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Abstract

A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual
temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current
study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of
foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous
two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by
time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential
dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential
attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal
dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment
process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential
dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and
choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the
interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.
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Introduction

Humans and non-human animals engage in a number of

distinct activities on a daily basis, from working to attain resources

to resting. Once engaged in a particular activity, such as foraging,

they typically must select among multiple alternatives a number of

times before they are satisfied. A systematic understanding of

behavior, then, requires a characterization of the mechanisms that

determine when to engage in an activity and to stop the activity,

and what to choose, which includes choosing among multiple

options multiple times. Although the processes governing when
and what to choose have been studied in their own right, how both

sets of underlying mechanisms together produce the dynamical

properties of behavior over time remains poorly understood. To

help characterize these fundamental mechanisms and their

interaction, we examined and modeled the foraging decisions of

rats in a paradigm designed to mirror the daily life of mammals

composed of continuous free choices among multiple alternatives.

Temporal dynamics: When to act
Rather than regular, like a metronome, or homogenous (i.e., a

constant overall rate of activity), timing of behavior and/or events

in humans, non-human animals, and natural phenomena is often

non-homogeneous, with periods or bursts of high activity

separated by long inactive periods [1,2]. Examples in humans

include e-mail [1,3–7] or mail communication [8], library loans

[3], financial trading [9,10], on-line movie watching [11], internet

browsing [3,12], printing requests [13], and mobile communica-

tion [14,15]; in non-human animals, locomotion [16–21], and

flying patterns [22]; and in natural phenomena, rainfall [23],

tsunamis [24], and earthquakes [2,25]. A telltale diagnostic feature

used to characterize non-homogeneous temporal processes is a

heavy tail in the distribution of the inter-event intervals (i.e., the

time interval between consecutive events) [1]. A heavy tail reflects

a larger number of longer inter-event intervals than occurs with

homogeneous Poisson processes (i.e., those in which the events

occur at an overall constant rate, but are independent of one

another).

Although a non-homogeneous process has been suggested as a

universal feature of natural dynamical systems [2], different

specific underlying mechanisms can lead to a heavy-tailed

distribution of the inter-event intervals [26]. For example, it has

been suggested that the bursty nature of human interactions results

from the combined effects of different periodicities at different

timescales: e.g., a circadian rhythm, as well as weekly, monthly,

etc. cycles; and, in fact, bursty behavior can derive from a

cascading non-homogeneous Poisson process model that combines

multiple Poisson processes with different timescales [6,27,28]. At

the same time, the bursty behavior of human interactions can also

be induced by intrinsic correlations between actions [6,27–31].

Indeed, bursty behavior might also derive from a combination of

such processes, which we explore in the current study.
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Here, we focus on foraging, a fundamental and frequent

behavior for survival. Foraging mechanisms underlie the daily

energy budget allocation across activities [32–34]. Unlike nature

phenomena, feeding, and more generally, foraging behavior is

influenced by both internal biological and external environmental

factors: internal factors include preference, nutrition, memory,

hunger and satiety; external factors include the daily light-dark

cycle (leading to a circadian rhythm), seasonal and social/societal

effects [32,35]. Thus, the study of foraging behavior provides the

opportunity to examine decision mechanisms that result from the

interaction of important internal and external influences.

Feeding behavior has been studied in large data sets of farm

animals, pets, and captive wild animals, including cattle, pigs,

chickens, ducks, turkeys, rats, and dolphins [33,35–39]. The

temporal structure of feeding behavior consists of high frequency

feeding events that are separated by relatively long non-feeding

periods: i.e., it is bursty [33,38]. In the current study, our first

objective was to test the hypothesis that foraging timing is based on

bursty behavior that is influenced by both the level of satiety

(internal) and by the daily light- dark cycle (external). Indeed, we

found a heavy-tailed distribution of the inter-choice intervals (ICI,

the time interval between two choices), reflecting a non-

homogenous process. Moreover, the ICI distribution exhibited

bimodality, reflecting distinctive processes for short and longer

timescales: bursty behavior for short ICIs and circadian rhythmic

activity for longer ICIs. To explain this bimodality in foraging

behavior, we propose a dual-state model consisting of active and

inactive states, with correlated behavior producing bursty activity

in the active state, and relatively uncorrelated behavior influenced

by a circadian rhythm in the inactive state.

