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Abstract

Correlations in local neocortical spiking activity can provide insight into the underlying organization of cortical
microcircuitry. However, identifying structure in patterned multi-neuronal spiking remains a daunting task due to the high
dimensionality of the activity. Using two-photon imaging, we monitored spontaneous circuit dynamics in large, densely
sampled neuronal populations within slices of mouse primary auditory, somatosensory, and visual cortex. Using the lagged
correlation of spiking activity between neurons, we generated functional wiring diagrams to gain insight into the
underlying neocortical circuitry. By establishing the presence of graph invariants, which are label-independent
characteristics common to all circuit topologies, our study revealed organizational features that generalized across
functionally distinct cortical regions. Regardless of sensory area, random and k-nearest neighbors null graphs failed to
capture the structure of experimentally derived functional circuitry. These null models indicated that despite a bias in the
data towards spatially proximal functional connections, functional circuit structure is best described by non-random and
occasionally distal connections. Eigenvector centrality, which quantifies the importance of a neuron in the temporal flow of
circuit activity, was highly related to feedforwardness in all functional circuits. The number of nodes participating in a
functional circuit did not scale with the number of neurons imaged regardless of sensory area, indicating that circuit size is
not tied to the sampling of neocortex. Local circuit flow comprehensively covered angular space regardless of the spatial
scale that we tested, demonstrating that circuitry itself does not bias activity flow toward pia. Finally, analysis revealed that a
minimal numerical sample size of neurons was necessary to capture at least 90 percent of functional circuit topology. These
data and analyses indicated that functional circuitry exhibited rules of organization which generalized across three areas of
sensory neocortex.
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Introduction

Transmission and processing of information in the brain is in

large part determined by the connectivity between neurons [1].

The neocortical microcircuit hypothesis states that the neocortex is

composed of repeated elements of a generalized circuit that are

tweaked for specialization in each area [2]. Supporting this

hypothesis, local synaptic connectivity in the neocortex is non-

random and is at least partly determined by neuron location and

class [2–12]. These rules imply that there is a probabilistic or

partially stereotyped wiring diagram. The extent to which these

rules generalize across the neocortex, however, is unclear. Analysis

of neocortical microcircuit spiking activity in different brain

regions has revealed common dynamical features [12–15],

suggesting that circuits may share similarities between regions.

In this study, we use the spatiotemporal correlations of firing

activity between neurons to generate functional wiring diagrams

[15–19]. Modeling studies have shown a clear relationship

between connectivity and neural firing [15,20–24]. This suggests

that we can gain insight into the underlying structure and

organization of cortical circuitry by analyzing the emergent

dynamics of large populations of neocortical neurons.

Here we employed high speed two-photon calcium imaging

[25] to densely sample the spiking activity of up to 1126 neurons

within a 1.1 mm diameter field of view, spanning multiple

columns and layers in three different areas of the sensory

neocortex. We then applied post-processing algorithms to detect

spatiotemporal relationships between spiking neurons and mod-

eled this activity as wiring diagrams, or graphs [15]. Graph theory

is a useful technique to quantify network dynamics, and has been

increasingly applied in the neural context to understand brain

connectivity patterns [21,26,27]. One potential approach to

identify invariant features of functional wiring diagrams within

and between areas of cortex is to isolate graph isomorphisms. For

example, the unlabeled graphs G and H are isomorphic when any

two nodes u and v of G are connected in G if and only if that
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connection exists in H. However, such an analysis currently

remains intractable in graphs of sizes analyzed here, as the best

known algorithm runs in polynomial time [28]. Perhaps more

importantly, the organizational features of connectivity that have

been described to date reflect probabilistic, rather than determin-

istic microcircuit architectures [5,8,9], making it unlikely that

connectivity patterns in the brain are formally isomorphic. In

order to test the postulate that the organization of functional

circuitry generalizes across the neocortex, we instead applied

functions that are invariant to labeling of the nodes of the graph.

In other words, if A is the adjacency matrix describing graph G,

we wanted to describe the function f such that f (A)~

f (PAPT ), where P is the n6n permutation matrix [29].

In the context of our study, we aimed to identify features of a

neuronal circuit wiring diagram that are invariant to the particular

identities of the neurons. Thus, we characterized each neuron only

by the connections it had with other neurons. While neurons and

activation patterns between animals and regions may vary in their

individual details, these abstract, global characteristics of circuit

structure stay constant, even following the relabeling of the

neurons. By investigating label-independent features, called graph

invariants, we hoped to disregard features of the functional circuit

that may be susceptible to over-fitting, and focus on features that

are stable across slices and areas of the neocortex. Many graph

invariants have been previously described, such as maximum

degree and MAXCUT value [29]. Some particularly useful

invariants include the graph eigenvalues and eigenvectors [29,30].

We apply these analyses to functional wiring diagrams generated

from imaging data from three sensory neocortical areas to test the

validity of a functional analogue to a generalized circuit

architecture of the neocortex.

Methods

Ethics statement
All procedures were performed in accordance and approved by

the Institutional Animal Care and Use Committee at the

University of Chicago.

Open source scientific software
To foster reproducibility and fast development of future work

based upon these results, we have published functional graph

analysis tools under an open source, GPLv3 license, available here:

https://github.com/ssgrn/GraphInvariantsNeocortex.

