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Abstract

Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly
improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are
applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of
protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based
solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein
interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to
account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the
advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all
mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic
pockets.
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Introduction

The majority of small molecule drug discovery efforts towards

new, unprecedented biological targets do not progress past high-

throughput screening or hit-to-lead optimization due to lack of

pursuable chemical matter [1,2]. To counter this, drug discovery

groups increasingly use druggability analysis methods to estimate

the amenability of new targets to small molecule drug discovery

efforts. In prioritizing new targets, druggability analysis results are

then considered along with the strength of evidence that affecting

the target will lead to human therapeutic benefit [3]. The results

also inform the use of structure-based drug design resources and

alternative approaches, such as those involving pro-drugs and

covalent interactions, for targets that are expected to be very

difficult.

In a drug discovery setting, small molecule druggability is

commonly defined as whether a small molecule can bind a desired

biological site with good, nanomolar range potency, and, at the

same time, also have good, drug-like properties conducive to oral

bioavailability and clinical progression [3–6]. Thus, the concept

refers to chemical tractability of the target. The term, bindability,

is also used [7], although the term may not capture the desire for

the optimized compound to have drug-like properties. We

emphasize that a binding site is not necessarily druggable simply

because a ligand binds; the ligand additionally needs to have

reasonable drug-like properties and potency. The concepts of

‘druglikeness’ and ‘druggability’ as we use it here cover the most

common strategies for small molecule drug discovery, and

alternative strategies (e.g., involving covalent adducts, metal

chelation, prodrugs, and non-oral delivery) can also be useful in

prosecuting targets that are found to be likely ‘undruggable’ when

only weak, non-covalent interactions are considered [4].

Druggability estimation has historically been based on prece-

dence, that is, whether there are known drugs targeting the protein

or one of its homologs [2,3]. However, this type of data is scarce or

non-existent for many newer protein targets. Advances reported

over the last few years allow us to leverage the increasing

availability of protein crystal structure data using structure-based

druggability approaches. There are at least ten published methods

for estimating druggability this way [3,6], and the body of work is

extremely consistent in finding that druggable sites are those that

have particular ranges of size, curvature, and hydrophobic

character [3–6]. These descriptors largely characterize aspects of

receptor desolvation [4], and atomistic simulations using molec-

ular dynamics have now shown desolvation to be relevant and

sufficient for predicting druggability [8,9].

Many current structure-based methods for druggability estima-

tion are remarkably accurate if the potential small molecule

binding site is largely rigid [3,6]. Binding sites are not always rigid

though, and druggability methods are less accurate if the protein
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readily changes conformation upon small molecule binding. This

is particularly true of protein-protein interface and allosteric sites,

where druggable pockets often become exposed only with protein

movement [10–12]. These ‘cryptic pockets’ are large and shallow

when bound to their biological peptide or protein partners, but

tend to have high hydrophobic character, and, crucially, have

flexibility such that larger, deeper pockets more typical of

druggable binding sites are energetically accessible [10,11].

To begin to address these sites, we apply an approach to

modeling conservative movements in pockets using comparative

protein modeling approaches coupled closely with structure-based

druggability analysis. The approach models relatively light protein

motions, involving side-chain flexibility and local protein back-

bone movements, and maintains reasonable prediction accuracy in

retrospective validation studies. It allows us to take pockets that a

rigid-protein druggability analysis would deem to have some drug-

like properties, but not have sufficient drug-like size, and assess

whether local protein motion can result in the pocket having all

the drug-like properties, including drug-like size. The approach is

computationally efficient enough to enable mining of the structural

proteome while taking into account light protein flexibility.

Applying the method to roughly 18,000 mammalian protein

crystal structures in the PDB results in prediction of one percent of

proteins as containing likely druggable cryptic pockets.

Results and Discussion

We combine a druggability scoring model with protein

modeling and docking methods to first identify candidate pockets

that have drug-like physicochemical properties but may lack

sufficient drug-like size, and then seek out energetically accessible

side-chain and backbone motions near these potential pockets

using protein modeling approaches.

For determining whether a target pocket has drug-like

physiochemical properties, we use an adaptation of a validated

druggability score [13-15], which we call Dscore+. Dscore+ is a

modification of Dscore [13], and we’ve found that this modifica-

tion results in good correlation with 19F NMR hit-rates for five

newer targets prosecuted at Amgen [14]. Dscore+ is computed

from physiochemical descriptors generated from a program,

SiteMap, and is a weighted sum with contributions from the

degree of pocket enclosure (a surrogate for pocket curvature),

pocket size, and the balance between hydrophobic and hydrophilic

character in the binding site [13]. In this work, we further validate

Dscore+ as a druggability score, and tune the pocket identification

parameters in the program, SiteMap, to better identify pockets

that may become more druggable with protein motion. In addition

to assessing the physiochemical properties of the pocket, we assess

reasonable drug-like size by considering the volume of the pocket.

The method consists of the three steps depicted in Figure 1. If a

protein site is found to meet a minimal Dscore+ threshold, then

residues surrounding the site are put through an iterative flexible

protein docking and protein modeling workflow known as

induced-fit docking [16] in order to model protein flexibility,

including light, local backbone movement and side-chain rotamer

conformations. Induced-fit docking is done twice, first using a

small naphthalene molecule to reorder side-chains and expose

small hydrophobic clefts, and then again using a larger, tetra-

substituted naphthalene molecule to further open the cleft if the

protein structure allows. We note that others have used fragment

docking to assess druggability of pockets in static structures [17],

but we are using docking for the different purpose of inducing

flexibility in pockets.

We chose naphthalene and a larger tetra-substituted naphtha-

lene because they are hydrophobic and aromatic—known features

of drug-like molecules. Additionally, naphthalene is rigid so

docking is fast. The tetra-substituted naphthalene molecule we

use is a natural progression from naphthalene, and includes four

substituents (ethyl, propyl, and cyclohexyl at two positions) that we

thought could help in opening pockets. These simple-minded

choices performed reasonably well in validation studies, and

Author Summary

Advances reported over the last few years and the
increasing availability of protein crystal structure data
have greatly improved structure-based druggability ap-
proaches. These algorithms predict our ability to discover
small molecule drugs for protein targets and can help in
identifying promising new biological targets for small
molecule drug discovery. However, in practice, nearly all
druggability estimation methods are applied to protein
crystal structures as rigid proteins, with protein flexibility
often not directly addressed. The increasing interest in
finding small molecule drugs to protein-protein interfaces
makes this issue particularly acute since these interfaces
tend to have substantial flexibility compared to traditional
enzyme targets. Here, we apply an approach that accounts
for light protein backbone movement and protein side-
chain flexibility in protein binding sites. We present the
results of applying this method to all publicly available
mammalian protein crystal structures.

