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Abstract

Foodborne disease outbreaks of recent years demonstrate that due to increasingly interconnected supply chains these type
of crisis situations have the potential to affect thousands of people, leading to significant healthcare costs, loss of revenue
for food companies, and—in the worst cases—death. When a disease outbreak is detected, identifying the contaminated
food quickly is vital to minimize suffering and limit economic losses. Here we present a likelihood-based approach that has
the potential to accelerate the time needed to identify possibly contaminated food products, which is based on exploitation
of food products sales data and the distribution of foodborne illness case reports. Using a real world food sales data set and
artificially generated outbreak scenarios, we show that this method performs very well for contamination scenarios
originating from a single ‘‘guilty’’ food product. As it is neither always possible nor necessary to identify the single offending
product, the method has been extended such that it can be used as a binary classifier. With this extension it is possible to
generate a set of potentially ‘‘guilty’’ products that contains the real outbreak source with very high accuracy. Furthermore
we explore the patterns of food distributions that lead to ‘‘hard-to-identify’’ foods, the possibility of identifying these food
groups a priori, and the extent to which the likelihood-based method can be used to quantify uncertainty. We find that high
spatial correlation of sales data between products may be a useful indicator for ‘‘hard-to-identify’’ products.
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Introduction

In recent years global trade has significantly altered the topology

of food supply chains [1]. As a result, the potential impact of

contamination events has increased [2]. Worldwide, foodborne

illness causes billions of dollars in healthcare related costs each

year [3], and more in economic losses to farmers, distributors, and

food retailers [4,5]. In case of a foodborne disease outbreak, rapid

identification of contaminated products is essential, since the

medical and economic damages incurred grow with the duration

of the outbreak. Currently public health investigators must recon-

struct the relevant food distribution network in order to identify

the contaminated food product or contaminated product groups

during an outbreak [6]. Lab-based analytical methods frequently

provide the ‘‘gold standard’’ in verifying the source of foodborne

illness outbreaks. These methods verify or cast doubt on epide-

miological findings originating from case control studies with food

consumption questionnaires [7]. In addition, the ability to track

food through different stages of production, processing, and distri-

bution (traceability) has been the subject of extensive study [8,9].

Nevertheless the time required to accomplish such investigations

usually ranges from weeks to months. Accelerating this process

may reduce the number of people sickened and help to restore

consumer confidence in the safety of food products [10].

In a previous study, as a possible strategy to achieve this goal,

we proposed a likelihood-based method that could be applied as

an early response system to help determine the product most likely

to be associated with a foodborne disease outbreak [11]. The

method was tested with synthetic food sales data, but real data is

readily available from retail sales companies. Proactive analysis of

this retail data could complement and guide laboratory testing and

trace back analysis.

In the work reported here, we test our likelihood-based method

using raw food sales data. As a simplifying assumption, we model

food consumption at the point of sale region. In future work, we

will test this assumption by applying Huff’s ‘‘gravity model’’ for

retail shopping to smooth the sales distribution over other regions

[12]. Smoothing the sales distribution will also allow sensitivity

analysis to spatial noise in the case reports.

In applying the likelihood-based method to real world sales

data, we use a ROC (receiver operating characteristics) analysis to

quantify the performance of the method, comparing two different
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classifiers. This analysis also identifies the optimal discrimination

threshold to maximize performance as a function of both the

selectivity and specificity for the likelihood-based analysis. Addi-

tionally we explore how the method’s performance may depend on

‘‘structural’’ properties of the sales data distribution, as this under-

standing is essential for efforts to proactively predict which conta-

minated foods/food groups might be hard to pinpoint in the event

of an outbreak.

Methods

Food Sales Data
We apply product specific retail sales data from stores of a

German food retail company covering 3,513 of Germany’s 8,235

postal zones. The dataset lists the weekly sales of 580 anonymous

food products (N = 580). For application in this analysis, sales data

were aggregated per postal zone and product over the three-year

period 01/2008 to 12/2010. Let sales(n, r) represent the number of

units of food product n sold in region r over this three-year period.

We can now define a function fs(n, r) representing the probability

that product n is sold in region r as:

fs(n,r)~
sales(n,r)P

r̂r[R

sales(n,̂rr)
ð1Þ

where R is the set of all regions included in the analysis.

Outbreak Pattern Generation
The underlying assumption of outbreak pattern generation is

that for each product the distribution of sales across the postal

codes reflects the true consumption pattern for that food [12].