Data acquisition
Preparation of calcium dye-loaded slices. C57BL/6 mice

of either sex on postnatal day 14–18 were anesthetized by

intraperitoneal injection of ketamine-xylazine, rapidly decapitated,

and had their brains removed and placed in oxygenated ice-cold

cut artificial CSF (ACSF; contents contained the following, in mM:

3 KCl, 26 NaHCO3, 1NaH2PO4, 0.5 CaCl2, 3.5 MgSO4, 25

dextrose, and 123 sucrose). Coronal slices (500 mm thick)

containing the sensory region of interest were cut perpendicular

to the pial surface using a vibratome (VT1000S; Leica). To control

for potential slice angle effects, slices at slight angles off the coronal

axis were generated (500 mm A1/V1, 450 mm S1BF). Our data

showed no significant effects that correlated with angle, and thus

these datasets were pooled with their coronal counterparts [15].

Slices were placed in a 35uC oxygenated incubation fluid (Incu-

ACSF; contents contained the following, in mM: 123 NaCl, 3

KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 6 MgSO4, and 25

dextrose) for 30 to 45 min. Calcium dye loading was then achieved

by placing all slices into a small Petri dish containing ,2 ml of

Incu-ACSF, an aliquot of 50 mg Fura-2AM (Invitrogen) in 13 ml

DMSO and 2 ml of Pluronic F-127 (Invitrogen) as previously

described [25].

Calcium dye imaging. Experiments were performed in

standard ACSF (contents contained the following, in mM: 123

NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgSO4, and

25 dextrose, which was continuously aerated with 95% O2, 5%

CO2). Rapid whole-field imaging of Fura-2AM loaded neurons

was achieved by taking multiple 5 min movies using the

Heuristically Optimal Path Scanning technique and microscopy

setup as previously described [25], allowing us to monitor action

potential generation within individual neurons at scan speeds at

least an order of magnitude greater than the traditional raster scan

method. Cell contours were identified in an automated fashion as

previously described [25]. Our dwell time parameter for each

experiment was fixed at a value between 16 and 20 samples/cell/

frame.

Laminar identification. We used biotinylated NeuN stain-

ing along with biocytin filled neurons which acted as fiduciary

markers, in combination with measures of distance from pia and

brightfield, NeuN, and two-photon cell density to identify lamina

[15].

Spike and circuit event detection. Spikes were inferred

from the fluorescence changes of individual neurons using a fast

non-negative deconvolution algorithm that is a modified version of

fast-oopsi [25,31]. Spikes from each cell’s calcium trace were then

identified, and circuit events were defined as epochs in which the

network of cells was active for at least 500 ms. The temporal

precision of spike detection was dependent on the scan speed

(,125 Hz for 50 neurons and ,8.5 Hz for 1,000 neurons) [25].

Greater than or equal to four events were necessary for a field of

view to be included in our dataset.

Graph formation. Using rasters of spike trains inferred from

calcium fluorescence changes, we generated circuit topologies

corresponding to pairwise spiking correlations over all circuit

events observed in a single field of view. Neurons were represented

as nodes in each graph. Edges between nodes were directional and

formed according to the following rule: neuron A was considered

functionally connected to neuron B if neuron B fired in the

Author Summary

Information in the brain is represented and processed by
populations of interconnected neurons. However, there is
a lack of a clear understanding of the structure and
organization of circuit wiring, particularly at the mesoscale
which spans multiple columns and layers. In this study, we
sought to evaluate whether functional circuit architecture
generalizes across the neocortex, testing the existence of a
functional analogue to the neocortical microcircuit hy-
pothesis. We analyzed the correlational structure of
spontaneous circuit activations in primary auditory,
somatosensory, and visual neocortex to generate func-
tional topologies. In these graphs, neurons were repre-
sented as nodes, and time-lagged firing between neurons
were directed edges. Edge weights reflected how many
times the lagged firing occurred and was synonymous to
the strength of the functional connection between two
neurons. The presence of label-independent features,
identified by investigating functional circuit topologies
under a graph invariant framework, suggest that function-
ally distinct areas of the neocortex carry features of a
generalized functional cortical circuit. Furthermore, our
analyses show that the simultaneous recording of large
sections of cortical circuitry is necessary to recognize these
features and avoid undersampling errors.

Generalized Features in Functional Neocortical Circuits
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subsequent frame. These edges were then weighted according to

how many times this single frame lagged correlation occurred,

normalized to the number of events in that field of view.

Statistical analysis
All statistical analyses were performed with MATLAB (Math-

Works). Unless otherwise noted, data are presented as mean 6

SD. All r values in the text are in reference to the Pearson

correlation computed with the command corrcoef. For nonpara-

metric distribution comparison between the three sensory areas,

the Kruskal-Wallis test (KW-test) was implemented via the

kruskalwallis function. The nonparametric Komolgorov-Smirnov

test (KS-test), noted at use, was used to compare fitted distributions

to data. The Komolgorov-Smirnov test were implemented using

the command kstest2. For tests of significance, av0:05 was used as

the cutoff.

Graph analysis
Algebraic connectivity and eigenvector centrality were comput-

ed using the MIT Toolbox for Network Analysis (http://strategic.

mit.edu/downloads.php?page = matlab_networks). Graph figures

were generated using the open source Python graph visualization

tool NetworkX (http://networkx.github.io/). Circular variance

was computed with the MATLAB Toolbox for Circular Statistics

[32]. We compared our data to two null models: random

topologies and k-nearest neighbors topologies. Each random

topology was formed by preserving the locations of neurons in a

corresponding functional topology and then assigning a 0.5

probability of forming a directed edge between every neuron in

the field of view. Each k-nearest neighbors topology was formed

by preserving the locations of neurons in a corresponding

functional topology and then forming a directed edge from

neuron A to neuron B if neuron B was one of k-nearest neighbors

of neuron A. In all analyses, we used k~10.

