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Abstract

Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is
limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far
exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many
medical, environmental, and industrial applications and call for the development of a predictive, systems-level
understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating
high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic
capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic
capacity – instances in which a community growing on some medium produces and secretes metabolites that are not
secreted by any member species when growing in isolation on that same medium. Using this framework to model a large
collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly
prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing
typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as
soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited.
Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the
level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members.
Specifically, we demonstrate a ‘‘Goldilocks’’ principle, where high levels of emergent capacity are observed when the
species comprising the community are functionally neither too close, nor too distant. Taken together, our results
demonstrate the potential to design and engineer synthetic communities capable of novel metabolic activities and point to
promising future directions in environmental and clinical bioengineering.
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Introduction

Microbes have a remarkable capacity to transform their

environments, converting key nutrients and energy into accessible

forms that are essential for the survival of all other organisms [1,2].

This capacity is mediated by a plethora of interactions with the

environment and a complex web of metabolic reactions occurring

within each microbial cell. In nature, however, most microbes do

not typically exist in isolation but rather form complex and diverse

communities, joining forces to accomplish tasks that may be

energetically unfavorable if performed by a single species [3,4].

Such communities play a central role in ecosystem dynamics,

agriculture, environmental stewardship, and human health [5–9].

The various species comprising each community often form tight

relationships and metabolic dependencies [10,11], which can

affect the overall stability of the community and its activity.

Synergistic relationships endow microbial consortia with enhanced

metabolic capacities including nitrification in soil and marine

environments [12], methane oxidation [13], and pesticide

degradation [14], further affecting the interplay of the community

with its environment [15].

Considering these dependencies and synergistic relationships,

the metabolic capacity of a given microbial community clearly

cannot be described simply as the aggregated capacity of its

member species, and a deeper understanding of how the activity of

each community member impacts the activity of the others and

ultimately the behavior of the community as a whole is required.

Of specific interest are cases where the biosynthetic activity of the

community is fundamentally different from the biosynthetic

activity of the member species. This is often the result of a simple

niche construction process [16], wherein the secretion or uptake of

metabolites by one species modifies the composition of the

environment and consequently modulates the metabolic activity

of another species, causing it to produce and secrete metabolites it

would not have produced if growing in isolation [3,17]. Char-

acterizing such phenomena, which we term here emergent biosynthetic

capacity, is crucial for understanding how microbes jointly construct

their environment. More importantly, understanding the determi-

nants of emergent biosynthetic capacity and ultimately designing

microbial communities that exhibit specific metabolic capabilities,

is a promising research avenue with many industrial and clinical

applications, ranging from biofuel production to personalized
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microbiome-based therapy [3,17–22]. Here, we therefore set out

to characterize emergent biosynthetic capacity on a large-scale

and to inform future efforts to design microbial communities that

perform desired metabolic tasks.

One approach to study the metabolic capacity of microorgan-

isms and to obtain a systems-level predictive understanding of

microbial metabolism is through metabolic modeling. Specifically,

genome-scale metabolic models have been instrumental in

providing insights into the metabolism of various microbial

species, their ecology, and their behavior in different settings

[23–30]. Of the various genome-scale modeling frameworks,

constraint-based modeling (CBM) methods, such as Flux Balance

Analysis (FBA), are perhaps the best-established and most

commonly used methods [31,32]. Such methods aim to model

cellular metabolism as a set of mass balance, thermodynamic, and

flux capacity constraints, and to predict the growth rate of the

organism as well as the specific distribution of fluxes across the

metabolic network by optimizing a cellular objective such as

cellular growth or energy production. This modeling framework

was shown to correctly capture various factors that govern

microbial metabolic processes, providing mechanistic insights into

microbial metabolism [28,32]. Most importantly, such models

proved extremely successful in accurately predicting microbial

behavior and activity in multiple environments and under various

perturbations [33], with numerous clinical, environmental, and

industrial applications [34,35].

With the increased availability of high-quality, manually

curated single species models [36] and the recent introduction of

automated model reconstruction pipelines [37,38], constraint-

based methods provide a unique opportunity to model multi-

species ecosystems and to study their metabolic capacities [39–42].

However, integrating multiple single species models and develop-

ing a framework for modeling diverse microbial communities is

not a simple and straightforward undertaking, and to date

relatively few CBM-based multi-species models have been pre-

sented. One critical problem is how to properly define an objective

function at a community level. Stolyar et al. [43] introduced the

first two-species FBA model to study a methanogenic syntrophic

system, using an objective function that maximizes a fixed

combination of biomass from two organisms. A similar approach,

maximizing the sum of individual species growth as an overall

community objective, has been applied to capture metabolic

interactions between ecologically associated species [44], and to

predict measured phenotypes of representative gut microbiome

species [45]. Notably, however, the overall community growth

objective inherently assumes that member species cooperate and

act for the common good of the community, which may

potentially lead to biased predictions, wherein, for example, one

species barely grows (although nutrients are available) to enable

the growth of another. One approach to relax this overall

community growth objective using a multi-layer optimization

algorithm to introduce trade-offs between individual and commu-

nity level optimization criteria has recently been proposed, and

applied to study syntrophic interactions in a few well-character-

ized, multi-species microbial systems [46]. Alternative optimiza-

tion methods have also been used to study synthetic cooperation

between single gene deletion mutants [47], environments that

induce species cooperation [48], and diet dependent changes in

uptake and secretions between a host and a dominant gut microbe

[49]. Yet, the methods above often assume a predefined

community composition, a certain level of optimality for each

species, or a well characterized species interaction pattern, and

may not be easily generalized to predict the consequences that the

introduction of one species may have on the metabolism of

another or to systematically study the metabolic capacity of

microbial ecosystems.

One fundamentally different approach to tackle this challenge is

to incorporate temporal dynamics into these modeling frame-

works. Previously, temporal dynamics have been successfully

incorporated into single-species models to predict metabolic

reprogramming, growth, and secretion rates [50–53]. Recently,

a few preliminary studies have similarly used this approach to

study microbial co-cultures composed of sub-populations of strains

or of multiple species [54–58]. In several such dynamics-based

studies each species aims to maximize its own growth on a short

time-scale and the overall community dynamics is a long time-

scale integration of species dynamics. This modeling framework is

not dependent on maximizing community growth and more

importantly, is especially suited for studying the biosynthetic and

secretion capacities of microbial communities over time.

Here we introduce a comprehensive computational framework

tailored specifically for studying emergent biosynthetic capacity in

simple microbial communities. We extend recently introduced

dynamical modeling frameworks, presenting a multi-scale model

that tracks both the metabolic activity of each species over time

and the effect of this activity on the concentration of various

metabolites in the environment. This framework therefore allows

us to examine how environmental shifts induced by the activity of

one species may impact the activity of another. Using this

framework to model the growth of both single- and two-species

microbial systems, we aim to identify instances wherein a two-

species community secretes certain metabolites that cannot be

secreted by any of the member species when grown in isolation.

Notably, to obtain confident predictions of emergent capacity, our

framework further incorporates flux variability-based techniques

to account for multiple alternative FBA predictions. We first use a

simple toy ecosystem model to demonstrate the ability of our

framework to detect emergent biosynthetic capacity. Next, we

Author Summary

Microbes constantly change their environment, consuming
some compounds from their surroundings and secreting
others. This microbial activity plays a crucial role in many
important environmental cycles, ultimately making all life
possible. These processes, however, are often not accom-
plished by a single species but rather by a diverse
community of interacting microorganisms. Characterizing
these interactions and their impact is essential not only for
understanding global ecosystem metabolism, but also for
uncovering the tremendous potential of microbial com-
munities in industrial, environmental, and clinical applica-
tions. In this paper, we present a computational framework
for modeling, exploring, and tracking such enhanced
metabolic capacities in simple two-species communities.
We demonstrate that emergent biosynthetic capacity – the
ability of multiple species growing together to produce
and secrete metabolites that none of the member species
secretes when growing alone – is common, and identify
typical reprogramming mechanisms and temporal pat-
terns that underlie this capacity. Importantly, we show that
emergent capacity is most likely when the species
comprising the community are neither too functionally
similar nor too distant. Overall, our findings lay the
foundation for a comprehensive and predictive under-
standing of synergistic microbial activity and highlight
promising routes for designing, engineering, and manip-
ulating microbial communities toward desired metabolic
capabilities.
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utilize high-quality, manually curated, and previously validated

genome-scale models of six microbial species to systematically

characterize emergent biosynthetic capacity across a large array of

growth media. We specifically set out to examine how common

emergent capacity is, within which growth phase does it most

frequently occur, and what combinations of microbial species are

most likely to exhibit emergent capacity. We further characterize

several typical mechanisms underlying emergent biosynthetic

capacity and explore frequent emergent metabolites. Finally, we

apply this framework to a large collection of automatically

reconstructed models of .100 microbial species to validate the

observed patterns on a broader scale. Taken together, our results

highlight promising directions for studying unique metabolic

capacities of microbial communities, facilitating future efforts to

steer complex ecosystems and their environments towards

beneficial states.

