. For simplicity, the

mutation rates between all pairs of nucleotides are the same.

We characterize the difference between the distribution

expected by our model, pexp (Eq. 3), and the distribution observed

in simulations, pobs, using the total variation distance (TVD):

D(pexp,pobs)~
1

2

X
x

Dpexp(x){pobs(x)D: ð25Þ

The TVD ranges from zero for identical distributions to unity for

completely non-overlapping distributions. We calculate the TVD

for the distributions in energy space, where the sum in Eq. 25 is

over discrete energy bins (we bin the observed sequences by energy

by dividing the range from the minimum to the maximum

sequence energy for a particular energy matrix into 100 bins of

equal size).

We begin by randomly generating the energy matrix param-

eters Esi

i : Each Esi

i in the energy matrix is sampled from a uniform

distribution and then rescaled such that the distribution of all

sequence energies has standard deviation of 1.0. This is achieved

by dividing all entries in the energy matrix by a factor x:

x2~
XL

i~1

X
a[fA,C,G,Tg

p0(a)(Ea
i {�EEi)

2, ð26Þ

where Ea
i is the energy matrix element for base a at position i,

L~10 is the binding site length, �EEi~
P

a[fA,C,G,Tg E
a
i is the

average energy contribution at position i, and p0(a) is the

background probability of nucleotide a (p0(a)~0:25 for all a in

our simulations). It can be shown that x is the standard deviation

of the random sequence energy distributution, which is

approximately Gaussian [11]. We generate the energy matrix

once and use it in all subsequent simulations and maximum

likelihood fits.

We perform the Wright-Fisher simulations in a range of

mutation rates from u~10{6 to u~10{1 with a ‘‘non-lethal’’

Fermi-Dirac fitness function (Eq. 7 with f0~0:99,

b~1:69 (kcal=mol){1, and m~{2 kcal=mol). We run 105

simulations for each mutation rate for 100=uz1000 steps, enough

to reach steady state. Each simulation starts from a monomorphic

population with a randomly chosen sequence. We construct the

steady state distribution for each mutation rate by randomly

choosing a single sequence from the final population of each

simulation. Collected across all simulations, these are used to

construct a distribution of sequences at each mutation rate.

Additionally, we record the average final number of unique

sequences at each mutation rate.

We perform another set of Wright-Fisher simulations with the

same fitness function and energy matrix as above, and u~10{6.

We run 105 simulations, each starting from the same monomor-

phic population with a specific sequence of E&0. At regular

intervals in each simulation, we record a randomly chosen

sequence from the population. Collected across all simulations,

these are used to construct a distribution of sequences at each

point in time.

Binding site and energy matrix data
We obtain curated binding site locations for 125 TFs from Ref.

[31], which provides a posterior probability that each site is

functional based on cross-species analysis. We only consider sites

with a posterior probability above 0.9. For this analysis, we use the

Saccharomyces Genome Database R53-1-1 (April 2006) build of

the S. cerevisiae genome.

We obtain position-specific affinity matrices (PSAMs) for a set of

26 TFs from an in vitro microfluidics analysis of TF-DNA

interactions [35]. This study provides PSAMs for each TF

determined using the MatrixREDUCE package [34]. We convert

the elements of the PSAM wa
i to energy matrix elements using

Ea
i ~{log(wa

i )=b, where b~1:69 (kcal=mol){1 at room temper-

ature. For each of these 26 TFs, genomic sites are available in Ref.

[31], although we neglect PHO4 since it does not have any binding

sites above the 0.9 threshold of Ref. [31], leaving us with 25 TFs for

which both an energy matrix and a set of genomic binding sites are

available. We align the binding site sequences from Ref. [31] to the

corresponding energy matrices, choosing the alignment that

produces the lowest average binding energy for the sites.

Essentiality data
The Yeast Deletion Database classifies genes as essential, tested

(nonessential), and unavailable, which number 1156, 6343, and
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529, respectively [39,51]. For each essential or tested gene, we

determine all TF binding sites less than 700 bp upstream of the

gene’s transcription start site (on either strand), which we designate

as the sites regulating that gene. Growth rates for nonessential

knockout strains are provided under YPD, YPDGE, YPG, YPE,

and YPL conditions, relative to wild-type. We choose the lowest of

these growth rates to represent the fitness effect of the knockout.

To measure the rate of nonsynonymous substitutions, we align

the non-mitochondrial, non-retrotransposon ORFs taken from the

Saccharomyces Genome Database R64-1-1 (February 2011) build

[75] of S. cerevisiae to those of S. paradoxus using ClustalW [76]. We

measure the rate of nonsynonymous mutations using PAML [77].

We ran PAML with a runMode of 22 (pairwise comparisons) and

the CodonFreq parameter (background codon frequency) set to 2;

we also tested CodonFreq set to zero and obtained very similar

results. We find the rate of nonsynonymous substitutions to be

0.04, and a Spearman rank correlation of {0:16 (p~10{27)

between growth rate of knockouts and the nonsynonymous

substitution rate of the knocked-out gene. This is consistent with

the results of Ref. [58], which found the rate of substitutions to be

0.04 and the rank correlation between growth rate and

substitution rate to be {0:19 (p~10{35).

To compare binding energy to evolutionary conservation, we

calculate the mean Hamming distance between S. cerevisiae sites

and corresponding sites in S. paradoxus [31]. To test for significance

in the difference of mean energies and Hamming distances of sites

regulating essential and nonessential genes, we use a null model

which assumes that the sites were randomly categorized into

essential and nonessential. We randomly choose a subset of the

sites in our dataset to be ‘‘nonessential,’’ equal in size to the

number of sites regulating nonessential genes as classified by the

Yeast Deletion Database. By repeating this procedure 106 times,

we build a probability distribution for the difference in the means

of the nonessential and essential groups. The p-value is the

probability of obtaining a difference in the means greater than or

equal in magnitude to the empirically measured value.