Results

Formation of functional topology
To determine whether A1, S1, and V1 functional circuit wiring

diagrams exhibited invariant features, we monitored neuronal

activity in 43 slices from each region of the mouse neocortex (11 of

A1, 21 of S1, and 11 of V1) using high speed multi-photon calcium

imaging [15,25,31]. Spontaneous circuit activity requires intact

excitatory amino acid transmission [15,33], sufficient oxygenation

[34] and corresponds to UP states within single neurons which

comprise the functional circuit [15,35]. Previous reports have

found that spontaneous activity delineates all of the possible multi-

neuronal patterns within a sampled population and that a sensory

input activates only a subset of these patterns [14,36]. By

monitoring spontaneous activity in the imaged field of view, we

hoped to maximize the number of pairwise correlations within the

imaged populations. We imaged the flow of activity through large

populations of neurons (A1: 5956101 cells, S1: 7046157 cells,

V1: 7346129 cells) at the mesoscale in a two-dimensional circular

imaging plane with a diameter of 1.1 mm that comprised multiple

layers and columns with single-cell resolution (Figure 1A). We

confirmed activity was not biased to any one lamina and that our

sampling was uniform across our field of view, since the amount of

activity observed across all circuit events did not differ between

layers (p~0:28, KW-test; see Methods for explanation of laminar

identification). Because temporal resolution of multi-photon

microscopy is compromised at these spatial scales, we used the

heuristically optimized path scan technique [25] (Figure 1B),

which allowed us to achieve fast frame rates (frame duration

86617.7 ms) that did not differ between regions (p~0:47, KW-

test). We deconvolved calcium fluorescence changes of each

detected neuron into spike trains (Figure 1C) [31] and generated

rasters of spiking activity for the entire imaged population of

neurons (Figure 1D). All regions of the sensory neocortex showed a

common capacity for emergent, multi-neuronal patterned activity,

characterized by discrete periods (.500 ms) of correlated action

potential generation within subsets of neurons. Circuit events were

separated by periods of quiescence and we refer to these distinct,

clustered epochs of spontaneous action potentials as individual

circuit events. The start and finish of a circuit event was easily

resolvable because the field of view was either quiescent,

corresponding to a DOWN state in a single neuron, or was

active, corresponding to a UP state in a single neuron [35]. One

circuit event lasted 12036456 ms in A1,15686885 ms in S1, and

13426698 ms in V1. We imaged 82 total circuit events in A1, 268

total events in S1, and 104 total events in V1.

Using this data, we generated graphical abstractions, or circuit

topologies, corresponding to functional activity over all circuit

events observed in a single field of view. Neurons were represented

as nodes in each graph. Edges between nodes were directional and

formed according to the following rule: neuron A was considered

functionally connected to neuron B if neuron B fired in the

subsequent frame (Figure 1E). These edges were then weighted

according to how many times this single frame lagged correlation

occurred, normalized to the number of events in that field of view.

Thus, stronger edge weights indicated reliable, correlated spiking,

whereas weaker edge weights indicated unreliable, weakly

correlated spiking (Figure 1E). The resultant graphs contained a

large number of edges (median: 3.46104 functional connections,

range: 4.26105 functional connections). Note that although a

functional relationship between neurons increases the probability

of them having a synaptic connection [18,33], a linear relationship

between each functional edge and a synaptic connection does not

exist [16]. Rather, given our method of inference, the functional

connectivity measure captured the flow of activity through the

network during a circuit event.

Neocortical functional circuits are characterized by
invariant features

Functional circuitry is composed of non-random and

occasionally distal connections. We found that most func-

tional connections were locally organized and biased toward

shorter pairwise distances, consistent with previous functional

and anatomical studies [5,15] (Figure 2, right column). To gain

insight into the spatial dependency of functional circuit wiring,

we compared functional topologies generated from the data

with null models of varying spatial constraint. To this end, we

generated a matched random and k-nearest neighbors null

graph for each functional topology. The random and k-nearest

neighbors topologies represented upper and lower bounds of

spatial constraint, respectively. In each random topology,

nodes were placed in the same locations as a corresponding

functional topology, but each node had a fixed probability of

functional connection (P~0:5) with any other node. We found

that random topologies were spatially relaxed because their

connections were not constrained to subsets or neighborhoods

of nodes. Importantly, the spatial distribution of functional

connections in random topologies was statistically indistin-

guishable from the long-tailed probability distribution of

pairwise distances in the field of view (p~1; KS-test;

Figure 2, left column). Thus, the random topologies still

contained a distance dependence in its likelihood of a

connection. The k-nearest neighbors topology was a null

Generalized Features in Functional Neocortical Circuits
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model consistent with previous anatomical studies that

described synaptic connectivity in a nearest-neighbors para-

digm [5]. In each k-nearest neighbors topology, nodes were

placed in the same locations as the corresponding functional

topology, but neuron A was functionally connected to neuron

B if and only if B was one of k-nearest neighbors of A (Figure 2,

middle column). In this case, the probability of functional

connection was heavily biased towards local neighborhoods,

and thus the connections were spatially restricted. Because

connections in random and k-nearest neighbors topologies are

non-specific beyond their spatial constraints, the poor quality

of their fit to the data also provides insight into the prevalence

of non-random functional connectivity that is not simply

dependent on short distances.

Let F denote a functional connection derived from the data and

S denote a functional connection in one of the corresponding

nulls. To explore how well random and k-nearest neighbors

topologies explained the data, we computed the following

conditional probability distribution with respect to each model:

P(F DS)~P(functional connection from dataD

functional connection from model)

We expected the above expression to evaluate to 1 if there was a

one-to-one relationship between edges in the k-nearest neighbors

or random topology and edges in the functional topology created

from the data.