Hence, the function fc(n, r) represents the probability that product

n is consumed in region r and in this paper we simply assume

probability of consumption equals probability of sale:

fc(n,r)~fs(n,r) ð2Þ

Notice that for a given product n, fc (n, r) is a discrete probability

mass function representing the probability that product n is

consumed in location r, and that:

X
r[R

fc(n,r)~1 ð3Þ

We take advantage of this when generating synthetic outbreak

case reports for a selected ‘‘contaminated’’ product x (where we

use x instead of n to indicated a single contaminated product).

Using A. J. Walker’s alias method [13], we draw M random

locations by sampling from fc (x, r) over all locations r in R. In

separate trials, synthetic case report data are generated assuming

each of the 580 products, in turn, as the source of contamination.

We assume the products are independent so fc (x, r) also defines the

probability of a case report at location r due to contaminated

product x. It is true that two ‘‘products’’ with different local

‘‘brands’’ or ‘‘ids’’ could in fact be the same food item simply

rebranded when repackaged locally. Conversely, a product sold on

a national scale under one single brand could become contam-

inated at a single point of sale retail site (e.g., a butcher shop). For

the purposes of this study, the simulated case reports were generated

self consistently from the retail data using the assumption that the

data provided to us by product id were independent. Depending

upon the spatial distribution of product x, it is likely that, during one

simulated outbreak of 100 cases, multiple case reports will come

from a same postal code. Figure 1 plots the number of case reports

per location for several different outbreaks each generated based on

a different product. Distributions generated from widely distributed

products (shown in blue) are flatter than distributions generated

from products sold only locally or regionally (shown in red).

Identifying Implicated Products
An outbreak can be described by the set of locations {R} of all

reported cases where ri is the location of the ith case. Note that

there is no limit or constraint on how many cases may come from

a particular location. In order to identify implicated products we

describe two estimation methods below.

Method 1: The likelihood based method. Let H be a

parameter vector of length N, such that Hk is 1 if a product k is

contaminated and zero otherwise. Here we assume there is a single

contaminated product in a given outbreak so only one element of

vector H. If we consider Hk to be the parameter vector designat-

ing k as the contaminated product, then the likelihood of Hk after

observing m case reports is:

L Hkð Þ! P
i~1::m

fc k,rið Þ~Pk mð Þ ð4Þ

where fc(k,ri) is the probability that an individual living in location

ri consumed product k (see Text S1 on the derivation of likelihood).

Hence each element Pk(m) of the vector P(m) is proportional to the

likelihood that product k is the contaminated product. Dividing

each element of P(m) by the largest element in P(m) yields the

likelihood ratio for each product being the contaminated product

given the first m elements of R. We denote this as �PP(m). The

product k that corresponds to the maximal element of �PP(m) is our

maximum likelihood estimate for the contaminated product.

Method 2: The pair-wise Spearman’s rank correlation

method. Let sales(k) be a vector of length 3,513 (number of

postal zones or locations used) where each element represents the

total number of units of product k sold in a given location. Also,

assume outbreak(R) is also a vector of length 3,513 where each

element represents the number of times a location was drawn in R.

Now a pair-wise Spearman’s rank correlation coefficient was

calculated for element k in positive definite vector P(m) by:

Author Summary

Response to foodborne disease outbreaks is complicated
by globalization of our food supply chains. Rapid identi-
fication of contaminated products is essential to limit the
damage caused by foodborne disease. Worldwide, food-
borne disease outbreaks are responsible for $9B a year in
medical costs and over $75B in economic losses. Yet
relevant data required to accelerate the identification of
suspicious food already exists as part of the inventory
control systems used by retailers and distributors today.
Combining this retail data with public health case reports
has the potential to hasten outbreak investigations and
provide public health investigators with better information
on suspected products to test. This paper demonstrates
the feasibility of the principle and efficiency of this
approach. Based on these findings it can be concluded
that in foodborne disease outbreaks retail data could be
used to speed and target public health investigations and
consequently reduce numbers of sick/dead people as well
as reduce economic losses to the industry.