Figure 1. Method for druggability estimation with light protein flexibility. Multiple pockets per protein are considered, but one is shown
here for simplicity.
doi:10.1371/journal.pcbi.1003741.g001

Structure-Based Druggability with Protein Flexibility
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limited experimentation with a few other molecules gave similar or

worse results. In particular, use of benzene in place of naphthalene

resulted in a large false positive rate because benzene is small and

much more promiscuous, fitting into many small sites. For the

larger molecule, we tried five molecules similar to tetra-substituted

naphthalene and the results were not substantially different. It is

certainly plausible that more systematic experimentation with a

larger number of ligands could result in improved performance.

Other approaches that address the issue of protein flexibility for

druggability assessment use computational solvent mapping or

molecular dynamics simulations, or both. Kozakov et al. used

computational solvent mapping with 16 small organic fragment

probes to identify small pocket ‘hot spots’ where multiple probes

bind in the simulations [18–19]. Alternate side-chain conformers

are then modeled for selected residues adjacent to the hot spots,

and the resulting modeled sites are subjected to a round of

computational solvent mapping. ‘Hot spots’ having all 16 probes

bound are identified as druggable [19]. Bakan et al. used

molecular dynamics simulations for solvent mapping with a

different set of small fragment probes and found that the probes

bind known allosteric sites during the simulation [20]. Brown and
Hajduk earlier showed that molecular dynamics simulations can

capture pocket dynamics that result in a more druggable binding

pocket in Bcl-xl, while preserving much of the known binding site

rigidity of Akt-PH and FKBP [21]. Tools have very recently

become available to facilitate druggability assessment in molecular

dynamics trajectories [22–24]. However, the typically-used short

molecular dynamics simulations on the order of 10–30 ns likely do

not fully capture protein flexibility relevant to drug binding [25],

which typically occurs on much longer timescales [26].

Our approach to flexibly treating potentially druggable binding

sites is substantially less compute-intensive, which is important for

our goal of analyzing the structural proteome. For a single binding

site where flexibility is modeled, our approach requires between

one and two hours for most individual protein structures on a

current scientific workstation with a four core CPU. In contrast, a

30 ns molecular dynamics simulation on a single protein would

require about a week, and the computational solvent mapping

approach using FTMAP requires about half a day for each protein

binding site since FTMap must be run for each discrete side-chain

configuration and each configuration requires about two hours on

a single CPU core [27]. Our approach runs relatively quickly due

to the use of comparative protein modeling techniques instead of

more resource-intensive methods that attempt to directly simulate

biophysical phenomena. Our approach finds very few sites that

open up significantly—less than two percent of protein structures

across the mammalian structural proteome. The false positive rate

is reasonably low; we see a 12% false positive rate in our protein-

protein interaction validation set and a 0% false negative rate. In

contrast, it is likely possible to find all known druggable sites using

molecular dynamics, including some that are undetectable by our

method. However, separating the signal from the noise is

challenging [20,21] since there is a tendency for many pocket

openings to be observed. To be clear, our approach does not

reveal any new pockets that do not already exist within the rigid

structure. It does, however, locate small sites that do not meet the

druggability criteria initially but can meet the druggability criteria

when conservative protein flexibility is modeled.

While accurate modeling of protein motion continues to be

difficult and the subject of substantial research, we found the

approach we present here to be sufficiently accurate and efficient

for the purposes of mining the structural proteome. We note that

previous efforts we are aware of to identify the ‘‘druggable

genome’’ rely on sequence-similarity to known druggable proteins

[2]. Structure-based druggability analyses are based on ‘‘first

principles’’ and are thus complementary to precedence-based

sequence-similarity approaches.

Validation with targets of known druggability
We applied the method to two widely-used druggability

validation sets to check its performance and measure any increase

in false positive rate due to allowance of protein flexibility.

The first validation set is a published set that covers a variety of

targets, and consists of 27 targets: 17 druggable targets and 10

difficult targets [4]. A histogram of the druggability scores,

Dscore+, based on the original crystal structures, with no flexibility

modeling, is shown in Figure 2a. The plot supports a Dscore+ .

1.3 threshold for druggable versus difficult targets, with higher

scores roughly indicating more druggable sites. Modeling protein

flexibility for target sites that meet a threshold of Dscore+.1.3

results in an increase in Dscore+, but the increase is relatively

systematic (mean = 0.4, s= 0.3) and appears to be consistent

enough that a useful differentiation between difficult and

druggable targets is retained.

We also investigated the effect of flexibility modeling on targets

with scores of Dscore+#1.3. For these additional targets, we again

find an increase in scores by an average of 0.4 (s= 0.3). Thus,

difficult and druggable targets in the validation set can still be

distinguished after flexibility modeling, although the distinction is

less crisp than it was when scoring rigid structures. Comparing the

score distributions for druggable and difficult targets using the two-

sample Kolmogorov-Smirnov (K-S) statistic finds that the scores

are significantly different from each other, both with and without

flexibility modeling (p-values of 861024 and 161026, respective-

ly). When we subtract 0.4 from each score that includes protein

flexibility, the score distributions remain similar within each set.

For druggable targets, the means of the with- and without-

flexibility scores are 1.6 and 1.6 respectively, with variances of 0.05

and 0.07. For difficult targets, the means of the with- and without-

flexibility scores are 1.2 and 1.1 respectively, with variances of 0.04

and 0.03.

Taken together, the results suggest that a Dscore+ threshold of

1.7 (i.e., 1.3+0.4) should be applied to sites resulting from flexibility

modeling, and this threshold is depicted in Figure 2b by a red line.