Figure 1. Sensory cortex exhibits spontaneous circuit activity. A) Automated cell detection from two-photon imaging of a slice of S1 cortex.
B) Heuristically optimal path scan for two-photon imaging of same imaged field of view as A). C) Spike trains of each neuron were inferred from their
calcium fluorescence signals. The deconvolution algorithm finds the maximum a-posteriori estimate of the probability of a spike train n� given
calcium fluorescence signal F . nt is the number of times the neuron spikes in frame t. D) Examples of imaging network data as a raster. E) Cartoon
example of the formation of a functional topology given a spike raster. Letters denote neuron label, t indicates frames. Directed functional
connections are formed if one neuron fires one frame after another neuron. This connection is then weighted by how many times the single frame
lagged correlation occurs.
doi:10.1371/journal.pcbi.1003710.g001

Generalized Features in Functional Neocortical Circuits
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To calculate the above expression, we employed Bayes’ rule:

P(F DS)~
P(SDF )P(F)

P(S)

The k-nearest neighbors topologies captured 1269 percent of the

total number of functional connections in the data, while the

random topologies captured 968 percent of the total number of

functional connections in the data. The amount of the data

captured by the null models did not differ between regions (k-

nearest neighbors: p~0:32, KW-test; random topologies: p~0:60,

KW-test). Thus, functional topology is non-random, and connec-

tions that extend beyond local neighborhoods form a substantial

portion of connections at the mesoscale.

To further characterize the distributed nature of functional

topology, we next analyzed functional connections traveling

between and within the lamina visible in our field of view (L1,

L2/3, L4, and L5; see Methods for explanation of laminar

identification). Due to relaxed spatial constraints and non-specific

connectivity, Random topologies contained significantly more

functional connections traveling between layers than within layers

(between: 52611 percent, within: 33611 percent, pv10{7). The

difference in the number of functional connections traveling

between and within lamina in random topologies was significant

across areas (pA1v0:002, pS1v0:002, pV1v0:05). In contrast, k-

nearest neighbors topologies had significantly more functional

connections traveling within layers than between layers (between:

1163 percent, within: 82611 percent, pv10{9). The difference

in the number of functional connections traveling between and

within lamina in k-nearest neighbors topologies was significant

across areas (pA1v0:002, pS1v10{5, pV1v0:004). Functional

topologies generated from the data had no significant difference

between the number of functional connections traveling between

layers and the number of those traveling within layers (between:

46612 percent, within: 46614 percent, p = 0.93, KW-test).

Furthermore, the difference in the number of functional connec-

tions traveling between and within layers was insignificant across

areas (pA1~0:08, pS1~0:41, pV1~0:13).These analyses suggest

that neocortical functional topologies consist of non-random,

occasionally distal connections that, despite being skewed in

probability toward local neighborhoods, are not solely governed

by spatial proximity and are distributed across the field of view.

Figure 2. Functional topologies are composed of non-random, proximal and distal connectivity. The top row indicates distance-
dependent probability distributions of functional connectivity. The other rows present representative examples of A1, S1, and V1 random graphs, k-
nearest neighbors topologies (k = 10), and functional topologies in data (labeled at the top). Probability distributions from individual slices did not
differ from the mean distribution (Random graphs: pw0:77, k-nearest neighbors graphs: pw0:06, Data: pw0:14; KS-test).
doi:10.1371/journal.pcbi.1003710.g002
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Neuronal influence in local functional circuitry is log-

normally distributed. Neuronal networks have been found to

contain neurons which are connected to large numbers of other

cells, called hubs [15,21,37,38]. Traditional approaches charac-

terized a hub as having a large degree that is multiple standard

deviations from a network’s norm [39]. However, this metric of

degree centrality fails to fully capture the influence of a node in a

network. To identify network hubs that focused on functional

information flow, we utilized the eigenvector centrality measure of

node influence. Let A denote an n6n adjacency matrix. Then the

eigenvector centrality xi of node vi is defined as the ith entry in the

normalized eigenvector corresponding to the largest eigenvalue of

A.

Ax~lx[x~
1

l
Ax[xi~

1

l

Xn

j~1

Aijxj :

The above implies xi is a linear combination of centrality scores of

all nodes connected to vi; a node that has a high eigenvector score is

connected to nodes that are also high scorers. Uniqueness of the

eigenvector associated with the largest eigenvalue A is ensured by

the Perron-Frobenius Theorem, which states that any positive definite

square matrix has a unique largest real eigenvector with strictly

positive components [40]. The difference between eigenvector

centrality and degree measures is revealed in the following example.

Let one neuron project an edge to another neuron, which in turn

projects to ten neurons. The first neuron in this chain would be

assigned a degree of 1, and thus would be considered an

insignificant actor in the circuit under degree centrality. However,

under eigenvector centrality, each neuron’s score is a linear

combination of all other neurons’ scores. Eigenvector centrality

would assign the first neuron a high score as it is considered to be the

most influential driver of local activity (Figure 3A). Projections of

both measures onto an imaged field of view qualitatively revealed

differences in the contour distributions of assigned scores by degree

and eigenvector centrality (Figure 3B). We calculated the distribu-

tion of eigenvector centrality and degree scores, and found that the

former fit to a log-normal distribution in all three areas of the

sensory neocortex (mA1 = 23.8860.07, sA1 = 1.0160.05, pA1 =

0.13; mS1 = 24.0160.07, sS1 = 1.0560.05, pS1 = 0.08; mV1 = 2

4.0860.08, sV1 = 1.2160.06, pV1 = 0.13; KS-test; Figure 3C), and

that the latter fit to a normal distribution in all three areas of the

sensory neocortex (mA1 = 0.0560.002, sA1 = 0.0360.001,

pA1~0:77; mS1 = 0.0460.002, sS1 = 0.0360.002, pS1~0:28;

mV1 = 0.0560.002, sV1 = 0.0360.002, pV1~0:50; KS-test;

