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Abstract

The discrepancy between structural and functional connectivity in neural systems forms the challenge in understanding
general brain functioning. To pinpoint a mapping between structure and function, we investigated the effects of
(in)homogeneity in coupling structure and delays on synchronization behavior in networks of oscillatory neural masses by
deriving the phase dynamics of these generic networks. For homogeneous delays, the structural coupling matrix is largely
preserved in the coupling between phases, resulting in clustered stationary phase distributions. Accordingly, we found only
a small number of synchronized groups in the network. Distributed delays, by contrast, introduce inhomogeneity in the
phase coupling so that clustered stationary phase distributions no longer exist. The effect of distributed delays mimicked
that of structural inhomogeneity. Hence, we argue that phase (de-)synchronization patterns caused by inhomogeneous
coupling cannot be distinguished from those caused by distributed delays, at least not by the naked eye. The here-derived
analytical expression for the effective coupling between phases as a function of structural coupling constitutes a direct
relationship between structural and functional connectivity. Structural connectivity constrains synchronizability that may be
modified by the delay distribution. This explains why structural and functional connectivity bear much resemblance albeit
not a one-to-one correspondence. We illustrate this in the context of resting-state activity, using the anatomical
connectivity structure reported by Hagmann and others.
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Introduction

Much of the current focus in the empirical study of large-scale

neuronal networks has been on their intrinsic activity and the

degree to which the coherent patterns of this intrinsic activity

reflect anatomy. The use of fMRI and diffusion spectrum imaging

has allowed for a comprehensive evaluation of the structure-

function map of resting-state networks (RSNs). In fMRI the spatial

patterns of spontaneous changes in blood oxygenation level-

dependent signals seem to reflect the generating neural architec-

ture of RSNs. Despite the very slow changes of these signals,

Biswal and co-workers [1] defined RSNs as networks of brain

areas that exhibit temporally coherent activity in the absence of

identifiable externally imposed or measurable events. More

recently, RSNs penetrated the field of encephalography [2,3].

For M/EEG, locally synchronized neural activity is considered to

yield macroscopic oscillations that provide a basis for defining

functional brain networks [4]. In most studies, structural

connectivity is considered a good predictor of functional connec-

tivity [5,6]: Structural connectivity agrees with the anatomical

connections between network nodes and functional connectivity

covers the statistical relationship of nodal activity.

The predictive value of structure for function found support in

recent modeling work using full brain systems with realistic

anatomy, which demonstrated the structural dependency of

functional network configurations [7]. There, functional connec-

tivity has been estimated between all nodes over several hundred

seconds of simulated time yielding the pattern of functional

connectivity over this time window that largely reproduced the

structural connectivity. At smaller time windows, however,

shorter-living patterns of functional connectivity emerged that

had not been predicted by anatomy. To understand this

discrepancy we investigated effects of time delays vis-à-vis effects

of structural inhomogeneity on synchronization patterns of

neuronal networks.

Delays are inherent in neuronal networks due to finite

conduction velocities [8] and synaptic transmission [9]. Ignoring

delays may be a valid starting point for mathematical analysis but

when doing so one runs the risk of loosing biological plausibility.

However, incorporating delays in oscillatory networks does come

with immense challenges. Already for low-dimensional oscillatory

systems (or for high-dimensional ones with strong symmetry) the

presence of delays is known to change the dynamical repertoire

significantly [10,11]. Yeung and Strogatz showed for very large

networks how time delays can alter synchronization properties,

even if the structure is isotropic and homogeneous [12]; see also

[13,14]. Numerical assessments revealed similar results for

biologically motivated and hence more inhomogeneous connec-

tivities. Delays seem to be crucial in establishing the spatio-

temporally organized fluctuations typically observed in resting
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state brain recordings [15–17]. In the present study we sought to

tackle this issue and separated the effect of time delays from that of

inhomogeneous connectivity by studying networks consisting of

distinct neural masses. Neural mass models offer a low-dimensional

description of the dynamics of a large neuronal population and exist

in a variety of forms [18]. We chose for Freeman’s seminal model

[19–21], since it covers the dynamics of mean membrane potential

changes that relate closely to encephalographic signals. A network of

such entities may constitute RSNs if we regard the neural masses to

be representative of individual brain areas.

Throughout the paper we describe functional connectivity by

means of phase synchronization whose dynamics can be estimated

in voltage-based and firing-rate models using a combination of

rotating wave and slowly varying amplitude approximations, or in

brief averaging, see [22,23]. In the Methods section this combina-

tion of approximations is briefly summarized for Freeman neural

mass models in the oscillatory regime. Central outcome measure is

thus the phase dynamics of the individual nodes in the network or,

to be more precise, the density of the nodes’ phases as a function of

time, often also referred as time-dependent population distributions.
We note that we applied this approach before to instantaneously

coupled Wilson-Cowan firing rate models [24] (see also [25]) but, as

said, we here chose for the Freeman model for an easier comparison

with M/EEG studies. For coupled Freeman models we could

analytically determine the corresponding stationary distributions

even in the presence of delays and inhomogeneous coupling

between neural masses. We could not only prove the existence of

these solutions, but we were also able to determine the loss of

stability of the desynchronized state as soon as the overall coupling

strength exceeded a critical value. More complicated scenarios

including biological plausible anatomical adjacencies were treated

numerically to illustrate the non-trivial relationship between

structural and functional connectivity.

Results

We considered a set of N coupled neural masses whose mean

membrane potentials Vk follow the dynamics

€VVk~{ akzbkð Þ _VVk{akbkVkzakbkqkz

akbk

XN

l~1

Ckl½W tð Þ � S Vl t{tklð Þ½ �� : ð1Þ

In this expression ak and bk represent mean rise and decay times of

neural responses in population k, qk stands for an external input, and

S :½ � denotes a sigmoidal activity function covering the effects of pulse-

coupled neurons in populations l~1 . . . N [19,26]. Corresponding

mean activities Vl arrive at population k after yet arbitrary delays tkl .

The structural connectivity matrix Ckl served to introduce both

excitatory and inhibitory connections in the thus asymmetric coupling;

see Fig 1A. We first considered the case in which a large degree of

homogeneity was present in Ckl to define a ‘baseline’. Subsequently we

introduced inhomogeneity to mimic, e.g., the sparse connectivity

presumably underlying RSNs. Two seminal coupling schemes are

sketched in Fig 1. Excitatory and inhibitory populations were always

properly balanced to stabilize oscillatory behavior [27,28]. This

translates to the condition that at least one pair of the eigenvalues of

the linearized system around the fixed points V
(0)
k ,U

(0)
k must be

imaginary with positive real part. From the Methods section it follows

that the considered coupling schemes did satisfy this condition.

For the convolution we chose an exponentially decaying

kernel W

W tð Þ~
ce{c t for t§0

0 otherwise

�
, ð2Þ

to represent the dynamics at the synaptic junction. In the particular

case of infinitesimal memory, i.e. for c??, we found the

corresponding phase dynamics by transforming the neural mass

dynamics to polar coordinates around an unstable focus, i.e.

Vk?V
(0)
k zRk cos Vtzwkð Þ; Rk denotes the amplitude of oscillation

and wk its phase corresponding to the central frequency V.

Subsequently, we averaged the dynamics over one period 2p=V.

We assumed that the characteristic times of amplitude and phase

Figure 1. Structural connectivity in the case of two coupled
pairs of excitatory/inhibitory neural masses. A: Homogeneous
coupling with coupling matrix C

(hom)
kl

. B: Inhomogenous coupling using

the coupling matrix C
(inh)
kl . In both cases excitatory/inhibitory-pairs have

a symmetric ‘internal’ coupling with strength +K1 but the coupling
between these pairs differs. In A the between-pair coupling is
homogeneous at strength K2 whilst in B the between-pair coupling
may differ across pairs; i.e. it is randomly chosen from a certain
distribution U with the constraint that inhibitory units map (on average)
with negative and excitatory with positive coupling strength. See text
for more details and Figs 7 and 8A for the more complicated coupling
schemes employed below.
doi:10.1371/journal.pcbi.1003736.g001

Author Summary

Separating the time scale of oscillations from that of the
phase dynamics allowed for reducing a network of
coupled neural mass models to a system of phase
oscillators. We studied the dynamics of networks of phases
and their synchronization characteristics as being seminal
for functional neural networks. We put particular focus on
effects of time delays in the coupling on the network
dynamics and contrasted that to effects due to altered
structural connectivity. Does neuroanatomical structure
prescribe all the macroscopic activity patterns that we
observe through electrophysiological brain recordings? We
found that heterogeneity in structural coupling and
distributed delays have equivalent effects on the shape
of phase distributions, i.e., on functional connectivity. The
contribution of changes in structural connectivity to
network synchronization can therefore not readily be
distinguished from that of distributed delays. Interestingly,
the emergence of phase clusters in networks requires a
subtle interplay between coupling and delays, which may
form a window into disentangling structural effects from
those induced by delay distributions. Therefore, when
investigating neural network behavior, both structural
connectivity and delay distribution should be addressed.