Results

A Framework for Characterizing Emergent Biosynthetic
Capacity

To systematically characterize the emergent biosynthetic

capacity of microbial communities, we focus here on simple two-

species microbial ecosystems. Formally, given two species and a

predefined growth medium, we define emergent metabolites as

metabolites that are secreted and consequently accumulate in

the environment when the two species grow in co-culture but that

are not secreted by either of the two species when they grow in

mono-culture (Figure 1). A two-species system in a given medium

is then said to exhibit emergent biosynthetic capacity if it secretes at least

one emergent metabolite. Notably, this is a very strict definition, as

we do not consider the potentially many cases wherein the

secretion rate of some metabolite is higher in co-culture than in

mono-culture, but rather focus on cases wherein the co-culture

system secretes metabolites that are completely absent in the two

mono-culture systems. This definition allows us to study the

prevalence and determinants of fundamentally novel behavior of

microbial ecosystems, rather than quantitative and potentially

minor differences. Furthermore, as described below, this definition

may be less sensitive to parameter selection or other inaccuracies

in the underlying model (e.g., in the bounds set for the uptake rate

of nutrients). Moreover, we only consider ‘‘neutral’’ growth media

that allow each species to grow in mono-culture, rather than

media that explicitly induce commensal or mutualistic interactions

(and see also ref. [48]). Accordingly, we go beyond studies of

species symbiosis (e.g., [59]) and specifically target scenarios where

emergent capacity is not simply the outcome of one or both species

surviving only due to the association with the other.

Following these definitions, we developed a computational

framework for detecting emergent metabolites and emergent

biosynthetic capacity. Our framework integrates genome-scale

metabolic models, temporal dynamics, ecosystem settings, and

various optimization schemes. To simulate the growth of a two-

species system in a given growth medium over time and its impact

on the medium, we followed previous studies [54,57], using a

multi-scale dynamic FBA-based framework. Rather than defining

an arbitrary community objective that governs the flux distribution

of the system, this framework assumes that each species in the

community seeks maximum growth. Briefly, in this framework, we

first predict the behavior of each species (including flux activity

and growth rate) in the initial medium within a short time interval,

Dt, using FBA [50]. We use Michaelis-Menten equations and scale

metabolites by the total cell density and time interval, to estimate

nutrient availability and the allocation of nutrients among the

species. We then determine the cell density of each species

according to the predicted growth rate and update the concen-

tration of metabolites in the medium at the end of this time

interval based on the predicted uptake and secretion fluxes of the

various species. Notably, as we are using a shared medium, species

can then utilize metabolites secreted by other species. We perform

these two steps repeatedly, each time using the updated medium

composition as the initial medium for the following iteration.

Simulations continue until nutrients are exhausted and all species

stop growing. Notably, our framework simulates a batch culture

condition, following typical dynamic FBA studies [50–53].

Throughout the process, we record the concentration of metab-

olites in the medium, obtaining a full characterization of the co-

culture and medium over time. A detailed description of this

ecosystem model is provided in the Methods.

To detect emergent metabolites, we simulate the growth of each

species in mono-culture in a similar manner, again recording the

composition of the medium at each time step. We then mine these

records to identify metabolites that occur in the co-culture medium

at some point throughout the growth of the species, but that never

occur in the medium of either mono-culture. Importantly, FBA

provides only a single flux solution, whereas many alternative

solutions with equally optimal growth rates may exist. Considering

our definition above, we therefore wish to confirm that candidate

emergent metabolites are not only absent from the specific solution

obtained, but are absent from any possible solution (under the

optimal growth criterion). Notably, characterizing all possible

solutions over time is a challenging task as we need to account not

only for alternative solutions in a specific time point but rather for

alternative solutions in all time points and their potential impact on

subsequent time points. The space of alternative solutions may

therefore expand exponentially with time as the set of solutions in

each time point may depend on the solution employed in previous

time points. To address this challenge, we developed an iterative flux

variability analysis (see Methods) as a more stringent protocol for

detecting emergent metabolites that accounts for this potentially

expanding set of secreted metabolites. We then classify metabolites

as emergent only if they do not appear in any of the alternative

solutions obtained by this iterative analysis. We confirmed that this

protocol filters out potentially spurious results that rely on

assuming specific alternative solutions during the growth period

Figure 1. Emergent biosynthetic capacity in a simple microbial
community. In this simple illustration, the co-culture secretes several
metabolites (e.g., the yellow tear- and cross-shaped metabolites) but
only one metabolite (star-shaped) is considered emergent.
doi:10.1371/journal.pcbi.1003695.g001
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(see Methods). The results presented below are accordingly

obtained using this stringent protocol.

As described below, we applied this framework to several sets of

two-species ecosystems growing on a large set of neutral media.

For single-species models, we used both manually-curated, high

quality genome-scale reconstructions and automatically generated

reconstructions obtained from previously published studies

(Methods). Neutral media were obtained from previous studies

or generated through an optimization algorithm (see Methods).

A Toy Ecosystem with Emergent Biosynthetic Capacity
To illustrate the settings that can give rise to emergent

biosynthetic capacity and the ability of our computational

framework to detect it, we first present a simple toy ecosystem in

which an environmental shift induced by one species promotes a

second species to activate an alternative pathway and consequently

secrete an emergent metabolite. Specifically, consider the two

species illustrated in Figure 2A–B (and see Methods for a full

model description). Each of these species can successfully grow in

mono-culture on the same simple medium (containing nutrients A

and B). In the process of converting exogenously acquired

nutrients to biomass, the red species secretes metabolite W to

the medium as a byproduct (Figure 2A), while the blue species

secretes metabolite C (Figure 2B). However, when grown in co-

culture (and on the same medium as in mono-culture), the red

species has access to metabolite C that was secreted by the blue

species (Figure 2C, dashed arrow), allowing it to utilize an

alternative pathway for synthesizing metabolite Z – a precursor of

biomass. If this alternative pathway is favorable for optimal growth

(see, for example, the stoichiometric details of this model in

Methods), the red species may activate this pathway to produce

more biomass and grow faster, secreting metabolite Y as a

byproduct in the process. Since this metabolite Y cannot be

secreted by either of the mono-cultures, it is classified as an

emergent metabolite and this system is classified as exhibiting

emergent biosynthetic capacity. Notably, the definition of emer-

gent biosynthetic capacity is medium-dependent; for example, in

this toy ecosystem, Y will not be classified as an emergent

metabolite if the growth medium already contains metabolite C

since in such a scenario, metabolite Y can be secreted also by the

red species in mono-culture.

Applying our framework to this ecosystem, this emergent

capacity was clearly observed (Figure 3). Evidently, the availability

of metabolite C in co-culture allowed the red species to grow faster

than it grew in mono-culture (Figure 3A). Tracking the

concentration of various metabolites in co-culture and in mono-

cultures (Figure 3B), several differences were further observed. For

example, the improved growth of the red species in co-culture led

to a faster depletion of metabolite A, which was accordingly

exhausted earlier, preventing further growth. Most notably,

however, metabolite Y (Figure 3B, lower panel), which was

completely absent in either of the mono-cultures, quickly

accumulated in co-culture, owing to the activation of the

alternative pathway in the red species. Comparing the concentra-

tion of metabolites in co-culture with those obtained in mono-

culture and applying our variability analysis to examine alternative

solutions (Methods), our framework therefore identified Y as an

emergent metabolite.

Characterizing the Prevalence of Emergent Biosynthetic
Capacity and of Emergent Metabolites

The toy ecosystem above was specifically designed to promote

emergent biosynthetic capacity. While such synergistic capacities

can clearly occur in communities of real microorganisms, it is not

clear a priori whether it is common, how likely it is to occur, and

which factors may contribute to it. Next, we therefore set out to

examine how prevalent emergent biosynthetic capacity is in

natural systems and what the determinants of such capacity are in

simple microbial communities. To this end we obtained high-

quality genome-scale metabolic models of 6 species with potential

health and environmental applications (Methods). Importantly,

each of these models was manually curated, experimentally tested,

and used in multiple previous studies of microbial metabolism

[48]. We then applied our framework to characterize emergent

biosynthetic capacity in all possible pairwise species communities.

Since, as discussed above, emergent capacity is media-dependent,

we simulated the growth of each of these two-species communities

in 100 random minimal neutral media (see Methods) and recorded

the cases in which emergent capacity occurred.

Interestingly, our analysis demonstrated that emergent biosyn-

thetic capacity is fairly common. Almost all pairwise species

combinations analyzed (13 out of 14) exhibited emergent capacity

in at least one of the 100 media, with some species pairs (e.g., E.

coli and B. subtilis) exhibiting emergent biosynthetic capacity in 67

of the 100 tested media (Figure 4). Overall, 30% (421) of the 1400

community/medium settings analyzed demonstrated emergent

capacity. Notably, in most cases (343 of 421) communities with

emergent capacity secreted only 1 emergent metabolite, but in a

few cases (12 of 421) 3 different emergent metabolites were

secreted simultaneously. Interestingly, in 16 community/medium

settings (mostly involving E. coli and B. subtilis), both species

secreted emergent metabolites that were consequently consumed

by the other species via cross-feeding, exhibiting an intriguing

mutual emergence scenario.

