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Rome, Italy, 5 Dipartimento di Fisica, Università di Roma 3, Rome, Italy, 6 Dipartimento di Scienze per gli Alimenti la Nutrizione e l’Ambiente, Università degli Studi di
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Abstract

Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up
to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals
synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though,
it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to
suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external
landmark. In these cases, whether or not the group behaves truly collectively is debated. Here, we experimentally study
swarms of midges in the field and measure how much the change of direction of one midge affects that of other individuals.
We discover that, despite the lack of collective order, swarms display very strong correlations, totally incompatible with
models of non-interacting particles. We find that correlation increases sharply with the swarm’s density, indicating that the
interaction between midges is based on a metric perception mechanism. By means of numerical simulations we
demonstrate that such growing correlation is typical of a system close to an ordering transition. Our findings suggest that
correlation, rather than order, is the true hallmark of collective behaviour in biological systems.
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Introduction

Intuition tells us that a system displays collective behaviour

when all individuals spontaneously do the same thing, whatever

this thing may be. We surely detect collective behaviour when all

birds in a flock fly in the same direction and turn at the same time

[1], as well as when all spins in a magnet align, giving rise to a

macroscopic magnetization [2,3]. On the other hand, we would

not say that there is any collective behaviour going on in a gas,

despite the large number of molecules. The concept of collective

behaviour seems therefore closely linked to that of emergent

collective order, or synchronization. Indeed, explaining how order

spontaneously arises from local inter-individual interactions has

been one of the major issues in the field [4–6].

The case of insect swarms is tricky in this respect. Several

species in the vast taxonomic order Diptera (flies, mosquitoes,

midges) form big swarms consisting largely of males, whose

purpose is to attract females [7,8]. Swarming therefore has a key

reproductive function and, in some cases, relevant health

implications, the obvious, but not unique, example being that of

the malaria mosquito, Anopheles gambiae [9–11]. It is well-known

that swarms form in proximity of some visual marker, like a water

puddle, or a street lamp [7]. Swarming insects seem to fly

independently around the marker, without paying much attention

to each other (see Video S1). For this reason, the question of

whether swarms behave as truly collective systems is debated

[4,12]. In fact, it has even been suggested that in Diptera there is

no interaction between individuals within the swarm and therefore

no collective behaviour at all [13,14]. Although other studies

observed local coordination between nearest neighbours [15,16], it

remains controversial whether and to what extent collective

patterns emerge over the scale of the whole group. Clarifying this

issue is a central goal in swarms containment [17,18]. In absence

of quantitative evidence telling the contrary, the hypothesis that

external factors, as the marker, are the sole cause of swarming and

that no genuine collective behaviour is present, is by far the

simplest explanation.

We must, however, be careful in identifying collective behaviour

with collective order. There are systems displaying important

collective effects both in their ordered and in their disordered

phase. An example is that of a ferromagnet near the critical

temperature Tc, i.e. the temperature below which a spontaneous

magnetization emerges: the collective response of the system to an

external perturbation is as strong in the disordered phase slightly

above Tc as it is in the ordered phase slightly below Tc: In fact,

once below the critical temperature, increasing the amount of
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order lowers the collective response [2,3]. Similarly, in animal

behaviour it is possible to conceive cases in which individuals

coordinate their behavioural reactions to environmental stimuli,

rather than the behaviours themselves; conversely we may expect

that a group too heavily ordered, i.e. with a very large behavioural

polarization, may respond poorly to perturbations, because of an

excessive behavioural inertia. Hence, although certainly one of its

most visible manifestations, emergent order is not necessarily the

best probe of collective behaviour.

The crucial task for living groups is not simply to achieve an

ordered state, but to respond collectively to the environmental

stimuli. For this to happen, correlation must be large, namely

individuals must be able to influence each other’s behavioural

changes on a group scale. The question then arises of whether

correlation in biological systems is a consequence of collective

order or whether it can be sustained even in absence of order. The

question is relevant because the way individuals in a group

synchronize their behavioural fluctuations (correlation) is possibly

a more general mechanism than the synchronization of behaviour

itself (order). All experimental studies performed up to now,

however, concerned highly synchronized groups (as bird flocks,

fish shoals and marching locusts [19–21]), which displayed both

order and correlation. Hence, the question of whether or not order

and correlations are two sides of the same phenomenon remained

open until now. Here, we attempt to give an answer to this

question by experimentally studying large swarms of insects in the

field. As we will show, despite the lack of collective order, we do

find strong correlations, indicating that in biological systems

collective behaviour and group-level coordination do not require

order to be sustained.

Results

Experiments and tracking
We perform an experimental study of swarms of wild midges in

the field. Midges are small non-biting flies belonging to the order

Diptera, suborder Nematocera (Diptera:Chironomidae and Dip-

tera:Ceratopogonidae - see Methods). The body length of the

species we study is in the range 1:2–2:4mm: Swarms are found at

sunset, in the urban parks of Rome, typically near stagnant water.

As noted before [7], we find that swarms form above natural or

artificial landmarks. Moving the landmark leads to an overall

displacement of the swarm. The swarms we studied range in size

between 100 and 600 individuals (see Table S1 in Text S1).

To reconstruct the 3d trajectories of individual insects we use

three synchronized cameras shooting at 170 frames-per-seconds

(trifocal technique – Fig. 1e and Methods). Our apparatus does not

perturb the swarms in any way. The technique is similar to the one

we used for starling flocks [22], with one notable difference. To

reach the desired experimental accuracy we need to know the

mutual geometric relations between the three cameras very

accurately. In the case of flocks, this could be achieved only by

an a priori alignment of the cameras. In the case of swarms,

though, we proceed differently. After each swarm acquisition, we

pin down the geometry of the camera system by taking multiple

images of a calibrated target (Fig. 1f). This procedure is so accurate

that the error in the 3d reconstruction is dominated by the image

segmentation error due to the pixel resolution. If we assume this to

be equal to 1 pixel (typically it is smaller than that because midges

occupy many pixels), we make an error of 0:15cm in the

determination of the distance between two points 5cm apart from

each other (a reference value for nearest neighbour distance). The

absolute error is the same for more distant points, making the

relative precision of our apparatus even higher. This accuracy

makes the determination of the correlation functions we study here

very reliable.