Inhomogeneity and Delays in Synchronized Networks
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dynamics are significantly larger than the period 2p=V, i.e. amplitude

and phase dynamics are slow compared to the oscillation. We also

assumed the time delays to be of the same order of magnitude or

smaller than the period. As a result the delays tkl reduced to mere

phase shifts Dkl and the phase dynamics became

_wwk~vk{akbk

XN

l~1

Dkl sin wl{wkzDklð Þ

with Dkl~
1

2V

Rl

Rk

S0 V
(0)
l

h i
Ckl :

ð3Þ

In the dynamics (3) the frequencies obeyed the form

vk~
akbk{V2

2V
and the phase shifts read Dkl~

p

2
{Vtkl . As said,

delays could be transformed to phase shifts due to a time scale

separation in the system, i.e. the phase dynamics was set sufficiently

slow compared to the oscillation and the delays tkl were up to the

same order of magnitude as one period of oscillation (cf. Fig 2).

At first glance the dynamics (3) seemed to largely resemble the

Kuramoto network of phase oscillators that is well known for its

bifurcation scheme from desynchronized to synchronized states.

The latter, i.e. the fully synchronized state, would imply large-scale

— if not whole-brain — synchronization, which, apart for very

pathological cases, is not observed experimentally. Nonetheless we

considered linking our study to Kuramoto’s profound work to be

very insightful, as understanding the Kuramoto network is

essential for understanding synchronizability in our more general

framework. A closer look revealed that, although similar, (3) differs

from the Kuramoto network in two important aspects. First, in the

phase dynamics the coupling is given by Dkl , which in general is

not entirely homogeneous as in Kuramoto’s case. This expression

for Dkl agrees with the previously derived phase dynamics of

coupled Wilson-Cowan oscillators in that the amplitude relation

Rl=Rk between nodes l and k affects the corresponding (relative)

phase [24]. Second, the finite delay tkl yields a non-trivial phase

shift Dkl~
p

2
{Vtkl . This phase shift might alter the spectrum of

phase synchronization entirely; see, e.g., [29,30] for the case.

Instead of studying the mere collection of phases fw1, . . . ,wNg
we investigated the dynamics of their probability density

P~P(w1, . . . ,wN ,t), because it forms a proper measure of

synchronization. To explain: Synchronization around a certain

phase value h manifests itself as a peak in the probability density

around that value, i.e. a phase cluster around h. For our set of

Freeman neural masses we found that the phase distribution

follows the dynamics

_PP~{
XN

k~1

L
Lwk

vk{akbk

XN

l~1

Dkl sin (wl{wkzDkl)

" #
P : ð4Þ

This is the continuity equation, which equals the zero-noise limit

of the corresponding Fokker-Planck equation when presuming

ergodicity and very large networks (N??). Despite the presence of

delays tkl we here succeeded to specify stationary solutions

Pstat w1, . . . ,wNð Þ. Crucial in finding these solutions

was the fact that they can always be written as a mere sum of

distinct clustered states, i.e. they always obey the form

Pstat~
1

N

XN

k~1
d wk{hkð Þ, because the network has a countable

number of nodes. Put differently, the phase distribution contains

clusters centered around h1,h2, . . . ,hN . In general, the real number

of clusters is given by the number M of distinguishable centroids hk;

we always consider MƒN. The number M strongly depends on

the distribution of delays and/or inhomogeneity of the coupling

matrix Ckl or strictly speaking of the effective coupling Dkl .

In order to illustrate stationary solutions of (4) we first specified the

coupling matrix Ckl to be either homogeneous or inhomogeneous. In

both cases we labeled excitatory and inhibitory populations by E and

I , respectively, and defined the corresponding sets

E~ k~1, . . . ,
N

2

� �
and I~ k~

N

2
z1, . . . ,N

� �
. As mentioned

above we guaranteed throughout analysis that all excitatory

populations had an inhibitory counterpart generating and stabilizing

oscillatory activity at around the central frequency V [27,28]. For the

sake of simplicity we ignored self-coupling of neuronal populations.

The stationary phase distribution could thus be written as

Pstat~Pstat wE ,wIð Þ~ 1

N

X
k[E

d wk{hkð Þz 1

N

X
k[I

d wk{hkð Þ : ð5Þ

Figure 2. Frequency and period as a function of delay. A: Oscillation frequency V. B: Period 2p=V. The analytical estimate under small-delay
approximation (see Methods) is displayed as a solid line; results of numerical simulations of the dynamics (1) as dots (0). Simulations were performed

for homogeneous coupling C
(hom)
kl with within-pair coupling K1~1, between-pair coupling strength K2~0:2, and distributed delays tkl ; see text for

details. The presence of between-pair coupling K2 and even heterogeneity in coupling, C
(hom)
kl ?C

(inh)
kl , did not yield qualitatively different results.

Inhomogeneity and Delays in Synchronized Networks
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Homogeneous coupling
In the homogeneous case we employed the coupling scheme

sketched in Fig 1A. Excitatory and inhibitory populations were fully

connected (apart from self-coupling) with coupling values K1 and K2

discriminating within-pair and between-pair coupling. For the

numerical assessment we always fixed the within-pair coupling to

K1~1. In more detail, we chose the overall homogeneous coupling

matrix as

C
(hom)
kl ~

C
(hom)
EE C

(hom)
EI

C
(hom)
IE C

(hom)
II

2
64

3
75

with sub-population connectivities

C
(hom)
EE ~

0
2K2

N
P

2K2

N
0

2
6664

3
7775~{C

(hom)
II

and C
(hom)
IE ~

K1
2K2

N
P

2K2

N
K1

2
6664

3
7775~{C

(hom)
EI :

In the absence of delays, i.e. for tkl~0 (Dkl~
p

2
) and sufficiently strong

coupling K2 we found robust distributions with M~2 phase clusters,

one containing all the excitatory populations and one all the inhibitory

ones:

Figure 3. Phase distributions for strong coupling (K2~0:6) and equal delays. A: Vanishing delay (t~0). B: Fixed finite delay t~0:05. C:
Fixed finite delay t~0:2. In all cases synchronized solutions Pstat,2 can be seen and appeared to be the only stable solution in the case of strong
coupling K2~0:6. Phase distributions were obtained from simulations of the original system (1), where phases were extracted using the Hilbert
transforms of Vk(t); see Methods section. In this and all subsequent figures excitatory phases wE are depicted in orange and inhibitory phases wI in
green. Radial axes are normalized.
doi:10.1371/journal.pcbi.1003736.g003

Figure 4. Phase distributions for weak coupling (K2~0:2) and equal delays. A: Vanishing delay (t~0). B: Fixed finite delay t~0:05. C: Fixed
finite delay t~0:2. As for strong coupling we found synchronized solutions Pstat,2 in the weak coupling case K2~0:2. In addition solutions Pstat,4

were also present. The number of clusters did depend on the delay value t. That is, altering the delay from t~0 to t~0:2 caused a switch in stability
between these two solutions. Since for t~0:05 the two clusters within an E=I -group only showed a small phase difference, we conjecture that
t~0:05 is close to the critical value of this bifurcation parameter.
doi:10.1371/journal.pcbi.1003736.g004

Inhomogeneity and Delays in Synchronized Networks
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Pstat,2 wE ,wIð Þ~ 1

2
d wE{hEð Þz 1

2
d wI{hIð Þ:

An example of this solution is illustrated in Fig 3A; the remaining

panels in that figure refer to cases of non-vanishing delay that will be

summarized below. We note that due to symmetry the homogeneous

case with tkl~0 can be readily transformed, proving its resemblance

with the Kuramoto network [31]. The somewhat lengthy analytic

derivations are given in the Methods section.