Sales Data Can Speed Investigation of Contaminated Food
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Pk(m)~
cor½rank(sales(k)),rank(outbreak(R))�
0

�
for

cor½�§0

cor½�v0
ð5Þ

In this method, normalization of P(m) is done by setting its kth

element to:

�PPk(m)~
Pk(m)P

j~1::N

Pj(m)
ð6Þ

Performance Estimation
We run the analysis varying the contaminated product, x, over

all N = 580 products, and up to M = 100 synthetic case reports

ending up with 58,000 �PP(x,m) vectors. Next, we repeat the

experiment over S = 100 randomly seeded runs, denoting �PP(x,m,s)

the outcome of �PP(x,m) in the sth experiment. (See Dataset S1 and

Dataset S2.) Now we define a statistic Ax,m as such:

Ax,m~

P
s~1::S

fmax(�PP(x,m,s),x)

S
ð7Þ

fmax(�vv,i) is a function that returns 1 if the index of maximum

element in vector v is i; if not it returns 0. We call statistic A the

success rate [11].

Statistic B is based upon an ROC analysis. In an ROC analysis,

we compute the average true positive rate and false positive rate

(also called sensitivity and specificity). The average true positive

rate (TPR) for a discrimination threshold t is defined as:

TPRx,m~

P
s~1::S

�PPx(x,m,s)

max(�PP(x,m,s))
§t

S
ð8Þ

Here we assume the $ test returns 1 when satisfied, 0 otherwise.

Essentially we sum the total number of outcomes where the ratio

of ‘‘guilty’’ product x is above the threshold and then average over

the S runs.

To define the false positive rate for a contaminated product x

after m case reports, we first compute the number of true negatives

in run s:

TNx,m,s~
X

p~1::N,p=x

�PPp(x,m,s)

max(�PP(x,m,s))
vt ð9Þ

Next we compute the number of false positives:

FPx,m,s~
X

p~1::N,p=x

�PPp(x,m,s)

max(�PP(x,m,s))
§t ð10Þ

Figure 1. Number of case reports per location for several different outbreaks each generated based on a different product. For each
product the results are averaged over 50 trials. For each trial, the x axis is sorted from most to least frequently occurring location to show the
outbreak pattern.
doi:10.1371/journal.pcbi.1003692.g001

Sales Data Can Speed Investigation of Contaminated Food
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The average false positive rate is now defined as:

FPRx,m~

P
s~1::S

TNx,m,s

TNx,m,szFPx,m,s

S
ð11Þ

In the analysis, we use the thresholds t of 1/256, 1/128, 1/64,

1/32, 1/16, 1/8, 1/4, 1/2 and 1 to generate the Area Under

Curve (AUC) statistic. As some food distributions within the data

set had no overlap with the generated outbreak pattern, and to

avoid overestimation of specificity, we exclude so-called ‘‘zero

probability’’ products from the average in the corresponding

scenario. A product belonged to the zero probability category, by

definition, when after 100 trials and 100 case reports for each trail,

that product is never sold in any sampled location. Failure to

exclude the zero probability set would artificially exaggerate the

specificity of the method.

Clustering of Food Products
In order to analyze how different food distribution patterns can

influence the performance of the likelihood-based method, the

similarity of the distribution patterns of the food products was

measured by calculating the pair-wise Spearman’s rank correlation

coefficient, r, on the basis of sales distribution data of all food

products [14]. Similar to the estimation technique described in

method 2 above, let sales(k) be a vector of length 3,513 (number of

locations) where each element is the total sales of product k in a

given location. The pair-wise Spearman’s rank correlation is

between two products, k and l becomes:

r(k,l)~corfrank(sales(k)),rank(sales(l))g ð12Þ

Since Spearman’s r provides a measure of pair-wised associ-

ation between food distributions, the value of 12r served as a

dissimilarity measure describing the ‘‘distance’’ between each pair of

food products. This measure was used as input for a hierarchical

clustering algorithm [function hclust()] using the complete linkage

method provided by the R-Manual [15].

Results/Discussion

Performance of the Likelihood-Based Method
In order to evaluate its performance the method has been

applied to a real world dataset of 580 food products with known

distribution patterns across Germany [11]. In this analysis the

simplifying assumption has been made, that exactly one of the

known food products is responsible for a disease outbreak, which

were generated based on the corresponding ‘‘guilty’’ food product

distribution. The number of sampled cases defining the outbreak

size has been varied from 1 to 100.

To assess the performance of the likelihood-based method

statistic A and B were used. Each statistic describes the capability

of the method to correctly identify the source of infection back

from the comparison of the artificial outbreak pattern with each of

the 580 food products under investigation. In Figure 2 the green

curve shows the success rate (statistic A) averaged over the 580

food products as contamination source. The average success rate

of the algorithm rises steeply with the number of case reports

reaching a level above 80% with only 50 case reports. However

there are outbreak patterns for which the likelihood method is not

Figure 2. Average success rate, sensitivity with 1/32 and 1/8 threshold, and average suspect product set size vs. number of case
reports.
doi:10.1371/journal.pcbi.1003692.g002

Sales Data Can Speed Investigation of Contaminated Food
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effective with many more case reports required for unique

identification of the correct ‘‘guilty’’ product. This is in line with

the expectation the highest likelihood criteria are hard to

accomplish for similarly distributed products.