The 3d-tracking of each midge is performed by using the

recursive global optimization method described in [23]. This

recursive algorithm dramatically reduces the complexity of the

tracking problem, effectively overcoming the limit of other

tracking methods [24,25], and allowing the reconstruction of

large swarms, up to 600 midges, for long time, up to 2000 frames.

Sample 3d reconstructions are shown in Fig. 1b and in Video S2.

Compared to previous field [11,15,26] and lab [27–29] studies,

data collected and analysed in the present work have the

advantage to span among swarms of different sizes and densities.

Lack of collective order
Swarms are in a disordered phase. The standard order

parameter normally used in collective behaviour is the polariza-

tion, W~D(1=N)
P

i~vvi=vi D, where N is the number of midges in the

swarm and~vvi is the velocity of insect i: The polarization measures

the degree of alignment of the directions of motion; it is a positive

quantity and its maximum value is 1: The average polarization

over all swarms is quite small, W*0:21 (see Fig. 2 and Table S1 in

Text S1). As a reference, in starling flocks we find W*0:97, on

average [19]. The probability distributions of the polarization fully

confirms the swarms’ lack of translational order and the stark

difference with flocks (Fig. 2). Clearly, swarms are not in a

polarized state. Translation is not the only possible collective

mode, though. For example, it is well-known that fish schools can

produce rotating (milling) configurations. Moreover, a group can

expand/contract, giving rise to dilatational (or pulsive) collective

modes. For this reason we have defined and measured also a

rotational and a dilatational order parameter (see Methods). We

find, however, that these quantities too have very small values

(Fig. 2). The time series, on the other hand, show that the order

parameters can have rare, but strong fluctuations, during which

their value may become significantly larger than that of an

uncorrelated system (Fig. 2). These large fluctuations are a first

hint that non-trivial correlations are present.

Correlation
The connected correlation function measures to what extent the

change in behaviour of individual i is correlated to that of

individual j, at distance r: Correlation is the most accessible sign of

the presence of interaction between the members of a group. The

absence of interaction implies the absence of correlation.

Conversely, the presence of correlation implies the presence of

an effective interaction (see Text S1, Section I). Correlation can be

Author Summary

Our perception of collective behaviour in biological
systems is closely associated to the emergence of order
on a group scale. For example, birds within a flock align
their directions of motion, giving the stunning impression
that the group is just one organism. Large swarms of
midges, mosquitoes and flies, however, look quite chaotic
and do not exhibit any group ordering. It is therefore
unclear whether these systems are true instances of
collective behaviour. Here we perform the three dimen-
sional tracking of large swarms of midges in the field and
find that swarms display strong collective behaviour
despite the absence of collective order. In fact, we discover
that the capability of swarms to collectively respond to
perturbations is surprisingly large, comparable to that of
highly ordered groups of vertebrates.
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measured for different quantities, but in the case of midges, as with

birds and other moving animals, the principal quantity of interest

is the direction of motion. To compute the connected correlation

we first need to introduce the velocity fluctuations, namely the

individual velocity subtracted of the overall motion of the group,

d~vvi~~vvi{~VVi (see Methods for the detailed definition of d~vvi and ~VVi).

This fluctuation is a dimensional quantity, hence it is unsuitable to

compare the correlation in natural vs numerical systems, as we

shall do later on. We therefore introduce the dimensionless

velocity fluctuation,

d~QQi~
d~vviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X
k

d~vvk
:d~vvk

r : ð1Þ

The connected correlation function is then given by,

C(r)~

XN

i=j
d~QQi

:d~QQj d(r{rij)XN

i=j
d(r{rij)

, ð2Þ

where d(r{rij)~1 if rvrijvrzdr and zero otherwise, and dr is

the space binning factor. The form of C(r) in natural swarms is

reported in Fig. 3: at short distances there is strong positive

correlation, indicating that midges tend to align their velocity

fluctuations to that of their neighbours. After some negative

correlation at intermediate distances, C(r) relaxes to no correla-

tion for large distances. This qualitative form is quite typical of all

species analysed (see Fig. 3). The smallest value of the distance

where C(r) crosses zero is the correlation length, r0, that is an

estimate of the length scale over which the velocity fluctuations are

correlated [19]. The average value of this correlation length over

all analysed swarms is, r0*0:19m: This value is about 4 times

larger than the nearest neighbours distance, whose average over all

Figure 1. Experiment. a: A natural swarm of midges (Cladotanytarsus atridorsum, Diptera:Chironomidae), in Villa Ada, Rome. The digital image of
each midges is, on average, a 3|3 pixels light object against a dark background. b: The 3d trajectories reconstructed for the same swarm as in a.
Individual trajectories are visualized for a short time (roughly 140 frames ~0:82sec), to avoid visual overcrowding (see also Video S1 and S2). c: A
microscope image of an adult male of Cladotanytarsus atridorsum. d: A detailed view of the hypopygium, used for species identification (see
Methods); the same midge as in c. e: Scheme of the experimental set-up. Three synchronized cameras recording at 170 frames per second are used.
Two cameras 3 m apart are used as the stereoscopic pair for the three dimensional reconstruction. The third one is used to reduce tracking
ambiguities and resolve optical occlusions. Three dimensional trajectories are reconstructed in the reference frame of the right stereoscopic camera.
f: The mutual geometric positions and orientations of the cameras are retrieved by taking several pictures of a known target. The accuracy we achieve
in the determination of the mutual camera orientation is of the order of 10{4 radians.
doi:10.1371/journal.pcbi.1003697.g001

