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Abstract

Metagenomic sequencing has contributed important new knowledge about the microbes that live in a symbiotic
relationship with humans. With modern sequencing technology it is possible to generate large numbers of sequencing
reads from a metagenome but analysis of the data is challenging. Here we present the bioinformatics pipeline MEDUSA that
facilitates analysis of metagenomic reads at the gene and taxonomic level. We also constructed a global human gut
microbial gene catalogue by combining data from 4 studies spanning 3 continents. Using MEDUSA we mapped 782 gut
metagenomes to the global gene catalogue and a catalogue of sequenced microbial species. Hereby we find that all studies
share about half a million genes and that on average 300 000 genes are shared by half the studied subjects. The gene
richness is higher in the European studies compared to Chinese and American and this is also reflected in the species
richness. Even though it is possible to identify common species and a core set of genes, we find that there are large
variations in abundance of species and genes.
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Introduction

Metagenomic sequencing of the human microbiome has

contributed to our understanding of the microbial communities

that live in symbiosis with humans and their genomic capabilities

[1,2]. The human gut microbiome is associated with a range of

metabolic diseases and likely influences our physiology and

nutrition [3,4,5,6]. To discern the associations between the gut

microbiome and human health, metagenomic sequencing by

generating millions of short reads from community genomes is a

very powerful tool that generates vast amounts of information

about the microbiome. To analyze the functional content of a

metagenomic data set, its diversity and content, bioinformatics

tools together with computational resources are necessary. By

aligning the reads to a database of reference genomes or genes

assembled de novo from the reads themselves and counting the

reads on each reference sequence, a quantitative measure of the

microbiome composition can be obtained. The analysis also

involves preprocessing such as quality assessment and filtering out

human reads.

Several methods exist for either performing de novo assembly of

the metagenomic data to predict gene sequences from longer

contigs such as SOAPdenovo [7], velvet [8] and MOCAT [9]

which is a dedicated pipeline for metagenomic de novo assembly.

The de novo assembly tools are important because the available

genomic databases do not yet include complete genomes for many

organisms present in metagenomic samples. Tools for taxonomic

assignment of metagenomic reads have been developed and these

include Phylophytia [10], PhymmBL [11] and MetaPhlAn [12].

These tools rely on a database of reference genomes that is either

used for training a classifying model or for direct alignment of

sequence reads.

To address the problem of quantitative characterization of a

metagenome data set, we have developed a tool for quality control,

filtering reads and counting alignments to reference genomes and

a gene catalogue database in one step. Furthermore, downstream

tasks such as handling a large number of samples and annotating

the alignment counts to taxonomic and functional databases are

handled. Handling an abundance table of several hundred samples

and millions of gene features puts special requirements on efficient

implementation. This requires a machine with a large amount of

RAM and efficient data management codes. We have tested

MEDUSA on four gut metagenomic datasets from three

continents and evaluate its performance by mapping to two

databases, one reference genome catalogue made up of 1747

bacterial and archaeal genomes and a gene catalogue constructed

in this study.

One important question in the field of the human gut

microbiome is whether there is a common core of species and

genes and how variable the microbiome is between different

individuals. A core of gene functions was identified in an American

population of 18 individuals but using 16S rRNA sequencing on
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154 individuals did not identify a core at the species level [13]. By

using metagenomic sequencing on 124 individuals from Denmark

and Spain, a species core was identified and as well a core of

almost 300 000 genes was identified in at least half the population

[2]. An unanswered question is whether there is a core

microbiome across continents. Is there a core at the species level

and at the gene level? To address these questions we used the data

from four studies and found core species and genes. The core

genes are also the most abundant genes but each individual also

carries a large number of genes that are not shared with a majority

of the population or are unique. Interestingly we found that the

abundance of core species varies substantially between the studies.