Next to the homogeneously synchronized state Pstat,2 we found

a solution with M~4 phase clusters given by

Pstat,4 wE ,wIð Þ~ 1

4
d wE{hE,1ð Þz 1

4
d wE{hE,2ð Þz

1

4
d wI{hI ,1ð Þz 1

4
d wI{hI ,2ð Þ:

Again we refer to the Methods for the analytical treatment with

respect to the existence of this stationary solution; see Figs 3A and

4A for the corresponding numerical assessments. The specific form

of the dynamics (3) and (4) already suggested that tkl~0 is just a

special case of tkl~t=0. We therefore expected the existence of

the solutions above not to be affected by introducing homoge-

neous, finite delays tkl~t=0, even if this appeared somewhat

counterintuitive. In fact, numerics confirmed this expectation as

displayed in Figs 3B, 3C, 4B and 4C.

The introduction of distributed delays tkl instead of a single t
changed results profoundly. To exemplify this, we distributed

delays tkl by drawing them at random from a uniform distribution

over a certain interval. Recall that according to the transformation

from (1) to (3), a distribution of delays tkl generally implies an

equivalent distribution of phase shifts Dkl . If Dkl differed for all

populations k and l, the stationary solution Pstat(w1, . . . ,wN ) of the

continuity equation (4) required the presence of many distinct

phase clusters. We could prove the existence of that set and,

Figure 6. Phase distributions in the presence of inhomogeneous coupling C
(inh)
kl . A: Strong coupling (K2~0:6). B: Weak coupling (K2~0:2).

As predicted by the phase derivation (9), inhomogeneity in the coupling matrix resulted in similar behavior as a distribution in delays; compare
Figs 5A and 5C with panels Fig. 6A and 6B respectively. For reasonably weak coupling we found a widening of the phase distribution equivalent to
the case tkl*U(0,0:05) with homogeneous coupling. Again, an increase in coupling strength resulted in a concentration of hk .
doi:10.1371/journal.pcbi.1003736.g006

Figure 5. Phase distributions for different coupling strengths and distributed delays. A: K2~0:6, tkl*U(0,0:05). B: K2~0:6,
tkl*U(0,0:2). C: K2~0:2, tkl*U(0,0:05). The effect of a delay distribution and consequently the presence of M~N centroid phase values hk

manifested itself as a widening of the phase distribution compared to the constant delay cases in Fig 4. Narrow delay distributions with
tkl*U(0,0:05), i.e. the tkl were randomly drawn from a uniform distribution over the interval ½0,0:05�, yielded comparably narrow phase distributions
located around two narrow peaks (peaks representing the E- and I -populations; (A)). Increasing the width of the delay distribution to tkl*U(0,0:2)
(B) had a very similar effect as lowering the coupling strength K2~0:2 (C): in both cases the phase distribution widened substantially.
doi:10.1371/journal.pcbi.1003736.g005

Inhomogeneity and Delays in Synchronized Networks

PLOS Computational Biology | www.ploscompbiol.org 5 July 2014 | Volume 10 | Issue 7 | e1003736



although the generic solution appeared similar to the homoge-

neous delay case tkl~t, it did contain M~N centroid values hk

instead of the small number M~2 or M~4 shown above. We

depict examples of phase distributions for several parameter

settings in Fig 5. Interestingly, the heterogeneity in tkl , or

equivalently in Dkl , agreed with weakening the between-popula-

tion coupling K2 in that both cause a profound widening of the

phase distributions; compare Fig 5A with 5C. That is, for a

network with homogeneous structural connectivity, it is not the

presence of delays per se that hinders synchronization but rather

the distribution of delays (or the lack of coupling strength).

Inhomogeneous coupling
According to (3) both distributed phase shifts (or delays) and

heterogeneous coupling may in principle result in inhomogeneity

of phase coupling. In other words, distributed delays tkl and

structural heterogeneity may yield inhomogeneity in functional

connectivity. We therefore expected a heterogeneous coupling

matrix with homogeneous delays tkl~t to be accompanied by

desynchronization equivalent to the case of homogeneous coupling

and distributed delays. To verify this, we used the inhomogeneous

coupling sketched in Fig 1B, which can be given more formally as

C
(inh)
kl ~

C
(inh)
EE C

(inh)
EI

C
(inh)
IE C

(inh)
II

2
6664

3
7775

Figure 8. Anatomical connectivity matrix and resulting functional connectivities as a function of delay distribution. A: Sparse
neuroanatomical coupling matrix C

(N)
EE serving as structural connectivity (connections are given in yellow). B: Structure-function correlation

r(C
(N)
EE ,rkl ). C: Overall synchronizability SrklT. Between-pair coupling strength K2 appears on the horizontal axis; while blue, red, and black lines

correspond to StklT~0,0:05, and 0:1 respectively. Note that an increase in delay distribution width increased synchronizability due to increased StklT,
but the accompanying higher tkl variance decreased structure-function correspondence as predicted by (3). D-F: Corresponding spatial
synchronization matrices rkl for delay distributions tkl~0, tkl*U(0,0:1) and tkl*U(0,0:2) respectively (K2~0:1). Color coding is displayed in the
most right panel; only excitatory nodes are shown.
doi:10.1371/journal.pcbi.1003736.g008

Figure 7. Neural mass coupling scheme for anatomical
coupling C

(inh)
kl . For C

(inh)
kl the SC matrix determines the coupling

between excitatory units only. The SC matrix is the neuroanatomical
coupling matrix; here three coupled excitatory/inhibitory pairs are
shown. The other connections between excitatory and inhibitory
masses serve to establish oscillatory behavior, resulting in a coupling

matrix that is relatively sparse compared to C
(hom)
kl and C

(inh)
kl .

doi:10.1371/journal.pcbi.1003736.g007

Inhomogeneity and Delays in Synchronized Networks
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with sub-population connectivities

C
(inh)
EE ~

0 *U

P

*U 0

2
664

3
775~{C

(inh)
II

and C
(inh)
IE ~

K1 *U

P

*U K1

2
664

3
775~{C

(inh)
EI :

where *U abbreviates *U {3K2

N
,
5K2

N

� �
denoting that the off-

(sub)diagonal entries were randomly drawn from a uniform

distribution centered around +
K2

N
.

The numerical simulations depicted in Fig 6 confirmed our

hypothesis. For C
(inh)
kl and tkl~t~0:05 we observed a widening of

the phase distribution similar to that shown in Figs 5B and 5C

where coupling was established by C
(hom)
kl but with delay

distributions tkl*U(0,0:2) and tkl*U(0,0:05) respectively. In-

creasing coupling strength reduced the width of the phase

distribution comparable to the switch from Fig 5C to 5A.

Functional connectivity thus seems to result from an interplay

between structural connectivity Ckl and delay structure tkl .

Therefore both should be taken into account when studying

functional connectivity in neuronal networks.

Anatomical coupling
The coupling matrices Ckl considered so far were admittedly

quite academic. However, these seminal examples did provide

important insights that | as we will show here | generalize to more

complicated and biologically plausible cases. We performed

simulations using the coupling scheme displayed in Fig 7. The

matrix C
(N)
kl had the same structure as C

(hom)
kl but now the blocks

were given by C
(N)
EE ~SC, C

(N)
II ~0, and C

(N)
IE ~{C

(N)
EI ~IK1

. The

acronym SC stands for ‘structural connectivity’ that here refers to

a neuroanatomical connection matrix as can be derived using

DTI/DSI imaging [32,33] and IK1
is the identity matrix with K1

along the diagonal. To be precise, we used a binary form of the

Hagmann connection matrix; see [24] for specifics of pre-

processing.

In line with earlier studies we quantified functional connectivity

in terms of phase uniformity or phase locking value of the pair-wise

relative phases, i.e. rkl~DSei(wl (t){wk(t))TD. Using this synchroniza-

tion measure, simulation results can be best summarized in the

form of functional connectivity matrices constructed from rkl

values for all available pairs. The effects of delay structure tkl on

these functional connectivity matrices are depicted in Figs 8D-F

with the underlying structural connectivity given in Fig 8A. The

functional connectivity matrix appeared rather sensitive for

parameter values, as increasing coupling strength from K2~0:1,

which was the value used in Fig 8D-F, up to K2~0:12 resulted in

a fully synchronized network as can be seen in Fig 8C. The sudden

synchronization is reminiscent of the phase transition towards the

fully synchronized state at the critical coupling strength Kc in the

Kuramoto network.

