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Abstract

The interplay between T cell receptors (TCRs) and peptides bound by major histocompatibility complexes (MHCs) is one of
the most important interactions in the adaptive immune system. Several previous studies have computationally
investigated their structural dynamics. On the basis of these simulations several structural and dynamical properties have
been proposed as effectors of the immunogenicity. Here we present the results of a large scale Molecular Dynamics
simulation study consisting of 100 ns simulations of 172 different complexes. These complexes consisted of all possible
point mutations of the Epstein Barr Virus peptide FLRGRAYGL bound by HLA-B*08:01 and presented to the LC13 TCR. We
compare the results of these 172 structural simulations with experimental immunogenicity data. We found that simulations
with more immunogenic peptides and those with less immunogenic peptides are in fact highly similar and on average only
minor differences in the hydrogen binding footprints, interface distances, and the relative orientation between the TCR
chains are present. Thus our large scale data analysis shows that many previously suggested dynamical and structural
properties of the TCR/peptide/MHC interface are unlikely to be conserved causal factors for peptide immunogenicity.
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Introduction

Recognition of immunogenic peptides presented by Major

Histocompatibility Complex (MHC) molecules to the T-cell

receptor (TCR) of T-cells is a key event in the adaptive immune

response. In order to achieve this recognition process, a peptide in

the MHC class I pathway will go through several processing steps

[1]. First, a protein is degraded into peptide fragments by the

proteosome. Second, the peptide enters the endoplasmic reticulum

(ER) via the ‘‘transporter associated with antigen processing’’

(TAP) or alternative pathways such as Sec61 [2]. Third, a

potential epitope must bind to the MHC class I molecule. Finally,

this peptide/MHC (pMHC) complex is presented at the cell

surface where its recognition by the complementary determining

regions (CDRs) of TCRs can take place.

Predicting whether a peptide will undergo the initial steps (one

and two) outlined above has been shown to have only a minor

impact on the quality of T cell epitope prediction. This is probably

due to the inability to accurately model these processes [3,4]. In

contrast, the prediction of the binding between peptide and MHC

is well understood and frequently utilized for the prediction of

potential T cell epitopes. Pan-specific peptide/MHC binding

affinity prediction methods have reached coverage of almost all

MHC class I [5] and class II [6] alleles. However, while the affinity

prediction accuracy is high and binding affinity between peptide

and MHC is a commonly used indicator for peptide immunoge-

nicity [3] it is known that binding between peptide and MHC is

necessary but not sufficient for T cell activation [7–13]. It is an

obligatory prerequisite i.e. If a peptide does not bind or only binds

very weakly to MHC, the necessary density of cell surface pMHC

cannot be reached and T cell activation cannot take place.

However, a peptide binding strongly to an MHC is no guarantee

of T cell activation. Thus it is necessary to predict peptide

immunogenicity, but this has proved far more challenging than

prediction of the peptide/MHC binding affinity. This is mainly

due to a limited understanding of which properties determine an

MHC-binding peptide as immunogenic in contrast to peptides

binding to the same MHC but being non-immunogenic [12]. The

question ‘‘Which parameters are the driving force behind T cell

activation?’’ is still a matter of frequent discussion and not

understood in detail [14]. Suggested determinants range from

binding affinity, association and dissociation rates, and half-life of

interaction [11] to structural adjustments in the TCR/pMHC

interface [10,15], amino acid preferences [12], changes in heat

capacity [16], similarity in biochemical properties [17], hydro-

phobicity, molecular weight, and structural patterns in the peptide

[9]. There are two major hypotheses for T cell activation [11,14]:

(1) The affinity model i.e. the number of TCRs binding to pMHCs
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is the most important factor and (2) the half-life model i.e. the

TCRs must bind to pMHC with a certain binding affinity and

duration. Another proposal groups models for TCR triggering into

aggregation models, conformational change models, and segrega-

tion models [18]. Despite all the advances over the last few years

there is still much to learn about MHC class I restricted immune

responses [19].

Methods for the prediction of peptide immunogenicity as

opposed to peptide/MHC binding affinity, are rare [3] and show

limited accuracy. Recently the method POPISK [9] has pioneered

the field of immunogenicity predictors. However, an independent

evaluation yielded almost random results for this method (AUC

0.52 and 0.49) [12]. Although it seems that some amino acids,

especially large and aromatics (e.g. W, F, I), are likely to be

associated with peptide immunogenicity, the predictive power of

their presence is quite limited [12].

Therefore, since peptide immunogenicity is hard to explain

from the peptide sequence alone research groups have investigated

the spatial dynamics of (TCR)pMHC complexes computationally.

Many immuno-informatics studies have used MD simulations to

investigate the spatial dynamics of different systems. Experiments

have included the use of the same MHC with different peptides

[10,20–31], different MHCs with the same peptide [20,25,32,33],

the same peptide/MHC complex with different TCRs [24,27],

simulations including trans-membrane regions [22,34], peptide

free simulations [29,35,36], steered simulations [27,30], and single

simulations [37,38]. In most of these cases the real immunological

outcome is known. Subsequently the differences between runs

have been compared on the basis of typical MD simulation

descriptors. For example Reboul et al. [33] performed 100 ns

simulations of HLA-B*35:01-LPEP, HLA-B*35:08-LPEP, and

SB27-HLA-B*35:08-LPEP. The SB27 interaction with HLA-

B*35:08-LPEP induces a cytotoxic T-cell response while the

interaction with HLA-B*3501-LPEP does not. In their simulations

the authors find an increased flexibility of the peptide bound to

HLA-B*35:01 and propose that difference to impede productive

interaction with SB27 and therefore hamper cytotoxic T-cell

response. In another study, Narzi et al. [20] used 400 ns MD

simulations to investigate the ankylosing spondylitis-associated

HLA-B*27:05 as well as the non-ankylosing spondylitis-associated

HLA-B*27:09 with one viral and three self peptides. They found

an increased entropy for the viral peptide presented by the disease

associated MHC allele. For the same allele they find enhanced

flexibility of the a1-helix which they hypothesize to be important

for receptor binding. In complementary work Kumar et al. [25]