Results

MEDUSA overview and design principle
MEDUSA is an integrated pipeline for analysis of short

metagenomic reads, it contains modules for mapping reads to

reference databases, combining output from several sequencing

runs and manipulating the tables of read counts and testing for

differential abundance (Figure 1a). Python was used for creating a

pipe to stream metagenomic reads stored in fastq files (can be

compressed with gz, bzip2 or in SRA archives) through a quality

control step, filtering out human reads and mapping reads to two

databases simultaneously, without the need for writing interme-

diate files (Figure 1b). By streaming reads in a pipe, time

consuming disk IO is eliminated and disk space is saved.

MEDUSA also contains tool for combining and analyzing a table

of counts in numpy which facilitates a fast framework for

manipulating a table that had several hundred by several millions

entries. These tools include performing rarefaction to sample the

reads to the same depth of sequencing, testing for differential

relative abundance and plot relative abundance for selected

features. The reference catalogues used can be a gene catalogue

and a genome catalogue and this approach has been used

previously [2,3]. MEDUSA can merge count tables of genes and

genomes with annotation information to generate a KEGG

ortholog abundance and taxonomic table.

Species catalogue construction
In this study, four of the largest published gut metagenomic

datasets to date were included and compared. The subjects are

from United States of America (Human microbiome project,

HMP) [1], China [4], Denmark, Spain (MetaHIT) [2] and

Sweden [3], all together containing 40 billion metagenomic reads

and 782 samples. All samples were sequenced on the Illumina

platform with read lengths from 44 to 100 base pairs.

A non-redundant catalogue of species genomes was constructed

based on the results of a method using 40 universal single copy

phylogenetic marker genes used for clustering prokaryotic

genomes into species [14]. The catalogue contains 1747 species

genomes downloaded from NCBI Genbank and the full list of

genomes is presented in Table S1. The quality controlled and

filtered reads were aligned to the genome catalogue and the

number of aligning reads to each contig in the database was

counted.

Data mapping
Reads files from the four studies were used as input to the

function streamAligner. This function can take a number of

compressed fastq files as input and will produce a count file for

each input file and reference database. The function produces a

log file for each input file with mapping statistics and output from

the various software used in the stream such as fastx and Bowtie2.

The function streamAligner can easily be parallelized by starting

many instances of the function; each instance will look in the list of

files supplied and start working on unprocessed files given that all

instances have access to the same file system. The input number of

reads for each study were on average 40612, 102628, 45618 and

31618 million single end reads per sample for the studies China,

HMP, MetaHIT and Sweden, respectively. Most of the sequenc-

ing runs have a high quality with almost 98% of the reads passing

the quality cutoff (Figure 1c, Table S2). Out of the high quality

reads, on average only 0.023% aligned to the human genome

although the HMP data had been cleaned for human reads before

submission to a public database. It is worth to note that the degree

of human reads in a sample is highly variable with a few samples

with considerable fraction of human reads and therefore the

filtering of human reads is important even in gut metagenome

datasets where the fraction of human reads is low compared to

data from other body sites [1]. Out of the HQ non-human reads,

75% could align to the gene catalogue while 39% could be aligned

to the genome catalogue which is similar to previous results or

alignment to gene and genome catalogues [2,3]. This indicates

that there are still species in the gut that have not yet been

identified. The function combineCounts takes a range of input files

and a file mapping sequence runs to a sample since some samples

could be sequenced in several runs. The output of combineCounts is a

large abundance matrix which has aligned features as rows and

samples as columns.

We compared our results of the genus abundance to another

tool, Metaphlan [12] which uses clade specific marker genes from

reference genomes for taxonomic profiling of metagenomes. HMP

samples profiled with Metaphlan were compared to the results

using MEDUSA on the genus level and the comparison accounts

on average for 99.560.46% and 98.162.1% of the reads aligned

reads, respectively. Comparing the 137 samples that were shared,

we find that the Pearson correlation between the profiles are

0.9560.06 (Table S3), indicating that the two methods produce

very similar results. Performance of Metaphlan has been reported

to be 450 reads per second on a single CPU [12]. MEDUSA was

here performing with a throughput of 938 reads per second (AMD

Opteron 6220), but then quality control, human filtering and

alignment to the reference genomes and gene catalogue were done

simultaneously.