Taking advantage of the likelihood-based approach we can also

assess the relative probability for all products. Selecting a

discrimination threshold, we can then identify the group or subset of

all products with likelihood ratio greater than that threshold,

which we call the ‘‘suspect product set’’. In Figure 2 we also show

the average probability that the contaminated product is found

within this set for thresholds of 1/8 (cyan) and 1/32 (red). Also

shown in Figure 2 is the number of products found (on average)

within the suspect product set, as a function of the number of case

reports, for the same choices of threshold. Even for a threshold of

1/32, the average set size falls to as few as a dozen suspect

products within only ten case reports [16].

To visualize the performance statistic B of this likelihood-based

approach, we plot in Figure 3a the ‘‘receiver operating charac-

teristic’’ or ROC curves for outbreak patterns with different

numbers of cases. The ROC analysis characterizes the perfor-

mance of the algorithm when the calculated likelihood ratio is

applied as a binary classifier. The curve shows the ‘‘sensitivity’’ of

the classifier as a measure of the fraction of true positives vs. the

fraction of false positives (1-specificity). An ideal or perfect

classifier would have a sensitivity of 1.0 at (1-specifity) = 0 (no

false positives). The area under the ROC curve (AUC) provides a

measure of overall performance. A perfect classifier has an

AUC = 1.0. A useless classifier (e.g., with a linear ROC curve and

slope of K) would have an AUC of 0.5. As expected, this type of

performance measure illustrates that the results of the likelihood-

based approach depend on the number of case reports. Thus

separate curves are shown for outbreaks with 1, 2, 3, 5, 10, and 50

cases. (The ROC curve is defined for only one case report.

However, from a public health perspective an ‘‘outbreak’’ of

foodborne illness is declared only after two or more cases.) As

Figure 3a shows, the area under the cure approaches 1 for

outbreak patterns with as few as 50 case reports. In Figures 3b and

3c, we compare the performance of the likelihood-based approach

with a simple classifier based on the Spearman rank correlation

coefficient r. As these three figures make evident, the likelihood-

based method outperforms the correlation-based approach. In a

real world application, these performance improvements are of

utmost importance to avoid false accusations of food manufactur-

ers, unjustified product recalls, and a waste of limited analytical

resources.

Using the Spearman’s rank correlation coefficient r, we explore

how the performance of the likelihood-based method is related to

associations between distinct product sales distributions. As

Figure 4 and Figures S1 and S2 confirm, the algorithm’s

performance is strongly influenced by associations between food

sales distributions. Plotting the maximum Spearman’s r for each

product against success rate, we assess how the magnitude of the

association between the contaminated product and the food to

which it is most similarly distributed affects the suspect product set

size determined by the likelihood-based approach.

The data in Figure 4 demonstrates that the number of suspect

products increases steeply if the contaminated food and the

product most related to it have high correlation. The knee of the

curve shifts with set size increasing sharply for correlation > 0.8

given 10 case reports, > 0.9 given 20 case reports, etc. Comparing

Figure 4c to 4a, it is clear that as the maximum pairwise corre-

lation between a contaminated product and another product

increases, the number of cases required to reduce the suspect product

set size to a manageable number (e.g., below 10) increases. In Figure

S2 we also show the corresponding decrease in the ‘‘success rate’’

measure.

Consider ‘Y’ products with identical sales distributions. When the

rank ordered distribution patterns of the contaminated food and at

least one of these foods are equal, then the value of the likelihood

for those products will remain the same. In this limit, the size of the

suspect product set will never fall below Y, independent of the

number of case reports. Understanding the maximum number of

highly correlated products is therefore important given the larger

goal of accelerating foodborne disease investigations, as it forewarns

Figure 3. Performance measures of the likelihood-based approach. Figure 3a shows the ROC curve as a function of the number of case
reports (see legend). Figure 3b shows a comparison of ROC curves generated with the likelihood-based method vs. a Spearman rank correlation
based measure for outbreak patterns with 10 case reports. Figure 3c provides the area under the curve (AUC) as a function of the number of case
reports for both classifiers.
doi:10.1371/journal.pcbi.1003692.g003