In a nutshell, from (4) we could deduce the mechanism

responsible for the general finding that structural and functional

connectivity are positively correlated [5,6]; see also Fig 8B. Our

results clearly show that delay distribution affects both the spatial

distribution of functional connectivity (Figs 8B; 8D-F) and the

overall level of synchronization in the network (Fig 8C). The

increase of overall synchronization is caused by a decreased phase

shift Dkl by which the phase dynamics (3) converges towards the

Kuramoto model, i.e. the delay induces a change in stability of the

(partially) synchronized state.

Discussion

We investigated the effect of time delays in the coupling

between neural mass dynamics, where we consider an oscillatory

regime, established by creating pairs of excitatory/inhibitory

neural masses. Although we employed a specific neural mass

model, we do consider our results generic because the mappings

Ckl?Dkl and tkl?Dkl are largely independent of the generating

nodal dynamics, presuming that the time scales in the system are

sufficiently separated; cf. Methods.
By using this oscillatory dynamics to describe activity in certain

brain areas, our approach links directly to the ongoing dispute

about changes of functional connectivity in resting state networks

(RSNs). There is growing evidence from experimental research

that spontaneous brain activity during rest is highly structured into

characteristic RSN patterns [1,3,34,35]. These activity patterns

seem not to be the result of structural connectivity alone [5,36],

but to reflect a non-trivial interplay between the neuroanatomical

structure and dynamics [37]. The distribution of time delays

involved in this dynamics may have an important role in shaping

patterns of activity per se and neuronal synchronization in

particular [15–17,38].

Key to our analysis was the reduction of a neural mass network

to a system of phase oscillators summarized in (3). Several previous

studies struggled with computational complexity when trying to

unravel effects of delays vis-à-vis coupling on network dynamics

[15–17,38]. By contrast, our analytic reduction ‘readily’ allowed

for disentangling the contributions of both structural connectivity

Ckl and delays tkl to the phase dynamics (3). Delays tkl entered

the phase dynamics as phase shifts Dkl , given a proper time scale

separation of oscillatory and phase dynamics. Furthermore, we

found that heterogeneity in delays yields effects equivalent to those

of heterogeneity in structural connectivitiy. That is, connectivity

and delay effects cannot be easily distinguished when solely

looking at functional connectivity patterns.

The decrease of V as a function of delay, as depicted in Fig 2,

agreed with the analytical findings of [13] as well as with our

small-delay approximations outlined in the Methods. However,

when further comparing the current results with the literature, one

has to realize that some fundamental differences exist between

general phase oscillator networks and our dynamics (3). One of

those differences is the finite dimensionality of the system (3). We

assumed every excitatory/inhibitory neural mass pair to represent

a single brain area, by which the dimension of the system under

study may be fairly low. On the contrary, most analytical work on

phase oscillator networks considered the limit N?? [14,39–41]

rendering one-to-one comparisons all but trivial. This can already

be appreciated by the rather dramatic finite-size effects in

Kuramoto networks [42–45]. Moreover, our structural connec-

tivity C
(hom)
kl is rather atypical due to its strong +-asymmetry.

Usually, the connectivity structure in similar phase oscillator

networks comprises either fully homogeneous coupling or the

entries Ckl are distributed according to some unimodal distribu-

tion [42,46]. An exception is [47], who investigated repulsive

coupling, which is similar to the excitatory/inhibitory connections

in C
(hom)
kl . That study reported the presence of two anti-phase

clusters reminiscent of the separate E/I -groups observed here.

Inhomogeneity and Delays in Synchronized Networks
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The time scale separation in (3) and the resulting simplification

of delays tkl as phase shifts Dkl also hinders direct comparison with

studies on delays in the Kuramoto network. This may indeed

explain our seemingly contradicting results. For example, we did

not observe the emergence of multi-stability mediated by specific

(t,K )-combinations as reported in [12,48]. In those studies, regions

in the (t,K ) phase plane were found in which synchronization was

entirely absent. This is clearly not the case in our study. We did

find synchronized solutions irrespective of delays. This is not

trivial, because for tkl~0 the phase dynamics equation (3) may be

reduced to a cosine-variant of the traditional Kuramoto model,

which is known for its inability to display synchronized behavior

[49]. By exploiting the pairing of the E=I -groups and the

+-asymmetry in C
(hom)
kl we could map our averaged neural mass

network to a conventional, fully homogeneous Kuramoto network

via a mere transformation of variables. Hence our system can

display synchronized behavior even for vanishing t values. This is

consistent with [50] who did not find any qualitative effects of a

phase shift a on the stability of the Kuramoto network.

Apart from choosing random values as entries of the Ckl-matrix,

inhomogeneous coupling might also stem from creating distinc-

tively different sub-populations in the network. It can then be

studied by modifying within- versus between-network interactions.

Particularly interesting in this respect is the occurrence of

clustering in the network. When delays are not incorporated one

needs either structural inhomogeneity [51] or higher-order Fourier

harmonics, in combination with an appropriate phase shift [30], to

achieve clustering. The phenomenon of clustering is important in

the light of the study of RSNs, i.e. the strong spatiotemporal

organization observed in brain activity during resting state

conditions [1,3,34,35].

We briefly consider a simple, low-dimensional example of three

isolated excitatory nodes. We define a cluster as a number of

(excitatory) masses attaining the same centroid phase value hk. By

denoting the excitatory and inhibitory centroid values as hHE and

hHI , respectively and assuming tk,kzN=2~0, from the phase

derivation (3) and its corresponding continuity equation (4) one

finds constraining equations

vzabK1 sin hHI{hHEz
p

2

� �

~

ab
RI
RE

D12 sinD12zD13 sinD13ð Þ

ab
RI
RE

D21 sinD21zD23 sinD23ð Þ

ab
RI
RE

D31 sinD31zD32 sinD32ð Þ

8>>>>>>>>><
>>>>>>>>>:

for 0ƒVtƒ
p

2
. In fact, these forms already hint at the interference

between coupling and delays and its effect on synchronization

structure. First, all terms on the right-hand side must have equal

magnitude requiring specific combinations of Dkl and Dkl .

However, both Dkl and Dkl are constrained by biology: Dkl by

the neuroanatomical coupling SC as part of Ckl ; and Dkl by the

spatial structure of the brain, as delays are proportional to distance

between masses k and l due to finite conduction velocity. Second,

because the left-hand side does not vanish, Dkl must have some

lower bound. If Ckl%1, then sinDkl cannot compensate this and

the equality cannot be satisfied. Because Ckl determines Dkl , there

must be some minimal coupling strength between nodes for

synchronization to emerge. This explains the positive correlation

between structural and functional connectivity, see, e.g., [6,17,38].

It also shows the intricate interplay between structure and delays

in establishing synchronization structure.

Interestingly, Dkl may be regarded as the effective coupling

matrix that is typically encountered in dynamic causal modeling

approaches [52]. The fact that Dkl is directly determined by Ckl

also explains the finding that models using the structural

connectivity as a prior do show more evidence than models using

other priors [53]. That is, models that have structural connectivity

as a starting point, perform better in terms of data explanation.

The sparsity of Dkl induced by Ckl may yield coexisting

synchronized and desynchronized groups within the network,

which are often labelled chimera states in the study of phase

oscillator systems. It has been found that they crucially depend on

the combination of coupling strengths and phase shifts [45,54,55]

(or delays [56]), confirming that there has to be a specific matching

of coupling and delays for synchronization to occur.

Against the background of the aforementioned tkl-dependence

of functional connectivity and the functional-structural connectiv-

ity correlation for a biological plausible network, we numerically

investigated this by performing simulations of (1) with structural

connectivity given by the anatomical connectivity matrix C
(N)
kl

reported by Hagmann and co-workers [32]. Functional connec-

tivity was quantified as pair-wise phase uniformity, i.e. the phase

locking value. Our numerical assessment is summarized in Fig 8.