performed 120 ns simulations of the multiple sclerosis predisposing

allele DRB1*15:01 and the protective allele DRB1*16:01. Both

alleles were simulated in combination with a myelin basic protein

peptide as well as Epstein Barr Virus derived peptide. The

predisposing allele formed a stable complex with both peptides. In

contrast the protective allele did not form a stable complex with

the virus peptide. In another investigation Stavrakoudis [37]

simulated the same structure as used in this study. He performed a

single 20 ns simulation of the wild-type peptide and found two

conformational clusters in the peptide structure as well as that the

TCRpMHC interface becomes increasingly solvated over simula-

tion time. In a previous study we have used MD simulations to

support experimental peptide/MHC binding affinity and T cell

activation data measured by collaboration partners. In a mugwort

pollen allergen model we compared core-identical 12-mer and 18-

mer peptides bound by HLA-DR1*01:01 with the outcome of

20 ns MD simulations [21]. In a second study we compared the

experimental results of altered versions of the 12-mer in complex

with HLA-DR1*01:01 and HLA-DR1*04:01 with the outcome of

30 ns simulations [32].

In all of the studies mentioned above only a small number of

simulations were run. This approach tends to be suboptimal since

two MD simulations will always differ in some aspects if the

simulation time is of finite length. Even two identically parame-

terized simulations (using the same initial seed) might produce

different trajectories due to parallelisation and floating point

imprecision. On this basis and the fact that a TCRpMHC system

consists of roughly 8000 heavy atoms one might always be able to

describe some differences between two individual simulations.

This problem is made worse as the differences between simulations

may be real but unrelated to the immunogenicity of the peptide.

For example if an MHC with a very immunogenic peptide and an

almost identical non-immunogenic peptide whose position seven is

point mutated with a smaller amino acid yield differences, one

might not be able to distinguish whether these differences result

from a size change at position seven or from different peptide

immunogenicity.

If one wants to address this issue then a frequent challenge is the

choice of appropriate experimental data. This is problematic

because some experimental findings may be false positives [39,40],

hard to reproduce, and/or not comparable with other experi-

mental results [41]. These problems might be caused by unknown

marginal differences in the experimental conditions, unintended

human influence, or just different consumables used. On this basis

the first aim for a systematic and large scale characterization of

TCRpMHC interaction is to find an appropriate test set with

experimental immunogenicity data. For our study we selected the

data from Kjer-Nielsen et al. [42] because all data was (1)

determined using the same technique, (2) the same conditions, (3)

published by the same group, (4) in the same manuscript, and (5)

the data set contains a sufficient number (172) of systematic

experimental immunogenicity values. (6) In addition a crystal

structure of exactly this complex was determined by the same

group (Protein Data Bank (PDB) [43] accession code 1mi5 [42]).

Kjer-Nielsen et al. performed a fine specificity analysis of LC13

cytotoxic T cell (CTL) reactivity to all possible single substitution

altered peptide ligands (APLs) of the Epstein Barr Virus (EBV)

peptide FLRGRAYGL bound by HLA-B*08:01. The employed

assay of Kjer-Nielsen et al. is described in more detail in [44]. This

yields a total of 172 experimental values (19 amino acid

substitutions in 9 peptide positions and the wild-type).

To determine which and if any structural and dynamical factors

are actually involved in peptide immunogenicity we performed

172 systematic 100 ns MD simulations of the TCRpMHC system

described above. This study is far larger than any other previous

Author Summary

Immune cells in the human body screen other cells for
possible infections. The binding of T-cell receptors (TCR)
and parts of pathogens bound by major histocompatibility
complexes (MHC) is one of the activation mechanisms of
the immune system. There have been many hypotheses as
to when such binding will activate the immune system. In
this study we performed the, to our knowledge, largest set
of Molecular Dynamics simulations of TCR-MHC complex-
es. We performed 172 simulations each of 100 ns in
length. By performing a large number of simulations we
obtain insight about which structural features are fre-
quently present in immune system activating and non-
activating TCR-MHC complexes. We show that many
previously suggested structural features are unlikely to
be causal for the activation of the human immune system.
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(TCR)pMHC MD study. Our study assumes that if a structural or

dynamical factor is involved in determining peptide immunoge-

nicity it would be conserved across the peptides in our set. It is

possible that different factors play different roles for every peptide.

Our large scale test finds very little evidence of conserved

structural and dynamical differences which could be related to

peptide immunogenicity.

Methods

Modelling of the APLs
We used the above described crystal structure of the

FLRGRAYGL peptide bound by HLA-B*08:01 and presented

to the LC13 TCR (PDB accession code 1mi5) as our basis. We

modelled all possible 172 single point APLs. For each of these

altered peptide ligands experimental immunogenicity data exists

[42]. For this purpose we used the software SCWRL [45] via the

PeptX framework [46] to replace the side-chains. We have

previously shown that SCWRL is the most appropriate software in

the context of peptide/MHC interactions [47,48]. The peptide’s

backbone structure is relatively conserved within the same MHC

allele [47] and small expected changes induced by single side-

chain substitutions are accommodated by the subsequent energy

minimization. The a1–3 regions of the MHC, the b2-microglobu-

lin, as well as the variable and constant regions of the TCR were

included in the models yielding 172 TCRpMHC complexes each

consisting of 827 residues. One such model complex is shown in

Figure 1.