Figure 2. Natural swarms lack global order. Order parameters in a
typical natural swarm. In all panels the grey band around zero is the
expected amplitude of the fluctuations in a completely uncorrelated
system. In the left panels we report the time series of the order
parameters, in the right panels their probability distributions. Top: The
alignment order parameter, known as polarization, W[½0 : 1�: In red we
report the reference value of the polarization in a flock of starlings.
Middle: Rotational order parameter, R[½0 : 1�: Bottom: Dilatational
order parameter, L[½{1 : 1�:
doi:10.1371/journal.pcbi.1003697.g002
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swarms is r1*0:05m (see Fig. 3 and Table S1 in Text S1).

Previous works noticed the existence of pairing manoeuvres and

flight-path coordination between nearest neighbours insects

[4,15,16]. Our results, however, indicate that midges within a

natural swarm influence each other’s motion far beyond their

nearest neighbours.

Susceptibility
The collective response of the swarm depends crucially on two

factors: how distant in space the behavioural change of one insect

affects that of another insect (spatial span of the correlation) and

how strong this effect is (intensity of the correlation). To combine

these two factors in one single observable we calculate the

cumulative correlation up to scale r,

Q(r)~
1

N

XN

i=j

d~QQi
:d~QQj h(r{rij) : ð3Þ

where h(r{rij) is the Heaviside function,

h(r{rij)~
1 if rijƒr

0 otherwise

�

It can be shown (see Text S1, Section II) that this dimensionless

function is related to the space integral of the correlation function

C(r): Hence, Q(r) reaches a maximum where C(r) vanishes, i.e.

for r~r0 (see Fig. 3). This maximum, x:Q(r0), is a measure of

the total amount of correlation present in the system. In statistical

physics x is exactly equal to the susceptibility, namely the response

of the system to an external perturbation [30,31]. In collective

animal behaviour, we do not have a quantitative link between

integrated correlation and response, so that calling x susceptibility

is not strictly correct. However, if the probability distribution of

the velocities is stationary, we can follow a maximum entropy

approach [32] and still find that the total amount of correlation in

the system, x, is related to the way the group responds collectively

to a perturbation (see Text S1, Section II). The value of x for

midge swarms is reported in Fig. 3.

Non-interacting Swarm
In order to judge how significant is the correlation function C(r)

and how large is the susceptibility x in natural swarms, we need an

effective zero for these quantities, i.e. some null hypothesis

baseline. As we have seen in the Introduction, the minimal

assumption is that all individuals in the swarm interact with an

external landmark independently from each other. Following

Okubo [4] (but see also [27] and [16]), we therefore simulate a

‘swarm’ of non-interacting particles performing a random walk in

a three-dimensional harmonic potential (see Methods). Visually,

the group behaviour of this Non-interacting Harmonic Swarm

(NHS) looks remarkably similar to that of a real swarm (see Video

S2 and S3): all ‘midges’ fly around the marker and the group lacks

collective order.

This similarity, however, is deceptive. In the NHS, the

correlation function C(r) simply fluctuates around zero, with no

spatial span, nor structure (Fig. 3). Moreover, the susceptibility in

the NHS is extremely small, xNHS*0:15, whereas the suscepti-

bility in natural swarms is up to 100 times larger than this non-

interacting benchmark (Fig. 3). We conclude that swarming

behaviour is not the mere epiphenomenon of the independent

response of each insect with the marker. Despite the lack of

collective order, natural swarms are strongly correlated on large

length scales. There are big clusters of midges that move

coherently, contributing to the ‘dancing’ visual effect of the

swarm. The only way this can happen is that midges interact.

What kind of interaction is that?

Metric interaction
To understand the nature of the interaction, we study the

susceptibility across swarms of different densities. Interestingly, we

find that x increases when the average nearest neighbour distance,

r1, decreases (Fig. 4). Denser swarms are more correlated than

sparser ones. This result indicates that midges interact through a

metric perceptive apparatus: the strength of the perception

decreases with the distance, so that when midges are further

apart from each other (larger r1) the interaction is weaker and the

susceptibility x is lower. This is at variance with what happens in

starling flocks: starlings interact with a fixed number of

neighbours, irrespective of their nearest neighbour distance r1

[33]; such kind of topological interaction does not depend on the

group density, hence the susceptibility does not depend on the

nearest neighbour distance. Fig. 4, on the other hand, shows that

midges interact metrically, namely with all neighbours within a

fixed metric range, l: Hence, in swarms the number of interacting

neighbours increases with decreasing r1 (increasing density), and as

a consequence of this increased amount interaction, the system

becomes also more correlated.