It clearly revealed off-diagonal patches with synchronization

between nodes that are not coupled (contradicting what has been

sketched above). The topology of the Hagmann et al. network

shares similarities with the Watts and Strogatz’ small-world

network [57], i.e. both have a relatively large clustering coefficient

with a small average path length. This kind of topology is often

believed to be generic in biological neural networks like our brain

[5] and enhances synchronizability compared to random networks

[57–59]. The presence of sparsely connected clusters establishes

synchronization between nodes that are only indirectly coupled via

their clusters. This causes ‘blurring’ of the structural connectivity

matrix: The functional connectivity matrix is less sparse than the

structural one [60]. Although this ‘blurring’ is similar to the effects

attributed to volume conduction [61], in this case it is solely due to

network topology.

Next to such clustering phenomena, we can make even more

general predictions about the effect of delays in this network.

Structural and functional connectivity are most prominently

correlated for homogeneous delays, since Dkl~D yields an

interaction term in (3) that is merely a scaled version of C
(N)
kl .

Hence, the resulting spatial synchronization distribution largely

resembles Dkl and thus C
(N)
kl , presuming that the overall coupling

strength is not excessively large. This effect can be seen in Fig 8B,

where we depicted the Pearson correlation coefficient between the

lower triangular parts of C
(N)
EE and the functional connectivity

matrix rkl . Increasing the width of the delay distribution results in

a decrease in structure-function correspondence. The positive

correlations are consistent with the finding that the pattern of

resting state activity is spanned by the eigenmodes of the

underlying connectivity matrix in [62]. This is not as trivial as it

may seem because the node dynamics in this study were noise-

driven fluctuations around a stable fixed point and therefore

entirely different from the self-sustained oscillations considered in

the current study.

Widening the delay distribution also had another effect: It

increased its average value and consequently the mean phase shift

SDklT~S
p

2
{VtklT tended to vanish. Therefore, the interaction

Inhomogeneity and Delays in Synchronized Networks
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term Dkl sin (wl{wkzDkl) became more similar to an ‘ordinary’

sine-term, which is known for its capacity to enhance synchroniz-

ability [63]. We illustrate this effect in Fig 8C, where overall

synchrony SrT is shown as a function of coupling strength K2 for

different average delay-values StklT. A similar phenomenon has

been reported for a system of coupled Hindmarsh-Rose neurons,

where a stable synchronized region appears to exist despite the

presence of a (constant) delay [64].

Throughout this study we assumed the amplitudes to be

constant. The relation between the envelope dynamics of M/

EEG and fMRI-BOLD signals [3] suggests that considering the

temporal change of the amplitude may be very important for

unravelling the spatio-temporal structure of resting state brain

activity. Given that we focused on phase synchronization

together with the slow time scale on which the BOLD

dynamics evolve (v0:1 Hz, [1]), we believe that the assump-

tion of constant amplitude is justified here. Investigating this

assumption in depth, however, is beyond the scope of the

current study.

We summarize that the dynamics of a system of coupled

Freeman neural masses (1) can be captured by the averaged

phase dynamics (3), in which the role of the structural

connectivity Ckl and delay distribution tkl become explicit. By

this, one can identify the relative contributions of structure and

delay to phase synchronization, i.e. to the functional connec-

tivity of the neural network. Heterogeneity in structural

coupling and distributed delays have equivalent effects on the

observed phase distributions. Overall, this supports the notion

that structure and delay are both crucial determinants of

network behavior and should therefore be taken into account in

unison whenever modeling realistic neural networks [37]. Our

examples on clustering detailed how the intricate interplay

between coupling and delays determines the form and spatial

distribution of clustering in these networks. Pinpointing the

explicit contributions of tkl and Ckl in the phase dynamics (3)

enabled us to understand their roles in establishing synchroni-

zation structure and why functional and structural connectivity

are so closely correlated. This implies that the observed

temporal changes in synchronization structure in resting state

and task conditions can be modulated through either tkl or

amplitudes Rk.

Methods

To analyze the gross membrane voltage of a neural mass we first

wrote its dynamics (1) as a two-dimensional system using the

auxiliary variable Uk~ _VVk. For the sake of simplicity we further

rewrote the convolution integral in (1) by means of

W tð Þ � S Vl t{tklð Þ½ �½ �~ W t{tklð Þ � S Vl tð Þ½ �½ �. Then the dynam-

ics (1) reads

_VVk~Uk

_UUk~{(akzbk)Uk{akbkVkzakbkqk

zakbk

XN

l~1

Ckl½W t{tklð Þ � S Vl tð Þ½ ��:
ð6Þ

In the following we discuss this dynamics in its oscillatory

regime after transforming the system into polar coordinates to

derive the corresponding phase dynamics. That transform,

however, was not applied to the original state variables Vk,Uk½ �
but to the deviations dVk,dUk½ � around the unstable fixed points

V
(0)
k ,U

(0)
k

h i
, i.e. we transformed Vk,Uk½ �? V

(0)
k zdVk,U

(0)
k z

h
dUk�. Furthermore, we expanded S Vk tð Þ½ � around V

(0)
k in the

sense of Taylor and obtained

S V
(0)
k zdVk(t)

h i
~
X?
n~0

1

n!
S(n) V

(0)
k

h i
dVkð Þn : ð7Þ

With this expansion the dynamics of the deviations dVk,dUk could

be approximated as

_ddVk ~dUk

_ddUk&{(akzbk)dUk{akbkdVk

zakbk

XN

l~1

Ckl W t{tklð Þ � S0 V
(0)
l

h i
dVl(t)

h i
:

ð8Þ

A closer look at this linear system revealed that the fixed points

V
(0)
k ,U

(0)
k

h i
were indeed unstable nodes, provided that a proper

balance between excitatory and inhibitory masses was present.

That is, the eigenvalues of the linear system (8) were complex-

valued with positive real-parts — explicit expressions for the

eigenvalues (as a function of delay) can be found below.

Next, we transformed system (8) into polar coordinates by

means of ½dVk,dUk�? Rk cos Vtzwkð Þ,{VRk sin Vtzwkð Þ½ � so

that the phases could be cast into the generic dynamics

_wwk~{Vz
1

VR2
k

dUk
_ddVk{dVk

_ddUk

� �
: ð9Þ

Importantly, in the current case we could assume that the phase

dynamics (9) in general contains two (or more) distinct time scales:

the rate of change given by the oscillation defined via the

frequency V and the time scale(s) of the amplitudes Rk and the

phases wk; the latter are much slower than 2p=V and can hence be

separated. More formally we used

D _RRk=Rk D%V and D _wwk=wk D%V :

In first order approximation we could thus consider Rk and wk to

be constant during one period of oscillation, T~2p=V. This

approach is referred to as a combination of a rotating wave
approximation and a slowly varying amplitude approximation [65].

It enabled us to average the dynamics over the interval 0,T½ Þ; see

also [23]. As will be shown in the following, this averaging

procedure decoupled amplitude and phase dynamics, which

ultimately resulted in the dynamics (3). Below we will provide a

more formal discussion regarding these approximations.

Averaging—towards the phase oscillator model
To average the dynamics (9) we defined the averaging operator

as Sf sð ÞT~
Ð

T
0 f (s)ds. We first substituted (8) into (9) and used

SdVkdUkT~0, SdV2
k T~

R2
k

2
, and SdU2

kT~
V2R2

k

2
:

The convolution integral on the right-hand side of the second

equation of (8) required more attention. Recall the definition of W
in (2) and the definition of the convolution operator, with which

one can write
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½W t{tklð Þ � dVl(t)�~
ð
?
{?W t{tkl{sð ÞdVl(s)ds

~

ð
?
{? ce{c(t{tkl{s)Rl cos (Vszwl)ds

~Rlce{c t{tklð Þ
ð

t{tkl
{? ecs cos Vszwlð Þds

~
cRl

c2zV2
c cos V t{tklð Þzwlð ÞzV sin V t{tklð Þzwlð Þf g :ð10Þ

When multiplied by dVk(t), this yielded the two averaged

trigonometric expressions

SRk cos Vtzwkð Þ Rlc
2

c2zV2
cos V t{tklð Þzwlð ÞT

~
1

2

c2RlRk

c2zV2
cos (Vtkl) cos wl{wkð Þz sin (Vtkl) sin wl{wkð Þf g

and

SRk cos Vtzwkð Þ VcRl

c2zV2
sin V t{tklð Þzwkð ÞT

~
1

2

VcRlRk

c2zV2
cos (Vtkl) sin wl{wkð Þ{ sin (Vtkl) cos wl{wkð Þf g :

After substituting this in (9) we obtained the phase dynamics

_wwk~vk{akbk

XN

l~1

Akl sin (wl{wk){

akbk

XN

l~1

Bkl cos (wl{wk)

ð11Þ

where we defined the constants Akl and Bkl as

Akl ~
c2 sin (Vtkl)zVc cos (Vtkl)

2V(c2zV2)

Rl

Rk

S’ V
(0)
l

h i
Ckl

Bkl ~
c2 cos (Vtkl){Vc sin (Vtkl)

2V(c2zV2)

Rl

Rk

S’ V
(0)
l

h i
Ckl :

By this procedure we omitted all fast oscillating terms as they

averaged out (cf. rotating wave approximation).