The taxonomic profiles at the species and genus level of all

samples were determined by analyzing the aligned reads to

reference genomes. The most abundant genus in the cohort was

Bacteroides but the inter-individual variation was large spanning

from almost 1 to 0 (Figure 2a), the top 20 most abundant genera

account for 9368% of the annotated reads. The most abundant

Author Summary

Our bodies are home to a myriad of microbial cells and our
intestinal tract is especially densely populated with
bacteria. Alterations in the composition of the gut
microbiota have been associated with common human
diseases. By sequencing the genomes of the microbes, the
metagenome, detailed information about who is there and
their capabilities can be obtained. In this paper, a method
for analyzing metagenomic data is presented together
with an analysis of gut metagenomes from 4 different
studies and 3 different continents. We identify a core set of
genes and species were identified but the abundance of
core components differs between study populations. A
catalogue of gut microbial genes from the 4 studies was
constructed containing more than 11 million genes.

MEDUSA and Gut Microbial Gene Catalogue
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species were from Bacteroides, Faecalibacterium and Eubacterium with

inter-individual variations in abundance spanning several orders of

magnitude (Figure S1). The abundance of Bacteroides was higher in

HMP and Chinese samples compared to Metahit and Swedish

samples and the latter had higher abundance of Ruminococcus

(Figure 2b). The abundance of other genera also varied across

study populations and in general the Swedish and to some extent

the Metahit population had more Firmicutes, e.g. Faecalibacterium,

Eubacterium, Clostridium and Dorea (Figure S2). Analyzing the

diversity of the species found in the samples shows that the

diversity is highest in the Swedish samples followed by MetaHIT

which are also less dominated by Bacteroides. Heatmaps of species

and genera abundance are shown together with a clustering of

samples in Figure S3 and S4. Using the species abundance profiles

to calculate the diversity of species shows that MetaHIT and

Swedish samples have a higher diversity compared to American

and Chinese. The higher diversity in these samples is likely due to

a smaller dominance by Bacteroides which is not replaced by one

species or genera but several different Firmicutes species.

To address whether there is a core of species that is shared by

subjects from the different cohorts, we looked at species with a

relative abundance above 0.0001 across subjects and found 116

species above this threshold in 50% of the subjects and 71 species

above the threshold in 90% of the subjects (Figure 2d and Table

S4). This indicates that there is a common core of species shared

across all cohorts but their abundance differs extensively. Since the

size of the species core have been shown to be affected by the

depth of the analysis using the HITChip [15] we investigated the

sensitivity using metagenomic sequencing. The performed analysis

shows that the size of the core is relatively insensitive to the cutoff

used for abundance (Figure S5).

Three enterotypes or clusters of stratified intestinal microbiota

composition were suggested [16] and here we investigate the

existence of enterotypes in the combined cohorts. The strongest

support was found for three clusters with an average Silhouette

width of 0.29 (Figure S6). The driver genera were Bacteroides,

Prevotella and Ruminococcus as originally proposed (Figure S7).

However, the three enterotypes were strongly associated with the 4

study cohorts, China and HMP samples were enriched in

enterotype 1, Metahit evenly distributed among the three and

Sweden enriched in enterotype 3 (Table S5 and Figure 2b). When

studying only the Danish samples from the Metahit cohort and

Figure 1. The MEDUSA pipeline and its application to 4 gut metagenome datasets. (a) An overview of the MEDUSA pipeline and its
functions is shown. Input data is fastq and can be compressed in various ways. MEDUSA counts reads aligning to a reference catalogue and outputs
count files that can be annotated and analyzed. (b) The alignment function is implemented using linux pipes which reduces file IO substantially and
integrates the quality control, filtering and aligning to a database into one step. (c) Data statistics of the human gut samples analyzed in this study.
Most reads (.90%) pass the quality control step and few samples have any substantial contamination of human DNA. Overall, the reads align to the
gene catalogue to a larger extent compared to the genome catalogue. (d) Percent of reads aligning to the gene and genome catalogues are shown
for each study. Furthermore, for each sequencing run, the processing time and the number of reads are shown and scales linearly.
doi:10.1371/journal.pcbi.1003706.g001
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comparing to the outcome in the original population, there is a 96%

agreement between the clustering results (Table S6). Ranking the

subjects according to their relative abundance of Bacteroides indicates

that there is a smooth gradient but Prevotella shows a bimodal

distribution indicating that subjects fall into primarily two categories

with the abundance either being .10% or ,1% (Figure S8).