Performing the MD simulations
All MD simulations were performed using GROMACS 4 [49]

and the GROMOS96 53a6 force field [50]. Each of our 172

modeled structures was immersed into a separate dodecahedronic

simulation box of 3410 nm3 volume which was filled with

,107,750 explicit SPC water molecules allowing for a minimum

distance of 1.5 nm between box boundary and protein. Na+ and

Cl2 ions were also added to achieve a neutral charge and a salt

concentration of 0.15 mol/liter. Each of the systems was

energetically minimized using the steepest descent method and

then warmed up to 310 K. Finally, we conducted MD simulations

of 100 ns on each of the systems using the ARCUS cluster of the

Oxford Advanced Research Computing (ARC) facility. This yields

a total simulation time of 17.2 ms for our 827 residue systems.

Methods of trajectory evaluation
Here we consider the first 10 ns of each simulation to be the

initial relaxation time of the system. All analysis is based on the last

90 ns. Manual pre-inspection of the trajectories was carried out

using the vmdICE plugin [51] of VMD [52]. All graphical 3D

representations were rendered in VMD.

The analysis of the hydrogen bonds, solvent accessible surface

area (SASA), and root mean square fluctuations (RMSF) were

carried out using the GROMACS functions g_hbond, g_sas

(implementing [53]), and, g_rmsf respectively. The ‘‘percent

present’’ value of hydrogen bonds is a normalized frequency

score which is zero if no hydrogen bond is present in any

timeframe for this residue. It is one if one hydrogen bond is present

in all frames. This score can exceed one if a residue mediates more

than one hydrogen bond, as for example occurs for the anchor

residues of the peptide.

The peptide/MHC binding affinities were calculated using the

ligand/protein rescoring function XSCORE [54] which has been

shown to be the most appropriate for structural peptide/MHC

binding predictions [48]. The binding affinity between TCR and

pMHC was calculated using two protein/protein rescoring

functions IRAD [55] and ZRANK [56].

The relative orientation between the variable domains of the

TCR, Va and Vb, was measured using a TCR-adapted version of

the ABangle [57] methodology (shown in Figure S1). Here, the

orientation is described by five angles (BA, AC1, BC1, AC2 and

BC2) and a distance (DC). The length, DC, describes the distance

between consistent points on the interface of the two domains. The

angle BA describes a torsion angle between the variable domains

of the a and b-chains. AC1 and BC1 are tilting-like angles of one

domain towards the other. AC2 and BC2 describe twisting-like

angles of one domain with respect to the other. The distances in

the TCRpMHC interfaces were measured using the gro2mat

package [58].

Methods of comparison between more and less
immunogenic simulations

Peptide immunogenicity is a continuous variable. However, to

compare the characteristic features of more immunogenic

simulations to those of less immunogenic simulations we have

introduced a discrete split between these groups. Based on the

experimental data of Kjer-Nielsen et al. [42], the 51 peptides

which never induce 50% lysis make up the less immunogenic

group (groupL). The 51 most immunogenic peptides were

designated as the more immunogenic group (groupM). Each

member of groupM induces 50% lysis using a peptide concentra-

tion of 1026.94 M or less [42]. All results shown below are based

on this split. This is a subset consisting of the 102 most extreme

cases of our 172 simulations.

The total variation distance (tvd) was used to quantify how

strongly probability distributions of the above described parameters

differ between our groupL and groupM sets. The tvd is defined as:

TVD f1,f2ð Þ~ 1

2

ð
Df1(x){f2(x)Ddx

Where f1(x) is the first distribution normalized and f2(x) the second

distribution normalized. Thus tvd will range between 0 and 1. A

value of 0 represents perfect overlap of the distributions while a value

of 1 represents no overlap. Since the tvd would yield a high value for

identical means in combination with severely different variances we

additionally calculate a normalized distance between the means of the

distributions. This value is referred to as d/r and defined as:

d=r~
D �XX 1{ �XX 2D

range(X1;2:5{97:5%|X2;2:5{97:5%)

Where �XX2 and �XX2 are mean value of the two distributions and the

denominator is the range of the combined distributions excluding the

lowest and highest 2.5%.

To further determine what values of tvd and d/r are relevant we

performed permutation tests. We compared the tvd and d/r of the

groups under investigation against the distribution of 2000 random

assignments of the simulation trajectories to the groups. This

approach is illustrated in Figure S2. If at least 90% of the

permutations exhibit a smaller difference than the groups under

investigation we refer to a slight difference. If at least 95%

we refer to a difference, if at least 99% we refer to a strong difference.

Results

In total we performed 172 TCRpMHC simulations of 100 ns

length. In Movie S1 a movie of the wild-type simulation is

Large Scale Characterization of TCRpMHC Using MD Simulations
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shown. As described in the methods we use two subsets of

simulations for the subsequent result sections. The first is made

up of the 51 complexes which never induce 50% lysis (groupL).

The second is made up of 51 complexes where each member

induces 50% lysis using a peptide concentration of 1026.94 M or

less (groupM). These are the 102 most extreme cases out of our

172 simulations. Other splits were also tested and yielded similar

results.

Binding affinities
The binding affinities in the TCRpMHC interface are thought

to be related to peptide immunogenicty. We measured the binding

affinity between peptide and MHC using XSCORE [54] on the

basis of equally distributed frames extracted from the trajectories.