As mentioned in the Results section, we focused on the case in

which our convolution kernel W did not contain any memory.

That is, we considered the limit c??. In this limit only the first

terms in the numerators of Akl and Bkl remained non-zero and we

could cast (11) in the form (3) using

Dkl~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

klzB2
kl

q
~

1

2V

Rl

Rk

S’ V
(0)
l

h i
Ckl and Dkl~

p

2
{Vtkl :

Note that in this form, the delays tkl only appeared in the phase

shift Dkl . Last but not least we simplified expression (3) by

exploiting the homogeneity of C
(hom)
kl to explicitly formulate the

Dkl matrix multiplication. In particular for equal delays, i.e. for

tkl~t, this led to a greatly simplified form of (4) that we

summarized in the Results section and will be discussed in more

detailed below.

Fixed points and amplitudes
The neural masses do not oscillate around the origin but around

the fixed points V
(0)
k ,U

(0)
k

h i
, which have a direct influence on the

coupling terms Dkl through the term S’ V
(0)
l

h i
. Delay values tkl do

not influence the positions of the fixed points V
(0)
k ,U

(0)
k

h i
because

by definition _VV
(0)

k , _UU
(0)

k

h i
~½0,0�. Hence, Vk(t{tkl)~Vk(t) holds,

presuming the fixed points exist. Therefore we were free to choose

tkl~0, such that under the limit c?? the coupling term in (6)

reduced to

akbk

XN

l~1

Ckl

ð
?
{?W t{tkl{sð ÞS V

(0)
l

h i
ds?akbk

XN

l~1

CklS V
(0)
l

h i
:

After inserting the form of C
(hom)
kl we explicitly found

V
(0)
k ~

2K2
N

P
l=k
l[E

S V
(0)
l

h i
{

2K2
N

P
l=kzN=2

l[I

S V
(0)
l

h i
{K1S V

(0)
kzN=2

h i
zqk for k [ E

2K2
N

P
l=k{N=2

l[E

S V
(0)
l

h i
{

2K2
N

P
l=k
l[I

S V
(0)
l

h i
zK1S V

(0)
k{N=2

h i
zqk for k [ I

8>>>>><
>>>>>:

,

which implied V
(0)
k ~V

(0)
E , Vk [ E and V

(0)
k ~V

(0)
I , Vk [ I .

That is, in the case of the homogeneous coupling the fixed points

of the excitatory masses are equal and the same holds for the

inhibitory masses.

The coupling Dkl also depended on the amplitudes Rk of the

neural masses — see also [24]. Accounting for the high degree of

homogeneity in the system, we assumed the amplitudes to be equal

for equal types of neural masses, i.e. Rk~RE , k [ E and Rk~RI ,

k [ I . Furthermore we randomized the parameters ak~az",
bk~bz" by introducing " as a mean-centered random variable.

Whenever appropriate we chose " sufficiently small to restrict

discussion to the mean values a~1=N
PN

k~1 ak and

b~1=N
PN

k~1 bk.

Homogeneous coupling — existence of solutions
Since the phase oscillator system (3) can be cast in Kuramoto

form, fully synchronized solutions may be stable despite the

presence of equal delays tkl~t. But how about solutions other

than the fully synchronized ones? In what follows we discuss

existence and form of partially synchronized solutions of (3)

for general delays tkl . We concentrated on homogeneous

coupling and varied the distribution of tkl . In the homogeneous

case we found the dynamics of the k-th node’s phase distribution

Pk to be

L
Lt
Pk wk ,tð Þ~{

L
Lwk

V{C0E
Ð 2p

0

P
l[E

sin ~wwl{wkzDkl

� �
Pl

~wwl ,t
� �

d~wwl

	

zC0I
Ð 2p

0

P
l[I

sin ~wwl{wkzDkl

� �
Pl

~wwl ,t
� �

d~wwl



Pk wk ,tð Þ

ð12Þ

where the subscript 0~E when k [ E and 0~I when k [ I . Note

ð12Þ
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that equation (12) may differ for every k. Homogeneity of C
(hom)
kl

enable us to express Dkl explicitly and to define the following

constants

CEE~abK2
N{2

N
S0 V

(0)
E

h i
,

CEI~ab
RI
RE

K1S0 V
(0)
I

h i
zK2

N{2

N
S0 V

(0)
I

h i	 


CIE~ab
RE
RI

K1S0 V
(0)
E

h i
zK2

N{2

N
S0 V

(0)
E

h i	 

,

CII~abK2
N{2

N
S0 V

(0)
I

h i
:

ð13Þ

Sufficient for the existence of a stationary solution is the case in

which the drift coefficient in the dynamics of the probability

density vanishes, here the bracketed term on the right-hand side of

(12). From the dynamics (12) it readily follows that the phase

distribution obeys the form (5), i.e. P~Pstat(w1, . . . ,wN ), contain-

ing N different centroid phase values hk.

Equal delays. tkl~t. As said, for homogeneous coupling the

sums in (12) could be evaluated in the form of the constants in (13).

Furthermore in the case of equal delays tkl~t (i.e. Dkl~D) we

only had to account for two distinct populations each with just a

single type of density dynamics, by which the system (12) of N

equations could be reduced to merely two distinct ones:

L
Lt
PE wE ,tð Þ~{

L
LwE

v{CEE

ð2p

0

sin ~wwE{wEzD
� �

PE ~wwE ,t
� �

d~wwE

	

zCEI

ð2p

0

sin ~wwI{wEzD
� �

PI ~wwI ,t
� �

d~wwI



PE wE ,tð Þ

L
Lt
PI wI ,tð Þ~{

L
LwI

v{CIE

ð2p

0

sin ~wwE{wIzD
� �

PE ~wwE ,t
� �

d~wwE

	

zCII

ð2p

0

sin ~wwI{wIzD
� �

PI ~wwI ,t
� �

d~wwI



PI wI ,tð Þ:

ð14Þ

To show the existence of Pstat,2(wE ,wI ) consisting of two phase

clusters, one for the excitatory units and one for the inhibitory

units, i.e.

Pstat,2(wE ,wI )~
1

2
d wE{hEð Þz 1

2
d wI{hIð Þ

we followed a constructive approach and substituted Pstat,2(wE ,wI )
into (14). Vanishing of the drift coefficient required

CEEzCIIð Þ sinD~CEI sin Dzyð ÞzCIE sin D{yð Þ: ð15Þ

when abbreviating y~hE{hI . Using DCIEzCEI DwDCEEzCII D,
which followed from (13) irrespective of the value of K2, we could

conclude that a solution y satisfying (15) exists. Note that only y
appeared in (15) and not the centroid values h0, which allows for the

mapping to the conventional Kuramoto model as will be discussed

below.

We could readily generalize this line of reasoning to an arbitrary

number of clusters after defining the stationary phase probability

density containing M clusters as

Pstat,M (w1, . . . ,wM )~
1

M

XM=2

k~1

d(wE{hE,k)z
1

M

XM
k~M=2z1

d(wI{hI ,k) :

We defined generalized phase differences yab,kl~ha,k{hb,l

where a,b [ fE,Ig and k,l [ f1, . . . ,Mg, by which we obtained

the set of constraining equations as

CEE
X
l [ E

sin yEE,lkzDkl

� �" #
zCII

X
l [ I

sin yII ,lkzDkl

� �" #

~CEI
X
l [ I

sin yIE,lkzDkl

� �" #

zCIE
X
l [ E

sin yEI ,lkzDkl

� �" #
:

ð16Þ

In contrast to (15) we here considered general delays tkl ,

but note that the form of (16) did not change for tkl~t. As

the values of the constants C0 still fulfilled the inequality

DCIEzCEI DwDCEEzCII D we again could conclude that this system

can be solved. Thus, even for equal delays tkl~t (or Dkl~D) the

stationary phase distribution may contain any number of clusters

MƒN. Of course, this existence proof does not imply that all

these solutions will be found in reality since we have not yet

addressed their stability; cf. Figs 4A and 3A. Note that apart from

the fully synchronized state, we here restricted our stability analysis

to numerical evaluations.