Focusing on the emergent metabolites that were identified in

each simulation, we found in total 28 metabolites that were

classified as emergent in at least one community/medium. Of

these, ethanol and urea were the most frequently secreted

emergent metabolites (37.5% and 21.9% of the cases in which

emergent biosynthetic capacity was detected, respectively). Figure 4

lists the complete set of emergent metabolites, ranked by their

frequency, and the communities in which they were detected.

Perhaps not surprisingly, the most frequently secreted emergent

metabolites include common byproducts of microbial metabolism,

such as ethanol, succinate, and acetate (from fermentation), and

urea (from nitrogen metabolism). Several of these metabolites (e.g.

ethanol, acetate, urea, glycolate) have been previously highlighted

as important cross-feeding metabolites that can substantially

impact the composition of various microbial ecosystems [60–62].

To better understand the contribution of each species in the

community to the observed emergent biosynthetic capacity, we

further examined each community with an emergent metabolite,

to determine which of the two species actually secreted that

metabolite to the environment (the producer) and which species was

the non-secreting community member (the partner). Focusing on

the most frequently secreted emergent metabolites, we found that

emergent metabolites were often secreted by a single dominant

producer species, whereas many other species could serve as

partners (Figure S1). Critically, many dominant producer species

have been shown experimentally to secrete the compound in

question given the proper environmental conditions and media.

For example, succinate secretion has been demonstrated in B.

subtilis [63] and E. coli [64]. Similarly, the primary producers of

acetate in our study, S. typhimurium, M. barkeri, and E. coli, are

capable of secreting appreciable quantities of this compound

under certain conditions [65–67]. This analysis further demon-

strated that B. subtilis was almost solely responsible for the secretion

of several frequent emergent metabolites, including urea, nitrite,

Emergent Capacity in Microbial Communities
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glyoxylate, and fumarate, partnering with almost any other species.

Notably, B. subtilis was the only species included in our analysis that

has a complete urea cycle, providing metabolic flexibility for

nitrogen and amino acid metabolism and potential utilization of

varied nutrient sources. Indeed, some of the emergent metabolites

secreted by B. subtilis are associated with the operation of the urea

cycle (see also Figure S3) and have been shown to be the end

product of this process in other microorganisms with a complete

urea cycle [68]. This promiscuity of B. subtilis may also reflect its

adaption to diverse habitats including soil, plant roots, aquatic

environments, and the gastrointestinal tract of animals [69]. In

other cases, however, only a very specific combination (or

combinations) of species led to the secretion of an emergent

metabolite (e.g., Sulfate; Figure S1). Interestingly, comparing the

total biomass produced in co-culture to the combined biomass

produced by the two mono-cultures, we found that most (but not all)

communities benefit from such emergent capacity, even though

overall community growth was not the optimization objective in our

framework (see Text S1 and Figure S8).

Mechanisms of Emergent Biosynthetic Capacity
The two species comprising the toy ecosystem discussed above

demonstrate a simple mechanism of emergent capacity. Specifi-

cally, in this example, one organism constructed its niche,

converting nutrients or energy sources (metabolites A and B) into

forms accessible to other species (metabolite C). Species that share

this niche may consequently ‘‘reprogram’’ their metabolic activity

(e.g., via regulation) to obtain optimal growth and differentially

impact their environment (e.g., by secreting metabolite Y). Clearly,

however, in real organisms, which can catalyze hundreds and

thousands of reactions, metabolic reprogramming can be mark-

edly more complex, involving differential activation of numerous

reactions in response to environmental shifts. Such reprogram-

ming may, for example, activate (or enhance) some reactions while

deactivating (or repressing) other reactions, to support multiple

nutrient requirements, energy production, and redox balance.

Here, we therefore set out to examine whether similar cross

feeding-based mechanisms were responsible for the prevalence of

emergent capacity observed above in models of real microbial

Figure 2. A toy ecosystem of emergent biosynthetic capacity. Both the red (A) and blue (B) species can successfully grow in mono-culture
using the same medium that contains metabolites A and B. Yet, growing the two species in co-culture (C), an emergent biosynthetic capacity can be
observed, as the red species utilized via cross-feeding (dashed lines) metabolite C that was secreted to the medium by the blue species, activating an
alternative pathway for biomass production and secreting metabolite Y as a byproduct.
doi:10.1371/journal.pcbi.1003695.g002

Emergent Capacity in Microbial Communities
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species and to characterize metabolic reprogramming patterns

that may be associated with this capacity.

We analyzed the metabolic fluxes in each community that

exhibited emergent biosynthetic capacity, comparing the predicted

fluxes in co-culture with those predicted in the two mono-cultures.

We identified in each two species system the species that secreted

the emergent metabolite (i.e., the producer; and see also Figure S1)

and the time point at which the emergent metabolite was first

secreted. To examine whether a simple cross-feeding behavior

could account for the observed emergent capacity, we first aimed

to identify cross-feeding fluxes at this time point that might have

prompted the producer to secrete the emergent metabolite.

Specifically, we identified metabolites taken up by the producer

that were not provided in the initial growth medium and that were

not secreted by the producer itself in earlier time points. To

confirm that these cross-feeding fluxes were sufficient to induce the

secretion of an emergent metabolite, we simulated the growth of

the producer in mono-culture again, with small amounts of the

detected cross-feeding metabolites added to the medium. We

found that in almost all cases (99.4%) the addition of these

metabolites indeed resulted in a reprogramming event, altering the

activity of the producer and causing it to secrete the emergent

metabolite. The few cases (3) where this did not occur may require

the presence of additional emergent metabolites that were secreted

by the producer at earlier time points (and that were therefore not

added to the medium) or the availability of the cross-feeding

metabolite at a higher concentration. Further analysis also

demonstrated that in most cases (,98%) emergent metabolites

could in fact be secreted by the producer also in mono-culture but

that such secretions were suppressed when biomass production

was maximized (Text S1 and Figure S9). As this growth penalty

was often relatively small, it appears that the role of the partner in

many communities amounted to reducing the cost of specific

emergent secretions by allowing the producer to shift its metabolic

activity toward a pattern that was suboptimal when growing in

isolation, and only in some cases did the partner actually provide

metabolic capabilities necessary for emergent secretion.

Clearly, one of the benefits of a modeling framework is that it

allows us to comprehensively characterize flux distributions in

each organism and to fully characterize complex reprogramming

behaviors. Since ethanol and urea were the two most frequently

secreted emergent metabolites observed in our analysis, we

examined several common cases of metabolic reprogramming

that resulted in the secretion of these metabolites in more detail

and illustrated two typical examples of such reprogramming

patterns. In the first example, acetate was identified as a cross-

feeding metabolite from Shewanella oneidensis to Methylobacterium

extorquens, resulting in emergent ethanol production (Figure 5).

Specifically, the uptake of acetate allowed M. extorquens to enhance

energy production by providing increased carbon flow into the

TCA cycle. Acetate influx additionally enhanced acetyldehyde

dehydrogenase and activated alcohol dehydrogenase fluxes

through which NAD+ was generated. This excess NAD+

Figure 3. Temporal dynamics obtained by our framework for
the mono-cultures and co-culture of the toy ecosystem
illustrated in Figure 2. (A) Growth rate of the red and blue species
in mono-cultures and co-culture. (B) The concentration of various
metabolites in the medium over time in the mono-cultures and co-
culture. Metabolite Y was identified as an emergent metabolite since it
was secreted in co-culture (solid line) but was totally absent from either
of the two mono-cultures (dashed lines). In contrast, metabolites W and
C were observed in the medium in at least one of the mono-cultures
(although at different concentrations than in co-culture).
doi:10.1371/journal.pcbi.1003695.g003
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production allowed reactions catalyzed by malate dehydrogenase

and 2-oxoglutarate dehydrogenase to regenerate NADH in the

TCA cycle as a source of ATP as well as reducing power that were

necessary in many other reactions. Notably, a similar phenome-

non, wherein exogenous acetate induces ethanol secretion to

maintain intracellular redox balance, has been previously docu-

mented in Lactobacillus casei [70]. Emergent secretion of ethanol to

maintain redox balance was also observed in our analysis in many

other communities and in various growth media, often involving

markedly more complex reprogramming patterns. For example, in

the case illustrated in Figure S2, ethanol was produced as an

emergent metabolite by E. coli in the presence of B. subtilis

following a complex reprogramming behavior that involved not

only enhancement and activation of various reactions but also flux

repression in several branch points to adjust carbon flow into the

TCA cycle. Furthermore, the optimization of NADH production

appeared to be a common strategy that resulted in emergent

ethanol secretion.

As a second example we focused on a community that secreted

urea and succinate by B. subtilis and E. coli respectively (Figure S3).

In this example, the metabolite fumarate cross-fed from B. subtilis

to E. coli and promoted energy production as well as amino acid

biosynthesis in E. coli. Fumarate uptake by E. coli was partly

mediated by a dicarboxylic acid transporter that resulted in

succinate secretion. Utilization of a dicarboxylic acid transporter

for fumarate uptake that is accompanied by succinate secretion has

been previously documented in E. coli in certain media [71].