Figure 3C). Interestingly, we found that eigenvector centrality

scores were not correlated with in-degree (rin degree = 0.1460.24,

pw0:05; Pearson correlation; Figure 3D), but were highly

correlated with out-degree (rout degree = 0.9860.04, pv10{28;

Pearson correlation; Figure 3D). The strength of the correlation

did not differ between regions (pout degree~0:53; pin degree~0:31;

KW-Test). The tight relationship between eigenvector centrality

and out degree implies that the influence of neuron in its local circuit

is highly related to its feedfowardness. Thus, it is interesting that

V1’s eigenvector centrality distribution is translated to greater

eigenvector centrality scores relative to A1 and S1, given V1’s

higher propensity for feedforward activity (Figure 3C) [41,42].

Functional circuit topologies are connected. A graph is

connected if there exists a sequence of edges from any node to any

other node. To quantify the connectedness of neocortical

functional topologies, we employed the following theorem:

Theorem: Let the undirected graph G be specified by an

adjacency matrix A and have a degree matrix D~A1, where 1 is

the column vector of all 1 s. Let the Laplacian L~D{A have

eigenvalues l1§:::§ln. G is connected if and only if ln{1(L)w0.

ln{1(L) denotes the algebraic connectivity of G. (For proof, see

[30])

The larger the algebraic connectivity is, the more strongly

connected the graph is. An algebraic connectivity close to zero

indicates a graph that is highly modular and susceptible to attack,

which makes connectedness a prime topological metric for

defining robust networks [43–45]. We assessed the connectedness

of the functional topology by first transforming all directed edges

to undirected ones, as this is required for the theorem to be

applicable. We therefore lost information on circuit flow provided

by directed edges, but preserved information on the abstract

structural features of the topology, like the general reachability a

neuron in the circuit. We then computed the second smallest

eigenvalue of the Laplacian of the resulting adjacency matrix,

normalized by the number of nodes in the graph. We found that

functional topologies in each sensory area were connected

(ln{1 = 0.38560.17; Figure 4A) and that the amount of connec-

tivity did not differ between regions (p~0:402; KW-test). These

values significantly differed from the moderately connected

random topologies (ln{1 = 0.2460.006; pA1v10{6, pS1v10{7,

pV1v10{4; KW-test) and the weakly connected k-nearest

neighbors topologies (ln{1 = 0.0260.004; pA1v10{7, pS1v

10{11, pV1v10{5; KW-test). This analysis suggests that an

arbitrary path from any neuron to every other neuron is present in

functional circuit topologies. Interestingly, the variance of the

algebraic connectivities of the models was much smaller than those

of the data. The greater variance of algebraic connectivity present

in the data might emerge from specific patterns of functional

connectivity that are absent in the non-specific random and k-

nearest neighbors topologies.

The size of functional circuit topologies does not scale

with the number of neurons in the field of view. Sequences

of neuronal activations in the neocortex likely represents a neural

syntax that encodes external stimuli [46]. Since each directed edge

in a functional topology represents a sequential activation of two

neurons, each activation sequence can be defined as a walk, or a

sequence of visitations to adjacent nodes, in the functional

topology. Because spontaneous activations delineate all possible

multi-neuronal patterns within a sampled population [14,36], we

quantified the number of possible activation sequences of a given

length in functional topologies generated from spontaneous

activity. To compute this metric, we employed the following

theorem:

Theorem: Let the graph G~(V ,E) be specified by an

adjacency matrix A. For any n[N, the ijth entry of the matrix

An is equal to the number of walks from i to j in G of path length

n.

This theorem can be proved through induction; we use the facts

that each edge in the graph is unique, and that to form a walk of

length nz1 from vertex i to j, one must first have a walk of length

n from vertex i to k, and then a walk of length 1 from vertex k to j.
Note that the number of open sequences, walks that do not have

equal starting and ending nodes, is the sum of the upper and lower

triangular matrices of An (Figure 4B). In addition, the number of

closed sequences, walks that have equal starting and ending nodes,

is the trace of An (Figure 4B). Open sequences may relate to

feedforward activity, while closed sequences may relate to

recurrent activity [15,42]. In all analyses, we computed the

number of open sequences of path lengths 1 to 10 and the number

of closed sequences of path lengths 2 to 10, since a closed sequence

of length 1 does not exist. We found that the number of possible

open sequences and closed sequences, as a function of path length,

Generalized Features in Functional Neocortical Circuits
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were perfectly fit by exponential functions across all functional

circuits (R2 = 1.0060.00). This exponential growth reflected the

combinatorial explosion of possible sequences of larger lengths, as

the graphs analyzed contained a large number of nodes and edges.

Next, we computed the ratio of the number of open sequences

to the number of closed sequences in each graph, excluding

sequences of length 1. We refer to this ratio as the O-C ratio. We

found that across all path lengths analyzed, there were 217647

open sequences for every closed sequence in A1, 2936151 open

sequences for every closed sequence in S1, and 339667 open

sequences for every closed sequence in V1. The higher O-C ratio

in V1 likely supports the postulate that the region has a greater

propensity towards feedforwardness [37,42].