Sequential dynamics: What to choose
Once activity timing is characterized, the decision dynamics of

which option to select and whether to continue selecting it over

repeated choices must be specified [40–43]. Although progress has

been made on characterizing outcome-driven behavior as

governed by the goal-directed system [44,45], and stimulus-driven

behavior as governed by the habit system [45–48], it nonetheless

remains difficult to predict an individual’s preference and choice

responses over a long period of time. For example, an individual’s

preference for different foods or music seems to fluctuate over time

even when they have experienced the available options extensively

and thus know all options well: e.g., even if one’s favorite food is a

hamburger, it typically is not eaten every single day. Thus, the

underlying mechanisms that lead to dynamically changing

preference-based choice behavior remains unclear, especially with

qualitatively different rewards in stable environments, in which an

agent ‘knows’ the reward contingencies and thus does not require

further learning.

Therefore, the second objective of the current study was to help

specify the mechanisms underlying seemingly unpredictable

preference-based choices with (a) multiple qualitatively different

options; and (b) repeated choices over an extended period in a

stable environment that reflects real-world choice behavior. Here

we extracted two distinctive features from an individual’s dynamic

choice sequence: (1) preference bias (i.e., the skew of the choice

distribution based on the individual’s rank order of choice options),

and (2) choice persistence (i.e., the degree to which choices are

repeated), which capture distinct underlying control processes that

determine what to choose and whether to continue choosing it,

respectively.

We found individual differences in preferences that nonetheless

could be characterized by choice option rank, reflecting a value-

based process, as well as some persistent choice behavior, in which

choices tended to be repeated, with an increasing likelihood of

repeating a choice as a run of identical choices increased, reflecting

a preferential-attachment process. We then developed a dual-

control model incorporating a combination of goal-directed and

habitual control to describe the dynamical patterns of the choice

sequences.

Results

Static description of choice behavior
We investigated the continuous choice behavior of 12 rats over

the course of two weeks using a four-armed bandit task with four

differently flavored pellets: chocolate, banana, coffee, and cinna-

mon. Each rat lived in an operant chamber for the entire two-

week duration as a ‘‘closed economy’’ [49] with continuous access

to water and the food pellets in the environment. Each trial was

initiated by nose-poking in a lighted opening, after which four

levers would extend from the opposite wall of the chamber (Figure

S1). The rat then obtained one of the flavored pellets by pressing

the corresponding lever.

To examine when and what the animals chose, timing and

choice sequences of lever-pressing activity for all rats were

recorded for the entire experiment. With respect to when they

chose, the animals actively foraged during the dark cycle and

sporadically so during the light cycle as shown in Figure 1A. With

respect to what they chose, we found dynamic changes in the

animals’ food choices, indicating that the rats did not commit

themselves to a specific option but rather intermittently explored

alternatives.

To assess the degree of the animals’ exploration or exploitation,

we first computed entropy of choice sequences every hundred

trials [50], which is a measure of the uncertainty in choices, with

zero being deterministic and solely exploitative and high entropy

indicating a high degree of exploration (Figure 1B). We found that

the entropy of choice sequences fluctuated to some degree

throughout the experimental period. Although entropy changes

varied slightly across subjects, overall, there was no significant

tendency of entropy to decrease at the group level, indicating that

the animals maintained some level of exploring alternatives

throughout the experiment rather than converging toward a

Author Summary

To understand spontaneous animal behavior, two key
elements must be explained: when an action is made and
what is chosen. Here, we conducted a foraging experiment
in which rats chose among four different foods over a
continuous two-week time period. With respect to when,
we found bursts of rapidly occurring responses separated
by long inactive periods. With respect to what, we found
biased choice behavior toward the favorite items as well as
repetitive behavior, reflecting goal-directed and habitual
responding, respectively. We account for the when and
what components with two distinct computational mech-
anisms, each composed of two processes: (a) active and
inactive states for the temporal dynamics, and (b) goal-
directed and habitual control for the sequential dynamics.
This study provides behavioral and computational insights
into the dynamical properties of decision-making that
determine both when an animal will act and what the
animal will choose. Our findings provide an integrated
framework for describing the temporal and sequential
structure of everyday choices among, for example, food,
music, books, brands, web-browsing and social interaction.
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particular option. Next, we compared the entropy of empirical

choice sequences with randomly shuffled ones, which removes any

dependency on past choices, to determine whether the degree of

exploration or exploitation depended on previous choice history

(Figure 1B). We found that the levels of entropy in the empirical

choice sequences were significantly lower than in randomly

shuffled ones for all subjects (paired t-test, p,0.001). Thus, this

result shows that previous choices influenced the current choice,

consistent with other reports [40,42,51–54].