In a system ruled by metric interaction we expect all lengths to

be measured in units of the perception range, l: This implies that

the natural variable for the susceptibility is the rescaled nearest

neighbour distance, r1=l: The problem is that we are considering

different species of midges, likely to have different metric

Figure 3. Swarms correlation. Black lines and symbols refer to
natural swarms, red lines to simulations of ‘swarms’ of non-interacting
particles (NHS). Each column refers to a different midge species. Top:
Correlation function C(r) as a function of the distance at one instant of
time. The dashed vertical line marks the average nearest neighbour
distance, r1, for that swarm. The correlation length, r0, is the first zero of
the correlation function. Red: correlation function in the NHS case. The
value of r for the NHS has been rescaled to appear on the same scale as
natural distances. Each natural swarm is compared to a NHS with the
same number of particles. Middle: Cumulative correlation, Q(r): This
function reaches a maximum r~r0: The value of the integrated
correlation at its maximum, Q(r0), is the susceptibility x: Bottom:
Numerical values of the susceptibility x in all analysed swarms. For each
swarm the value of x is a time average over the whole acquisition; error
bars are standard deviations. Red: the average susceptibility xNHS in the
non-interacting case.
doi:10.1371/journal.pcbi.1003697.g003
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perception ranges. The simplest hypothesis we can make is that l
is proportional to the insect body length l (which we can measure),

so that x~x(r1=l): This hypothesis is confirmed by the data: the

susceptibility is significantly more correlated to the variable r1=l

(P-value ~5|10{5) than to r1 (P-value ~0:07 - see Methods for

the definition of P-value). The fact that the natural variable is r1=l

is a further indication that the interaction in swarms is based on a

metric mechanism.

The difference in the nature of the interaction between flocking

birds and swarming midges (topological vs. metric) is possibly due

to the significant differences between vertebrates and arthropods.

Topological interaction, namely tracking a fixed number of

neighbours irrespective of their distance, requires a level of

cognitive elaboration of the information [33] more sophisticated

than a metric interaction, where the decay of the effective force is

merely ruled by the physical attenuation of the signal with

increasing metric distance. In other words, within a metric

mechanism the range of the interaction is fixed by a perceptive

cut-off, rather than a cognitive one. Metric interaction is known to

be more fragile than topological one against external perturbations

[33], and indeed it is far more likely to observe the dispersion of a

swarm in the field than that of a flock. This may be the reason why

the presence of an external marker is crucial for the swarming

behaviour of midges [13].

Correlation without order
The experimental observations of a non-trivial connected

correlation and of a large susceptibility indicate that midges are

effectively interacting with each other by acting on their directions

of motion. This does not exclude, of course, that other types of

interaction are present. First of all, the empirical observation that

the swarm uses a visual marker as a reference for maintaining its

mean spatial position, strongly suggests that each individual

interacts with the marker. Besides, it is certainly possible that

effective positional attraction-repulsion forces between midges, as

those described in [34], exist. However, the directional correla-

tions indicate that insects are also effectively interacting by

adjusting their velocities. Moreover, the fact that these correlations

are positive for short distances means that midges tend to align
their direction of motion. This fact may seem surprising, because

alignment interactions typically lead to the formation of ordered

(polarized) groups, which is clearly not the case for midges.

Swarms are disordered, and yet interacting and highly correlated

systems. Is this a paradox?

In fact, it is not. An alignment interaction does not per se lead to

global order in the group. In all models where imitation of the

neighbours is present, the onset of long-range order depends on

the value of some key tuning parameter. In a ferromagnet, this

parameter is the temperature T , namely the amount of noise

affecting the interaction between the neighbouring spins. At high

temperature the system is in a disordered state, whereas by

lowering T one reaches a critical temperature below which an

ordering transition occurs. In models of active matter there is

another parameter tuning the transition between disorder and

order, that is density or, equivalently, nearest neighbour distance:

the system gets ordered once the nearest neighbour distance falls

below some transition value. The crucial point is that, in general,

the correlation of the system tends to be very large around the

transition point, irrespective of whether the system is in the

ordered or in the disordered phase. Hence, even a disordered

system can display large correlations, provided that it is not too far

from an ordering transition. In what follows, we want to show that

this is indeed what happens with midge swarms.

Vicsek model
The simplest model based on alignment interaction that predicts

an order-disorder transition on changing the density is the Vicsek

model of collective motion [35]. In this model each individual

tends to align its direction of motion to that of the neighbours

within a metric perception range, l: The rescaled nearest

neighbour distance, x:r1=l, is the control parameter: for low

noise, the model predicts a transition from a disordered phase (low

polarization) at high values of x (low density), to an ordered phase

(large polarization) at low values of x (high density) [35–37]. We

numerically study the Vicsek model in three dimensions. As we

have seen, real swarms hold their average position with respect to

a marker; to reproduce this behavioural trait we introduce an

harmonic attraction force that each individual experiences towards

the origin (see Methods). Also in central potential the model

displays an ordering transition: at large density, for xvxc the

system is ordered and it has large polarization (Video S4). On the

other hand, the polarization is low in the disordered phase, xwxc

(Fig. 5). However, the correlation function is non-trivial when x is

sufficiently close to xc (Fig. 5), indicating the existence of large

clusters of correlated individuals, which can be clearly detected in

Video S5. We calculate the susceptibility x, in the same manner as

Figure 4. Swarms susceptibility. Left: Susceptibility x as a function
of the rescaled nearest neighbour distance, r1=l, where l is the body
length. Each point represents a single time frame of a swarming event,
and all events are reported on the same plot (symbols are the same for
all species). The solid line is the best fit to equation (4). Right:
Logarithm of the average susceptibility as a function of r1=l: Dasyhelea
flavifrons - blue squares; Corynoneura scutellata - green circles;
Cladotanytarsus atridorsum - red triangles. The solid line represents
the best fit to equation (4). Each data point represents the time average
over the entire acquisition of one swarming event. Error bars indicate
standard deviations.
doi:10.1371/journal.pcbi.1003697.g004

Figure 5. Vicsek model. Three-dimensional Vicsek model in a central
potential. Left: Correlation function C(r) in the disordered phase,
xwxc, but close to the ordering transition. The dashed line is the
nearest neighbour distance. Inset: polarization as a function of time. For
this value of x the system is disordered. Right: Logarithm of the
susceptibility as a function of the rescaled nearest neighbour distance,
x~r1=l, where l is the metric interaction range. The solid line
represents the best fit to equation (4). Error bars are smaller than
symbols’ size.
doi:10.1371/journal.pcbi.1003697.g005
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we did for natural swarms, in the disordered phase, xwxc, and

find a clear increase of x on lowering x (Fig. 5).