Gene catalogue construction
We extended the human gut microbial gene catalogue by

merging data from the four different gut metagenome studies.

Contigs from each study were downloaded and genes were

predicted, in total 72.5 million genes were predicted. 67 million

genes were predicted from the individual assemblies of samples

and 5.5 million genes were predicted from the global assemblies

that were performed on unassembled reads (Figure S9). Genes

from each individual study were then clustered based on their

sequence similarity using Uclust [17] and a 95% identity and 90%

coverage cutoff. In a final step, the NR genes from each study were

then clustered using the same criteria as above and a global human

gut microbial gene catalogue was obtained containing 11 million

genes. Each study showed a substantial number of unique genes

while the common genes to all studies was 488 482 and 2.7 million

genes were shared between any two studies whereas almost 9

million genes were unique to a single study (Figure 3). The largest

number of unique genes was found in the HMP samples and these

were also the deepest sequenced. The lowest number of unique

genes was found in the Chinese cohort on which a global assembly

of unassembled reads from individual assemblies was not done.

The largest overlap between two studies was found between the

Swedish and HMP studies with over 1.5 million shared genes.

Although each study contained many unique genes from de novo

assembly, we wanted to study the abundance of the shared and

Figure 2. Taxonomic analysis of the gut metagenome. (a) Genus abundance of each sample ordered by increasing Bacteroides relative
abundance. There is a continuous gradient of increasing Bacteroides relative abundance in the studied samples. The 20 most abundant genera are
shown, whereas the rest of the annotated reads are grouped into other. (b) Boxplots showing the relative abundance of Bacteroides, Prevotella and
Ruminococcus. The Prevotella abundance is low in most samples but a few samples have a major Prevotella abundance. (c) Shannon diversity index of
the species abundance shows that Swedish and Metahit samples have a higher diversity compared to Chinese and American. (d) Pan and core species
with a relative abundance above 1024 in the subjects (repeated samples from the same subject excluded). The core percentage means that a species
was present in at least % of the subjects.
doi:10.1371/journal.pcbi.1003706.g002
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unique genes in each subject. To get a quantitative measure of

gene abundance, reads were mapped back to the gene catalogue as

described above and in Methods. On average 3868% of reads in

each sample mapped to the core genes (488 482) found in all

studies (Figure 3). A similarly large part of reads mapped to study-

unique genes (3664%). This indicates that there is a substantial

part of the microbiome that is shared but also that low abundant

genes are unique to individuals. If the abundance is also

normalized to the number of genes in each category it is clear

that the most abundant genes are shared (Figure S10).

To determine the richness of the microbiota using the gene

catalogue, aligned reads were counted and two reads were

required to call a gene present in a sample. Comparison of the

gene richness in the 4 studies shows that the European samples

have a higher gene count compared to Chinese and HMP samples

(Figure 4a). When counting genes, all samples were rarefied to the

same number of reads, 11 million, in order to remove the effect of

different sequencing depth and 23 samples were removed because

of limited sampling depth. Regardless of rarefaction, European

samples showed a higher gene richness compared to Chinese and

HMP samples. Recently the gene richness has been associated

with lower BMI and favorable metabolic markers in a study of

Danish subjects [6]. All HMP subjects are reported to be healthy

but still show a markedly lower gene richness compared to the two

European cohorts. Since the gene richness is so closely associated

with the different studies, we did not investigate any associations

between gene richness and health status, as methodological

differences cannot be ruled out. In a study of American twins,

the association between gut microbiota richness and obesity has

also been reported previously using 16S rRNA sequencing [13].