Meanwhile, acetate cross-feeding from E. coli to B. subtilis allowed a

Figure 4. Emergent metabolites in simple two-species communities. Rows represent emergent metabolites and are ranked by their
prevalence. Each column represents a specific two-species community growing in a random neutral medium. Secretion of a specific emergent
metabolite in a certain community/medium combination is illustrated with a black bar. Only the 421 community/medium combinations that
exhibited emergent biosynthetic capacity (i.e., at least one emergent metabolite) are shown. The species comprising each community are shown on
the bottom, and the number of media in which emergent biosynthetic capacity occurred for each of these communities is shown on the top.
doi:10.1371/journal.pcbi.1003695.g004
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larger carbon flow into the TCA cycle in B. subtilis, resulting not

only in more energy but also in more 2-oxaloglutarate production

by B. subtilis. Consequently, the amount of glutamate required to

generate 2-oxaloglutarate and NDPH was decreased (Glutama-

te:NADP oxidoreductase), and excess glutamate was rerouted to

the urea cycle to facilitate arginine biosynthesis. Arginase was

activated in this new metabolic route, ultimately resulting in the

secretion of urea.

Early and Late Onset of Emergent Capacity
In determining the prevalence of emergent capacity above and

in characterizing various underlying mechanisms of this capacity,

we compared the activity of the co-culture and mono-cultures

during the initial phase of growth. Specifically, for the results

reported in the previous sections we focused on all time points up

to the 1 hr time point. During this period organisms in our

simulations were still exhibiting exponential growth and were not

limited by nutrient availability. However, as cell density increases

and nutrients get depleted, organisms may further modulate their

activity to optimize their growth in a nutrient limited environment.

This may potentially lead to different modes of emergent capacity

and to the secretion of emergent metabolites that may not be

observed during early growth.

To test this hypothesis, we repeated the analysis above

considering the entire growth period (i.e., until some required

nutrients were totally exhausted and growth ceases) and for each

emergent biosynthetic event recorded the first time point the

emergent metabolite was secreted. Examining the distribution of

such events over time, we indeed found two waves of emergent

capacity, one that occurred mostly during the early growth period,

and one that occurred toward the end of the growth period

(Figure 6). While the first wave represents emergent capacity that

arose as soon as the two species were introduced into the same

medium, the second wave may reflect emergent capacity that was

dependent upon organisms’ activity in a nutrient depleted media.

In total, when the entire growth period was considered, 52% (729)

of the 1400 community/medium settings analyzed demonstrated

emergent capacity (compared to the 30% reported above when

only the early growth period was considered). During this full

period, all 14 pairwise species combinations analyzed exhibited

emergent capacity in at least several different media, with some

species combinations exhibiting such capacity in .80 of the 100

media tested (see Figure S4). Again, in most cases (414 of 729) only

a single emergent metabolite was secreted, but in one case as many

as 11 emergent metabolites were secreted in the same community/

medium combination.

To further characterize the differences and similarities between

these two waves of emergent capacity, we compared the set of

emergent metabolites reported above for the initial growth period

(1 hr) to the larger set of emergent metabolites obtained when the

entire growth period was considered. As expected, this latter set

was markedly larger, with 64 different metabolites (compared to

the 28 identified in the 1 hr set) classified as emergent in at least

one community/medium (Figure S4). Specifically, among the

metabolites that were detected as emergent only in the late growth

period, glycolaldehyde, malate, and propionate were the most

Figure 5. Metabolic reprogramming of M. extorquens that
results in ethanol secretion. Major reprogrammed fluxes (compared
to the mono-culture settings) are plotted. In this example, acetate that
was secreted to the medium by S. oneidensis, was taken up by M.
extorquens and converted into acetylCoA, leading to increased fluxes in
the TCA cycle. A small portion of the acquired acetate was converted
into ethanol through acetaldehyde to replenish NAD+ and to facilitate
energy production by the TCA cycle. Abbreviations - etoh: ethanol;
acald: acetaldehyde; ac: acetate; accoa: acetyl-CoA; cit: citrate; icit:
Isocitrate; akg: 2-oxoglutarate; succoa: succinyl-CoA; succ: succinate;
fum: fumarate; mal-L: L-malate; oaa: oxaloacetate; NAD: nicotinamide
adenine dinucleotide.
doi:10.1371/journal.pcbi.1003695.g005

Figure 6. The number of emergent secretion events detected
throughout the growth of all community/media combinations
included in our analysis. The earliest secretion time point for each
event was recorded and presented here as the percentage of the entire
growth period in the corresponding community/media settings to
account for variability in total growth time among the different
simulations.
doi:10.1371/journal.pcbi.1003695.g006
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prevalent. Interestingly, propionate was previously observed as a

late onset emergent metabolite in a co-culture of Megasphaera

elsdenii and Streptococcus bovis [72]. In that system, propionate was

produced by M. elsdenii as a result of secondary fermentation of

lactate that was secreted to the medium by S. bovis and was

detected only 3 hours after the simultaneous inoculation of both

species once lactate accumulation was sufficient [72]. Other

emergent metabolites that were detected only in late growth may

reflect similar processes, wherein one species shifted to metabolize

secondary byproducts secreted by the partner. In other cases,

however, late detection of emergent metabolites may depend on

specific thresholds used. For example, glycolaldehyde, which was

produced as an emergent metabolite by M. barkeri, was not

detected in the early growth period due to the slow growth of this

species and consequently the long time required for glycolaldehyde

to accumulate in the medium and to pass the threshold used. More

generally, however, while certain emergent events could only be

observed in late growth as described above, the results obtained for

the 1 hr time point and those obtained for the entire growth

period were consistent (see also Figure S5), with ethanol, succinate,

and urea being the most frequently secreted emergent metabolites.

Community Compositions Likely to Exhibit Emergent
Capacity: The Goldilocks Principle

Above, we demonstrated that emergent biosynthetic capacity is

generally prevalent in simple two-species communities. Here, we

set out to detect properties of the community that may be

associated with this capacity and that can help us to determine a-

priori which community compositions are more likely to exhibit

emergent capacity. Identifying such properties can inform future

design efforts, allowing them to focus the search for novel

metabolic activity on specific species combinations. We specifically

examined whether the functional and phylogenetic distance

between community members was a potential determinant of

emergent biosynthetic capacity and of the ability of two species to

interact and exhibit a novel behavior.

To this end, we compared the average number of emergent

metabolites secreted by each two-species community across

random neutral media to the functional and phylogenetic distance

between the two species (Methods). As demonstrated in Figure 7A,

we found that communities which consisted of functionally close

species tended to exhibit low levels of emergent capacity. For

example, communities where both species were gamma-proteo-

bacteria (red triangles in Figure 7A) produced on average only

0.08 emergent metabolites. Interestingly, however, communities in

which the two species were functionally distant from one another

similarly tended to secrete only few emergent metabolites.

Specifically, in our dataset, communities containing a bacterium

paired with the archaea M. barkeri (blue diamonds in Figure 7A)

produced on average only 0.21 emergent metabolites. It was only

when the two species that comprised the community were at some

intermediate functional distance that higher levels of emergent

biosynthetic capacity were observed (black dots in Figure 7A).

Specifically, the numbers of emergent metabolites in this

intermediate group were significantly higher than those observed

in both the functionally close species group and the functionally

distant species group (p,10218; two sample t-test). This ‘‘Goldi-

locks’’ principle of emergent biosynthetic capacity, that emergent

capacity of a community is maximized when member species are

not too functionally close, nor too functionally distant, may reflect

the ability of species to metabolically interact with one another and

beneficially exchange metabolites. Specifically, as discussed further

below, functionally similar species may exhibit very comparable

metabolic strategies in any given environment, such that the

by-products of one species do not provide any novel benefit to the

second. In contrast, two functionally distant species may apply

markedly different metabolic strategies, such that the metabolites

secreted by one species are not compatible with the enzymatic

capacity of, and therefore cannot be utilized by, the second

species. A similar relationship between distance and the likelihood

of emergent capacity could also be observed when using

phylogenetic distance rather than functional distance to measure

the similarity between the two species (see Figure S6A). Finally, to

disentangle the role of species composition from that of the growth

media, we repeated the above analysis using a set of 500

‘universally neutral’ media for all 6 species (Text S1). This analysis

further confirmed that the observed Goldilocks principle stems

from the functional distance between the two species and is not an

artifact of the specific media used for each species pair (Text S1

and Figure S10).

The analysis above, associating optimum emergent capacity

levels with an intermediate functional distance between the

community members, was demonstrated with high-quality,

manually curated metabolic models, but relied on a limited

number of species combinations. To confirm the general

applicability of this Goldilocks principle, we applied our frame-

work to a markedly larger collection of automatically generated

models. These models are potentially less accurate than the

manually curated models used above, but represent a significantly

higher species diversity and a wider range of functional distances.