This increase of the susceptibility is coherent with the existence

of an ordering transition at xc: It has been shown that, unless N is

much larger than the values analysed here, the transition in the

Vicsek model is characterized by a clear second order phenom-

enology (the nature of the transition for N?? is still debated - see

[37–39]). As a consequence, the susceptibility is expected to

become very large approaching xc and to follow the usual scaling

relation of critical phenomena [38],

x*
1

(x{xc)c , x~r1=l : ð4Þ

A fit to equation (4) of the 3d-Vicsek data is reported in Fig. 5,

giving c~1:5+0:1 and a transition point, xc~0:434: The reason

for the growth of x approaching xc in the Vicsek model is quite

intuitive. The model is metric, so that at large x, namely when the

nearest neighbour distance r1 is much larger than the interaction

range l, very few individuals interact with each other, and

coordination is small. The smaller x becomes, the larger the

number of particles within the mutual interaction range, thus

promoting the correlation of larger and larger clusters of particles.

For this reason the correlation length and the susceptibility grow

when the nearest neighbour distance decreases. When x
approaches its critical value, the coordinated clusters become as

large as the whole system, so that the groups orders below xc:
The low order parameter, the non-trivial correlation function,

and especially the increase of x on decreasing the nearest

neighbour distance, are phenomenological traits that the metric

Vicsek model shares with natural swarms. We conclude that a

system based solely on alignment can be in its disordered phase

and yet display large correlations, as midge swarms do. It is

interesting to note that by approaching the ordering transition a

compound amplification of the correlation occurs: when the

nearest neighbour distance, r1, decreases, the spatial span of the

correlation, r0, increases, so that the effective perception range in

units of nearest neighbour distance, r0=r1 is boosted. We

emphasize that we are not quantitatively fitting Vicsek model to

our data. Our only aim is to demonstrate a general concept: large

correlation and lack of global order can coexist even in the

simplest model of nearest neighbours alignment, provided that the

system is sufficiently close to an ordering transition.

Estimating the interaction range
The consistency between our experimental data and the Vicsek

model suggests that an underlying ordering transition could be

present in swarms as well. An ordering transition as a function of

the density has been indeed observed in laboratory experiments on

locusts [21], fish [40] and in observations of oceanic fish shoals

[41]. In these cases, both sides (low and high density) of the

ordering transition were explored. However, midge swarms in the

field are always disordered, living in the low-density/high-x side of

the transition. Locating a transition point having data on just one

side of it, is a risky business. The reason why we want to do this

here is because it will allow us to give a rough estimate of the

metric range of interaction in midges, which can be compared

with other experiments.

If a Vicsek-like ordering transition exist, we can use equation (4)

to fit the swarms data for x (Fig. 4). As we already mentioned, we

do not know the value of the metric perception range, l, in

swarms. Therefore, we use as scaling variable r1=l, where l is the

body length. Although the fit works reasonably well (Fig. 4), the

scatter in the data is quite large; hence, given the non-linear nature

of the fit, it would be unwise to pin down just one value for the

parameters, and we rather report confidence intervals. The fit

gives a transition point in the range, (r1=l)c[½9:0 : 13:5�, with an

exponent in the range, c[½0:75 : 1:3� (larger exponents correspond

to lower transition points).

Interestingly, there is an alternative way to locate the ordering

transition that does not rely on the fit of x: Let us establish a link

between pairs of insects closer than the perception range l and

calculate the size of the biggest connected cluster in the network.

Given a swarm with nearest neighbour distance r1, the larger l,
the larger this cluster. When l exceeds the percolation threshold,

lwlp(r1), a giant cluster of the same order as the group size

appears [42]. We calculate the percolation threshold in swarms

(Fig. 6 and Methods) and find lp~1:67r1: The crucial point is

that varying the perception range l at fixed nearest neighbour

distance r1, is equivalent to varying r1 at fixed l: Hence, at fixed l,
there is an equivalent percolation threshold of the nearest

neighbour distance, (r1)p, such that for r1v(r1)p a giant cluster

appears. Clearly, (r1)p*l=1:67~0:6l: It is reasonable to

hypothesise that the critical nearest neighbour distance is close

to the maximal distance compatible with a connected network,

given l: A sparser network would cause the swarm to lose

bulk connectivity. Therefore, given a certain perception

range l, the ordering transition occurs at values of the nearest

neighbour distance r1 close to its percolation threshold,

(r1=l)c*(r1)p=l*0:6:

At this point we have two independent (and possibly equally

unreliable) estimates of the transition point in natural swarms of

midges: the first one in units of body-lengths, (r1=l)c[½9:0 : 13:5�;
the second one in units of interaction range, (r1=l)c*0:6: Putting

the two together we finally obtain an estimate of the metric

interaction range in units of body-lengths, l*15{22 l: The body

length of the species under consideration is in the range,

l*1:2mm{2:4mm: This implies a perception range of a few

Figure 6. Percolation threshold. Percolation threshold lp as a
function of the nearest-neighbour distance in natural swarms. The
linear fit (black line) gives, lp~1:67r1: Inset: Fraction of midges
belonging to the largest cluster as a function of the clustering threshold
l: In correspondence of the percolation threshold lb there is the
formation of a giant cluster. We define lp as the point where n=N~0:6
(red dashed line). Because of the sharp nature of the percolation
transition, the value of lp does not depend greatly on the threshold
used.
doi:10.1371/journal.pcbi.1003697.g006
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centimetres, l*2{5cm, depending on the species. This crude

estimate of the midge interaction range is compatible with the

hypothesis that midges interact acoustically. In [43] the male-to-

male auditory response in Chironomus annularius (Diptera:

Chironomidae) was studied and it was found that the range of

the response was about 1:0{1:5cm, not too far from our estimate.