The O-C ratio did not differ between path lengths (pA1~0:99,

pS1~1:00, pV1~1:00; KW-test), suggesting that while the raw

number of open and closed sequences grows exponentially as a

function of path length, the ratio of open to closed sequences stays

constant. In contrast, the O-C ratio in random topologies

increased 2-fold from length 2 to length 3 (pA1v10{5,

pS1~10{8, pV1v10{5; KW-test), and stayed constant for larger

path lengths (pA1~0:99, pS1~0:99, pV1~0:99; KW-test). Further

analysis showed that random topologies had a far greater percent

of possible reciprocal connections (closed sequences of length 2)

than functional topologies generated from the data (random:

24.960.04 percent; data: 8.468.2 percent).The greater prevalence

of reciprocal connections in random topologies likely results in the

smaller O-C ratio at length 2.

Because the number of open and closed sequences as a function

of path length grew exponentially, we could linearize the curves by

transforming them into log-scale (Figure 4C). Linearization

allowed us to use slope as a feature of how the number of

sequences varied with path length. We found that the distribution

of slopes did not differ between open and closed sequence growth

curves for all functional topologies generated from the data

(p~0:99; KW-test). This finding confirmed the invariance of the

O-C ratio to path length in the data.

We found that the slope of a sequence growth curve was

strongly correlated with the number of functional connections in

the corresponding topology (Open and closed sequences:

rA1~0:97, pA1v10{6; rS1~0:57, pS1v0:01; rV1~0:92,

Figure 3. Hub neurons defined with eigenvector centrality. A) Illustrative example showing differences between degree and eigenvector
centrality measures. Neurons that are more influential in driving local circuit flow are scored higher in the eigenvector centrality measure, whereas
neurons that have the largest number of connections are scored higher in the degree measure. B) Degree and eigenvector centrality measures
projected onto the same labeled A1 slice. Larger dots indicate neurons with higher score. C) Mean probability distributions of degree and
eigenvector centrality in A1, S1, and V1. Distributions from individual slices did not differ from the mean distribution (Degree centrality: pw0:06;
Eigenvector centrality: pw0:06; KS-test). D) Scatter plots of eigenvector centrality vs in degree (top) and vs. out degree (bottom) for representative
examples in A1, S1, and V1.
doi:10.1371/journal.pcbi.1003710.g003
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pV1v10{4; Pearson correlation). This finding prompted us to

characterize how the number of sequences in a functional topology

varied with the number of neurons in the field of view. We

hypothesized that random topologies were greedy: the more nodes

in the field of view, the more activation sequences would be

possible, because every node in the random topology has a 0.5

probability of being connected to any other node. Thus, the size of

the random topology would scale with the number of nodes in the

field of view. Supporting this hypothesis, we found that the slope of

sequence growth curves for random graphs were strongly

correlated with the number of nodes in the corresponding random

graph in all regions (Open and closed sequences: rA1~0:97,

pA1v10{10; rS1~0:97, pS1v10{200; rV1~0:98, pV1v10{10;

Pearsons linear correlation). In contrast, we found that the slopes

of sequence growth curves in the data were uncorrelated with the

number of neurons in the corresponding functional topologies in

all regions (Open and closed sequences: rA1~0:02, pA1~0:94;

rS1~0:18, pS1~0:43; rV1~{0:23, pV1~0:46; Pearson correla-

tion; Figure 4D). This finding suggests that the size of functional

connectivity does not scale with the number of neurons in the field

of view, and that only a subset of neurons in the field of view are

recruited during any one circuit event. These analyses further

support the postulate of specificity in functional connectivity, and

suggest that the lack of strong positive correlation between the

slope of the sequence growth curve and number of neurons in the

field of view is inherent to the functional connectivity patterns of

these regions.

Local circuit flow covers entire angular space
There is an ongoing debate on whether the cortical column,

which is oriented perpendicular to pia, regulates and shapes

the flow of information in sensory cortices [47]. Coronal slices

allowed us to image activity patterns with near simultaneity

across all lamina. Using this data, we assessed directional flow

in functional graphs by computing the angle and distance

between the source and destination of directed functional

connections relative to the orientation of pia. Flow maps are

plots that capture direction of circuit flow with points scattered

at a radius r and angle h about the origin. r represents the

distance of the functional connection from the source to the

Figure 4. Functional topologies are connected and their size is independent of the number of neurons sampled. A) Algebraic
connectivity (normalized by number of nodes in the graph) of functional topologies in A1, S1, and V1. An algebraic connectivity closer to 0 indicates a
weakly connected graph, whereas an algebraic connectivity closer to 1 indicates a strongly connected graph. B) Sequences are walks on adjacent
nodes. Open sequences start and end on different nodes, while closed sequences start and end on the same node. C) Linearization of exponential
plots by plotting y-axis values in log-scale. D) Left column: Linearized plot of number of open and closed sequences of given lengths in functional
topologies generated from data in A1, S1, and V1. Right column: Scatter plots of slopes of growth curves on left column vs. the number of neurons in
the corresponding fields of view.
doi:10.1371/journal.pcbi.1003710.g004
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sink, and h represents the angle between the source and the

sink.

We measured the amount of angular clustering of activity flow

in sensory areas by computing the circular variance of functional

connections. The clustering of points at a particular angle indicates

stereotypy of functional flow across events in a neighborhood of

the functional topology. We calculated the amount of angular

clustering by computing the circular variance of the set of n points.

Circular variance is defined as:

Var(h)~1{
R

n
, where R~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

cos(hi)
2zsin(hi)

2

s

The value of the circular variance varies from 0 to 1; the lower the

value, the tighter the clustering of points about a single mean

angle. In functional circuit topologies from all three areas of the

sensory neocortex, flow covered the entire angular space,

regardless of the pairwise distance, or radius, spanned by the

functional connection (Figure 5A). We found that the spread of

circular variance increased for functional connections which

spanned the largest distances, most likely due boundaries imposed

by pia, internal capsule, or field of view (Figure 5B). Thus we did

not find a canonical circuit flow in spontaneous cortical activity

regardless of sensory area.