We next examined the amount of consumed pellets with respect

to flavor, location, and rank. Rank was defined as the order of

overall consumption of each food type for an individual, which

would reflect the order of an individual’s subjective values for the

qualitatively different rewards. The percentages of mean choice for

the four different locations – left (LL), middle left (ML), middle

right (MR) and right (RR) – were not significantly different (one-

way ANOVA, F(3, 44) = 0.781, p = 0.511) (Figure 1C), reflecting

the counterbalancing of flavor and position across subjects, and

demonstrating that there was no preferred location overall. In

addition, to test whether there were differences in effort to reach

each lever location from the initial nose poke position, we

compared the response latencies between nose-poke and lever

pressing for each location. The response latency medians across

locations were not significantly different (one-way ANOVA, F(3,

44) = 0.009, p = 0.998), suggesting that the animals’ response vigor

for each location was similar [55].

The consumption rates for each flavor were significantly

different (one-way ANOVA, F(3, 44) = 5.043, p,0.01): the

chocolate flavor was statistically more consumed than the coffee

flavor at the group level (Dunnett-T3 post hoc test, p = 0.021)

(Figure 1D), although this was not the case for all subjects (e.g.,

Figure 1A); nonetheless, all rats showed distinct individual

preferences among the different flavors.

Since the rats exhibited individual differences in preference, and

since quality has no obvious natural corresponding number to

represent its value (especially when quality was essentially flavor),

we analyzed choice behavior based on rank, which should be

driven by an individual’s subjective values of the options, and

which provides a common scale to compare individuals. Com-

paring the percentages of mean choice for rank, there was a clear

difference between food pellets of different ranks as shown in

Figure 1E (one-way ANOVA, F(3, 44) = 74.897, p,0.001;

Dunnett-T3 post hoc test).

Interestingly, choice rate appeared to decrease by nearly half as

rank increased. To confirm this tendency, we transformed the

percentage of food choice by rank to a log-linear scale. We found

that the mean distribution of the choice percentage p as a function

of rank r was well described by the log-linear distribution

(Figure 1E), where the slope of p versus log(r) was 270.764.95

(mean 6 standard error of the mean [s.e.m.], adj. R2 = 0.994),

indicating that preference was highly skewed toward the higher

rank.

Figure 1. An example of the empirical choice patterns and the mean choice percentage of consumed pellets by food location,
flavor, and rank. (A) The foraging behavior of a representative rat for two days, day 5 and day 14, illustrating the choice dynamics. The ordinate
represents each food location/type and the abscissa represents the hour of the day. The light and dark cycles are denoted as yellow and black bars
above each day’s choice plot, with overall choice plotted per hour below the choice plot. The histogram to the right shows the total choices for the
entire experiment. For subject 2, the rank 1 flavor (red color) was chocolate, located at the far right [RR]; the rank 2 (orange color) was coffee, middle
left [ML]; the rank 3 (green color) was banana, middle right [MR]; finally, the rank 4 (blue color) was cinnamon, at the far left [LL]. (B) Entropy changes
of representative data over trials. Black and red solid lines represent the entropy changes of the empirical and randomly shuffled data, respectively.
(C) Mean choice percentage for specific food locations (LL, ML, MR, and RR) across subjects. (D) Mean choice percentage by flavor across subjects. (E)
The mean choice percentage across subjects for each rank is shown in a log-linear scale. Choice percentage linearly decreases as a function of
log(rank order). The dotted line is the log-linear fit (the slope = 270.764.95 [mean 6 s.e.m], adj. R2 = 0.994). For all figures, error bars are standard
errors of the mean (s.e.m). In C, D and E, a Dunnett-T3 post hoc test was conducted: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pcbi.1003759.g001
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Temporal features of choice behavior
Examining the timing characteristics of the choice behavior in