Similar measurements in mosquitoes (Diptera:Culicidae) show that

the auditory perception range is about 2cm [44], which is again

compatible with our determination of the interaction range in

midge swarms.

Discussion

We have shown that natural swarms of midges lack collective

order and yet display strong correlations. Such correlations

extends spatially much beyond the inter-individual distance,

indicating the presence of significant cluster of coordinated

individuals. This phenomenology is incompatible with a system

of non-interacting particles whose swarming behaviour is solely

due to the attraction to an external landmark. We conclude that

genuine collective behaviour is present in swarms. We stress that

the existence of correlation, and therefore of inter-individual

interaction, is not in contradiction with the fact that a swarm

almost invariably forms in proximity of a marker. The effect of the

marker (external force) is merely to keep the swarm at a stationary

position with respect to the environment. However, as we have

shown in the case of the non-interacting swarm, this stationarity

(which superficially would seems the only visible trait of swarming),

cannot by itself produce the observed strong correlations. By using

Vicsek model as a simple conceptual framework, we have shown

that this coexistence of disorder and correlation is a general feature

of systems with alignment interaction close to their ordering

transition.

We should be careful in interpreting our data as proof that

explicit alignment is the main interaction at work in swarms. What

we can say is that non-trivial alignment correlation implies

effective alignment interaction. However, how this effective

alignment interaction is achieved in terms of sensorimotor

processes is hard to tell. In fact, as we have already remarked, it

is possible that models purely based on repulsion/attraction

positional forces, lead to correlations similar to the ones we

reported here. Hence, as always when dealing with animal

behaviour, it is important to keep in mind the intrinsically effective
nature of any interaction. The Vicsek model provides the simplest

and most compelling description of collective behaviour when

effective alignment is present and this fact is not hindered by the

real, non-effective nature of the interaction giving rise to the

observed correlations.

Our results suggest that correlation, rather than order, is the

most significant experimental signature of collective behaviour.

Correlation is a measure of how much and how far the

behavioural change of one individual affects that of other

individuals not directly interacting with it. Our data show that

in swarms correlations are so strong that the effective perception

range of each midge is much larger than the actual interaction

range. If the change of behaviour is due to some environmental

perturbations, such large correlation guarantees that the stimulus

is perceived at a collective level.

A notion of collective behaviour based on correlation is more

general and unifying than one based on order. For example,

bird flocks and insect swarms look like completely different

systems as long as we stick to collective order. However, once we

switch to correlation, we understand that this big difference may

be deceptive: both flocks and swarms are strongly correlated

systems, in which the effective perception range, or correlation

length, is far larger than the interaction range [19]. In this

perspective, the striking difference in emergent order between

the two systems, namely the fact that flocks move around the

sky, whereas swarms do not, may be related to different

ecological factors, rather than to any fundamental qualitative

difference in the way these systems interact. Strong correlations

similar to those found in bird flocks and midge swarms have also

been experimentally measured in neural assemblies [45]. This

huge diversity - birds, insects, neurons - is bewildering but

fascinating, and it suggests that correlation may be a universal

condition for collective behaviour, bridging the gap between

vastly different biological systems.

Methods

Experiments
Data were collected in the field (urban parks of Rome), between

May and October, in 2011 and in 2012: We acquired video

sequences using a multi-camera system of three synchronized

cameras (IDT-M5) shooting at 170 fps. Two cameras (the

stereometric pair) were at a distance between 3m and 6m
depending on the swarm and on the environmental constraints. A

third camera, placed at a distance of 25cm from the first camera

was used to solve tracking ambiguities. We used Schneider

Xenoplan 50mm f =2:0 lenses. Typical exposure parameters:

aperture f =5:6, exposure time 3ms: Recorded events have a time

duration between 1:5 and 15:8 seconds. No artificial light was

used. To reconstruct the 3d positions and velocities of individual

midges we used the techniques developed in [23]. Wind speed was

recorded. After each acquisition we captured several midges in the

recorded swarm for lab analysis. A summary of all swarms data

can be found in Table S1 in Text S1.

Midge identification
We recorded swarms of midges belonging to the family

Diptera:Ceratopogonidae (Dasyhelea flavifrons) and Diptera:Chir-

onomidae (Corynoneura scutellata and Cladotanytarsus atridor-
sum). Midges belonging to the family Chironomidae were

identified to species according to [46], the ones belonging to the

family Ceratopogonidae were identified according to [47] and

[48]. Specimens used for identification were captured with a hand

net and fixed in 700 alcohol, cleared and prepared according to

[49]. Permanent slides were mounted in Canada Balsam and

dissected according to [50]. Species identification was based on

morphology of the adult male, considering different characters, as

wing venation, antennal ratio (length of apical flagellomere divided

by the combined length of the more basal flagellomeres) and

genitalia, which in Diptera are named hypopygium (a modified

ninth abdominal segment together with the copulatory apparatus -

see Fig. 1).

Velocity fluctuations
Let f~xxi(t)g be the set of coordinates at time t and f~xxi(tzDt)g at

the next time step. To simplify the notation we set Dt~1: The

velocity vector of insect i is defined as,~vvi(t)~~xxi(tz1){~xxi(t): To

compute the connected correlation function we need to subtract

the contribution of all collective modes from the individual

velocity. We identify three collective modes: translation, rotation

and dilatation (expansion/contraction).