We will show that this threshold value is strongly supported by

Figure 2. Druggability score histograms for validation set
binding site structures. The top panel depicts results with the
original crystal structures used rigidly, with a red line indicating the
Dscore+.1.3 cutoff used in this work. The top Dscore+ value is shown
for each of the 27 protein targets (17 druggable and 10 difficult, where
the prodrug targets are considered difficult). The bottom panel depicts
results after modeling of protein flexibility, with difficult targets in ghost
outline because flexibility modeling is not usually applied to sites that
score below the Dscore+.1.3 cutoff. Difficult targets are indicated by
the lighter bars, while druggable targets are indicated by the darker
bars. See text for further discussion.
doi:10.1371/journal.pcbi.1003741.g002
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analysis of a larger number of proteins (109 proteins) from the

mammalian proteome druggability results. While the threshold is

determined empirically and the increase is not ideal, we can

rationalize the increase as due to modeling of protein flexibility

with an impetus towards making the pocket more hydrophobic.

Turning to pocket volumes, the method should not lead to all

pockets increasing significantly in volume, consistent with the

belief that some sites are inherently flexible while others are less so.

In this first validation set, which is composed largely of enzyme

active sites, the average volume before and after flexibility

modeling are both about the same (420 Å3 and 360 Å3,

respectively, with standard deviations of 190 Å3 and 130 Å3),

and are both within the drug-like range, as discussed later. In the

second, validation set of protein-protein interfaces, we will see that

the binding site volumes change more significantly. Resulting

volumes tend towards a volume of around 300–400 Å3, if the

flexibility of the protein allows, and this appears to be related to

the size of the second ligand (tetra-substituted naphthalene) used in

the induced-fit docking step of the flexibility modeling. In the

mammalian proteome analysis, we find that only one percent of

proteins analyzed have cryptic pockets that change substantially

from a volume substantially below the drug-like range (#100 Å3)

to a drug-like volume (160–800 Å3). In developing our approach,

the drug-like volume range was initially set roughly to 150–600 Å3

based on our judgment, and later refined to 160–800 Å3 based on

quantitative analysis of the mammalian proteome results.

Validation with protein-protein interaction targets
The second validation set addresses protein-protein interaction

(PPI) targets, and includes six targets from the 2P2I database and

Wells et al. (2007): Bcl-xL, HDM2, IL-2R, HPV E2, ZipA, TNFa
[10,12]. Bcl-xL and HDM2 are classified as druggable since oral

small molecule inhibitors have advanced to clinical trials. We

argue that the remaining potentially high-value targets are

difficult. While pioneering small-molecule inhibitors have been

reported, we note that substantial efforts made over the last 15

years to identify inhibitors of TNFa, IL-2R, HPV E2, and ZipA

have not resulted in reported small molecule clinical compounds

[10]. Given just the protein crystal structures, with no information

on location of binding sites, the method successfully opens the

relevant binding pockets for Bcl-xL, HDM2, and TNFa and scores

them as druggable based on Dscore+ and volume considerations,

as shown in Table 1. Calculated values of Dscore+ and volume

that fall within the defined drug-like range are highlighted in bold.

In the cases of Bcl-xL and TNFa, light flexibility results in small

molecule binding pockets with roughly 50% and 100% larger

volumes, respectively. Bcl-xL would have been classified as difficult

based on the 2bzw PDB structure without additional flexibility

modeling because the pocket size (112 Å3) is too small by any

reasonable criteria for drug-like volume size. Flexibility modeling

results in small changes in the binding site that, together, increases

the volume of the pocket to a reasonable volume (172 Å3). Bcl-xL

is perhaps the one clear example where a protein pocket opens

substantially and the druggability is known (i.e., orally adminis-

tered small molecule inhibitors have progressed to clinic).

We also analyzed all targets listed in 2P2I where crystal

structures are provided, but some targets have either unclear

experimental druggability because efforts on the targets are more

recent, or known inhibitors involve metal chelation. The results for

these additional targets are included in Table S1.

Comparing Dscore+ and pocket volume calculation results with

and without protein flexibility modeling finds that Bcl-xL (PDB

IDs: 2bzw, 2yxj, 3qkd, 4ehr) and a minority of HDM2 structures

(PDB IDs: 1rv1, 3lbk) would have been missed without the

additional flexibility modeling to open up pockets to a drug-like

volume. Interestingly, one IL-2Ra structure (PDB ID: 1pw6) has a

Dscore+ that places the target in the low end of the druggable

score range, but the pocket volume does not satisfy the drug-like

criteria, and this remains the case after protein flexibility modeling.

Protein flexibility modeling does not always open pockets

significantly.

With TNFa, the known pocket at the trimer interface was

identified as the top pocket in the apo-structure, and flexibility

modeling resulted in a binding site with good druggability score

and good drug-like volume. This result is consistent with the scores

obtained using the co-complex structure with SPD-304 [28].

However, the best reported inhibitor has only single digit

micromolar range potency against TNFa [28], and although

there is not really sufficient data currently to determine this, it is

possible that the calculations overestimate the druggability of the

pocket.

With Bcl-xL, comparison of a BAD peptide-bound structure

(PDB ID: 2bzw) with a small molecule-bound structure (PDB ID:

2yxj) shows that two residues, Phe105 and Leu130, adopt alternate

conformations, and the helix around Leu108 becomes disordered

to create the ligand binding pocket [29], as shown in Figure 3. The

target serves as a good illustrative example of our complete

approach. First, a potentially druggable site is identified regardless

of whether it is too small to hold a drug-like molecule. This is

followed by induced-fit docking of naphthalene to the identified

site, which moves residues, including Phe105, as shown in

Figure 3b. A second induced-fit docking of the larger (molecular

weight of 363 Da) tetra-substituted naphthalene (TSN) results in a

total of four models, where we see additional movements in

addition to Phe105. A representative model is shown in green in

Figure 3c, and shows a Leu130 rotamer change and backbone

movements around Leu108 resulting in loss of the alpha-helical

secondary structure. However, the modeled structures still differ

from the ligand-bound crystal structure, as shown in Figure 3d,

and the model, in this case, is effectively a hybrid of the peptide-

bound structure and the known ligand-bound structure. Thus, the

modeling approach, in the case of Bcl-xL, successfully allows

backbone motion and reproduces some of the known side-chain

and backbone movements in the resultant models. We note that

the TSN molecule makes similar interactions compared to the

ligand, ABT-737, in the ligand-bound crystal structure. Despite

not reproducing all of the atomic details of the ABT-737 crystal

structure, the flexibility modeling captures many key features and

the inherent flexibility of the pocket that results in an increased

binding site volume and increased druggability score.