Large fields of view are necessary to investigate
functional topologies

The highly distributed nature of functional topologies suggested

that large fields of view are necessary to fully capture invariant

features of functional topology. We sought to confirm this

hypothesis by examining the spatial dependency of connectedness

in functional topologies. Connectedness in the context of an

imaged field of view can be described as an aperture problem:

large interlinked networks look like disjoint groups of interacting

cells if viewed only in small parts, while viewing the entire network

at once reveals one giant component. For efficient computation in

our graph invariant framework, we examined this problem in the

following way: disjoint modules of network activity could be

characterized as a weakly connected functional topology with a

small algebraic connectivity. We explored how algebraic connec-

tivity of the functional topology was modulated by two variables:

minimum weight and field of view size. Because edge weight

corresponds to the reliability of an observation of a spike

Figure 5. Circuit activity flow uniformly covers angular space. A) Representative examples of flow maps at multiple pairwise spanning
distances between two nodes in A1, S1, and V1. Each point indicates the angle between the source and sink of a functional connection, relative to the
orientation of pia. B) Circular variance of flow maps in A1, S1, and V1.
doi:10.1371/journal.pcbi.1003710.g005
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correlation, thresholding minimum weight in a functional topology

pruned its weaker edges. We defined field of view size as the

maximum pairwise distance between any two neurons investigat-

ed. Together, these variables represented spatial and sampling bias

during experiments. We found that the algebraic connectivity of

functional topologies followed similar trajectories in all three

sensory areas: smaller fields of view and the exclusion of the

weakest functional connections resulted in weakly connected

graphs (Figure 6A). Taken together, these data suggest that one

must employ large fields of view and low edge weight thresholds to

capture an independent functional circuit.

Interestingly, we found a field of view size in each sensory area

at which the algebraic connectivity seemed to reach capacity or

asymptote; above this distance, larger fields of view did not result

in significantly increased connectivity. This finding suggested that

a subsample size less than 1.1 square mm would capture a

complete functional circuit topology. To further understand the

interplay between experimental field of view and the topology of

the functional circuits, we specified a general model of Field of View

(FOV) Error, or how well a functional topology is captured as a

function of field of view size (Figure 6B).

FOV error varies with the distribution of functional connections

inherent to each neocortical region (Figure 2, right column).

Formally, let f (x,y)~1 denote the existence of a functional

connection between neurons x and y, and d(x,y) denote the

pairwise distance between x and y. Let k be a pairwise distance.

Then,

FOV error~1{P(f (x,y)~1Dd(x,y)ƒk)

We computed the average FOV error over all pairwise combina-

tions of neurons in all sensory areas as a function of k. To achieve

less than 10 percent FOV error, we found that k must be at least

676 microns in A1, 660 microns in S1, and 583 microns in V1

(Figure 6C). This corresponds to a minimum of 430 neurons in A1,

510 neurons in S1, and 478 neurons in V1 by computing a

cumulative distribution of neuronal density based on the

probability distributions of pairwise distances in our fields of view

(Figure 6D). In contrast, we found less than 10 percent FOV error

was achieved with just 93 microns in k-nearest neighbors

topologies, and 884 microns (almost the entire imaging field of

view) in topologies with a uniform random spatial distribution of

functional connectivity (Figure 6C). In the random graphs, error

dropped linearly as field of view size was increased (R2 = 0.9995).

Thus, it appears that large FOVs result in fewer errors about

underlying functional topology, and that the field of view error is

lessened by skew in the likelihood of a connection toward shorter

distances.

Figure 6. A minimum field of view is necessary to capture functional topology. A) Mean algebraic connectivity (normalized by number of
nodes in the graph) given a field of view size (maximum pairwise distance) and minimum weight in A1, S1, and V1. B) Representative example (in A1)
of how field of view (FOV) influences the number of functional connections captured. Dashed boxes are arbitrarily located on the connectivity matrix
and are used to illustrate how different sized FOVs determine the functional connections (black) that can be resolved within that imaged area. Blue
ticks indicate functional connections we cannot see with given FOV. C) FOV error of functional topologies generated from data (gray: data from
individual slices (IND); colored: mean of data across slices from each sensory area (A1, S1, V1)). Dashed lines correspond to global mean FOV errors in
k-nearest neighbors topologies (KNN) and graphs with uniform probability of functional connection given pairwise distance (RAND). FOV errors from
individual null topologies did not differ from the global mean FOV error (KNN: pw0:99; RAND: pw0:99; KS-test). D) Corresponding density of neurons
given FOV size (gray: data from individual slices (IND); colored: mean of data across slices from each sensory area (A1, S1, V1)).
doi:10.1371/journal.pcbi.1003710.g006
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Discussion

All regions of the sensory neocortex showed a common capacity

for spontaneous circuit activations that emerged from the

underlying local synaptic connectivity [15]. Using the statistical

dependencies of spiking between pairs of neurons, we generated

directed and weighted functional graphs. This approach revealed a

scaling relationship between A1 and S1 [15], but was unable to

delineate exactly what graph features were common to both

regions. In this study, we conducted an analysis of graph

invariance in functional circuit topologies generated from three

regions of sensory neocortex in order to extend the graph theoretic

approach toward delineating generalized rules of connectivity.

The graph invariant framework allowed us to examine how

circuits are similar, by considering how graph properties

independent of neuronal labeling are consistent between areas.