Although the mean binding affinity of groupM is lower than that

of groupL this difference is not large (Figure 2A). We also

calculated the binding affinity between pMHC and TCR using

both IRAD [55] and ZRANK [56], here the binding affinity

distributions are also highly similar (Figure 2B and 2C) and no

difference was found.

Hydrogen bond footprints in the TCRpMHC interface
Analyzing the overall binding affinity did not yield differences

between groupL and groupM. A major contributor to the

binding affinity and commonly used descriptor for MD

simulations are the hydrogen bond (H-bond) footprints. In our

case: In which residues are H-bonds occurring most frequently

during simulation and is there a difference between groupM and

groupL?

The footprint of the first frames (before MD simulation, Figure

S3) differs significantly from the MD footprint (Figure 3). This

highlights the importance of the dynamics of a system in contrast

to static structures.

The H-bond footprint of the peptide to the MHC over

simulation time recovers a key feature of the experimentally

known binding profile. The anchor residues for HLA-B*08 are

known to be peptide positions three, five, and nine [59]. In all

three positions the number of H-bonds is higher in comparison

to all other positions (Figure 3A). Additionally the number of H-

bonds between the peptide and the TCR is increased around

peptide position seven (Figure 3B) which has been described as

the main TCR interaction site [42]. In this plot it also seems

that the number of H-bonds in peptide position four is far

higher in groupL. However, this can be explained by the fact

that Gly is the wildtype residue for peptide position four and

G4A and G4P are the two most immunogenic APLs. These

three residues have no ability to form side-chain H-bonds with

the TCR.

The H-bond footprints between the TCR and the MHC during

the simulations revealed a preference for H-bonds to occur mainly

in the CDR regions. It is experimentally known that these regions

Figure 1. Visualisation of the individual components of the TCR/peptide/MHC interaction. Rendering is based on PDB accession code
1mi5 [42]. Blue: peptide; White cartoon and transparent surface: MHC; Red: CDR1; Green: CDR2; Yellow: CDR3. The upper CDRs belong to the TCR a-
chain while the lower ones belongs to the TCR b-chain. The a3 region of the MHC, the b2 microglobulin, and the variable and constant regions of the
TCR are not visualized but were also included in our study.
doi:10.1371/journal.pcbi.1003748.g001
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are the main interaction sites of the TCR for MHC binding [60].

However, there is no sign that more immunogenic peptides induce

a different H-bond footprint in the CDRs than less immunogenic

ones (Figure 3C).

A different behaviour is observed if the H-bond footprints

between the MHC helices and the TCR are investigated. While

groupM has an increased number of H-bonds in MHC helix 1,

groupL has an increased number of H-bonds in helix 2

(Figure 3D). No mutations were introduced in the MHC helices,

so the changed H-bond footprints in the MHC helices are all

induced by the peptides which are adjacent to the helices but do

not directly participate in the H-bonds between the helices and the

TCR.

Solvent accessible surface area of the TCRpMHC interface
In addition to H-bonds, the size of the buried interface area of a

binding site plays an important role in determining the mode of

interaction and the binding affinity. Therefore we calculated the

SASA over simulation time for the CDRs, peptide, and MHC

helices. Whilst each CDR exhibits its specific distribution of SASA

values there is no relevant difference between groupM and groupL

and the mean values of the two groups are almost perfectly

identical (Figure 4 A–F). Likewise, the distributions of the SASA

values for the peptide and the MHC-helices are highly similar and

no relevant difference between groupM and groupL could be

found (Figure 4G–I).

Flexibility of the TCRpMHC interface
Another feature thought to play an important role in the

immunogenicity of a peptide is the flexibility of the involved

interface residues. Many previous studies have hypothesized that

an increased or decreased flexibility of certain components of the

TCRpMHC interface is the reason for being more or less

immunogenic (see discussion).

Therefore we calculated the RMSF of the CDRs, peptide and

MHC helices over simulation time. While the RMSF of the CDRs

is almost identical between groupM and groupL (Figure 5) the

shapes of the RMSF curves recover a key feature of the interaction

landscape. The middle part of each CDR loop is exhibiting the

highest amount of flexibility which is in agreement with the notion

Figure 2. Comparison of the peptide/MHC and pMHC/TCR binding affinity distributions between groupM and groupL. (A) Binding
affinity between the peptide and MHC measured by XScore. Although there are differences in the distributions, only 54% of the permutation tests
show less overlap. The difference in the mean-values is larger but also not above our 90% threshold (see methods). (B) Binding affinity between the
pMHC and TCR measured by Irad. (C) Binding affinity between the pMHC and TCR measured by ZRank.
doi:10.1371/journal.pcbi.1003748.g002
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that the CDRs are highly polymorphic and dynamic pMHC

binding probes.

The RMSF values of the peptide and the MHC helices are also

highly similar between groupM and groupL. We could not find

an increased or decreased RMSF for either group. Furthermore

the peptide shows a similar amount of flexibility in all of its

residues (Figure 5G) while the helices are generally more flexible

at their N- and C-terminal ends compared to their middle part

(Figure 5HI).

Taken together these indicate that flexibility in the TCRpMHC

interface is unlikely to be an important player in peptide

immunogenicity.

Geometry of the TCRpMHC interface
Experimental crystallographic data have shown a wide variety

in the binding mode and angle between the MHC and TCR.

Furthermore in-silico calculations have revealed that a state-of-

the-art forcefield can reproduce these orientations [61].

Therefore we investigated whether our groupM and groupL

differ in their binding mode by calculating 16 distances in the

TCRpMHC interface (Figure 6) for equally distributed individual

frames of the trajectories.

The 16 distance distributions show two properties which are

common to all simulations (1) no TCR detached or tilted away

from any pMHC, (2) no major binding mode rearrangement took

place within the interface itself.