more detail, we found periodic changes in food consumption. First,

the animals consumed more pellets during the dark than the light

cycle (Figure 2A). To investigate the relationship between the

foraging pattern and the daily light-dark cycle (i.e., a potential

circadian rhythm effect), we measured the periodicity of the

foraging pattern by calculating the time interval between peaks in

the average autocorrelogram. The rats’ foraging pattern period

was approximately 24 hours, consistent with their circadian

rhythm (Figure 2B), indicating that it was one of the key factors

that determined foraging timing in general. The remaining issue

was how the specific timing of foraging was determined at a short

timescale.

We characterized the underlying action dynamics by analyzing

the features of the inter-choice interval (ICI) distribution. We

found that the majority of ICIs were short, but very long ICIs also

sporadically occurred, indicating that there were bursts of activity

separated by relatively long inactive periods (Figure 2C). To

measure this burstiness in the timing of foraging behavior, we used

a burstiness index B, defined as B~
st{mt

stzmt
, where mt and st are

the mean and the standard deviation of the ICI distribution,

respectively [31]. B ranges between 21 and 1: B = 1 is the most

bursty signal, B = 0 is neutral, and B = 21 is a completely periodic

signal. We found that B of the foraging behavior was 0.79460.008

(mean 6 s.e.m), indicating that the majority of activity was densely

concentrated in short durations.

Next, to characterize a memory effect, we calculated the

correlation coefficient of consecutive inter-choice intervals, which

is defined as M~
1

nt{1

Xnt{1

i~1

(ti{m1)(tiz1{m2)

s1s2

, where nt is the

number of ICIs measured from the timestamps, and m1 (m2) and

s1 s2ð Þ are the mean and standard deviations of the ICIs ti’s (tiz1’s),

respectively [31]. M ranges between 21 and 1: M is positive when

the length of the current ICI is positively proportional to the length

of the previous ICI; whereas, M is negative when the length of the

current ICI is inversely proportional to the length of the previous

ICI; M = 0 is neutral; and M = 21 is a completely periodic signal.

We found that M of the foraging behavior was 0.04660.006 (mean

6 s.e.m), indicating that the foraging activity had a relatively low

correlation between consecutive ICIs.

The bursty nature of the foraging behavior was reflected in the

heavy-tailed ICI distributions. The cumulative distribution of ICIs,

which is the probability of ICIs longer than a given ICI (i.e., the

survival function), exhibited a heavy tail that was clearly seen in a

log-log scale, representing a deviation from an exponential

distribution resulting from a simple homogeneous Poisson process

(Figure 2D). This indicates that the time interval between

spontaneous behaviors is not simply governed by a random

process, but is modulated in a more sophisticated way by other

Figure 2. Temporal features of the foraging behavior. (A) The variation of intake percentage during a day averaged over all rats. (B) The
autocorrelogram of the time series of foraging behavior over all rats. The period of the foraging behavior is measured by extracting the pitch of the
average autocorrelogram. The time interval between peaks is 24 hours, which is consistent with the animals’ circadian rhythm. (C) The inter-choice
interval (ICI) sequence for an example rat (subject 4). Short ICIs are abundant while long ICIs are intermittently observed. (D–F) display example
results for the same rat. (D) The cumulative distribution of ICIs longer than a given ICI is heavy-tailed in a log-log scale. The distribution of the
empirical data (black solid line) is compared to what would be predicted from a homogeneous Poisson process (HPP) (green solid line). The red and
blue solid lines denote the cumulative ICI distribution for the light and dark cycles, respectively. (E) The probability density function of the bimodal ICI
distribution. The power-law fitted to the probability density function for short ICIs is shown in a log-log scale (the red line in the inset) (F) Separate
cumulative ICI distributions for short and longer ICIs in the light (red) and dark (blue) cycles. Squares and triangles denote short and longer ICIs,
respectively. For short ICIs, the magenta and cyan lines represent synthetic power-law distributions with the upper bound t0 fitted to the empirical
data for the light and dark cycles, respectively. For longer ICIs, the magenta and cyan lines represent synthetic Weibull distributions fitted to the
empirical data for the light and dark cycles, respectively. (D–F) The black dotted line represents the time constant t0 , which separates events into
independent bursts. All the exponents were obtained by maximum likelihood estimation (MLE).
doi:10.1371/journal.pcbi.1003759.g002
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processes at a longer timescale. In addition, heavy tails were also

observed in the distributions of ICIs in both the light and dark

cycles (Figure 2D).