Known protein flexibility cases
To investigate the behavior of the flexibility modeling approach

on targets where protein flexibility is known based on crystal

structures, we applied the method to a set of protein crystal

structures with binding site flexibility from Huang and Jacobson
[17], where we’ve selected targets that show RMSDave .1.5 Å for

binding site residues in different crystal structures of the same

protein. We compare these results with their published drugg-

ability results, which do not account for flexibility, in Table 2. While

the two methods perform similarly on non-PPI targets (first six

targets in Table 2), the flexible druggability method performs better

on PPI targets (last five targets in Table 2). In particular, their

docking-based druggability model predicts IL-2 and HPV E2 to be

druggable (docking hit rate.0.36) based on some structures, but

predicts the same targets to be very difficult based on other

structures. The flexibility modeling approach results in classification

Structure-Based Druggability with Protein Flexibility
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of both targets as very difficult, consistent with what is known, as

previously discussed.

Examining the variation in scores between different crystal

structures of the same target finds that while both the static protein

and flexible protein methods yield similar score variation for non-

PPI targets, they have substantially different variation with PPI

targets. In particular, the docking hit-rate method shows large

variation in score among structures of IL-2 (107%), MDM2 (69%),

and HPV E2 (323%) compared with a median variation of 21% in

all 11 targets. The flexibility modeling method, on the other hand,

results in score variation on PPI targets that is consistent with that

found with non-PPI targets.

Overall, the docking method has a median score variation of

21% with a standard deviation of 94% in the dataset, while the

flexibility modeling approach has a median score variation of 13%

with a standard deviation of 10%. Yet, when the PPI targets are

removed, the two methods have comparable score variation.

Taken together, the flexibility modeling method appear to provide

more reliable, consistent predictions at PPI interfaces, and this

makes sense because PPI interfaces are much more likely to

involve substantial protein flexibility [11]. Accounting for protein

flexibility in a conservative manner, as we have done, leads to

more consistent druggability predictions.

The mammalian structural proteome
We next applied the flexibility modeling approach to all

publicly-available crystal structures containing mammalian pro-

teins to estimate the number of druggable targets and identify

potential druggable cryptic pockets. Analyzing the over 18,000

structures in the Protein Data Bank (PDB) [30] as of June 30,

2012, required approximately 35,000 CPU-days of calculation (in

aggregate) on our internal Linux clusters. The analysis covered not

only the crystal structures as deposited in the PDB, but also all

individual monomers in the case of multimer assemblies. Five

percent of PDB files generated an error, due mostly to structures

containing only Ca atoms (i.e., no protein side-chains) or involving

large biomolecular assemblies, since we stopped calculations on a

particular PDB entry if it ran for more than fourteen days.

The results are summarized in Table 3, where we also mapped

PDB chains to SWISS-PROT ID’s to determine the number of

proteins represented. Of the 17,834 PDB entries analyzed, 42%

had at least one site that met the Dscore+ .1.3 threshold for

further protein flexibility modeling. Twenty percent of mamma-

lian proteins in the PDB have a potentially druggable pocket. Of

the 5,739 PDB entries (1,134 proteins) that have a predicted

druggable pocket, about two–thirds would be predicted druggable

based on the original, static crystal structure.

Figure 3. Flexible protein druggability modeling applied to Bcl-xL. Phe105, Leu108, and Leu130 are shown in stick in all structures. (a)
Crystal structure of Bcl-xl protein bound to a BAD peptide (red and gray, respectively, PDB ID: 2bzw), (b) two naphthalene induced-fit docked models
(orange), (c) one TSN induced-fit docked model (green), and (d) ABT-737-bound crystal structure (blue, PDB ID: 2yxj) with TSN induced-fit model
(green).
doi:10.1371/journal.pcbi.1003741.g003
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To identify druggable pockets with the greatest likelihood of

biological relevance, we winnowed the list to protein sites in 2095

PDB structures where a small molecule could potentially disrupt a

known intermolecular interaction. The interacting partner should

be transiently-bound (as opposed to obligately-bound) and can be

a protein, natural co-factor, natural ligand, or synthetic ligand.

These sites are either at protein-protein interfaces or contain a

small molecule of molecular weight less than 1000 Da. Including

these criteria gives us higher-confidence druggability predictions

and may remove many false-positives, but could result in removing

sites that are functionally relevant but perhaps not well-charac-

terized. For sites at protein-protein binding interfaces, we assessed

whether the relevant protein-protein interaction is an obligate or

transient interaction based on a published database, Interevol

[31]. Sites involving obligate dimer interfaces were removed, but

sites without any prediction or assessment were retained; there was

no annotation for over half of the protein interfaces we considered.

Overall, we identified predicted druggable pockets in 2,095

PDB structures representing 730 unique proteins. In Figure 4, we

depict the breakdown of predicted druggable pockets at these

intermolecular interfaces with pockets where a bound ligand

would disrupt a protein-protein interaction (including protein-

peptide interactions) shown in blue, and pockets where a bound

ligand would disrupt a protein-ligand interaction shown in red.

The purple overlap region indicates protein pockets that are at

both a protein-ligand and protein-protein interface. Some of these

pockets are adjacent to small peptides, which can be classified as

both a ligand and protein by our definition; ligands are defined as

Table 2. Comparison of druggability estimations on known flexible protein pockets.