In terms of differences between groupM and groupL we found that

the distances between the central kink of MHC helix 2 are closer to

CDR1a and CDR2a for more immunogenic peptides (Figure 6D,F).

The distance between the middle of helix 1 and helix 2 is also

decreased for groupM (Figure 6H). Only the distance between the N-

terminal peptide end and CDR3b is decreased for less immunogenic

peptides (Figure 6M) while the distance between the C-terminal

peptide end and CDR3a as well as CDR3b is decreased for more

immunogenic peptides (Figure 6N,O).

Geometry within the TCR
The relative orientation between the two chains of a TCR is

important for their binding mode, specificity, and affinity.

Therefore we investigated the relative orientation of the two

Figure 3. Hydrogen bond footprints of the 100 ns MD simulations of groupM and groupL. The normalized frequency of occurring H-
bonds over simulation time is shown. The frequency is zero if no H-bond is present in any frame of any of the simulations of the group. The frequency
is one if one H-bond is present in each frame of every simulation of the group. The value can exceed one if in average more than one H-bond is
present in a residue. (A) H-bonds between the peptide and the MHC. (B) H-bonds between the peptide and the TCR. (C) H-bonds between the two
chains of the TCR and the MHC. The six CDRs are marked with dashed lines. (D) H-bonds between the MHC and the two TCR chains. The helices are
marked with dashed lines.
doi:10.1371/journal.pcbi.1003748.g003

Figure 4. Solvent accessible surface areas (nm2) of the TCRpMHC interface during the 100 ns simulations. (A–F) The six CDRs of the
TCR. (G) Peptide bound between MHC and TCR. (H) Helix 1 of the MHC. (I) Helix 2 of the MHC.
doi:10.1371/journal.pcbi.1003748.g004
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Figure 5. RMSF of the CDRs, peptide and MHC helices over simulation time. The solid lines indicate the mean values of groupM (red) and
groupL (blue). The dotted lines are the mean +/2 the standard error of the mean. The results are based on the backbone atoms only. If all atoms are
taken into account the overall shape of the RMSF plots is similar, however, slightly more unstable (data not shown). (A–F) RMSF of the 6 CDRs. (G)
RMSF of the peptide. (H,I) RMSF of the two MHC helices.
doi:10.1371/journal.pcbi.1003748.g005
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TCR chains during simulation using the ABangle methodology

[57]. In this way we found a slight difference in the BA torsion

angle as well as a difference in the BC2 twist angle and the DC

that characterises the distance between the two variable domains

(Figure 7). In all three cases the mean value was smaller for

groupM. These differences between the groups represent only

small physical changes in orientation of the TCR chains.

However, the differences that do arise suggest that groupM

simulations have slightly more ‘‘open’’ binding site conformations

best characterised by the larger (more negative) BA torsion angles.

Discussion

The largest systematic dataset of TCRpMHC simulations
Attempts to fully understand the interaction process between

(TCRpMHC) have used MD studies (see introduction). However,

all of these studies compare only a small number of simulations.

For example they compare the behaviour of one MHC with two

different peptides. Hence it is hard to determine if differences that

are found actually relate to immunogenicity or not. To address this

challenge we present, to our knowledge, the largest systematic

dataset of simulations of the TCRpMHC interface. We present a

dataset of 172 TCRpMHC simulations each of 100 ns.

The data shown in the results section consists of a subset of the

51 most immunogenic peptides compared to the 51 least

immunogenic peptides. As we are looking for a systematic

difference between more and less immunogenic peptides we

showed these sets rather than all 172, as this should make such a

difference easier to spot. The results of these 102 (51vs51)

simulations and the full set of 172 (82vs90) simulations are highly

similar (compare Figure 5 and Figure S4).

Recovery of key features of the TCRpMHC binding
landscape

Our dataset recovers several key features of the known

TCRpMHC interaction landscape [60]. We show that the

number of H-bonds between the experimentally known anchor

amino acids of the peptide and the MHC is significantly higher

than in the other peptide residues (Figure 3). Related, the number

of H-bonds between the immunological hotspot of peptide

position seven [42] and the TCR is significantly higher than for

other peptide positions. Also the H-bonds between TCR and

MHC are almost exclusively formed by the CDR regions of the

TCR. Furthermore, the flexibility footprint of the CDRs

(Figure 5) is in agreement with the notion that these hypervari-

able and flexible regions are able to scan and complement the

surface of pMHCs while the framework regions around them are

more rigid. No major structural defolding of TCR or MHC parts

took place which is in agreement with known experimental

TCRpMHC structures which have an overall conserved second-

ary and tertiary structure [60]. Taken together the recovered key

features support the view that current state of the art MD

Figure 6. Distances in the TCRpMHC interface (nanometer) as measured over simulation time. (A–C) Distributions of the distances
between the central kink residue of helix 1 and the three CDRs of the TCR b-chain (D–F) Distributions of the distances between the central kink
residue of helix 2 and the three CDRs of the TCR a-chain (G–I) Distributions of the distances at the begin, middle, and end of the MHC binding
groove (J,K) Distributions of the distances between the central residue of the peptide and the two CDR3s (L,M) Distributions of the distances between
the first residue of the peptide and the two CDR3s (N,O) Distributions of the distances between the last residue of the peptide and the two CDR3s (P)
Distribution of the distances between peptide mean and the mean of both CDR3s (Q) 3D representation of the 16 distances. Orange: TCR a-chain;
black: TCR b-chain; white: MHC; blue: peptide; red: distances illustrated in A–P. The MHC helix 2 and the C-terminal end of the peptide are depicted
in the foreground.
doi:10.1371/journal.pcbi.1003748.g006
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simulations are capable of investigating the relevant dynamics of

a TCRpMHC system.