Low diversity of the microbiota has been reported to be associated

with inflammatory bowel disease [18] and inflammation in elderly

[19]. A comparison of the diversity between populations also

found that American subjects had a less diverse microbiota

compared to Amerindians from Venezuela and Malawians [20].

The differences became evident after 3 years of age, but not in

younger subjects.

Despite differences in diversity, there is a core of genes found in

a majority of the subjects. By counting the genes present in at least

50% of the population we found 283 705 genes which indicated

that a large portion of the genes carried by an individual is shared.

In the original MetaHIT study of 124 subjects, each individual

carried just above 536 112 genes on average [2]. A core of genes

was identified of 294 110 genes being present in at least half the

MetaHIT population which also means that a large number of

genes were only found in one or a few subjects. However, there are

only 3 genes shared by all subjects of this study (Figure 4b,c). The

number of genes shared by at least 50% of the subject is stable

when more subjects are added and it can therefore be expected

that this number will be stable also when more subjects are

included. However, the number of core genes is highly dependent

on the fraction of subjects required to carry the gene (Figure 4c)

e.g. there are 1.3 million genes shared by at least 20% of the

population. The pan genome is quickly increasing by the number

of subjects which also means that most genes are shared by at least

2 individuals and in fact over 10 million genes are found in at least

2 individuals. The genus origin and functional potential of the core

genes were compared to those of all genes in the catalogue. The

fraction of genes with an unknown genus origin is lower in the core

genes compared to all genes in the catalogue (13% compared to

31%, respectively) (Table S8). The core genes were 20% from

Bacteroides and 13% from Clostridium origin and these two genera

were also the most common annotated genera in the full gene

catalogue. At the functional level, a higher fraction of genes could

be assigned to a gene in KEGG. A wide set of KEGG KOs had a

higher annotation frequency to the core genes (Table S9). These

functions include biosynthesis of secondary metabolites, amino

acids and starch and sucrose metabolism. In summary, on average

Figure 3. Gene catalogue construction and abundance. (a) The Venn diagram shows how the 11 659 115 genes were shared in the 4 studies
based on the merge of the 4 non-redundant gene catalogues. A core of 488 482 genes were found in all studies whereas a large part of the genes
were unique to each study. (b) Relative abundance of genes grouped into how they are shared in the Venn diagram. The shared genes are also the
most abundant genes followed by the unique genes to each study. Each field in the Venn diagram is denoted by the first letter of the study.
doi:10.1371/journal.pcbi.1003706.g003
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there is a shared common pool of genes but there is also a large

number of genes in each individual that is shared with very few but

are not completely unique.

Discussion

The higher abundance of Bacteroides in the HMP and Chinese

subjects compared to the European subjects can be due to

differences in lifestyle, age, disease state, antibiotic use and diet.

Bacteroides abundance has been associated with a diet high in

animal protein, amino acids and saturated fats suggesting high

meat consumption, Prevotella was found to be associated with high

intake of carbohydrates and simple sugars [21]. It has also been

observed that a diverse diet is associated with a diverse microbiota

in an elderly population [19].

The gene catalogue presented here could be used for mapping

of metagenomics sequence reads in future studies as it spans a

large and diverse population. It clearly shows that there is a

common core of genes across continents and populations although

there are a many genes that are only found in few subjects. This

indicates that more genes will be found when new subjects are

studied but it is likely that these genes will have a very low

abundance as the core genes found here have a high relative

abundance. Possibly, some of the genes found in few individuals

are transient genes whereas the core genes are more stable over

time. The stable species of the microbiota has been found to be

also the most abundant part by a 16S rRNA study using low error

prone sequencing technology [22].