Interestingly, the empirical ICI distribution exhibited bimodal-

ity (Figure 2E). For short ICIs, the probability density function of

the ICIs was highly left-skewed; whereas for longer ICIs, the

probability density function did not appear to reflect the same left-

skewed characteristic. The highly left-skewed component of the

distribution for short ICIs was well fit by the power-law

(p = 0.6860.09 for the fit to the power-law distribution—i.e., the

empirical and power-law distributions were not significantly

different; see ‘‘Estimation of parameters in the inter-choice

interval (ICI) distribution’’ in Material and Methods) (Figure 2E

inset). The second component of the distribution for longer ICIs

appeared to follow the Weibull distribution, exhibiting a stretched

exponential decay; however, with combined light and dark cycles,

the empirical and Weibull distributions were significantly different.

When we decomposed the overall ICI distribution into the

component light and dark cycles, however, the distributions of the

short ICIs for both cycles followed the power-law distribution, and

the distributions of the longer ICIs for both cycles followed the

Weibull distribution (Table 1 and Figure 2F).

Thus, the cumulative bimodal ICI distributions for both the

light and dark cycles could be described as the following:

S(t)~f
t{(1zm),

e
{ t

l

� �
c
,

tminvtvt0

t§t0

where tmin is the lowest time boundary, t0 is a time constant used

to separate activities into independent bursts, m is the power-law

exponent, l is a scale parameter, and c is the shape parameter of

the distribution. We calculated the value of t0 as the local

minimum of the bimodal distribution of ICIs, which separated the

short and longer ICIs in the distributions. The estimated

parameters of the bimodal ICI distributions are shown in Table 1

(see ‘‘Estimation of parameters in the inter-choice interval (ICI)

distribution’’ in Material and Methods for details). This bimodality

in the ICI distributions suggests (a) different underlying processes

at different timescales of ICIs, and (b) similar underlying processes

in both the light and dark cycles leading to the power-law and

Weibull distributions. We take up these implications in the

discussion.

When comparing the fitted parameters in the light and dark

cycles, we found that the distributions for longer ICIs between the

light and dark cycles exhibited different exponential decays

reflected in the scale parameter l (light: [1.2060.15] 6104, dark:

[2.7460.2] 6103, Sign test, p,0.001), whereas the power-law

distributions for the short ICIs in both cycles appeared to have

similar slopes (light: 2.2160.07, dark: 2.0760.05, Sign test,

p = 0.146) (Table 1 and Figure 2F). This finding comparing the

light and dark cycles implies that the underlying mechanism

governing longer ICIs was influenced by the circadian rhythm;

whereas, the mechanism governing short ICIs may have been

more weakly influenced by the circadian rhythm.

Sequential features of choice behavior
We next analyzed the choice patterns to examine the sequential

dynamics governing what is chosen over trials. First, we

determined how long the rats continued to make the same choice.

We defined a ‘‘run’’ as a series of consecutive identical choices. A

trial-dependent change in a distribution of runs was then

calculated, as shown in Figure 3A. The cumulative distribution

of runs, defined as the probability of runs longer than a given

length of run (i.e., the survival function), revealed a heavy tail in a

log-log scale (Figure 3B), indicating that the choice pattern

consisted of a large number of short runs and a few extremely

long runs.

To test for a sequential dependency of previous choices, we

compared the run distributions of the empirical sequences with

those of randomly shuffled sequences of the same data for each rat.

The randomly shuffled sequence has no dependency on previous

choices yet maintains the same choice frequency as the empirical

data. The cumulative run distribution of the empirical data was

significantly different from that of the randomly shuffled choice

sequences for all subjects (Monte Carlo hypothesis testing, p,

0.001) [6]. This result indicates that the choice sequences were

highly influenced by the choice histories [40,42,52,54].