Figure 4. Suspect product set size vs. maximum pair-wise product correlation after observing 10, 20, and 50 simulated cases. For
large correlation, the contaminated product cannot always be uniquely determined.
doi:10.1371/journal.pcbi.1003692.g004

Sales Data Can Speed Investigation of Contaminated Food
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Figure 5. Heat map of the pair-wise Spearman’s r matrix. This figure depicts the correlation matrix map sorted by clusters.
doi:10.1371/journal.pcbi.1003692.g005

Figure 6. Hierarchical clustering diagram of 580 food products. Different colors indicate different clusters, defined by a cut-off value of 0.25.
(Note that colors were used multiple times, i.e., non-adjacent clusters of the same color are not related in any special way.)
doi:10.1371/journal.pcbi.1003692.g006

Sales Data Can Speed Investigation of Contaminated Food
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public health investigators of the largest number of products that

may have to be tested together (in a worst case scenario).

Clustering
As noted, a high degree of similarity between the distribution

patterns of the food products under investigation and the spatial

pattern of the contaminated ‘‘guilty’’ product implies that it is (will

be) difficult to correctly identify the causative food item. To describe

and visualize this property of the food data set, we calculate the

correlation matrix and apply hierarchical clustering algorithms.

Figure 5 is a graphical representation of the pair-wise Spearman’s

correlation coefficient matrix as a so-called heat map. In this

representation, products were sorted by the hierarchical clustering

indicated in Figure 6. The colors indicate the degree of similarity

between food products as measured by the Spearman’s r. This

representation supports the finding that there is a large cluster of

highly similar distributed food products within the given data set.

Products belonging to this cluster make the biggest contribution to

rapid decrease in classifier performance when the number of case

reports falls below 10 (data not shown). The figure shows a

distribution of cluster sizes within the retail sales data.

Figure 6 shows a dendrogram visualizing the dissimilarity of the

spatial distribution patterns of the 580 food products under

investigation. Most similarly distributed food products are grouped

at the bottom of the tree with a dissimilarity score close to 0 (i.e.,

the spatial distribution pattern is almost identical). Clusters of

similar distributed food products are connected according to the

dissimilarity score generated by the complete linkage method. For

further investigations distinct clusters were generated (indicated by

different colors) by cutting the tree horizontally at the dissimilarity

Figure 7. A series of small images illustrating distribution patterns of food products sold by a German food retail company
stratified by zip codes. For illustration purposes, all product clusters containing exactly three products are displayed. Clusters are arranged in two
columns of seven clusters each. Other cluster sizes exhibit similar correlations between product distribution patterns. This image is published with
permission from Esri and its data providers, and from Michael Bauer Research GmbH, Nürnberg, Germany; Data Source: Microm 2013.
doi:10.1371/journal.pcbi.1003692.g007

Sales Data Can Speed Investigation of Contaminated Food
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level of 0.25. This ensures that within each cluster, all pair-wise

Spearmen’s correlation coefficients r are at least 0.75. This choice

of threshold was inspired by the observation reported above,

which the suspect product set size increases rapidly when the

maximum Spearman’s r is above ,0.8.

The product data used in this study was provided as point of sale

retail data by anonymized product id. After completion of the

study, the products were identified as various dairy products. The

580 food items include some items that are locally branded (and

sold) and some very widely distributed products sold nationally.

The only factor we could identify as important to the product

clustering shown in Figure 6 was the spatial pattern of the food

distribution including whether the food item was sold locally,

regionally, or nationally. Categories, such as fresh or frozen, do

not affect the observed clustering (and those factors where not used

in generating the simulated outbreaks as they were not known to

the authors before the study and not built into the simulation).

To characterize the clusters observed in the dendrogram in

Figure 6, we show in Figure 7, for all clusters containing three food

products, a series of small images showing color coded product

sales volume in each of the 3,513 postal code regions where food is

sold by the food retail company. The images are organized

according to the product grouping generated by the clustering

algorithm. The figure clearly shows that product clustering strongly

depends on how widely spread or how localized is the spatial sale

pattern of the product for each cluster. Products with similar sales

distributions are placed in common clusters by the pair-wise

Spearman’s rank correlation method.