Target Structural data Docking-based druggability Protein flexibility Variation

PDB ID RMSDave (Å) [A] dock hit rate [B] DScore+ [A] [B]

CDK2 1aq1 1.32 1.7 21% 11%

1buh 1.8 1.44 1.7

1dm2 1.8 1.62 1.9

ER 1l2i 1.69 2.9 9% 7%

3ert 2.6 1.55 2.7

1err 2.0 1.61 2.8

HIV RT 1vrt 1.66 2.5 8% 13%

1rt1 1.5 1.75 2.3

1c1c 1.9 1.61 2.2

1rth 1.6 1.61 2.3

p38a 1a9u 1.00 1.8 49% 15%

kinase 1kv1 3.8 1.16 2.1

1kv2 3.5 1.61 2.1

PPARc 1fm6 1.46 2.9 13% 34%

1fm9 1.5 1.62 3.0

2prg 0.7 1.43 2.1

TK 1kim 1.58 2.7 12% 4%

1ki4 1.8 1.40 2.6

IL-2 1z92 0.13 * 107% 13%

1py2 2.6 0.62 *

1m48 2.5 0.62 *

Bcl-XL 2bzw 1.04 2.4 21% 4%

2yxj 2.5 0.84 2.5

TNF 1tnf 0.95 2.4 1% 18%

2az5 2.9 0.96 2.0

MDM2 1ycr 0.45 2.5 69% 18%

1rv1 1.8 0.92 2.2

1t4e 1.6 0.66 2.1

HPV E2 1tue -0.24 * 323% 31%

1r6n 2.8 1.02 *

Targets are from Huang and Jacobson [17], and include all targets where at least two structures have an RMSDave greater than 1.5 Å. The data under the Structural data
and Docking-based druggability are from reference 17. RMSDave is the RMSD of side-chains in the binding site within 4.5 Å of crystallographic ligands.[17] Variation is
calculated as the difference between the largest and smallest druggability score values divided by the average of all druggability score values for the particular target.
The flexible druggability method is only performed for binding sites that meet an initial score (with the rigid crystal structure). However, for the purposes of this
comparison study, we removed this cut-off in order to generate values for IL-2 and HPV E2. For IL-2, performing the flexibility modeling procedure results in DScore+
values of 1.5 (1z92), 1.5 (1py2), and 1.7 (1m48), with small, non-drug-like volumes of 98, 82, and 53 Å3, respectively. For HPV E2, the DScore+ values are 1.1 (1tue) and 1.5
(1r6n), with reasonable drug-like volumes. Calculations on all targets from reference 17 are included as S4.
doi:10.1371/journal.pcbi.1003741.t002
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any molecule with molecular weight of 1000 kDa or less, while

proteins are defined as non-HETATM molecules. The number of

unique proteins in the purple region is much higher because a

given protein may not only have a co-crystal structure solved

bound to a protein partner, but also bound to a small molecule

ligand (or vice-versa).

To identify cryptic pockets, we looked at potential druggable

pockets that were small (volume #100 Å3) in the static structure,

as long as the initial cavity was not fully buried (enclosure #96%).

Less than 20% of these, representing 105 structures, met the

flexible druggability criteria, opening up to at least 160 Å3 with

flexibility modeling. These targets representing 69 unique proteins

are provided in Table S2.

To compare the mammalian PDB results to a positive control

set, we mapped known oral drugs from MDDR (2008 release) to

ligands in known crystal structures. Of the 421 oral drugs

administered in tablet form, 109 could be mapped to PDB co-

crystal structures that had crystallographic resolution #2.5A. The

102 pockets with ligand overlap to known co-crystalized ligands

(ligand overlap .0) are plotted by volume in Figure 5A, where

volume is computed using SiteMap. Targets at the low end of the

volume range, with volumes of 160 Å3 or less, include four

complexes with large FK-506 natural product analogs that are not

captured by the drug-like binding site definition in use. Targets

with volumes of 800 Å3 or greater are largely natural product

complexes as well (macrocyclic antibiotics, reservatrol, and others).

The results therefore suggest a drug-like volume range of between

160 and 800 Å3 is appropriate for the approach we use. We note

that volume calculations are highly sensitive to the algorithm used,

and so these volume ranges should be established independently

for different implementations of our approach.

Table 3. Results of druggability analysis of mammalian crystal structures in the PDB (as of June 30, 2012) with inclusion of light
protein flexibility.

Structures Proteins

mammalian crystal structures 18,879 5,807 105%

structures analyzed 17,834 5,551 100%

flexibility modeling applied 1 7,427 2,875 52%

potentially druggable 2 5,739 1,134 20%

involves intermolecular interface3 2,095 730 17%

cryptic pocket4 105 69 1%

The ‘‘Structures’’ column provides the number of unique PDB entries represented, and ‘‘Proteins’’ represents the number of unique Swiss-Prot entries.
1Dscore+.1.3 for original rigid structure.
2Dscore+$1.7, drug-like volume (160–800 Å3) after flexibility modeling, protein at least 100 amino acids in size (equivalent to about 10 kDa molecular weight).
3Intermolecular interfaces are further defined to include only protein-protein interaction dimer interfaces and protein-ligand pockets.
4Cryptic pockets are further defined as pockets that are less than 100 Å3 in volume in the crystal structure, but fall into the drug-like volume range after modeling of
protein flexibility. An additional criteria of enclosure ,96% was applied to eliminate small buried sites.
doi:10.1371/journal.pcbi.1003741.t003

Figure 4. Reasonable druggable criteria from analysis of 109
co-crystal structures of MDDR oral tablet drugs. A) Volumes of
MDDR protein structure pockets. B) For pockets with volumes between
160 and 800 Å3, Dscore+ distribution of MDDR protein structures (top)
and all protein structures (bottom). C) Range of Dscore+ after flexibility
modeling of MDDR protein structure pockets supports a modified 1.7
Dscore+ cut-off after flexibility is applied.
doi:10.1371/journal.pcbi.1003741.g004

Figure 5. Flexibility modeling substantially increases the
volume of a minority of protein pockets. A 2D histogram showing
all pockets found in the mammalian structural proteome with initial
volumes less than 800 Å3 and with greater than 100 amino acids (about
10 kD in weight). The vertical and horizontal white lines indicate the
160 Å3 volume cut-off. While the modeling method likely overpredicts
volume increases in pockets, the majority of pockets that increase in
volume increase by less than 50 Å3. The color bar on the right side
indicates the number of pockets at each 2D histogram bin.
doi:10.1371/journal.pcbi.1003741.g005
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The range of druggability scores for the known oral tablet drug

set versus all pockets is shown in Figure 5B, where the top

histogram represents the oral tablet drug set. The distributions are

overlapping, and while the means of 1.7 and 1.4 are significantly

different (p = 6610215 based on the two-sample K-S test), the 95%

confidence intervals overlap. While the large-scale data shows

there is room for improvement in the separation of druggable and

difficult targets, the 1.3 Dscore+ cut-off we use is nevertheless

useful for identifying druggable pockets in rigid proteins, and

removing 60% of pockets from further analysis with more

resource-intensive flexibility modeling. Applying flexibility model-

ing to the MDDR targets also results in a shift in Dscore+ range,

shown in Figure 5C, similar to what is seen with the smaller

general validation set. The shift seen here further supports use of a

Dscore+.1.7 cut-off in conjunction with protein flexibility

modeling.