The distributed delay case (16) does not require Dkl~D. Hence,

for general Dkl the stationary distribution Pstat,M will contain

M~N centroid values hk with k [ f1, . . . Mg.
Stability for tkl~t — a fling with the Kuramoto

network. Before proving the existence of distinct solutions in

the case of arbitrary delays tkl , we first briefly discuss the case of

constant delay because it readily links the model (3) to the

Kuramoto network of coupled phase oscillators [63]. For

tkl~t~0, the interaction term in (3) reduces to a mere cosine

term because of Dkl~
p

2
. We note that in Kuramoto’s traditional

form this cosine term leads to a system that is unable to show

synchronized solutions [49]. Our numerical simulations, however,

revealed synchronized solutions; see, e.g., Figs 3 and 4. In what

follows we show that due to the fact that the centroid phase

values hk are irrelevant one can distill the traditional Kuramoto

model.

It is the coupling matrix C
(hom)
kl that made the difference with

Kuramoto’s network as we assumed a (balanced) combination of

excitatory and inhibitory units. In the given form illustrated in

Fig 1A, the matrix C
(hom)
kl is strictly speaking not homogeneous but

contains an asymmetry. This, however, did allow for mapping our

model to the Kuramoto network by adapting an approach of

Frank and co-workers [31]. In essence, we applied a change in

variables yielding a fully homogeneous coupling matrix. For the

sake of legibility we set RE~RI , S’½V (0)
l �~S’ V (0)


 �
and K1~2K2.

Then Dkl simplified to Dkl~+
ab

V

K2

N
S’ V (0)

 �

where the ‘+’-sign

discriminates rows that correspond to the excitatory/inhibitory

neural masses E=I , respectively. By this simplification the key

feature of the system (9), the asymmetry in the coupling matrix,

remained untouched.

We further transformed the system into a rotating frame at

frequency v~
ab{V2

2V
by defining [65,66]

ð14Þ
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Qk~
wk{vt, k [ E

wk{p{vt k [ I

�
: ð17Þ

After abbreviating the constants
ab
V

K2S’ V (0)

 �

~k, the phase

dynamics (9) became

_QQk~{
k

N

XN

l~1

sin Ql{QkzDð Þ:

In line with Kuramoto’s analysis we introduced a mean (or

cluster) phase h and amplitude r in terms of

reih~
1

N

XN

l~1
ei wlzDð Þ that represent well-known order param-

eter(s). Finally, substituting

1

N

XN

l~1
sin Ql{QkzDð Þ~r sin (h{Q) yielded

_QQ~{kr sin q{Qð Þ:

Here we dropped the subscript k because the equation applies for

all nodes. This dynamics agrees entirely with the Kuramoto model,

apart from the fact that we here considered ak~a and bk~b by

which all oscillators’ natural frequencies vk~v agree. Due to this

correspondence to the Kuramoto model, we could conclude that the

system with equal delays tkl~t and ‘homogeneous’ coupling matrix

C
(hom)
kl can generate synchronized states provided the overall

coupling strength
ab

V
K2S’ V (0)


 �
is properly chosen.

Numerical assessments
Both distributed delays tkl and heterogeneous coupling called

for numerical assessments, particularly when it came to the

stability of solutions. We performed numerical simulations of the

coupled neural masses (1) using a conventional Euler-forward

integration scheme with time step Dt~10{3s over a time span of

10 s. We verified the appropriateness of this simple implementa-

tion against a more elaborate predictor/corrector integrator [67],

which revealed little to no difference but demanded far more

numerical resources. The simulated network consisted of 500

nodes (250 E=I pairs) with ak and bk being randomly drawn from

uniform distributions (ak [ ½25,75� and bk [ ½175,225�) to mimic

distributed natural frequencies per E=I -pair of nodes. Although

randomly drawn, these sets were fixed across simulations trials.

Initial conditions where chosen randomly and did vary between

trials; Vk(t~0) [ ½{100,100�,k [ E, Vk(t~0) [ ½{10,60�,k [ I
and similarly for _VVk(t~0). The external input qk was set to

qk~20, k [ E, qk~0, k [ I . Coupling between masses was

achieved by using the sigmoidal activation function S½V � that was

given as

S½V �~c
1

1ze{ V{Vthð Þ=s
:

The fraction in this equation may be interpreted as the

cumulative distribution function of the normal distribution

N V{Vth,s2
� �

of the firing thresholds Vth across the population,

whereas the constant c is just a scaling factor [68]. In the

simulations we used the following values for the activation function

parameters: c~250, Vth~15 and s~1.

In order to compare the numerics with our analytical results, we

determined the phase values wk from the simulated potentials Vk(t)
by means of the Hilbert phase. To this end, we first determined

oscillation frequency V as the lowest frequency with a coinciding

peak in the power spectra for all nodes. Voltage traces Vk(t) were

band-pass filtered using a 1-st order bi-directional Butterworth filter

in the frequency band ½0:8V,1:2V�. For each sample in the interval

t [ ½7,8�, phase values wk(t) were then calculated as the angle of the

analytical signal. By restricting analysis to that interval we avoided

transient behavior as well as possible filter artifacts. The so-

determined wk contained the frequency component Vt, which we

first subtracted to obtain Qk. Then, we opted to compute phase

distributions over the time interval T and over successive trials. The

(circular) mean phase, however, differed from trial to trial because of

the randomly chosen initial conditions (see above). Hence for every

trial we shifted phases by the mean phase of the excitatory

population prior to concatenating trials. By this, the phase

distributions of the excitatory phases always became centered

around zero and the inhibitory phases were considered relative

values. The mean phase per trial was given as

WE~ arctan0
X
k [ E

X
t [ T

sin Qk(t)=
X
k [ E

X
t [ T

cos Qk(t)

 !

where arctan0 denotes the quadrant-corrected inverse tangents.

The distributions displayed in the figures are the phase

distributions obtained from 100 simulated trials with different initial

conditions. As said, parameter values were identical across trials.

For the simulations involving C
(N)
kl connectivity, we used a binary

form of the 66 areas parcelated Hagmann et al. matrix [24,32] as

C
(N)
EE block; see Fig 7 and 8A for the coupling scheme and C

(N)
EE ,

respectively. Functional connectivity was quantified as phase

coherence given by rkl~DSei(wk(t){wl (t))TD. We performed one

hundred simulation runs of 10 s for each tkl distribution with

different initial conditions and ak,bk and averaged the rkl matrices

over these runs. This was done to avoid high rkl values due to

common oscillation frequency alone. For each run, data in the

interval t [ ½4,8� was used to determine rkl . The overall coupling

strengths were set to K1~1 and K2~0:1 for the rkl matrices

displayed in Fig 8. Structure-function correspondence r C
(N)
EE ,rkl

� �
was quantified as the Pearson correlation coefficient between the

lower triangular parts of both matrices to avoid spurious correlation

values due to common terms along the diagonal.