Differences in microbiota richness seen here between the

European and Chinese and HMP studies can be due to a number

of reasons. Antibiotic use, diet and other lifestyle effects are

possible reasons for this difference. Also, methodological differ-

ences in sample collection and DNA extraction could influence

sample richness and composition. The effect of antibiotics at

subtherapeutic levels in mice is reduced diversity [23] and also in

humans antibiotic use have been shown to have a major impact on

the microbiota and reduced diversity [24]. The difference in

diversity between the MetaHIT and HMP samples have also been

seen in a previous study using phylogenetic marker genes [25]. In

this study, this trend was seen both in species and gene richness

and especially pronounced in the gene richness. It is likely that

HMP samples which were sequenced to a greater depth have a

higher proportion of their microbiome represented in the

assemblies; this is also reflected in the large number of genes

assembled from the HMP samples. However, the number of genes

seen with a normalized number of reads is still substantially less

than in the European samples.

In conclusion, we here present the MEDUSA pipeline, a tool for

metagenomic data analysis with possibility for simultaneous

taxonomic and gene annotation and handling of large data sets.

We have applied this tool to perform the first comparison of four

large studies from three continents and found a common species

and gene core although the abundances of core components differ

between populations. Furthermore, we provide a gene catalogue

spanning over 11 million genes constructed from the different

populations.

Methods

Implementation of the method
MEDUSA was implemented in python programming language

and requires the numpy package (http://www.numpy.org/).

MEDUSA makes use of standalone tools such as FASTX, bowtie2

[26] and GEM [27] that need to be callable from the Unix

command line. The MEDUSA pipeline together with databases

and results are available at http://www.metabolicatlas.com/

medusa.

Figure 4. Gene richness and pan and core genes. (a) Number of
genes in each sample using 11 million reads is shown as a smoothed
histogram. European samples have a higher gene richness compared to
the Chinese and American. (b) The number of genes as a function of the
number of samples. The definitions of the cores are the same as in
Figure 2. The size of the core50% is 283 705 genes. (c) Shows the
number of core genes as a function of the inclusion criteria (% of the
population having the gene).
doi:10.1371/journal.pcbi.1003706.g004
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Species catalogue construction
A non-redundant catalogue of genomes from prokaryotic

species was constructed by using the results from grouping of

prokaryotic genomes into species [14]. For each species, the

longest of its member genomes was chosen as representative and

the genome downloaded from NCBI Genbank. 8 genomes from

the list were excluded as these records had been changed or

retracted since the creation of the list of non-redundant species. All

downloaded contigs were merged into a single fasta file and

indexed by gem-indexer. The catalogue was annotated to NCBI

taxonomy using the function annotateToNCBITaxonomy which

creates an output file with taxonomy ids and taxnomomic names

to each record in the reference catalogue.

Gene catalogue construction
Four large metagenome studies were included in the construc-

tion of a global gut microbial gene catalogue. Assembled contigs

were downloaded for the four studies [1,2,3,4]. Genes were

predicted on the contigs using Metagenemark [28]. Usearch [17]

was used for constructing non-redundant sets of genes with 95%

sequence identity and 90% coverage of the shorter sequence. This

cutoff groups homologous genes from strains of the same species

together but does generally not group more distantly related genes

such as a protein family. A catalogue for each study was first

constructed and then these were merged into a global catalogue.

Data download and analysis
In this study, 782 human gut metagenomes were analyzed from

four different studies, Sweden [3], MetaHIT [2], HMP [1] and

China [4]. All samples were analyzed with the Illumina

sequencing technology and a total of 40 billion reads were

analyzed (Table S2). Some of the HMP subjects were sequenced

on up to three occasions (Table S7). Each sequencing run was

analyzed using the streamAligner function in MEDUSA and paired

end reads were treated independently. Sequencing runs were

merged into samples with the function combineCounts using a

mapping file linking sequence runs to samples. The function

annotateCounts was used on the gene count table to annotate counts

to NCBI taxonomy and creating species and genus abundance

tables.

Gene counting and core analysis
Genes were considered present if two reads from the same

sample aligned to it which is the same criteria used in by Qin et al.

[2]. To normalize the sampling depth, the MEDUSA function

rarefy was used to sample 11 million aligned reads from each

subject.