To assess the effect of our flexibility modeling approach on

pocket volumes, we looked at all pockets at intermolecular

interfaces before and after flexibility modeling and show the

results in Figure 6. A diagonal white line indicates no change in

volume. While the modeling method likely overpredicts volume

increases in pockets, the majority of pockets that increase in

volume increase by less than 50 Å3. The vertical and horizontal

white lines in Figure 6 indicate the 160 Å3 volume cut-off, and it is

clear that most pockets under the cut-off remain under the cut-off.

As expected, pockets with volumes closer to the cut-off, with

volumes of 100–160 Å3, are the most likely to increase to over

160 Å3 with protein flexibility modeling.

In Figure 6, pockets with original volumes less than about

200 Å3 tend to get larger, while pockets with original volumes

greater than about 400 Å3 tend to get smaller. The likely rationale

is that the tetra-substituted naphthalene ligand used in the

flexibility modeling approach induces smaller pockets to grow to

accommodate the ligand, while it induces larger pockets to shrink

to better enshroud the ligand. These tendencies are, however,

dependent on the inherent flexibility of the protein structure.

While the analysis provides a good set of putative druggable

proteins in the mammalian structural proteome, we are not blind

to deficiencies in this analysis. The prediction error rate in the

large mammalian structural proteome analysis is hard to know,

and we discuss the limitations in the next section.

Limitations and future work
The automated approach to protein flexibility we report here is

useful for identifying druggable targets in the structural proteome.

We are aware of three areas for further improvement.

The first is related to pocket selection. Pocket selection is based

on geometric considerations, and the pockets are subsequently

scored for druggability using Dscore+ as well as, potentially,

protein flexibility modeling. Ideally, the pocket selection and

scoring would be done simultaneously to yield pockets that

maximized the druggability score [32]. This issue, for instance, has

an effect on scoring of phosphodiesterase active sites such as those

in PDE-4D and PDE-5, where protein residues at one end of the

catalytic site are very polar, and known oral inhibitors do not

interact in this region [32]. Figure 7a shows the binding site

including the polar region that results in a low druggability score,

Dscore+ = 1.4, which is not representative of the druggability of

the binding site. Removing the polar region shown in Figure 7b

results in a more representative druggability score, Dscore+ = 1.6.

We were not successful in adjusting our protocol to account for

this, and thus we may miss druggable sites that are similarly

amphipathic in nature. In addition, despite our efforts at tuning

the pocket identification algorithm, SiteMap does, in about 2% of

cases, return candidate pockets with volumes over 800 Å3, the

drug-like size limit that we use. Currently we simply remove these

pockets, which may cause us to miss druggable sites. Future work

to resolve these issues include modifying SiteMap to identify only

pockets of the desired volume (160–800 Å3), allow for pockets that

overlap with each other, and account for properties such as

hydrophobicity in the pocket definition process.

A second area relates to the false positive rate, that is, the

fraction of pockets identified as druggable that are not truly

druggable. Even though we restrict protein flexibility to side-chain

motion and localized backbone movement, the protein flexibility

modeled and our selection of proble molecules are biased towards

increasing the hydrophobicity of the pocket under analysis, and

relaxation of the resultant structures may improve results. In

addition, the degree of protein flexibility modeled is probably

more than that present in reality. In this work, we empirically

compensated for these issues by measuring the impact of flexibility

modeling in Figures 2 and 4, which led to the use of a Dscore+$

1.7 criteria. While our flexibility modeling approach demonstrates

statistically significant discrimination of difficult and druggable

targets, we also plan to explore approaches such as protein

relaxation [33], to remove the need for an empirical correction.

The flexibility modeling approach is more likely to exaggerate the

flexibility of smaller proteins due to fewer stabilizing interactions

within the protein. For the cryptic pocket analysis, we restricted

our results to those proteins that are greater than 100 amino acids

in length (which translates to about 10 kD).

Lastly, we need to consider that the protein structures observed

in crystal structures, in a minority of cases, may not be the

biologically relevant constructs or complexes. Crystal structures

may be synthetic constructs or portions of proteins, which, in the

context of the full-length protein, have predicted binding sites

occluded. Similarly, biological obligate dimers not seen in the

Figure 6. Breakdown of predicted druggable pockets at known
intermolecular interfaces. Pockets found where a bound ligand
would disrupt a protein-protein interaction are shown in the blue circle,
and pockets found where a bound ligand would disrupt a protein-
ligand interaction are shown in red. The overlap region shown in purple
indicates where a protein or structure contains a pocket at both a
protein-ligand and protein-protein interface. The blue region indicates
proteins or structures containing only protein-protein interfacial
pockets, and the red region indicates proteins or structures containing
only protein-ligand pockets. Ligands are defined as any molecule with
molecular weight #1000 kDa.
doi:10.1371/journal.pcbi.1003741.g006
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crystal structures can occlude the binding site. Co-factors can also

affect the druggability of binding sites; here, we only account for

selected, particularly tight-binding co-factors such as metals and

hemes. We analyze both biological assemblies defined in the PDB

as well as the individual monomer components to account for

binding to intact complexes as well as unbound partners. Other

partially dissociated complexes may exist however. In addition, we

are looking at binding, and not functional effects of binding; weak

binding at an allosteric site is sometimes sufficient to generate the

desired inhibition or activation of biological activity [32].

Conclusions
We leverage advances in druggability assessment and modeling

of protein flexibility to create an approach that allows light

flexibility in the protein backbone and side-chains. The method

improves the accuracy of druggability assessments when tested on

two validation sets representing general pharmaceutical targets

and protein-protein interactions of pharmaceutical interest.