Are more immunogenic peptides weaker MHC binders?
In our dataset we found that while all the peptides are at least weak

MHC binders the more immunogenic ones tend to have a marginally

lower binding affinity to MHC than less immunogenic ones

(Figure 2A). At first glance this seems to contradict the notion [3]

that peptide/MHC binding is good indicator for a potential T cell

epitope. However, even if their binding is marginally weaker, those

APLs are still at least medium binders for HLA-B*08:01 and this has

been shown to be sufficient to be immunogenic [62]. This tendency of

more immunogenic peptides to be slightly weaker binders might be

due to the previously described tendency of immunogenic peptides to

have larger and more aromatic residues in the central and non-

anchor positions [12]. While these residues enhance the interaction

with the TCR, they may reduce, but not impair, the MHC binding

affinity by increasing the entropy of the bound state.

To test whether this finding can be generalized we performed an

analysis of all available experimental peptide/MHC and T cell

activation data from the IEDB [63]. If all experimental matches

(MHC binding affinity data and T cell activation data are available

for the same peptide/MHC combination) are taken into account

the correlation coefficient between T cell activation and peptide/

MHC binding affinity is weakly positive (rPearson = 0.23, rSpear-

man = 0.18). However, if only those matches are taken into account

where the peptide is known to bind to the MHC (IC50,500) then

the correlation drops to a slightly negative value (rPearson = 20.09,

rSpearman = 20.10). This would be in agreement with our finding

that more immunogenic peptides, if they are at least weak binders,

have a marginally lower binding affinity to MHC than less

immunogenic peptides.

More and less immunogenic peptides presented by HLA-
B*08:01 have about the same binding affinity to the LC13
TCR

Often avidity between pMHC and TCR is seen as crucial for

the induction of an effective immune response [11]. However,

state-of-the-art computational resources are orders of magnitude

away from simulating the formation of a whole immunological

synapse [64]. Hence, we provide insight into the interaction of

single TCRpMHC formations. On the basis of such individual

interactions over 100 ns we could not find a strong difference in

the binding behaviour between groupM and groupL (Figur-

e 2B,C). Therefore the findings of our study do not support the

notion that each individual more immunogenic pMHC per se

necessarily binds stronger to TCRs than less immunogenic

pMHCs.

H-bond footprints of MHC helices vary between groupM
and groupL

The H-bond network is commonly seen as a major player in

modulating interaction landscapes. Therefore, it would not be

surprising if this network is significantly altered between groupM

and groupL.

A comparison of the H-bond footprint of the simulations

(Figure 3) with the footprint of the static picture of the first frames

(Figure S3) highlights the importance of using the 100 ns

simulations. Several H-bonds are not observed in the static picture

e.g. those at the N and C-terminal ends of the peptide. In contrast

the first frames overestimate the number of H-bonds in many

other residues. Hereby, our findings agree well with Reboul et al.

who observed fluctuating and transient H-bonds in the

TCRpMHC interface [33].

The H-bond footprints recover several key features of the

TCRpMHC binding landscape including dominance of CDRs in

the pMHC/TCR interaction, the peptide anchor residues, and the

immunogenicity hotspot in peptide position seven. The H-bonds

between the peptide and the MHC and TCR are very similar for

the more and the less immunogenic peptide sets. However, this

picture changes for the H-bond footprint between MHC and

TCR. It shows a preference for more immunogenic complexes to

have a higher number of H-bonds in the first MHC helix. For

the second helix the picture reverses and less immunogenic

complexes have a higher number of H-bonds (Figure 3D). This

indicates a slightly different binding mode of the TCR to

Figure 7. Relative orientation of the TCR chains as measured by the ABangle package. (A) BA: torsion angle between Va and Vb chain (B)
BC1: tilting angle of Vb (C) BC2: twisting-like angle of Vb (D) AC1: tilting angle of Va (E) AC2: twisting-like angle of Va (F) DC: distance between the
variable part of the a and b-chain in nanometer.
doi:10.1371/journal.pcbi.1003748.g007
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groupM and groupL. This agrees with a chemical shift mapping

study that found that different TCRs can create different

footprints on MHC helices [65]. Other authors described a

relatively conserved CDR/helix interaction codon [66]. Some

authors even hypothesize that the evolutionarily conserved kinks

of MHC helices are central signaling motifs [67]. Our findings

that MHC helices have different H-bond footprints with the

TCR if more immunogenic peptides are present further supports

the importance of MHC helices for immunogenicity of a pMHC

complex.

SASA values of CDRs, peptide, and MHC helices do not
differ between groupM and groupL

The closeness of a binding interface is an important property of

the mode of interaction. This closeness is often reflected in the

solvent accessible surface area of interface components. For

example Stavrakoudis et al. [37] reported an increased solvation of

the LC13/FLRGRAYGL/HLA-B*08:01 interface, Madura et al.

observed solvation as important for peptide specificity [68], and

Laimou et al. [23] found that 3G of the immunodominant myelin

basic protein (MBP) peptide presented by I-Au is more solvent

exposed as the analogues 4A and 4Y.