Specifically, we obtained 116 SEED-based FBA models used in

[44], allowing us to examine 6670 two-species communities. Since

this dataset did not include a collection of minimal neutral media

for each two-species community (as those that were available for

the 6 species dataset from [48]), minimal neutral media were

computed using a mixed-integer linear programming algorithm

(see Methods). Moreover, as simulating the growth of each of the

6670 communities on 100 different growth media is too

computationally expensive (Methods), we investigated the level

of emergent capacity for each community in one minimal medium

(computed specifically for this community) and binned communi-

ties into 10 groups representing species pairs with similar

functional distances. We recorded the fraction of communities in

each bin that exhibited metabolic capacity. Our results mirrored

and confirmed those observed in the smaller 6 species dataset

(though a significance analysis is challenging with just one medium

per community), with an optimum level of emergent capacity

obtained by communities in which the two species were at some

intermediate functional distance (Figure 7B). Again, a similar

pattern held when phylogenetic distance rather than functional

distance was used (Figure S6B).

Discussion

Above we introduced a comprehensive computational frame-

work for exploring enhanced metabolic capacities in simple two-

species microbial systems. Investigating a large number of

communities and growth media, our results suggest that emergent

biosynthetic capacity is relatively prevalent, and can be observed

in many, if not all, communities, under certain environmental

settings. Notably, while many community/medium combinations

exhibited emergent capacities, typically our analysis detected only

very few emergent metabolites in each such combination. This

may be partly due to our stringent flux variability-based analysis

(Methods) that likely filters potentially real emergent metabolites,

and thus underestimates the level of species-species interaction and

emergent metabolic capacity in nature. Another important factor

in determining the prevalence of such capacity is our focus on
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minimal media that probably provide relatively low nutrient

diversity compared to more complex media commonly found in

natural habitats. Such naturally-occurring complex environments

may allow organisms to utilize multiple resources and potentially

produce additional byproducts. Importantly, however, such

complex, non-minimal environments may instead allow cohabiting

species to partition available resources [73], reducing the impact

that one species may have on the other, and consequently the

prevalence of emergent biosynthetic capacity. Moreover, as

discussed above, our work considered only neutral media, in

which both species could survive in isolation. Natural ecosystems,

in contrast, often exhibit high levels of obligate symbiosis, wherein

one species (or both) requires the presence of the other to grow.

Such non-neutral media, by definition, promote emergent

metabolism, as the activity of the co-culture (in which both species

grow) is fundamentally different from that of the two mono-

cultures (in which one or both species are not growing). While such

scenarios are clearly interesting, here we focused on minimal and

neutral media (in which emergent capacity is not a direct outcome

of obligate symbiosis) to systematically and comprehensively

characterize the limits of emergent biosynthetic capacities without

the confounding effects of niche partitioning or obligate symbiosis,

laying the foundation for investigating how species jointly

influence their shared environment.

Interestingly, our analysis further suggests that emergent

biosynthetic capacity is especially likely when community mem-

bers are neither too similar functionally and phylogenetically, nor

too different. This finding is perhaps not surprising: When

cohabiting species are too similar functionally, each species is

not likely to introduce any metabolite into the environment that

the second species cannot already produce by itself, and

consequently, the activity of the first species is not likely to

modulate the activity of the second. Similarly, if the two species are

functionally very different, each species may produce many

metabolites that the second species is not capable of producing,

but these may be too remote from the metabolism of the second

species for it to utilize them. This Goldilocks principle is also in

agreement with observations obtained through a simple network

expansion analysis [74] or a pathway overlap calculation [75],

examining the overall potential of combined metabolic networks.

By further characterizing frequently secreted emergent metabolites

and examining typical mechanisms of emergent capacity, we were

also able to obtain insights into various principles that govern such

species-species and species-environment interactions and to point

to many potential modes by which microbial species jointly impact

their environments. Taken together, our results provide a first

systems-level characterization of emergent biosynthetic capacities

across simple microbial communities.

As described in the Introduction, several preliminary attempts

to model multi-species systems have been previously introduced,

some of which have utilized constraint-based modeling approaches

or relied on the integration of multiple single-species FBA models

(e.g., [44–48]). Importantly, the main aim of our study was not

necessarily the development of a new modeling framework, but

rather the investigation of emergent biosynthetic capacity in

microbial communities. Many elements in our framework were

therefore adopted from previous studies or adapted from advanced

single-species modeling techniques. Yet, as a whole, our frame-

work includes several key innovations that make it especially fitting

for studying emergent capacity or, more generally, ecosystems’

metabolic activity. For example, similar to Zhuang et al. [57], our

framework takes a dynamics-based modeling approach. However,

Figure 7. The Goldilocks principle of emergent biosynthetic capacity observed in simple two-species communities. (A) The average
number of emergent metabolites (and standard error) across 100 media in each of the communities containing 2 of the 6 species in our first dataset
vs. the functional distance between the two species. Red triangles denote pair-wise combinations of the three proteobacteria E. coli, S. typhimurium,
and S. oneidensis. Blue diamonds denote communities composed of a bacterium paired with the archaeon M. barkeri. The pair M. barkeri/S. oneidensis
was not included in this analysis since no neutral media for this pair was found in [48]. Functional distances were calculated as the Jaccard distance
between the set of KEGG orthology groups [101] present in the two species (Methods). (B) The fraction of communities that exhibit emergent
biosynthetic capacity across communities containing 2 of the 116 species in our second dataset within a given range of functional distances
(Methods). Only the 1821 communities in which both species were still growing at the 1 hr time points are included, with the number of such
communities in each bin shown in parentheses.
doi:10.1371/journal.pcbi.1003695.g007
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Zhuang et al. focused on recapitulating a specific, well-character-

ized community in specific environmental settings, using measured

parameters and a species-specific cell death rate. Here, in contrast,

we wish to characterize universal principles and large-scale trends

of emergent capacity, and therefore focus on a systematic

investigation of numerous communities and a plethora of media,

for which such detailed information is clearly not available. Our

framework, therefore, has integrated an exhaustive Flux Variabil-

ity Analysis with an iterative temporal modeling approach to

account for the potentially many alternative solutions such

uncharacterized communities may exhibit. This integration of

two constraint-based techniques (namely, Flux Variability Analysis

and dynamic-FBA) is essential for a reliable detection of emergent

capacity and has not been implemented before.

It is also worthwhile to emphasize again the importance of a

dynamics-based approach for studying and discovering emergent

community metabolism, since to date, only very few studies have

employed this technique whereas most other FBA-based models of

multi-species systems have applied a non-dynamic, joint-model

approach (e.g., [76]). In such joint-model methods, the stoichio-

metric matrices of the various species are combined into a single

matrix, often with the introduction of explicit exchange reactions.

Indeed, such methods are computationally less expensive as they

rely on a single (or only a handful of) optimization task(s), without

an iterative optimization procedure for tracking the system’s

dynamics. Yet, in contrast to our method (which optimizes each

species’ model separately), the size of the stoichiometric joint

matrix grows with the number of species, potentially exceeding the

capacity of available solvers. More importantly, such methods

often require the definition of a universal objective function to

represent the optimization objective of the community, such as the

total growth of the community or some other community-level

feature. Notably, however, a community-level objective may

unjustly promote species cooperation, potentially pushing species

toward altruistic behavior that could benefit the community. This

may be an appropriate approach in cases where cooperation is

expected and well-characterized, such as in stable communities of

obligate symbiotic pairs (e.g., [76]), but may not be suitable for

more general settings in which cooperation is not expected a priori.

In our framework we therefore instead assume that each species

aims to maximize its own growth without regarding the benefit of

the community and accordingly optimize each model (represent-

ing each species) separately. With this assumption, species impact

other community members only by modifying the shared

environment as part of this selfish growth process, and a temporal

dynamics approach is used to allow environmental shifts induced

by the activity of one species to potentially affect the behavior of

other species in subsequent time points. Moreover, in the context of

our study, this dynamics-based approach further allowed us to

obtain insights crucial for understanding emergent capacity. For

example, cross-feeding metabolites may be secreted at a slow rate,

and a long period may be required for such metabolites to

accumulate in the environment and reach high enough levels to

affect the activity of other species and to induce emergent

secretion. Similarly, nutrient availability in the environment can

drop over time, pushing community members to shift their flux

activity and secrete emergent metabolites only when cell density

becomes high. Emergent events can therefore occur at many

different time points and may involve different mechanisms, as

also demonstrated by our findings on early and late onset of

emergent metabolism. Such temporal patterns can only be

characterized and investigated with a dynamics-based simulation.

More generally, considering the dynamic nature of many natural

environments and our focus on emergent secretion events that

may further shift the composition of the environment, a dynamical

modeling approach capable of tracking these environmental shifts

and their temporal impact on the species inhabiting the

environment is a natural choice. Ultimately, however, the various

approaches for studying community metabolism and the multiple

frameworks developed to date are all essential for gaining a

comprehensive, principled understanding of microbial communi-

ties and of species’ metabolic interactions. Future efforts to

integrate such different modeling frameworks and to develop a

multi-scale framework capable of capturing the many facets of

ecosystem metabolism could be especially exciting.

Our modeling framework may clearly have some important

limitations. To avoid an arbitrary definition of community

objective, we used dynamic FBA-based methods to model

community metabolism, assuming that each species aims to

maximize its growth and that community dynamics is a second

order consequence of species behavior. However, in many natural

ecosystems, some species may exhibit sub-optimal growth due to

constraints that are currently beyond the scope of FBA. Sub-

optimal growth can be observed, for example, when an organism

is introduced to a non-natural habitat that it may not have

encountered during its evolution. One way to address this

challenge is to incorporate additional omic data to augment an

FBA-based framework and to guide FBA prediction [53,77–79].