Performance of the Likelihood-Based Method in Case of
Food Product Clusters

Figures 8 a–c show that the average success rate for identifi-

cation of contaminated foods within a cluster of a certain size is

linearly related to the log of cluster size for (a) 10 case reports, (b)

20 case reports, and (c) 50 case reports. It can be stated, that the

absolute magnitude of the slope of this linear relationship decreases in

the presence of larger numbers of cases. This confirms, that even

for highly correlated food distribution patterns the performance of

a likelihood-based classifier will increase with additional informa-

tion on case reports.

Conclusions
This analysis shows how, when information on the food distri-

bution channels is available, likelihood-based methods can quickly

identify those products likely to be causing an outbreak using the

geographic locations for even relatively few cases. However, these

methods assume that food distribution channels are well charac-

terized, which may rarely be the case. Nevertheless, our methods

could be extremely useful for retail companies that want to assess

which of their own products could potentially be involved in an

ongoing disease outbreak, or identifying chains or individual stores

that should be prioritized for investigation in an ongoing outbreak.

In practice, multiple products may be contaminated by a single food

ingredient. Here we use a very simple model of the probability of

individuals consuming food for particular shops, which may be quite

different from real consumption patterns.

In this paper we also make the simplifying assumption that food

is consumed where it is sold. In fact, people travel. In the future, it

is possible to extend the current work by adding Huff’s ‘‘gravity

model’’ for retail shopping behavior [12]. This will effectively

smooth the sales distribution over nearby regions. It will also make

it possible to test the addition of noise in the case report generator.

In the simplified model, any case report occurring in region where

a product is never sold (probability 0) immediately excludes that

product from consideration. The performance of the likelihood-

based method in these more challenging scenarios will be explored

in future research.

This analysis also provided some fundamental insights into the

relationship of method’s performance and inherited properties of

the analyzed food sales data. We could confirm that the degree in

similarity of the spatial food distribution pattern determines how

quickly the likelihood method will converge on a finite suspect

product set size. Generally, the maximum pair-wise correlation

with the actual contaminated product is negatively related to

success rate, and positively related to the number of cases

required for a perfect prediction. This suggests that it may be

beneficial to consider identifying groups of products as likely to

contain the tainted food, rather than focusing on finding one

product.

Additionally it has been shown that relevant intrinsic properties

of the food sales data can be visualized by performing hierarchical

clustering algorithms. This method provides a helpful graphical

summary of the spatial similarity of food distributions. Further, on

the basis of clusters generated by this algorithm, it is shown that

log cluster size has a negative, linear relationship with success rate.

This suggests that, as the number of products similarly distributed

as the contaminated product increases, our ability to consistently

identify the contaminated food in a small number of cases decreases.

Highly correlated food product distributions are associated with

Figure 8. Average success rate after observing 10(a), 20(b), and 50(c) simulated cases vs. Log Number of foods in each cluster.
doi:10.1371/journal.pcbi.1003692.g008

Sales Data Can Speed Investigation of Contaminated Food
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products that are (and will be) harder to identify than uncorrelated

product distributions. Since correlated product clusters can be

identified proactively, suspect products can also be grouped for

analysis accelerating an outbreak investigation.

Supporting Information

Dataset S1 This csv file contains normalized sales data
for 580 anonymous food products across 3518 postal
code areas in Germany. Retail sales data were provided by

SymphonyIRI Group GmbH, Germany.

(CSV)

Dataset S2 The first column in this data file indicates
anonymous food product IDs (the number before the
underscore in the naming convention) and the index
number for experimental runs (the number after the
underscore) up to 50 replications. In each simulation for a

‘‘suspect’’ product, we sampled 100 postal code areas shown in

column B to CW used to represent the locale of case reports

identified for a synthetic outbreak. Retail sales data were provided

by SymphonyIRI Group GmbH, Germany.

(RAR)

Figure S1 a–b Success rate and likelihood ratio for
individual products (as contaminated product).
(TIF)

Figure S2 a–c Success rate as a function of maximum
correlation (Spearman’s r) for (a) 10 case reports, (b) 20
case reports, and (c) 50 case reports. For large correlations,

the contaminated product cannot always be uniquely determined.

(TIF)

Text S1 Derivation of likelihood.
(DOC)
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Outbreak of Salmonella serovar Stanley infections in Switzerland linked to

locally produced soft cheese, September 2006–February 2007. Euro Surveill 13:
pii: 18979.

8. Regattieri A, Gamberi M, Manzini R (2007) Traceability of food products:
general framework and experimental evidence. J Food Eng 81(2): 347–356.

9. Greig JD, Ravel A (2009) Analysis of foodborne outbreak data reported

internationally for source attribution. Int J Food Microbiol 130(2): 77–87.
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