Combining this with the wealth of crystal structures available in

the PDB allows us to find new protein binding sites that are

potentially druggable by small molecules. Searching for such sites

is thought to be like finding needles in a large haystack, and a

systematic, automated approach is thus useful. Accurate modeling

of protein flexibility continues to be difficult and the subject of

substantial research. Even so, our approach is useful in exploring

induced druggable pockets and provides a substantial number of

hypotheses. For applications focused on analysis of protein

pockets, the approach we take is computationally efficient and

may be complementary to comprehensive analyses of static crystal

structures [34]. Finally, we have long been intrigued by the

possibility of combining the druggability data with biological target

disease-relevance data. This has recently been done on a small-

scale with cancer targets [35], although protein flexibility was not

accounted for in the druggability assessment. Inclusion of protein

flexibility in such assessments can help to provide more accurate

target assessment.

Materials and Methods

Protein structures were downloaded from the biounits reposi-

tory at the RCSB based on criteria that the structure (1) contains

protein, (2) is categorized as deriving from the class Mammalia,

and (3) has an x-ray crystal structure resolution #2.5A.

Ligands, defined as having molecular weight #1000 Da, are

removed with the exception of heme groups, zinc, and magnesium

(PDB het groups HEM, MHM, HEV, VER, SRM, HEO, HEB,

HEC, HDM, HDD, DDH, ZN, MG). Protein structures were

prepared using Schrödinger Protein Preparation Wizard (version

2012, Schrödinger LLC, New York, NY), on the command line

with the following options: –watdist 0, –fillsidechains, –rehtreat, –

mse, –noepik, –noimpref. These options assign bond orders, add

hydrogens, remove all waters, create zero-order bonds to metals,

create disulfide bonds for close cysteines, mutate selenomethio-

nines to methionine, fill in any missing side-chains with Prime

(v3.1, Schrödinger LLC, New York, NY), and optimize hydrogen

placement and polar residue flips using PropKa. Validation test

runs using restrained minimization to a heavy atom RMSD of

0.3 Å, a procedure known as ‘‘Impref’’, did not change which sites

were found and did not significantly change druggability scores on

the validation dataset proteins, so we chose to increase workflow

speed by avoiding this step in the protein preparation.

Next, initial potential druggable surface patches were identified

using Schrödinger SiteMap (v2.6, Schrödinger LLC, New York,

NY), the results of which are used to compute Dscore+. We run

Sitemap with a fine grid (0.35 Å spacing) and ‘‘loose’’ definition of

hydrophobicity. In this study, all calculations were performed from

the command line with options that return the 5 largest SiteMap

sites, in order of the number of site points they contain. Our

modified settings allow more shallow binding sites to be found and

include binding site regions with slightly weaker vdW interaction

energy. We used the following non-default Sitemap parameters:

maxdist = 10, enclosure = 0.4, maxvdw = 1.0, dthresh = 5.0, min-

group = 7, nthresh = 7, grid = 0.35, modphobic = 0. The smaller

value of maxvdw (default is 1.1 kcal/mol) and the less restrictive

definition for modphobic of zero together allow gridpoints with

slightly weaker vdW interaction energy to be included as

sitepoints. The smaller enclosure score (default is 0.5) and larger

maxdist value (default 8.0 Å) allow more shallow binding sites to

be found. The enclosure score is computed by drawing radial rays

from each sitepoint, and the score is the fraction of rays that strike

the receptor surface within a distance of 10 Å (maxdist), averaged

over the sitepoints. Decreasing dthresh from the default (6.5 Å)

and increasing nthresh from the default (3) causes SiteMap to

return smaller, more compact sites than it otherwise would when

using a fine grid. When considering a gridpoint for inclusion in a

site, there must be at least nthresh other points within 1.76 Å

(square root of d2thresh) for it to be considered. When considering

whether two sites should be joined, the closest points in the two

sites must be closer than dthresh. The parameter, ‘‘mingroup’’, is

the only parameter here that limits the number of sites found; this

is the minimum number of points in a site-point group required to

constitute a site (default = 7). We found that including sites with

Figure 7. Example of druggability predictions PDE-4D binding site (PDB ID: 1ptw) druggability calculations: (a) gray spheres defining
the full automatically identified site, (b) purple spheres depicting the edited subsite. The crystal structure is of AMP-bound PDE-4D.
doi:10.1371/journal.pcbi.1003741.g007
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less than seven points in combination with a fine grid of 0.35A

resulted in merging of many very small pockets to form long,

stringy sites that were not realistic as small molecule binding sites.

Overall, these modified SiteMap settings allow us to find shallow

pockets with less hydrophobic character than is possible to find

with default settings.

From the SiteMap results, sites identified with a druggability

score, Dscore+, of greater than 1.3 are taken as candidate sites

regardless of volume, where Dscore+ is defined as Dscore +
0.3*hydrophobic, as previously described [14,15], and druggability

scores are rounded to the first decimal place. The choice for the

1.3 value is discussed in the Results and Discussion section. Dscore

is computed from physiochemical descriptors generated by

SiteMap, and is a weighted sum with contributions from three

components, (1) degree of site enclosure, (2) pocket size defined by

the number of site points included in the site; site points are x, y, z

coordinates that are outside the protein, are reasonably enclosed,

and have a vdW interaction potential over a defined threshold are

clustered into sites, and (3) a negative contribution from the

hydrophilic score, which limits the impact of hydrophilicity in

charged and highly polar sites [13].

To identify binding sites with potential flexibility, we used an

iterative protein-modeling and docking approach [16], available in

the Schrödinger Suite (2012 release, Schrödinger LLC, New York,

NY) as the induced fit docking (IFD) workflow, and applied this

using the ligands in Figure 8 to each candidate site. In this study, all

calculations were performed from the command line with the

default IFD parameters, except the variable, OUTER_BOX, which

is always set to 25 Å, since we were docking the same small ligands.

We defined the variable, BINDING_SITE, by a single sitepoint

which is placed at the centroid of all SiteMap sitepoints from the

candidate site. First, we used IFD to dock a naphthalene molecule,

1, to the top 5 sites found by SiteMap and kept the best two

naphthalene poses for each site. If poses were returned for

naphthalene, we then used IFD again to dock a tetra-substituted

naphthalene molecule, 2, to the same pocket, now opened up by

naphthalene. SiteMap was then applied to score the sites in the four

top-scoring structural model results (typically, at least ten models

were generated per site). Increasing the number of models can result

in better predictions of binding site conformations, but we chose to

produce a smaller but reasonable set of four models to reduce the

compute time required to process all mammalian crystal structures.