In addition, we examined whether there was an effect of choice

history regardless of rank by comparing the run distribution of

empirical data for each rank with that of randomly shuffled data

(Figure 3C). Although the lower ranking flavors had fewer long

runs than the higher ranking ones, the run distribution of the

empirical data for all ranks was significantly different from those of

the randomly shuffled choice sequences for all subjects, with the

exception of the fourth rank for two of the twelve subjects (Monte

Carlo hypothesis testing, p,0.001) [6]. The shared heavy-tailed

feature of the run distribution for every rank suggests that the

underlying processes determining whether a run would continue

were relatively insensitive to reward outcome.

Conducting a simple calculation with the cumulative distribu-

tion of runs, we obtained the hazard rate for ending a run as a

function of the number of preceding choices in a run for each

rank, i.e., the conditional probability of ending a run at a given

Table 1. Parameter estimates of the bimodal ICI distributions.

Overall Light Dark

tmin 39.9262.41 40.3262.45 39.9262.41

t0 540.47655.60 540.47655.60 540.47655.60

m 2.0960.05 2.2160.07 2.0760.05

p-value (power-law) 0.6860.09 0.5060.09 0.4560.07

l (4.1660.32) 6103 (1.2060.15) 6104 (2.7460.20) 6103

c 0.9160.02 1.1560.07 1.2360.06

p-value (Weibull) 0.0360.01 0.8560.05 0.1560.05

The estimated parameters of the bimodal ICI distributions from 12 subjects. Values are given as mean (s.e.m). Overall: Overall ICI distribution; Light: ICI distribution in the
light cycle; Dark: ICI distribution in the dark cycle. See text for parameter definitions.
doi:10.1371/journal.pcbi.1003759.t001
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length of a run (Figure 3D). We found that the hazard rate for

ending a run decreased logarithmically and converged relatively

quickly to approximately zero in all ranks. This indicates that a

run was more likely to be terminated when the length of the

preceding choices in a run was short; and the run was more likely

to continue when the length of the preceding choices in a run was

increased. In addition, the hazard rate converging to zero resulted

in extremely long runs regardless of rank; indeed, there was no

significant difference in the decreasing rate of the hazard rate

between ranks (one-way ANOVA, F(3, 44) = 0.666, p = 0.577).

Thus, in general, the rats were more likely to choose what they had

chosen previously, irrespective of outcome, reflecting a status quo

bias or preferential-attachment process that tends to continue a run

until switching one’s choice finally becomes more compelling.

Models

We next propose two models that capture the temporal and

sequential dynamics of free choice behavior. First, we account for

the temporal features of the decision patterns by proposing a dual-

state model that captures both the bursty property and the

circadian rhythm influence on the rats’ choice behavior, leading to

a heavy-tailed distribution of the ICIs with bimodality. Second, we

account for the sequential features of the decision patterns by

proposing a dual-control model that incorporates the combination

of two distinct control processes: goal-directed and habit control,

which characterize the bias in choice frequency with respect to

rank order and the heavy-tailed nature in the run distribution,

respectively.

Temporal dynamics model
A bimodal distribution has been suggested as a mixture of

distinct distributions formed by different underlying processes

[14,25,38]. We found that the empirical ICI distribution

underlying the foraging behavior under free conditions exhibited

bimodality with the power-law and Weibull distributions for short

ICIs and longer ICIs, respectively. To characterize the bimodal

temporal dynamics, we propose a dual-state model that can

provide an integrative account of both the bursty and periodic

features of the foraging behavior. The model consists of an active

state and an inactive state, which executes correlated actions in

bursts in the active state, and elicits intermittent uncorrelated

actions in the inactive state (Figure 4A).

We consider an animal to be in an active state when the animal

exhibits a high frequency of activity, with short ICIs that are less

than a certain time period t0, and we assume that the events

within the active state are correlated due to the influence of the

Figure 3. Sequential features of the empirical choice patterns. (A) A trial-dependent change of run lengths for one example rat is shown both
for all runs together and separated by rank. Short runs are frequent while a few long runs are intermittently observed. (B) Cumulative distribution of
runs longer than a given length of run in a log-log scale for one example rat (subject 5). The cumulative run distribution of the empirical data
compared to randomly shuffled data with no trial-by-trial dependencies. (C) Cumulative run distribution of each rank for the same rat (subject 5). (D)
The hazard rate for ending a run with respect to the number of preceding choices in a run averaged over all rats.
doi:10.1371/journal.pcbi.1003759.g003
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motivational drive [2]. In our case, the motivational drive for