This represents a top-down approach which extracted global

features of functional connectivity from large, dense sampling of

neuronal activity in the neocortex. This analysis revealed multiple

graph invariants that are consistent across sensory areas. The

structure of neocortical functional topologies were well-character-

ized by non-random connectivity that was not merely dependent

on spatial proximity, despite the fact that the probability of

functional connection peaked proximally. In all areas, distal

connections were required to achieve connected graphs, reminis-

cent of the daisy arrangement of dense local and patchy distal

neocortical connections suggested by neuronal anatomy [2,48].

We found that functional topologies of all areas were connected,

and the degree of connectivity was statistically indistinguishable

between areas. Moreover, functional connections were structured

even within a local circuit of the functional topology. We found

that eigenvector centrality, a measure of influence in local flow, is

log-normally distributed in all sensory areas, and is highly

correlated with out-degree, and weakly correlated with in-degree.

The size of functional topology does not scale with the number of

neurons in the field of view, revealing that circuit activity is

comprised of structured activations of subsets of neurons. Local

circuit flow comprehensively covers angular space regardless of

spatial scale, which is inconsistent with a canonical flow of

spontaneous activity. Finally, our analysis revealed that given a

large imaged field of view, a minimal numerical sample size was

necessary to minimize the error of falsely characterizing two

neurons as being independent. In summary, the invariant features

revealed by this study suggest the existence of a generalized

functional circuit throughout the sensory neocortex, strengthening

the argument that the neocortical microcircuit hypothesis should

be framed as probabilistic rules of connectivity and organization.

This is not to say that label-dependent features do not play a

role in mediating the structure of functional topology. For

example, although connectivity is strongly biased towards spatial

proximity between neurons, the k-nearest neighbors rule and

random topologies poorly recapitulated functional topologies in

the data. This indicates that other connectivity rules that are not

simply dependent on spatial proximity, such as those based on cell

types [11,49], likely play an important role. As another example,

we found that the distribution of eigenvector centrality, which

strongly correlates with out-degree in all areas, is highest in V1,

and that the ratio of the number of open sequences to closed

sequences, which stays constant as a function of path length in all

areas, is highest in V1. These analyses suggest that V1 may be

more feedforward than A1 and S1, a result consistent with

previous studies [37,42]. The translation of the eigenvector

centrality distribution seen in Figure 4A may represent a tweaking

of a generalized rule (fitting to a log-normal distribution) to

optimize the circuit for a particular function (feedforwardness). In

general, it is possible that the specialization of the circuit to the

overall function of the cortical area is label-dependent, or

dependent on emergent properties of cell phenotypes. However,

despite the fact that label dependent rules of connectivity are likely

present, by investigating global features of functional circuit

topology that are invariant to the details of individual neurons, we

are able to reveal abstract structural rules present in functional

wiring in a computationally efficient manner.

We emphasize that our functional approach does not

necessarily identify causal connectivity, but rather pairwise

correlative dynamics [50]. However, we also note that there is

a relationship between structure and function [18]. This

relationship is likely enhanced in this study as the high

sampling density employed here should dramatically increase

the likelihood that a correlation could reflect a causal

connection, since the likelihood of a synaptic connection

increases with spatial proximity [8].

We consider the slice preparation to be an isolated system

that allows us to study the local connectivity that defines

cortical microcircuitry and remove the potentially conflating

influence of long modulatory and long afferent inputs. This

approach allowed us to maximize the imaged field of view and

the corresponding numerical sample of neurons. In addition,

coronal slices allowed us to examine the potential influence of

laminar boundaries on functional circuitry. We found that a

field of view of approximately 640 mm is necessary to correctly

establish functional dependence between two neurons in the

sensory neocortex. This field of view results from having a

minimal numerical sampling while having sufficient distal

functional connections that are necessary to generate a

connected graph. The necessity of distal functional connec-

tions that extend beyond layers and columns may indicate that

functional circuits represent information from multiple octaves

in A1 [51] whiskers in S1 [52], or a natural visual scene in V1

[53]. Our data are consistent with anatomical studies that have

revealed a patchy, distributed axonal structure which has been

postulated to limit signal redundancy while enabling the

potential for integration of information within local popula-

tions of neurons [48,54]. For these hypotheses to be properly

evaluated, future work toward understanding the role of

connectivity in cortical dynamics and behavior will require a

combination of research at the in-vitro and in-vivo level.

Interestingly, we found that the connectedness of the

topology depended not only on the size of the field of view,

but also on whether the most unreliable connections were

considered. In a previous study employing a network model,

we similarly found that weak connections were necessary to

recapitulate experimentally observed circuit dynamics [15]. In

this study, functional topologies became sparse and modular as

minimum thresholds on weight were increased, likely because

fewer functional connections were reliable. When only the

most reliable functional connections were considered, the

topologies were sparsely connected regardless of sensory area.

By investigating invariant metrics without setting thresholds on

how reliably active the neurons were, we did not bias ourselves

to only investigating the most reliable connections. Such a bias

may lead to subsampling errors, exactly parallel to the

problems that arise from using small fields of view. Since

circuit topologies become highly connected with the inclusion

of weak functional connections, weak connections may be

necessary to provide a large dynamic range similar to a

previous study of mouse V1 [37,42]. These data and analyses

suggest that the generalized features of functional circuitry
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identified in this study maximize the capacity of this system to

represent the sensory environment.
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34. Hájos N. and Mody I. (2009). Establishing a physiological environment for
visualized in vitro brain slice recordings by increasing oxygen supply and

modifying aCSF content. Journal of neuroscience methods 183(2): 107–113.

35. MacLean J N., Watson B O., Aaron G B., and Yuste R. (2005). Internal
dynamics determine the cortical response to thalamic stimulation. Neuron 48(5):

811–823.
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