To analyze the druggability and protein-protein interaction

validation data, we automatically compared each SiteMap site to

the corresponding ligand-bound structure using the Phase (version

3.4, Schrödinger LLC, New York, NY) command-line utility

phase_volcalc to compute the overlap (measured in Å3) between

the SiteMap sitepoints and the bound crystal ligand. After the IFD

steps, we used the same utility to compute the overlap between the

tetra-substituted naphthalene and the bound crystal ligand. This

value is positive when there is direct overlap between the two sets

of atoms. For the validation studies only, we identified the relevant

protein biological assembly based on the known literature, and

only retained those assemblies or protein monomers that are

biologically meaningful. The calculations were otherwise per-

formed automatically.

For calculations run on all mammalian PDB structures, we used

a purely automated procedure applying the method to the first

‘‘biological unit’’ as defined in the PDB. Calculations were

performed on commodity cluster hardware running RedHat

Enterprise Linux. Failed calculations were re-run up to five times,

including at both Amgen and Schrödinger facilities, to ensure that

failures were not the result of compute infrastructure issues. To

identify protein-protein interaction interfaces, we checked whether

any of the TSN molecules modeled into a predicted druggable site

also overlapped with another protein chain in the crystal structure.

Overlap was defined as at least one atom of the TSN molecule

being within 2 Å of the additional protein chain, where hydrogens

were included. To identify protein-ligand interfaces, we used the

previously-described volume overlap calculation. Finally, to

analyze the results of the mammalian proteins in the PDB for

obligate dimers, we used the Interevol database, publicly available

at http://biodev.cea.fr/interevol/interevol.aspx [31]. We down-

loaded the database (July 2012 release) and joined the data with

our PDB results by matching both the four-letter PDB code and

any chain identifier. PDB IDs were translated to gene ID’s using

the SWPROT database [36], and all gene annotations were

performed using bioDBnet [37] Structure figures were produced

using PyMOL version 1.4.1 [38].

To map MDDR drugs to PDB co-crystal structures, we first

identified all oral drugs in MDDR that were annotated as

‘marketed’ and delivered orally as tablets or pills. PipelinePilot

(ver. 8.5., Accelrys Software, San Diego, CA) was used to identify

identical compounds based on structural identity when compared

with the SMILES strings included in the HET code file

downloaded from RCSB LigandDepot [30]. PDB codes were

then identified that corresponded to matched HET codes.

Matlab version 7.9 (R2009b, The Mathworks Inc., Natick, MA)

was used to generate Figures 2, 5, and 6, and also to calculate

statistical means, variances, and two-sample Kolmogorov-Smirnov

test results for the general validation set.

Calculations were performed on Intel Xeon CPU (2.7GHz)

multi-core processors running RedHat Enterprise version 6. CPU

timings quoted in the paper are per single core.

Figure 8. Ligands used in protein modeling and docking procedure. The tetra-substituted naphthalene compound, 2, was designed to
facilitate opening of pockets.
doi:10.1371/journal.pcbi.1003741.g008
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Table S1 Protein-protein interaction targets from 2P2I
that have less well-defined druggability as determined
by conclusive results from multiple research groups, or
where known drugs are metal chelators (HIV Integrase).
These targets have protein-protein co-crystal structures shown in

the top half of the table, and corresponding protein-ligand co-crystal

structures shown in the bottom half. Score is Dscore+, ‘cmpd’

indicates a small molecule compound, and volumes are in units of

Å3. ‘‘*’’ indicates ‘not applicable’ because the site’s initial Dscore+
values did not meet the cut-off for flexibility modeling. 1 Menin-

MLL inhibitors has been reported in academic discovery efforts, but

there does not appear to be enough evidence yet to definitively

assign druggability. One group reports nM inhibitors with small

molecule compounds (see Murai et al., J. Biol Chem. 2011 286:

31742–8), while another group reports nM inhibitors with large

macrocyclic peptidomimetics that do not fall into drug-like property

ranges (see Zhou et al., J. Med Chem. 2013 56: 1113–23). Several of

the Menin-MLL inhibitor co-crystal structures contained several

extra dummy atoms in the inhibitor binding site, and we removed

them for the purposes of running our analysis. 2 HIV Integrase

complex involves a DNA-protein interaction, and thus inhibitors

are not protein-protein inhibitors. In addition, the approved drugs,

raltegravir and elvitegravir, bind to two Mg2+ ions bound to HIV

integrase, and thus are metal chelators (see Hare et al., Nature. 2010

464: 232–6). Metal chelators are not captured by structure-based

druggability approaches, as discussed in the Introduction, although

allosteric LEDGF/p75-Integrase inhibitors are showing promise.

(DOCX)

Table S2 Potential cryptic druggable sites based on
flexible modeling of the mammalian structural pro-
teome.

(DOCX)

Table S3 Binding site residues for predictions in Table
S2. Notes: chains are appended to residue names with a leading

period. In a few cases, more than one binding site may be defined.

(DOCX)

Table S4 Extension of Table 2 to comparison of
druggability estimations on all targets from Huang and
Jacobson [17]. The data under the Structural data and Docking-
based druggability are from reference 17. Aldose reductase sites

required manual intervention to include NAP co-factor. Without

co-factor, Dscore+ is lower, around 1.1. The DHFR structure with

PDB ID 6dfr is missing a large portion of the binding site (both

protein and co-factor), and so calculations would not be relevant;

we indicated this with ‘‘[Not calculated]’’. The flexible drugg-

ability method is only performed for binding sites that meet an

initial score (with the rigid crystal structure). However, for the

purposes of this study, we removed this cut-off in order to generate

values for IL-2 and HPV E2. For IL-2, performing the flexibility

modeling procedure results in DScore+ values of 1.5 (1z92), 1.5

(1py2), and 1.7 (1m48), with small, non-drug-like volumes of 98,

82, 53, respectively. For HPV E2, the DScore+ values are 1.1

(1tue) and 1.5 (1r6n), with reasonable drug-like volumes. For

neuraminidase (NA), the Dscore+ values are 1.8 (1a4g), 1.7 (1a4q),

and 1.7 (1nsc), with drug-like volumes.

(DOCX)
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