From our data (Figure 4) it can be seen that the solvation of the

interface changes over time and that different CDRs exhibit

different distributions of their SASA values. For example, CDR1a

and CDR3a show a broader distribution of their SASA values

while CDR2a has rather conserved values. The SASA distribu-

tions for the peptides of groupM and groupL are both slightly

positively skewed and almost normally distributed. Furthermore

the first MHC helix has on average a considerably lower solvent

accessible surface area than the second helix. However, while

there are strong differences in the solvation of the individual parts

of the TCRpMHC interface, we found no evidence that an

increased/decreased solvation of any part of the interface takes

place for groupM in contrast to groupL. This is surprising because

if TCR/pMHC binding affinity is an important determinant of

peptide immunogenicity one might expect the interface solvation

to be affected. For example, MMPBSA [69] free energy

calculation methods for the TCR/pMHC interface [70] contain

solvation as an important term.

RMSF values of CDRs, peptide, and MHC helices do not
differ between groupM and groupL

Often authors of MD papers hypothesize that an increased or

decreased flexibility of certain parts of the TCRpMHC interface is

the underlying principle discriminating immunogenic from non-

immunogenic TCRpMHC interactions. For example Narzi et al.

observed an increased flexibility of the ankylosing spondylitis-

associated HLA-B*27:05 in contrast to the non-associated HLA-

B*27:09 [20]. Furthermore they found that the entropy of a viral

peptide was increased compared to self peptides. Kumar et al [25]

found the multiple sclerosis predisposing MHC allele DRB1*15:01

to form a stable complex with a MBP peptide as well as with an

Epstein Barr virus peptide. In contrast, the multiple sclerosis

protective allele DRB1*16:01 formed this stable complex only with

the MBP peptide but not with the viral peptide. We have

previously found that the flexibility of a mug pollen allergen

peptide is increased if presented by the allergy predisposing HLA-

DRB1*01:01 compared to the non- predisposing HLA-

DRB1*04:01 [32]. Reboul et al. [33] reported a lower flexibility

of a viral peptide presented by the CTL response inducing HLA-

B*35:08 in contrast to the non CTL inducing HLA-B*35:01. In a

previous study [10] we compared the CDR flexibility on the basis

of 20 simulations of 50 ns length using the same TCRpMHC

system as in the current study. In that study we also observed

decreased flexibility of the CDRs of more immunogenic peptides

(not statistically significant).

In the current study we do not find evidence that more

immunogenic peptides induce a different flexibility in the

TCRpMHC interface than less immunogenic peptides (Figure 5).

All six CDRs, the MHC, and the peptide show almost identical

RMSF patterns for groupM and groupL. This contradiction to

previous MD studies might be explained by the considerably

higher number of simulations in our current study. The large

number of simulations of 100 ns each allows for counterbalancing

confounding factors such as amino acid size, charge et cetera from

which studies with a small number of simulations might have

suffered.

TCRpMHC interface and relative TCR chain orientation
slightly differ between groupM and groupL

The geometry of the antibody binding site is modulated by the

orientation between the heavy and light variable domains [71],

and this mechanism has been proposed to be part of the

diversification strategy of antibodies [72]. Here, we compared

the orientation between the analogous domains in the TCR Va

and Vb. We found that TCRs binding more immunogenic

peptides tend to bind with a slightly more ‘‘open’’ TCR binding

site. Furthermore it seems that the wider TCR binding site allows

for smaller distances in the TCRpMHC interface. This difference

in the binding interface could explain the previously observed

difference in the early relaxation dynamics of this system [10] and

could also be related to the altered H-bond footprint between

MHC and TCR between groupM and groupL.

However, the absolute values of the differences between the

groups are small. This is illustrated by the distance distributions

between the variable segment of the a and b-chain (Figure 7F):

the overlap of the distributions of groupM and groupL is lower

than 98.6% of the overlaps of the 2000 random permutation splits.

The distance between the mean values of the distributions of

groupM and groupL is larger than 92.8% of the distances between

the mean values of the 2000 permutation splits. This seems

impressive, however, the distributions of groupM and groupL

overlap with 86% and the difference in means of groupM and

groupL is just 6% of the possible range. This is far from any

predictive power and illustrates the difference between significance

and relevance.

We conclude that these differences in the interface are in fact

related to peptide immunogenicity but the changes in numbers are

so small that peptide immunogenicity is unlikely to be explained

exclusively on their basis.

Use a large number of simulations to avoid false positives
MD studies of (TCR)pMHC complexes tend to describe the

differences between a small set of structures. Often only two

complexes are simulated and the differences found during the

simulation are described. In our case this could, for example, be

the simulation of the wildtype FLRGRAYGL and the non-

immunogenic altered peptide ligand FLRGRAAGL. Both are

bound by HLA-B*08:01 and presented to the LC13 TCR. These

two simulations differ in several aspects. For example, the

immunogenic wildtype peptide has, with respect to the non-

immunogenic mutant Y7A: (1) dramatically more H-bonds

between peptide position seven and the TCR but fewer H-bonds

between peptide position six and the TCR (Figure S5); (2) a

reduced solvent accessible surface area in CDR1a, CDR1b,

CDR2b, CDR3b, and an increased solvent accessible surface area
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in CDR3a (Figure S6); (3) an increased flexibility for most of the

CDRs, the peptide and helix 1 of the MHC (Figure S7). These

differences could be argued as causal for the immunogenic

behaviour of the wild-type peptide and non-immunogenic

behaviour of the Y7A mutant. Scientists might be tempted to

publish a manuscript about these ‘‘insights’’. However, if we

compare the data of two simulations (Figure S5,S6,S7) with the

data of all simulations (Figure 3,4,5) than it turns out that such

described differences between two simulations are false positives

and that the observed differences are actually more related to the

smaller side chain of Ala in contrast to Tyr than to the

immunogenicity of the peptide.

To address this issue we presented the, to our knowledge, largest

TCRpMHC MD simulation dataset which allows to determine

which changes are in fact related to peptide immunogenicity and

even more importantly, which changes are not related to peptide

immunogenicity. We can draw these conclusions only for HLA-

B*08:01 and the LC13 TCR but it is likely that other TCRpMHC

interactions are not fundamentally different.