Neutral binding site energy distributions
We construct the neutral probability p0(s) of a sequence s with

length L as

p0(s)~p0(s1) P
L

i~2
p0(si{1,si), ð27Þ

where p0(si) is the background probability of a nucleotide si, and

p0(si{1,si) is the background probability of a dinucleotide si{1si.

These probabilities are determined from mono- and dinucleotide

frequencies in the intergenic regions of the S. cerevisiae genome

(build R61-1-1, June 2008). We project p0(s) into energy space

using Eq. 2 to obtain p0(E), the neutral distribution of binding

energies for sequences of length L.

If intergenic sequences evolve under no selection with respect to

their TF-binding energy, the neutral distribution of site energies

should closely match the actual distribution of L-mer sequences

obtained from intergenic regions. Table S2, column B shows that

these two distributions match very well except at the low-energy tail,

which is enriched in functional binding sites. Note that accounting for

dinucleotide frequencies is important; mononucleotide frequencies

alone are insufficient to reproduce the observed distribution [54].

Supporting Information

Table S1 Full summary of tests for site-specific selec-
tion. For 25 TFs we compute TF-DNA interaction energies (in

kcal/mol) for each site. Columns from left to right: (A) Essentiality

of the TF according to the Yeast Deletion Database; total number

of binding sites for each TF; total number of sites with unique

sequences. The table lists how many essential and nonessential

genes are regulated by each TF, and how many of these genes

have gene expression and S. paradoxus KA=KS ratio data. We also

report the mean energy SET and the variance V of sites regulating

both essential and nonessential genes, and mean squared energy

difference SDE2T and mean Hamming distance SdT between S.

cerevisiae and S. paradoxus sites regulating essential and nonessential

genes. We show p-values for the significance of the difference

between these two classes of sites (see Methods). (B) Growth rate in

strains with nonessential gene knockouts versus energy of TF

binding sites regulating the knockout genes. (C) Gene expression

versus energy of TF sites regulating the genes. (D) Ratio of

nonsynonymous to synonymous substitutions (KA=KS ) in genes

versus energy of their TF regulatory sites. (E) Distance between

each binding site and the closest transcription start site (TSS)

versus the energy of the site. For (B)–(E) we report the Spearman

rank correlation r between each property and site energy, along

with the p-value of its significance (see Methods).

(PDF)

Table S2 Summary of fitness landscape fits to TF
binding site data. We consider 12 TFs which have at least 13
unique binding site sequences. Each row corresponds to a TF, ranked

in the decreasing order of the number of unique binding site

sequences. Columns, from left to right: (A) Summary of TF binding

site data. (B) Same as Fig. 5A. (C) Same as Fig. 5B. (D) Fitted values of

fitness landscape parameters, maximized log-likelihoods, and AICs for

the unconstrained fit to the Fermi-Dirac function of Eq. 6 (‘‘UFD’’),

constrained fit to the Eq. 6 with f0~0:99 (‘‘CFD’’), and fit to an

exponential fitness function (‘‘EXP’’). (E) Same as Fig. 5C. (F) Same as

Fig. 5D. (G) Left panel: Log-likelihood of the unconstrained Fermi-

Dirac model as a function of the effective chemical potential m. For

reference, the distribution of functional binding site energies (same as

in (B)) is shown on top. Right panel: Log-likelihood as a function of the

effective inverse temperature b: For reference, the inverse room

temperature &1:69 (kcal=mol){1 is shown as the vertical dashed

line. To generate the log-likelihood plots, m or b were scanned across a

range of values while all the other parameters were re-optimized for

each new value of m or b. (H) Heatmap of log-likelihood as a function

of log n and {log(1{f0) (note that n(1{f0)~c~ constant

corresponds to a straight line with slope 1 in these coordinates). For

likelihoods that have a maximum near f0~0, insets show a zoomed-

in view. To generate the log-likelihood heatmaps, n and f0 were

scanned across the region shown while the other parameters (b and m)

were re-optimized at each point separately.

(PDF)

Table S3 Estimates of fitting error. For the 12 TFs in

Table 1, we analyze the quality of fit. Columns, from left to right:

(A) Eigenvalues and eigenvectors of the Hessian of the likelihood

function around the fit maxima. Eigenvectors of the Hessian

represent principal directions and the corresponding eigenvalues

represent the curvature in those directions, which should be

negative at a local maximum. Positive eigenvalues occur if the

maximizer did not reach a maximum. Here, the degeneracy

represented by c~n(1{f0) is apparent as many fits have an

eigenvalue close to zero (flat) or even slightly positive in the

direction (n,f0). For fits subject to the m-c degeneracy, one can see

a second low eigenvalue corresponding to the m direction. For

computational reasons the Hessian is evaluated using transformed

variables log n, m, log b, and T (f0)~atanh(2f0{1). (B) For each

TF, 64 subsets of the full data set were generated by randomly
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selecting half of the binding sites in the full data set. Maximum

likelihood fits were carried out as for the full data set, except that to

reduce computation time the grid spacing in the initial four

dimensional parameter search was doubled. Shown here are

histograms of the resulting parameters. Red dashed lines indicate

the maximum likelihood value of each parameter obtained from

the full data set.

(PDF)
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13. Berg J, Lässig M (2003) Stochastic evolution of transcription factor binding sites.

Biophysics (Moscow) 48:S36–S44.
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