With recent advances in high throughput meta-omic technologies

[80], ecosystem-level meta-transcriptomic and meta-proteomic

data are continually becoming available and efforts are needed to

develop computational methods for incorporating such large-scale

meta-omic data into a community-level FBA framework. Other

factors that may lead to sub-optimal growth include inhibitory

mechanisms such as the bacterial toxin-antitoxin system [81] and

inter-species communication mechanisms such as quorum sensing

[82]. Such mechanisms are currently not accounted for by genome

scale metabolic models. More generally, although efforts have

been made to take into account potential sub-optimal growth of

community members [46], the rationale and the extent of sub-

optimality remains unclear. Other factors may further impact

community growth and species interaction. For example, some

organisms may have adapted to harsh habitats, such as high

temperature or salt concentrations that are stressful to other

organisms. Spatial structure could also constrain inter-species

metabolic flow and has been shown to induce species cooperation

within a remarkably short time of laboratory evolution [83].

Integrating such physical-chemical factors into an enzymatic- or

stoichiometric-base framework is a challenging task and will

require further developments. Recently introduced efforts to

model multiple cellular processes on a whole cell level [84] or to

mathematically model spatial constraints among interacting

partners [85] are promising advances toward this goal. Ultimately,

however, any computational or mathematical model aiming to

capture the activity and dynamics of microbial communities or

their impact on the environment is bound to be incomplete and

may fail to incorporate various factors that could affect the

behavior of the community. Environmental attributes, the

induction of stress, pH, alcohol, antibiotics, and signaling may

all steer the behavior of a specific community away from our

metabolic model-based prediction. In this study we therefore

aimed to identify large-scale patterns of emergent capacity and to

generate hypotheses concerning the universal principles that

govern emergent behavior, rather than to predict the metabolic

activity of a specific species pair in a specific medium. These

robust large-scale patterns (such as the prevalence of emergent

capacity or the Goldilocks principle) are potentially less sensitive to

model incompleteness and allow us to obtain fundamental insights
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concerning the capacity, timing, and likelihood of emergent

biosynthesis. In this context, a metabolic modeling-based frame-

work further provides a tool for studying an ideal, well-controlled

metabolic system, ignoring other confounding processes and

focusing on mapping of boundaries and first principles of emergent

behavior that is governed by metabolism alone.

One of the promises underlying microbial ecology research is

the potential for therapeutic or bioengineering applications [41].

In contrast to traditional efforts aimed to genetically engineer a

single species toward desired metabolic tasks, engineering micro-

bial communities by constructing specialized combinations of

already existing strains is a cost-effective solution [3]. Many

clinical and industrial applications may be difficult to address at

the single species level but could be potentially attainable at the

community level. Of specific interest are microbiome-based

therapy applications and gut microbiome transplantation efforts

aiming to restore healthy phenotypes or endow the host with some

metabolic capabilities [20]. Such transplantation efforts currently

utilize complete microbiome transfers from healthy donors or

simple synthetic microbiomes constructed from a small collection

of carefully handpicked strains [19,21,22]. Yet, to allow the

construction of such engineered communities on a large scale and

to enable researchers to search the vast space of possible

community compositions, a more comprehensive design frame-

work is clearly needed [42]. The development of predictive

community models is a critical first step toward such rational

design of microbial communities, and will enable researchers, for

example, to move from complete microbiome transplantations

toward a targeted and personalized microbiome-based therapy

[41,86]. Such a predictive comprehensive framework for modeling

microbial communities, however, cannot be gained without a

principled understanding of how the joint activity of multiple

species influences their environment and vice versa. A recent

study, for example, demonstrated how different environmental

conditions may induce different forms of species interactions and

that it may be the environment, rather than the gain or loss of

genes that have larger impact on the specific type of interaction

two species will have [48]. Conversely, our study highlights the

prevalence of species interactions that will impact the environment

via emergent biosynthetic capacities. Our framework not only

allows exploring the boundaries of the metabolic tasks microbial

consortia can accomplish but also provides mechanistic insights on

the pathway level and accounts for the impact of the abundances

of species in the community. Moreover, our findings suggest

potentially universal principles that have important bearing on

community design efforts. For example, the Goldilocks principle

observed above points to potentially more promising starting

points in the search for communities that exhibit novel biosyn-

thetic capabilities even when relatively little is known about the

participating species. Similarly, the contribution of B. subtilis to

multiple emergent biosynthetic processes demonstrated by our

analysis suggests it may be a preferred partner in designed

communities, in agreement with its role in promoting plant growth

or in maintaining healthy gut communities [69,87].

Clearly, much work is still ahead before a complete, predictive,

and multi-scale framework for modeling microbial communities

can be fully realized. Fast and accurate metabolic reconstructions,

multi-omics data integration, and the development of novel

community-level integration techniques will all contribute tremen-

dously to our ability to model naturally occurring complex

ecosystems. Furthermore, in the context of host-associated

communities, it will likely be equally important to incorporate a

model of the host and its interaction with the community. Yet, our

framework and other modeling frameworks of simple microbial

communities are an important first step toward the construction of

such a comprehensive model. Moreover, these frameworks are

already capable of generating testable hypotheses on niche

construction and on microbial interaction, further elucidating

the forces that govern the assembly, function, and dynamics of

microbial ecosystems [25]. Multiple such frameworks could be

integrated and ultimately coupled with optimization and design

algorithms, resulting in a comprehensive framework for designing

novel microbial communities with desired metabolic activities or

clinical manipulation of environmental- and host-associated

communities.

Methods

Flux Balance Analysis
Flux Balance Analysis (FBA) describes cellular fluxes at steady

state with the mass balance equation:

dx=dt~Sv~0 ð1Þ

where x is the vector of metabolite concentrations, v is the vector of

reaction fluxes, and S is the stoichiometric matrix describing how

many molecules are consumed or produced by each reaction.

Under this steady state assumption, nutrients acquired from the

environment are used to produce biomass or byproducts, with no

accumulation of metabolites in the cell. Additional constraints,

including reversibility of reactions and measured exchange fluxes,

can be incorporated to further limit the possible solution space of

metabolic fluxes. Given the complete set of constraints, FBA

predicts a specific flux distribution by optimizing a given objective

function, typically maximum growth [88]. Growth rate is

approximated by a vgro reaction that consumes energy and a

predefined set of nutrients at some relative proportion to form

biomass:

X
a

caxa
vgro

1 Biomass ð2Þ

This maximum growth objective has proved successful in

providing predictions that are consistent with experimental data

[33,50,89].

A Multi-Scale Framework for Community Metabolism
Dynamics

Given the set of species that comprise some microbial

community and the composition of an initial growth medium,

we used a computational framework to characterize the growth of

the community on this medium over time. Our framework is a

multi-species extension of the dynamic FBA method [50,51],

which aims to predict the temporal behavior of microbial systems

(and see also refs [54,57]). Briefly, we divided the entire growth

period into short time intervals (0.1 hr), assuming a steady state

solution in each interval and using FBA to obtain the flux

distribution and growth rate of each species during this interval.

We then calculated the impact of this predicted activity on the

community and on the environment at the end of this interval and

updated environmental attributes before simulating the next time

interval. Specifically, each time step includes these three basic

steps:

1) Determination of uptake rates: We assume that species grow in a

well-mixed environment such that each species could sense

nutrient availability, determining the uptake limit for
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metabolite j in the shared environment, LBj(t), with single

substrate Michaelis-Menten equations. This formulation

guarantees that uptake rates are not sensitive to very low

concentrations, preventing sharp shifts in behavior between

consecutive time points. Notably, in the FBA models used in

this study, the stoichiometric coefficient of nutrient transport

reactions is defined as 21 (rather than +1). Accordingly, it is

the lower bound, rather than the upper bound of a transport

reaction that determines its uptake limit [31]. Furthermore,

we followed the procedure proposed in ref [50] for allocating

available metabolites among the various species by estimating

an uptake limit for metabolite j, per cell and per unit of time.

Specifically, this procedure assumes a scenario wherein

metabolite j is fully consumed within a single time interval

Dt by all the cells in the culture. The limit was accordingly set

by normalizing the available concentration of metabolite j by

the total biomass and by the length of the time interval (see

second term in equation 3 below). With this limit, only a

portion of each metabolite was allocated to each species

(proportional to its density in the culture) during each time

interval, guaranteeing that a species would not consume

nutrients allocated to other species. Furthermore, in the

context of our framework, this criterion further assured that

the order in which species growth was simulated during each

time interval did not impact nutrient availability for other

species as nutrients were pre-allocated within each time

interval. The smaller of these two fluxes (i.e., the Michaelis-

Menten equation and the flux limit per cell per unit of time Dt)

was used as the uptake limit of nutrient j, LBj, at time point t:

LBj(t)~{min
Vmax � xj

Kmzxj
,

xj

bio(t) � Dt

� �
ð3Þ

where xj is the concentration of metabolite j, Vmax is the

maximum velocity to transport metabolite j, Km is the affinity of

the transporter, and bio(t) is the total biomass of all species. Since

genome-scale Michaelis-Menten parameters are not yet

available, we followed a previous study [90] in using a universal

uptake limit and setting the maximum velocity, Vmax = 20 for all

reactions (except H2O and phosphate for which Vmax = 1000;

see below). For transporter affinity, we used a universal

intermediate value (based on available values in the Brenda

database; [91,92]), setting Km to 0.05. We further followed

typical dynamic FBA studies in simulating a batch culture

growth rather than a chemostat setting to avoid estimating

chemostat parameters. All initial concentrations were set to

10 mM, except for H2O and phosphate which most FBA

studies assume are unlimited and were therefore set to 106.