Limitations of the current study
We present the largest set of TCRpMHC MD simulations

carried out to date. However, even a data set of this size has

limitations.

A run-time of 100 ns is longer than the average for studies of

this type. Recently published MD studies of the (TCR)pMHC

interface have an average runtime of about 48 ns (longest by Narzi

et al. [20] with 400 ns of 12 pMHC complexes and shortest one by

Stavrakoudis [37] with a single 10 ns simulation of exactly the

TCRpMHC system as used in this study). However it may still not

be long enough.

The membranes and the trans-membrane regions of TCR and

MHC, as well as the co-receptors were not included in our study.

To our knowledge there is just a single MD study [34] which

included all these components. Due to the large system size Wan et

al. were only able to perform a single 10 ns simulation.

Furthermore, no direct experimental basis for these regions exists.

This study is based on TCRpMHC simulations. Therefore, on

the basis of this data, we cannot rule the possibility out that some

of the described determinants (RMSF, SASA, etc) are effective

discriminators between more and less immunogenic peptides in

the TCR unbound state i.e. MD simulations of pMHC instead of

TCRpMHC.

In this work we are using a systematic approach, simulating a

large number of peptides and looking for one or more descriptors

that will differentiate more and less immunogenic peptides.

Determinants for immunogenicity could vary for individual

peptides. For one peptide the determinant of immunogenicity

could be flexibility while it could be solvent accessible surface area

for another one. If this were the case such determinants would be

difficult to identify with certainty from simulations. If any two

simulations are compared some differences will always be found

(even for identical simulations with different random seeds and

finite runtime) and it will be hard to know which differences if any

relate to peptide immunogenicity.

Conclusion
A large number of MD studies investigating the (TCR)/pMHC

interaction have been published. On this basis several hypotheses

about structural and dynamical determinants of immunogenicity

were proposed. In this study we presented the, to our knowledge,

largest TCRpMHC dataset consisting of 172 simulations of 100 ns

length each. On the basis of this dataset we find that minor differences

in the hydrogen binding footprints, interface distances, and the

relative orientation between the TCR chains are present. Many

previously predicted structural determinants of peptide immunoge-

nicity are unlikely to be so. No striking differences could be found

between the LC13 TCR recognizing more immunogenic peptides

presented by HLA*08:01 compared to less immunogenic ones.

Supporting Information

Figure S1 Visualisation of the TCR-adapted version of the

ABangle [57]. A1 and A2 are the first and second principal

components of structurally highly conserved C-a atoms (orange

spheres) of the TCR a-chain. B1 and B2 are the first and second

principal components of structurally highly conserved C-a atoms

(black spheres) of the TCR b-chain. C is the distance between a

and b-chain. Orange: TCR a-chain; Black: TCR b-chain; White:

MHC, Blue: peptide; Red: ABangle vectors.

(TIF)

Figure S2 Illustration of the permutation test. We performed

2000 permutation iterations where in each iteration all simulations

were randomly assigned to either group under investigation. The

distributions of tvd and d/r yielded by 2000 permutations are

shown in blue in (A) and (B) respectively. The 90th, 95th, and 99th

percentiles are marked as dash-dotted, dotted and, dashed lines. In

addition the tvd and d/r of the group assignment under

investigation is shown as solid red line.

(TIF)

Figure S3 Hydrogen bond footprints of the static first frames of

groupM and groupL. The normalized frequency of occurring H-

bonds on the basis of the first frame per simulation is shown. It can

be seen that the H-bond footprint of the first frames significantly

differs from the footprint of the whole 100 ns simulations

(Figure 3). The presence of H-bonds is often overestimated in

the single frame analysis while several infrequently occurring H-

bonds are not characterized. (A) H-bonds between the peptide and

the MHC. (B) H-bonds between the peptide and the TCR. (C) H-

bonds between the two chains of the TCR and the MHC. The six

CDRs are marked with dashed lines. (D) H-bonds between the

MHC and the two TCR chains. The helices are marked with

dashed lines.

(TIF)

Figure S4 RMSF of the CDRs, peptide and MHC helices of all

172 simulations. GroupM consists of 90 simulations and each

peptide induces 50% lysis using a concentration of 1026.01 M or

less. GroupL consists of 82 simulations and none of their peptides

induces 50% lysis at a concentration of 1026.01 M or less. This

figure corresponds to Figure 5 but shows 172 instead of 102

simulations. This (A–F) RMSF of the 6 CDRs. (G) RMSF of the

peptide. (H,I) RMSF of the two MHC helices.

(TIF)

Figure S5 Hydrogen bond footprints of the 100 ns MD

simulations of the wildtype peptide and the non-immunogenic

mutant Y7A. This figure corresponds to Figure 3 and S4 but

shows only two instead of 102 simulations.

(TIF)

Figure S6 Solvent accessible surface areas of the TCRpMHC

interface of the wildtype peptide and the non-immunogenic

mutant Y7A. This figure corresponds to Figure 4 but shows only

two instead of 102 simulations.

(TIF)

Figure S7 RMSF of the CDRs, peptide and MHC helices of the

wildtype peptide and the non-immunogenic mutant Y7A. This
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figure corresponds to Figure 5 but shows only two instead of 102

simulations.

(TIF)

Movie S1 Movie of the wild-type peptide presented by HLA-

B*08:01 to the LC 13 TCR. White cartoon: MHC and b-2

microglobulin; Blue: peptide; Orange: TCR a-chain; Black: TCR

b-chain.
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