Translation: Let ~xx0(t):1=N
P

i~xxi(t) be the position of the

centre of mass, and ~yyi(t)~~xxi(t){~xx0(t) the position of the i-th
object in the centre of mass reference frame. By subtracting the

centre of mass velocity, ~xx0(tz1){~xx0(t), from the individual
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velocity,~vvi, we obtain the translation-subtracted fluctuation,

d~vvi~~yyi(tz1){~yyi(t) : ð5Þ

Rotation: The optimal rotation about the origin is defined [51]

as the 3|3 orthogonal matrix R which minimizes the quantityP
i½~yyi(tz1){R~yyi(t)�2: By subtracting the overall translation and

rotation, the velocity fluctuation is,

d~vvi~~yyi(tz1){R~yyi(t) : ð6Þ

Dilatation: The optimal dilatation is defined [51] as the scalar L

that minimizes the quantity
P

i½~yy(tz1){LR~yyi(t)�2: After sub-

tracting the optimal translation, rotation and dilatation, the

velocity fluctuation is finally given by,

d~vvi~~yyi(tz1){LR~yyi(t):~vvi{~VVi , ð7Þ

where with ~VVi we have indicated the contribution to the velocity of

i of all three collective modes.

Rotation and dilatation order parameters
The rotational order parameter is defined as,

R~
1

N DX
i

~yy\i (t)|~vvi(t)

D~yy\i (t)|~vvi(t)D
:K̂K D , ð8Þ

where~yy\i is the projection of~yyi(t) on the plane orthogonal to the

axis of rotation, the operator | indicates the cross product, and K̂K
is a unit vector in the direction of the axis of rotation. In (8),

~yy\i (t)|~vvi(t) is the angular momentum of midge i with respect to

the axis K̂K: In a perfectly coherent rotation, all individuals would

have angular momenta parallel to the axis, so that R~1: In a non-

coherent system, some of the projections of the angular

momentum on K̂K would be positive and some negative, so

R*0: Note that K̂K is the axis of rotation defined in the previous

section, computed using Kabsch algorithm [51].

The dilatational order parameter is defined as,

L~
1

N

X
i

½R~yyi(t)�:½~yyi(tz1){R~yyi(t)�
DR~yyi(t)D D~yyi(tz1{R~yyi(t)D

: ð9Þ

L[½{1,1� and it measures the degree of coherent expansion

(positive L) and contraction (negative L) of the swarm. In a

perfectly coherent expansion/contraction ~yyi(tzDt){R~yyi(t)
would be parallel to R~yyi(t) and so the scalar product in equation

(9) will be 1 for an expansion and {1 for a contraction.

Normalization of the correlation function
In the study of flocks [19], we normalized C(r) by its limiting

value for r?0, which is equivalent dividing it by the value in the

first bin. In that way the normalized correlation function tends to 1
for r?0, so that its value is amplified. In the study of flocks we

were only looking at the correlation length, which is not altered by

such a normalization. However, here we will be interested in both

the range and the intensity of the correlation, so we must not

amplify artificially the correlation signal. Normalising the fluctu-

ations as in (1) is equivalent normalising the correlation function

by its value at exactly r~0, i.e. for i~j, which is different from its

limit for r?0:

Non-interacting Harmonic Swarm
The NHS is an elementary model of non-interacting particles

performing a random walk in a three-dimensional harmonic

potential. The dynamics of each particle is defined by the

Langevin equation,

m €~xx~xxi(t)~{c _~xx~xxi(t){k~xxi(t)z
ffiffiffiffiffi
gc
p ~jji(t) , ð10Þ

where ~xxi(t) is the position of the i-th particle at time t, m is the

mass, c the friction coefficient, k the harmonic constant and~jji(t) is

a random vector with zero mean and unit variance,

Sja
i (t)jb

j (t
0
)T~d(t{t

0
)di,jda,b, with a~x,y,z: Clearly, in this

model there is no interaction between particles. The parameter

g tunes the strength of the noise. The equation of motion is

integrated with the Euler method [52]. We simulated the NHS in

the critically damped regime (c2~4mk), which gives the best

similarity to natural swarms. The number of particles N is set

equal to that of the natural swarm we want to compare it with.

Parameters have been tuned to have a ratio between the distance

travelled by a particle in one time step (frame) and the nearest

neighbour distance comparable to natural swarms, Dr=r1*0:15 :
m~1, k~12:75, c~7:14, g~2:0:

Definition of P-value
Let us define a data set as a collection of n pairs of variables,

fxi,yig, with i~1, . . . ,n (for example, the susceptibility as a

function of the rescaled nearest neighbour distance - Fig. 4). The

null hypothesis is that fxi,yig are independent variables. Let us

call r the Spearman’s rank correlation coefficient for a set of n data

and pn(r) the probability distribution of r in the case of n pairs of

independent variables. Given the empirical data, we calculate the

Spearman’s rank correlation coefficient and get a certain value,

r~r0: The P-value is defined as the probability that the statistical

test we are using (Spearman) gives a result at least as extreme as

the one actually observed, provided that the null hypothesis is true.

Hence, the P-value is given by,

P~pn(DrDwDr0D) : ð11Þ

Basically, the P-value is telling us how likely it is that the degree of

correlation that we observe is just the result of chance. In absence of

an a priori model of the noise, we estimate pn(DrDwDr0D) by a

permutation test [53,54]: using the original paired data, fxi,yig, we

randomly redefine the pairs to create a new data set fxi,yi’g, where

the i’ are a permutation of the set f1,:::,ng; we calculate the

Spearman’s rank correlation coefficient r of this new randomized

data set; we iterate this permutation 106 times; we compute the

fraction of permutations that give DrDwDr0D: This fraction is equal to

the P-value of the data set under consideration [53].