Eigenvalues of the linear system
To estimate the oscillatory regime of the system of coupled

Freeman neural masses (1) we considered the linearized dynamics

(8) for c? ? which in general reads

_ddVk ~dUk

_ddUk &{ akzbkð ÞdUk{akbkdVk

zakbk

XN

l~1

CklS
0 V

(0)
l

h i
dVl t{tklð Þ :

Assuming all delays tkl to be (very) small we expanded

dVl t{tklð Þ in the sense of Taylor and approximated up to the

linear order in tkl :
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dVl t{tklð Þ&dVl(t){tkl
d

dt
Vl(t)½ �~dVl(t){tkldUl(t):

For the sake of legibility we here considered a single isolated E=I -

pair with CEE~CII~0 and CIE~{CEI~K1. We also assumed

equal delays, i.e. tkl~t. Then, we found the resulting linear

dynamics as _~uu~uu~A~uu where we abbreviated ~uu~

dVE ,dUE ,dVI ,dUIð ÞT and

A~

0 1 0 0

{ab { azbð Þ {abK1S0 V
(0)
I

h i
tabK1S0 V

(0)
I

h i
0 0 0 1

abK1S0 V
(0)
E

h i
{tabK1S0 V

(0)
E

h i
{ab { azbð Þ

0
BBBBBB@

1
CCCCCCA
:

The matrix A came with eigenvalues lj

lj~{
azb

2
zi

K1y

2
t+

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+2iy azbð Þt{2K1½ �z (a{b)2{K2

1 y2t2

 �q

;

where we abbreviated y~ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S’ V

(0)
E

h i
S’ V

(0)
I

h ir
. These eigen-

values had the following real and imaginary parts

< lj

� �
~{

azb

2
+

1

2
ffiffiffi
2
p


(azb)2{K2

1 y2t2

 �2

+4y2 azbð Þt{2K1½ �2
q

z (azb)2{K2
1 y2t2


 �r

= lj

� �
~

K1y

2
t+

1

2
ffiffiffi
2
p


(azb)2{K2

1 y2t2

 �2

+4y2 azbð Þt{2K1½ �2
q

{ (azb)2{K2
1 y2t2


 �r
:

A necessary condition for the existence of a stable limit cycle,

and hence for the system (1) to display oscillatory behavior, is that

the fixed point V
(0)
E ,U

(0)
E ,V

(0)
I ,V

(0)
I

� �
is unstable. This means that

for at least one of the conjugate pairs lj , <(lj)w0 must hold,

which was indeed the case irrespective of t. The corresponding

=(lj) then provided a rough estimate for the frequency V as a

function of t, as shown in Fig 2 (solid line). In the particular case of

t~0 we found

< lj

� �
t~0

~{
azb

2
+

1

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a{bð Þ4z16K2

1 y2

q
z a{bð Þ2

r

= lj

� �
t~0

~+
1

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a{bð Þ4z16K2

1 y2

q
{ a{bð Þ2

r
:

revealing that for K1=0 the imaginary parts did not vanish, i.e.

the E=I -unit always displayed oscillations around the fixed point

½V (0)
E ,V

(0)
I � because the sigmoid’s derivative is positive definite:

V(t~0)~

1

2
ffiffiffi
2
p


a{bð Þ4z16a2b2K2

1 S0 V
(0)
E

h i
S0 V

(0)
I

h ir
{ a{bð Þ2

s
:

Further, for the real-part to be positive the coupling constant K1

had to be sufficiently large and the intrinsic damping a and/or b
sufficiently small but finite, because of

< l1,2f gt~0w0 u K1w
azb

abS’ V
(0)
E

h i
S’ V

(0)
I

h i

where we note that < l3,4f gv0.

Distinct time scales
For the separation of time scales underlying all the major

approximations in the current study we considered the case in

which two distinct time scales are present in the system of coupled

neural masses: the oscillation described by the (mean) frequency V
and its corresponding period 2p=V — from here-on referred to as

fast time scale — as well as a slower time scale, on which the

dynamics of wk evolve. In what follows we will verify the

expression for _wwk in (9) and show how the separation of time

scales enabled us to determine the role of tkl in the convolution

W t{tklð Þ � S Vl tð Þ½ �. As is conventional in multiple-scaling

approaches, we set the time t as ‘fast’ time and the ‘slow’ time

as g~"t with 0ƒ"%1. For the sake of legibility we here adopted

the dot-notation for temporal derivatives d=dt and further

abbreviated partial derivatives as
L

L(:)
~L(:).

We denoted the deviation of the voltage from its fixed-point as

dVk(t)~Rk cos (Vtzwk) where we assumed that w evolved on the

slow time g, i.e. wk~wk(g). Note that an equivalent approach can

be adopted for the amplitude dynamics, i.e. Rk~Rk(g), which is

referred to as the slowly varying amplitude approximation.

As we were primarily interested in the wk dynamics, we

regarded amplitude Rk as constant on both time scales; see

Discussion section. By this we could readily apply the chain rule

and obtained

d _VVk~LtdVkz"LgdVk:~{ Vz"Lgwk

� �
Rk sin Vtzwkð Þ~dUk

where the last equality follows from (8). For the derivative d _UUk we

found

d _UUk~{ Vz"Lgwk

� �2
Rk cos (Vtzwk){"2L2

gwkRk sin Vtzwkð Þ :

Next we considered the expression (9) for _wwk, where we

emphasize that _wwk could here be identified as Lgwk, since wk

evolves only on the slow time scale. To anticipate: (9) discarded all

terms evolving on the fast time scale, i.e. all O(1) terms in favor of

O(") terms and higher. To show this, recall that the right-hand

side of (9) read
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{Vz
1

VR2
k

dUkd _VVk{dVkd _UUk

� �

~{Vz
1

VR2
k

(V2z2"VLgwkz"2L2
gwk)R2

k{
1

2
"2L2

gwkR2
k sin (2Vtz2wk)

	 


& 2"Lgwkz
"2

V
L2

gwk 1{
1

2
sin (2Vtz2wk)

� �
:

In words, only expressions evolving on the slow time scale were

retained, i.e. only O(") and O("2)-order terms. When focusing on

the slow time sale O(") and discarding the even slower time scale

O("2), we could conclude that, up to a constant, _wwk is given by (9);

note that we here applied the so-called two-timing method; see,

e.g., [23,69,70].

As said, we used the constancy of wk (on the fast time scale t) to

evaluate the convolution term W (t{tkl) � S V
(0)
l

h i
. We exploited

the description in two time scales to justify the transformation of

the delay tkl into phase shifts Vtkl . We explicitly evaluated the

integral
Ð t{tkl

{ ? ecs cos (Vszwl)ds to show that (10) is its O(1)

result. For the sake of readability we dropped the explicit time

dependence of wl whenever possible.

First, by integrating by parts twice we obtained

ðt{tkl

{ ?
ecs cos (Vszwl)ds

~
1

c
ecs cos (Vszwl)j

t{tkl

{ ?
z

1

c

ðt{tkl

{ ?
(Vz"Lgwl) sin (Vszwl)e

csds

~
1

c
ec(t{tkl ) cos (V(t{tkl)zwl("(t{tkl)))

z
1

c2
ecs(Vz"Lgwl) sin (Vszwl)

����
t{tkl

{ ?

{
1

c2

ðt{tkl

{ ?
(Vsz"Lgwl)

2 cos (Vszwl)e
cs

z"2L2
gwl sin (Vszwl)e

csds :

Then, when discarding O "2
� �

terms, we found that the integral

with which we started appeared again on the right-hand side. This

allowed us to write

c2zV2z2"Lgwl

c2

ðt{tkl

{ ?
ecs cos (Vszwl)ds

&
1

c
½ec(t{tkl ) cos (V(t{tkl)zwl("(t{tkl)))z

1

c
(Vz"Lgwl) sin (V(t{tkl)zwl("(t{tkl)))�,

which resulted in

ðt{tkl

{ ?
ecs cos (Vszwl)ds

~
c2

c2zV2z2"Lgwl

 !
ec(t{tkl )½ cos (V(t{tkl)zwl("(t{tkl)))

z(Vz"Lgwl) sin (V(t{tkl)zwl("(t{tkl)))� :

With this form we could finally express the convolution terms as

W (t{tkl) � dVl(t)~
cRl

c2zV2z2"Lgwl

½c cos (V(t{tkl)

zwl("(t{tkl)))z(Vz"Lgwl) sin (V(t{tkl)zwl("(t{tkl)))� :
For "%1 time scales are sufficiently separated to ignore all O(")
terms by which we arrived at (10).

The derivation of (10) required the intuitive assumption

wl(t{tkl)&wl(t), which might be motivated by a (relatively)

small-delay approximation. Consider the Taylor expansion of

wl(t{tkl) around t, which reads

wl(t{tkl)&wl(t){
d

dt
½wl(t)�tkl~wl(t){"Lgwl(t)tkl :

If "%1 and tkl is of the order O(1), i.e. of the same order of

magnitude as the oscillatory period T~
2p

V
, then one may

conclude that the approximation wl(t{tkl)&wl(t) is valid. Note

that this consistent with [71]. In particular, when tkl is of order

O(1="), i.e. of the same order of magnitude as the slow time scale,

the approximation wl(t)&wl(t{tkl) fails.
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