In the analysis of core species and genes, HMP samples from

visit 2 and 3 were removed to make sure that the core is defined on

the individual basis and this reduced the number of samples from

782 to 719. The minimum relative abundance of a species to be

counted as present in the core was 1024 and the sensitivity to this

cutoff for core species is shown in Figure S5.

Enterotyping
Enterotypes were determined using the genus abundance with

the methods suggested in http://enterotype.embl.de/ and in the

paper by Arumugam et al [16], the analysis was performed in R

using the package ade4.

Data access
Data and software tools can be accessed through http://www.

metabolicatlas.com/medusa.

Supporting Information

Figure S1 Relative abundance of the 30 most abundant species

in all 782 samples. Boxes denote the interquartile range (IQR)

between the first and third quartiles and the line within denotes the

median; whiskers denote the lowest and highest values within 1.5

times IQR from the first and third quartiles, respectively. Circles

denote data points beyond the whiskers.

(PDF)

Figure S2 Boxplot of the 20 most abundant genera and their

abundance by study. The definitions of boxplots are the same as in

Figure S1.

(PDF)

Figure S3 Heatmap of relative abundance of the 30 most

abundant species across 782 samples. Clustering was done using

hierarchical clustering and complete linkage and Spearman

correlation distance. Two clusters appear that are dominated by

either Bacteroidetes species (Bacteroides, Parabacteroides and Alistipes)

or Firmicutes species (Faecalibacterium, Roseburia, Ruminococcus and

Eubacterium).

(PDF)

Figure S4 Heatmap of relative abundance of the 20 most

abundant genera across 782 samples. Clustering was done using

hierachical clustering and complete linkage and Spearman

correlation distance.

(PDF)

Figure S5 Species core size as a function of the relative

abundance cutoff shows that the pan size is more dependent on

the cutoff than the core size.

(PDF)

Figure S6 Enterotype analysis of the samples. The recom-

mended methods from http://enterotype.embl.de/ were used for

the analysis. 73 genera with a mean abundance above 0.01% were

used in the analysis. A) The clustering strength measured by

Calinski-Harabasz index and the Silhouette index were calculated

for a range of number of clusters. B) Between-class analysis using

the R package ade4 for representing the genera abundance data

together with the cluster identity as instrumental variable.

(PDF)

Figure S7 Abundance of three genera suggested being driver of

each enterotype. Definitions of boxplots are the same as in Figure

S1.

(PDF)

Figure S8 Histograms of abundance of three genera suggested

to be drivers of enterotype separation. Bacteroides and Ruminococcus

do not show a bimodal abundance distribution whereas Prevotella

does.

(PDF)

Figure S9 Number of genes from each study. A) Number of

genes predicted from contigs of each study. Genes from individual

assemblies and global assemblies of unassembled reads are shown

separately. B) Number of non-redundant genes in each study.

(PDF)

Figure S10 Relative abundance of genes grouped into how they

are shared in the Venn diagram (Figure 3) and normalized to the

number of genes in each section of the Venn diagram.

(PDF)

Figure S11 Number of gene in each sample using A) all data

and B) data rarefied to 11 million aligned reads.

(PDF)
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Table S1 List of species and genomes included in the species

catalogue.

(XLSX)

Table S2 MEDUSA statistics for each sequencing run.

(XLSX)

Table S3 Pearson correlation between MEDUSA and Metaph-

lan genus abundance.

(XLSX)

Table S4 Identified core species in 50% and 90% of the

individuals.

(XLSX)

Table S5 Enterotype distribution in each study.

(XLSX)

Table S6 Comparison of enterotypes assignment between this

study and Arumugam et al [16].

(XLSX)

Table S7 Sample and repeated visit information.

(XLSX)

Table S8 Genus assignment of genes using the KEGG database.

All refers to all 11 million genes in the gene catalogue while core

refers to the core genes.

(XLSX)

Table S9 KO assignment of genes using the KEGG database.

All refers to all 11 million genes in the gene catalogue while core

refers to the core genes.

(XLSX)
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