2) Determination of metabolic fluxes via FBA: Once the maximum

nutrient uptake rates LB(t) were calculated in step 1, we

determined the flux distribution and growth rate of each

species in the current time interval Dt. As discussed in the

introduction, we assume that each species k aims to maximize

its own growth, using FBA to determine its metabolic activity

at time point t with the following constraints:

max v
gro
k (t)

s:t: Skvk~0

LBk(t)ƒvk(t)ƒUBk(t)

ð4Þ

The lower bound of each exchange reaction j, LBj(t) was

determined as described above according to nutrient

availability in the medium at time t. For compatibility with

previous studies that used these single species models, the

lower bound of other intracellular, non-exchange fluxes and

the upper bound UBj(t) of all reactions were defined as in the

original single-species models. Specifically, in such models,

unconstrained fluxes are often marked as having some default

arbitrarily large number as bound. To maintain compatibility,

we therefore used the same default limits as those defined in

the studies from which the models were obtained (and these

default limits are also included in the models we provide on

our website as indicated below). We confirmed that using a

uniform limit across all models yields basically identical results

(variation in emergence was ,0.003%). To obtain a single

and consistent flux solution among all possible alternative

solutions that yield the same optimal growth, we further

minimized the total flux activity (i.e., the sum of absolute fluxes

subject to the predicted optimal growth rate). This procedure

assumes that organisms prefer to operate their metabolism

with minimal enzymatic cost as proposed in ref. [93], and is a

common second optimization step for selecting a unique flux

solution. FBA optimization was performed with the GNU

Linear Programming Kit (GLPK; http://www.gnu.org/

software/glpk/) using the GLPKmex Matlab interface

(http://glpkmex.sourceforge.net/).

3) Environment and community updating: Given the predicted flux

activity and growth rates, we assume that each species k grows

exponentially with a constant rate mk = vk
gro (t1) over the time

interval Dt = t22t1. The biomass of species k at the next time

point t2 was then calculated by:

biok(t2)~biok(t1) � emkDt ð5Þ

The concentration of metabolite j in the medium, xj, was

updated according to the biomass biok(t1), the growth rate mk, and

the exchange flux vk
j of all species k in the community over Dt,

using an equation derived by integrating the differential equation

dxj/dt =g vk
j *biok(t1) over time (see detailed derivation of this

equation in Text S1):

xj(t2)~xj(t1)z
X

k

v
j
k

mk

biok(t1)(emkDt{1)
� �

ð6Þ

Steps 1–3 were repeated until all of the species in the ecosystem

stopped growing in this batch condition. The dynamics of growth,

exchange fluxes of all species, as well as the concentrations of all

the metabolites in the medium were recorded.

A similar protocol was used to simulate the growth of the two

single-species mono-culture systems. The initial biomass concen-

tration in the two mono-cultures was set to be the same as that of

the co-culture (0.01 g/Liter) such that the initial nutrient uptake

rates are comparable.

Simple Protocol for Detecting Emergent Metabolites
Once the dynamics of the co-cultures and mono-cultures were

simulated, the obtained concentrations of the various metabolites

over time were used to detect emergent metabolites. Given a

specific growth period (e.g., from beginning of growth to the 1 hr

time point), an emergent metabolite was defined as a secreted

metabolite whose concentration in the medium exceeds a

detection threshold (0.001 mM) at some point during this period

in co-culture, but not in either of the two mono-cultures. Note that
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this definition also naturally excluded metabolites that were

present in the initial growth medium.

Stringent Protocol for Detecting Emergent Metabolites
As described in the main text, FBA provides only a single

solution, whereas multiple alternative solutions may exist. Assum-

ing a single solution in each time point while simulating the growth

of a given mono-culture can clearly underestimate the scope of

metabolites that this mono-culture may secrete to the medium,

and consequently lead to spurious prediction of emergent

metabolites. To account for all alternative solutions in each time

point and for their impact on the behavior of the organism in

subsequent time points, we developed an Iterative Flux Variability

Analysis, extending the previously introduced Flux Variability Analysis

(FVA) [94]. Briefly, FVA infers the full set of metabolites that can

be secreted while still satisfying the maximum growth criterion.

This is done by attempting to maximize the secretion rate of each

metabolite subject to the optimal growth rate calculated via FBA

and examining whether the obtained maximized flux is positive.

As an iterative extension of this method, we performed FVA in

each time point, and took into account possible secretions

identified by FVA when updating the concentration of metabolites

in the growth medium before simulating the next time interval. To

avoid simulating the exponentially growing set of possibilities, we

assume that all possible metabolic secretions were in fact secreted

simultaneously to the medium at the maximal rate without

compromising growth. This protocol therefore provided an upper

bound for the scope of metabolites that may be secreted by the

mono-culture throughout the growth period.

Using this large set of metabolites potentially secreted by the

mono-cultures to exclude candidate emergent metabolites accord-

ingly provided a stringent criterion for emergent biosynthetic

capacity, potentially underestimating the set of emergent metab-

olites. In contrast, results obtained with the simple FBA-based

protocol described above could overestimate the prevalence of

emergent capacity as some identified emergent metabolites are

solution-dependent and may not be inferred when alternative

solutions are considered. Figure S7 illustrates the differences and

similarities between the set of predicted emergent metabolites

obtained by these two protocols, highlighting emergent events that

were identified by the simple FBA-based protocols and that were

removed when the more stringent FVA-based protocol was used.

Interestingly, many events of emergent succinate secretions were

filtered out by the FVA-based protocol, suggesting that succinate

secretion was often found as an alternative optimal solution in

mono-culture with potentially higher enzymatic cost. Overall,

however, the prevalence level of emergent metabolites was

consistent across the two protocols. Throughout the text we

aimed to focus on high-confidence predictions of emergent

capacity and reported results obtained by the stringent FVA-

based protocol.

Toy Ecosystem Model
The toy ecosystem model described in the main text (and see

Figure 2) was defined as follows:

Red Species:
Mass balance constraints

dA/dt = 2R12J1 = 0

dD/dt = R123R22R4 = 0

dZ/dt = R2210R3+R4 = 0

dW/dt = 2R22J4 = 0

dC/dt = 2R42J2 = 0

dY/dt = R42J3 = 0

Flux constraints

LB1,J1,‘

LB2,J2,‘

LB3,J3,‘

LB4,J4,‘

2‘,R1,‘

2‘,R2,‘

2‘,R3,‘

2‘,R4,‘

Blue species:
Mass balance constraints

dB/dt = 2R52J6 = 0

dX/dt = R5250R6 = 0

dC/dt = R52J7 = 0

dA/dt = 2R52J5 = 0

Flux constraints

LB5,J5,‘

LB6,J6,‘

LB7,J7,‘

2‘,R5,‘

2‘,R6,‘

In the definition above, the Ri denote internal reactions whereas

the Ji denote transport reactions. The uptake limits, LBi for all

nutrients were determined as described in eq (3) at each time

point. Notably, as indicated by the expressions for dD/dt and dZ/

dt in the red species, R2 consumes 3 unit of D to generate 1 unit of

product Z whereas R4 requires only 1 unit of D to generate 1 unit

of Z, making R4 a more favorable reaction over R2 as it allows a

higher biomass yield per unit of metabolite D. Note also that Y is

secreted as an emergent metabolite once R4 is active (and see also

Figure 2).

Species Models and Neutral Media
We used FBA models from two previously published studies on

microbial metabolism. The first set was studied in ref [48] and

contained 6 manually curated, high quality species models that

span a wide phylogenetic range. This set included models of

Escherichia coli [95], Salmonella typhimurium [96], Bacillus subtilis [97],

Methanosarcina barkeri [98], Shewanella oneidensis [99], and an

extended genome scale model of Methylobacterium extorquens

provided by Stephen Van Dien [100]. To ensure compatibility

with computationally derived media (see below), we obtained all

these models directly from ref [48], using the same versions of the

models as in this previous study. We additionally obtained from ref

[48] a large scale dataset of computationally derived growth media

for each pair of species. These media were classified as either

mutualism-inducing media (i.e., media that allow for the growth of

both species in co-culture but do not support growth of either

species when grown in isolation), commensalism-inducing (i.e.,

sustain growth of one of the two species but not the other), or

neutral (i.e., sustain growth of each species individually). From this

dataset, we randomly selected 100 neutral media for each of the

two-species communities except for the Shewanella oneidensis/

Methanosarcina barkeri pair for which no neutral media was found

in ref [48]. Helicobacter pylori, which was also studied in ref [48] had

very few neutral media available and was therefore not included in

our analysis. The complexity of these media may depend on the

models included in each community, but overall, these minimal

neutral media contained on average 25.565.9 metabolites.