Vicsek model
We performed numerical simulations of the Vicsek model in 3d

[35–38,55]. The direction of particle i at time tz1 is the average

direction of all particles within a sphere of radius l around i
(including i itself). The parameter l is the metric radius of

interaction. The resulting direction of motion is then perturbed

with a random rotation (noise). Natural swarms are known to form
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close to a marker and to keep a stationary position with respect to

it [13]. To mimic this behaviour we modified the Vicsek model by

adding an external harmonic force equal for all particles. This

potential also grants cohesion, without the need to introduce an

inter-individual attraction force [4,16,27].

The update equation for velocities is therefore given by,

~vvi(tz1)~v0 Rg H
X
j[Si

~vvj(t){b~rri(t)

0
@

1
A

2
4

3
5 , ð12Þ

where Si is the spherical neighbourhood of radius l centred around

i, H is the normalization operator, H(~xx)~~xx=D~xxD, andRg performs a

random rotation uniformly distributed around the argument vector

with maximum amplitude of 4pg: The term {b~rri(t) is the

harmonic force directed towards the origin. For b~0 we recover

the standard Vicsek model. The update equation for the positions is,

~rri(tz1)~~rri(t)z~vvi(tz1): Thanks to the central force we can use

open boundary conditions. All particles have fixed velocity modulus

D~vvD~v0~0:05: Each simulation has a duration of 6|105 time steps,

with initial conditions consisting in uniformly distributed positions in

a sphere and uniformly distributed directions in the 4p solid angle.

After a transient of 105 time steps, we saved 500 configurations at

intervals of 1000 time steps in order to have configurations with

velocity fluctuations uncorrelated in time. The control parameter of

interest is x:r1=l, where r1 is the nearest neighbour distance, which

is tuned by b: The model displays a transition to an ordered phase

when xvxc: We studied the susceptibility x(x) for different values of

x[½0:34,0:70�:To observe the power-law behaviour of x(x) predicted

by the model we performed standard finite-size scaling [38]: at each

fixed value of the system’ size N[½128,8192� we calculated x(x; N)
and worked out the maximum of the susceptibility xmax(N) and its

position xmax(N); we finally plotted xmax vs. xmax parametrically in

N, to obtain the function x(x) in Fig. 5. The noise, g, affects the

position of the transition point xc [35–37], but this is irrelevant for us,

because we do not use any quantitative result from the model to infer

the biological parameters of real swarms. The data reported in Fig. 5

have g~0:45:

Percolation threshold
For each frame we run a clustering algorithm with scale l [56]:

two points are connected when their distance is lower than l: For

each value of l we compute the ratio n=N between the number of

objects in the largest cluster and the total number of objects in the

swarm (Fig. 6). The percolation threshold, lc, is defined as the

point where a giant cluster, i.e. a cluster with size of the same order

as the entire system, forms [42]. We define lc as the point where

n=N~0:6: The percolation threshold scales with the nearest

neighbour distance, lc~1:67r1 (Fig. 6). Strictly speaking, the

percolation argument only holds at equilibrium, because in a

system where particles are self-propelled there may be order even

at low density [36]. However, at low values of the noise, we still

expect the percolation argument to give a reasonable, albeit crude,

estimate of the perception range.

Supporting Information

Datafile S1 Datafile S1 refers to a swarm of Chironomidae,
Cladotanytarsus atridorsum. Data from this file were used to

produce the panels in the first two rows of the left column of Fig. 3.

(DAT)

Datafile S2 Datafile S2 refers to a swarm of Chironomidae,
Corynoneura scutellata. Data from this file were used to produce

the panels in the first two rows of the central column of Fig. 3.

(DAT)

Datafile S3 Datafile S3 refers to a swarm of Ceratopogonidae,
Dasyhelea flavifrons. Data from this file were used to produce the

panels in the first two rows of the right column of Fig. 3.

(DAT)

Text S1 In the text file, helpful details about the importance and

the interpretation of the connected correlation function and of the

susceptibility are reported together with a table summarizing the

main properties of the analysed swarming events. The three

supporting data files report the positions and the velocities used to

compute the correlation functions for a single instant of time. The

three files refer to the three different analysed species of midges. In

each file, for each pair of midges in the swarm, the mutual distance

and the scalar product between their dimensionless velocity

fluctuations (see Eq.1) are reported: the distances in meters in

the first column, the dimensionless scalar products in the second

column.

(PDF)

Video S1 Wild swarm of roughly 100 midges in the field

(Diptera:Ceratopogonidae). The swarm has been video recorded

at 170 frames per second, with a resolution of 4Mpix, using an

IDT-M5 camera.

(AVI)

Video S2 Three dimensional visualization of the same natural

swarm as in Video S1. This 3d reconstruction has been obtained

by means of our dynamical tracking algorithm based on the

trifocal experimental technique.

(AVI)

Video S3 Three dimensional visualization of a numerically

simulated swarm of non-interacting particles in a harmonic

potential (NHS, Non-interacting Harmonic Swarm). The number

of ‘midges’ in the NHS is the same as in Video S2.

(AVI)

Video S4 Three dimensional visualization of a numerically

simulated swarm obtained using Vicsek model with the addition of

an harmonic attraction force towards the origin. The video refers

to a swarm in the ordered phase, with the polarization equal to

0:72: The number of ‘‘midges’’ in the swarm is 128, the harmonic

constant b is equal to 0:006 while the simulation noise g is equal to

0:3:
(MP4)

Video S5 Three dimensional visualization of a numerically

simulated swarm obtained using Vicsek model with the addition of

an harmonic attraction force towards the origin. The video refers

to a swarm in the disordered phase, with the polarization equal to

0:20: The number of ‘‘midges’’ in the swarm is 128, the harmonic

constant b is equal to 0:002 while the simulation noise g is equal to

0:45:
(MP4)
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