Roughly 12,15 of these compounds were inorganic ions (e.g.

Zn2+, cobalt2+) that are essential and defined as biomass

components.

The second set included 116 automatically reconstructed

models from the SEED pipeline [37] and was obtained from ref

Emergent Capacity in Microbial Communities

PLOS Computational Biology | www.ploscompbiol.org 14 July 2014 | Volume 10 | Issue 7 | e1003695



[44] (Table S1). Since a large set of neutral media for communities

composed of these SEED models was not available, we applied a

mixed-integer linear programming (MILP) method, similar to the

one described in ref [44], to infer minimal neutral media for each

community. This was done by finding a minimal set of metabolites

that supports the growth (above some minimal rate) of each species

in isolation, out of a large initial set of nutrients composed of the

union of all transportable metabolites of the two species.

Conceptually, the objective of this MILP problem was to remove

as many nutrients as possible from the initial set (and hence leaving

as few as possible in the medium), while maintaining the primary

constraint of allowing the growth rate of each species to be larger

than some minimal threshold (set here to be mk$0.3). To formulate

this objective, we first defined a binary decision variable h for each

nutrient, denoting whether this nutrient was removed from the

medium or not (i.e., when h = 1 the nutrient was removed from the

medium and when h = 0 the nutrient was included). Next, we

added a constraint for the uptake flux of nutrient i, vk
i, connecting

the MILP objective with the minimal growth constraint of each

species k. The aim of this constraint was to guarantee that when i is

removed from the medium (i.e., hk
i = 1), the nutrient uptake flux vk

i

was non negative (note that a non-negative vk
i constraint means

this transporter could not serve as an uptake flux) and that when

nutrient i was included in the medium (hk
i = 0), vk

i could take any

value and species k was able to take up and utilize metabolite i.

Mathematically, this concept was implemented with the constraint

vk
i+Lhk

i$L, where L is a large negative number (here set to

21000). This constraint then became vk
i$0 when hk

i = 1,

indicating that this transport flux cannot be used for uptake.

When hk
i = 0, this constraint became vk

i$L, allowing this flux to

serve as an uptake flux (e.g. vk
i = 210$L). The MILP problem was

solved with a single optimization procedure considering the

minimal growth constraints of the two species simultaneously. This

was done using a stoichiometric matrix that included both species

and that described their growth independently (i.e., no cross-feeding

fluxes were included in the model). Formally, the MILP problem

could then be formulated as a maximization of the sum of decision

variables as follows:

max
X

i[vnutrient

hi
k

Subject to

Skvk~0

LBkƒvkƒUBk

mk§0:3

vi
kz Lhi

k§L

L is a large negative value

h[f0,1g

vnutrient~
S
k

v
transport
k

V species k in a community

ð7Þ

Given the solution of this MILP problem, the set of nutrients for

which the decision variable h equals zero in at least one species

represented the minimal neutral media. The solution to this MILP

problem was determined using the GLPK solver through

GLPKmex (see above).

Notably, simulating the growth of all pair-wise communities

from the first dataset, each on 100 different media, took ,2 days

on a 144 node cluster. The second dataset included roughly 500

times more pair-wise communities and therefore each community

was simulated on one medium as described above. For consisten-

cy, in analyzing this second dataset, we only considered

communities in which both species were still growing at 1 hr.

All models and media used in this study are available for

download on our website (http://elbo.gs.washington.edu/

download.html).

Computing Functional and Phylogenetic Distances
In order to determine the functional and phylogenetic distance

among pairs of species, KEGG orthology (KO) annotations [101]

and 16S rRNA gene sequence information were obtained from the

Integrated Microbial Genome Database (IMG) [102]. Functional

distance was calculated as the pairwise Jaccard distance between

the KO presence/absence profiles of the two species. Phylogenetic

distance was calculated as described in [25] and [103]. Briefly, 16S

rRNA sequences were first aligned using NAST [104]. When

multiple sequences in a single species passed the NAST filter, a

single sequence was chosen at random. Lane mask was applied to

this alignment, and percent identity was calculated with Clearcut

[105] using the Kimura two-parameter distance correction.

Supporting Information

Figure S1 Producers of the most prevalent emergent metabolites

and their partners. The size of each pie chart reflects the frequency

of the corresponding emergent metabolite among the 1400

community/medium simulations.

(TIF)

Figure S2 Metabolic reprogramming in E. coli that resulted in

emergent ethanol secretion to maintain redox balance. The cross-

feeding metabolite fumarate enhanced energy production in the

TCA cycle and induced a series of flux reroutes, including ethanol

production. Abbreviations – etoh: ethanol; acald: acetaldehyde;

ac: acetate; accoa: acetyl-CoA; cit: citrate; icit: Isocitrate; akg: 2-

oxoglutarate; succoa: succinyl-CoA; succ: succinate; fum: fuma-

rate; mal-L: L-malate; oaa: oxaloacetate; NAD: nicotinamide

adenine dinucleotide; pep: phosphoenolpyruvate; pyr: pyruvate;

damp: dAMP.

(TIF)

Figure S3 Metabolic reprogramming in an E. coli/B. subtilis

community, resulting in emergent secretion of both succinate and

urea. Abbreviations - etoh: ethanol; acald: acetaldehyde; ac:

acetate; accoa: acetyl-CoA; cit: citrate; icit: Isocitrate; akg: 2-

oxoglutarate; succoa: succinyl-CoA; succ: succinate; fum: fuma-

rate; mal-L: L-malate; oaa: oxaloacetate; NAD: nicotinamide

adenine dinucleotide; pep: phosphoenolpyruvate; pyr: pyruvate;

damp: dAMP; lac: L-lactate: glu: glutamate; orn: ornithine; citr:

citrulline; arguc: arginosuccinate; arg: arginine.

(TIF)

Figure S4 Emergent metabolites detected when the entire

growth period was considered. As in Figure 4, rows represent

emergent metabolites (ranked by prevalence) and columns

represent specific community/medium combinations. Emergent

secretion events detected at 1 hr (i.e. those that are included also in

Figure 4) are illustrated as black bars. Emergent secretion events

(and emergent metabolites) that were detected only when the

entire growth period was considered but not in the early growth

period are labeled in blue.

(TIF)

Figure S5 Overall consistency in emergent biosynthetic capacity

detected in early and late growth. (A) The average number of
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emergent metabolites for each pair-wise species community across

100 media detected at the 1 hr time point (x axis) vs. the average

number of emergent metabolites detected when the entire growth

period was considered (y axis). A linear regression line is illustrated

in red. (B) The frequency at which each emergent metabolite was

detected at 1 hr vs. the entire growth period (with a linear

regression line illustrated). Only metabolites that were detected

also at the 1 hr time point are included in this plot.

(TIF)

Figure S6 The Goldilocks principle of emergent biosynthetic

capacity observed in simple two-species communities. The plot

details are as described in Figure 7, using phylogenetic distance

rather than functional distance to measure the distance between

community members. Phylogenetic distance was calculated

according to the divergence in the 16S rRNA gene (Methods).

(TIF)

Figure S7 Emergent metabolites predicted by the simple FBA-

based protocol (and compare with Figure 4). Predictions were

made at the early growth period (,1 hr). The black bars represent

predictions that were verified also by the stringent FVA-based

protocol (and that are therefore included in Figure 4). The

magenta bars are additional predictions made by the FBA-based

protocol and that were filtered by the more stringent FVA-based

protocol. The prevalence of each emergent metabolite predicted

by the FVA- and FBA-based protocols is shown in parenthesis (e.g.

ethanol was predicted in only 158 community/media configura-

tions by the FVA-based protocol but in 170 configurations by the

FBA-based protocol). Note that, by definition, FVA-based

predictions are a subset of FBA-based predictions. Similarly, the

number of media in which at least one emergent metabolite was

detected for each species composition and with each of the two

protocols is listed on the top.

(TIF)

Figure S8 Growth advantage in co-culture compared to mono-

culture for (A) all species in all community/medium settings; (B)

producers in community/medium settings that exhibited emergent

biosynthetic capacity; and (C) partners in community/medium

settings that exhibited emergent biosynthetic capacity. (D)

Community-level growth advantage, comparing the total biomass

of the co-culture to the combined biomass of the two mono-

cultures.

(TIF)

Figure S9 The growth penalty associated with secretion of

emergent metabolites. The distribution of the relative growth rate

of the producer when forced to secrete emergent metabolites in

mono-culture compared to its growth rate with no constraints on

secretion is illustrated. The leftmost bin represents cases in which

the producer is not able to grow when forcing the secretion of the

emergent metabolite in mono-culture.

(TIF)

Figure S10 Confirming the Goldilocks principle of emergent

biosynthetic capacity in 500 ‘universally neutral’ media (see Text

S1). The plot details are as described in Figure 7.

(TIF)

Table S1 A list of all the SEED models used in our study.

(PDF)

Text S1 Supporting information, including a derivation of

equation (6), an analysis of the impact of emergent biosynthetic

capacity on growth, an analysis of the role of the partner in

emergent biosynthetic capacity, and a validation of the Goldilocks

principle in universally neutral media.

(PDF)
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