feeding is to appease hunger (i.e., reach satiation). A known

physiological mechanism underlying short-term regulation of

feeding (within a meal) is that feeding is governed by a feedback

mechanism from the delayed gastrointestinal aftereffects of eating

[36]; the digestion of food inhibits eating, but the inhibitory effect

is delayed. Here, we focus on the delay between the swallowing of

food and the digestion of food, resulting in the delayed satiety

signal as feedback. And this characteristic of feeding leads us to

propose a satiation-attainment process, i.e., an active waiting

process based on feedback for upcoming satiation within each

active state. In this process for the active state, we assume that

whenever animals eat, they wait for the feedback signal by which

they determine whether to eat more or stop. In other words,

animals initiate eating and wait until they receive the satiety signal,

which informs them that satiation is attained. If the satiety signal is

lower than the satiation threshold, they would continue to eat and

wait for the next feedback signal. Thus, the waiting time between

eating and the feedback signal is important to determine time

intervals between actions in an active state. Instead of a constant

time delay of feedback, we assume that there is a non-linear

relationship in the waiting time between eating and the feedback

signal. A number of studies on human dynamics have suggested

that the waiting time based on feedback in human communication

patterns follows a power-law distribution [1,7,8,14]. Considering a

similarity in the waiting process for feedback between feeding and

human communication, we assume that the waiting time between

eating and the feedback signal follows a power-law distribution; in

active states, the probability density function of the time interval

between choices is P(t)*t{m for tvt0 where 1,m,3.

In addition, an animal is considered to be in an inactive state

when there is a period of inactivity longer than t0; and thus the

inactive state is defined as the time between the last event in a

given active state and the first event in the next active state, which

by definition, is longer than t0. We model timing in the inactive

period with a non-homogeneous Poisson process with the

inactivity rate r(t), i.e., the reciprocal of the mean inactive

duration as a function of time. To capture the strong influence of

the circadian rhythm on the longer ICIs, two temporal properties

of the inactivity rate are further specified. First, the inactivity rate

r(t) depends on time in a periodic manner, as expressed by the

equation r(t)~r(tzT), where T is the period of the process.

Since the animals’ periodic activity is modulated by a circadian

rhythm, we set the period T as 1 day. Second, the inactivity rate

r tð Þ is proportional to the daily distribution of choice behavior in

the inactive state, pd (t) : r(t)~(rpTpd (t))b, where rp is the

average rate in the inactive period, pd (t) is the probability of

beginning an active state during a particular hour of the day

pd (t) [6], and b is the shape parameter. To quantify the

transition between active and inactive states, we assume that a

state transits from the active state to the inactive state with a

probability j after each choice and remains in the active state

with probability 1 – j.

Sequential dynamics model
With the computational processes that determine when choices

are made specified, we next delineate those that determine what
choices are made. Here, we propose a simple heuristic model that

accounts for two key sequential features of decision-making: (1) the

heavy-tailed nature of the run distribution, reflecting choice

persistence as habitual behavior, and (2) the biased rank

distribution, reflecting goal-directed outcome valuation.

First, to account for persistence in choice behavior, we

assume an underlying preferential-attachment process, which

has been proposed as the mechanism underlying heavy-tailed

distributions [42,56,57]. In this process, the probability of

continuing a run increases as a run proceeds (thus, it also has

been called the ‘‘rich get richer’’ process). We suggest that the

same mechanism underlies choice behavior, in which the

probability of choosing a particular option is proportional to

the number of times the option was chosen previously. The

process may underlie response persistence found in choice

behavior in humans and nonhuman primates [40,42,58,59]. In

addition, the preferential-attachment process occurs regardless

of outcome type, reflecting its property of insensitivity to

outcome, which is a defining feature of habitual behavior

(Figure 3D). Thus, this process may underlie the acquisition and

maintenance of habits. We therefore more generally call this

mechanism, habitual control.
In the habit system, in addition to the preferential-attachment

process, we apply a leaky integrator to the dynamic trial-by-trial

model of habitual behavior, in which the integrated choice

frequency over previous trials is discounted as a function of the

distance passed from a given trial [52,57,60,61]. Thus, this

integrator includes the effect of past choices [42]. Because the

preferential-attachment process is insensitive to outcome, we

assume that the discount rate is identical for all options regardless

of rank. In habitual control, the action value of a particular option

i at trial t, QH (i,t), is determined by the local choice history of that

option with leakage:

QH (i,t)~
Xt{1

k~1

a(k):xi(t{k)z(1{a(1)):xi(t)

Figure 4. Comparison of the simulation of the dual-state model with the empirical data. (A) Schematic diagram for the dual-state model.
(B–C) Cumulative ICI distributions of the empirical data (black squares) from two example rats and the simulated data from the dual-state model (red
circles) in a log-log scale. (D) Autocorrelograms of the empirical and the simulated data averaged across rats. The black and red lines denote the
empirical and the simulated data, respectively. The time interval between peaks of the simulated data is 24 hours, which is consistent with that of
empirical data.
doi:10.1371/journal.pcbi.1003759.g004
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where a(k) is a weighting coefficient for choices occurring k trials

ago with an exponential decreasing profile, equal to e{k=v, where

v is a free parameter for the decay constant, and xi(t) is a binary

vector denoting a chosen option i on trial t. The choice vector xi(t)
is 1 if option i was chosen on trial t and 0 if the option was not

chosen on that trial.

Second, for goal-directed control, we use a temporal difference

(TD) reinforcement learning algorithm that updates the action-

value on each trial according to its prediction error [62–66]. The

TD learning algorithm provides a theoretical framework for

instrumental reward learning in which actions must be chosen to

optimize long-term rewards [63,67]. In addition, we incorporate a

decay factor, which updates the chosen option and decays

unchosen options [66,68,69]. Thus, at each trial t, the action

value for the chosen option c and for the unchosen option u are

updated according to:

QG(c,tz1)~QG(c,t)zac
:dc(t)

QG(u,tz1)~QG(u,t)zau
:du(t)

where ac and au are learning rates and dc(t) and du(t) are the

reward prediction errors at given trial t for the chosen and

unchosen options, respectively. The reward prediction errors, i.e.,

the difference between the expected and received reward values,

for the chosen and unchosen options are as follows:

dc(t)~r(c){QG(c,t)

du(t)~0{QG(u,t)

where r(c) is the reward value for the chosen option. We

deductively estimated the reward value based on the mean choice

rate across days, R: r~R1=s where s is a parameter of sensitivity of

behavior to differences in reward values among alternatives [70].

We refer to this outcome-driven process as ‘‘goal-directed.’’ The

goal-directed process plays an important role in determining the

initial choice for a new run on the basis of value, which in turn

generates a certain degree of bias toward a more valued option.

Finally, for action selection, to capture the effects of both the

habit and goal-directed systems on choice behavior, the goal-

directed value QG and habit value QH are derived in parallel [71].

We then assume that the probability to choose an option i at trial t,
Pi(t), is determined according to a softmax choice function [63]:

Pi(t)~
exp (bGQG(i,t)zbHQH (i,t))

X4

i~1
exp (bGQG(i,t)zbH QH (i,t))

where the softmax inverse temperature parameters bG and bH

represent the degree to which a choice is focused on the highest-

valued option in goal-directed value QG and habit value QH ,

respectively. Note that, together, the combination of goal-directed

and habit systems create two key features of sequential dynamics: a

bias among choice options and a bursting property in which very

long runs are interspersed among a majority of short runs.

Modeling results
Temporal features of the model. We conducted simula-

tions based on the dual-state model to examine how well the

model captured the temporal dynamics of foraging behavior

(Figure 4A). We set a time constant t0 as a free parameter, which

separates the choice sequences into independent bursts, and we

identified the active and inactive states based on the constant. We

then estimated the average rate in the inactive period rp, the

transition probability from the active and passive states j, and the

probability of the active state occurring at a particular time of day

pd (t) from the empirical dataset (see ‘‘Estimation of parameters in

the inter-choice interval (ICI) distribution’’ in Material and

Methods for details) (Table 2). Using these parameters and free

parameters for the power-law exponent m, the lowest time

boundary tmin, and the shape parameters for light and dark

cycles, blight and bdark, we generated simulated foraging time series

for each rat (Table 2).

First, we compared the cumulative ICI distributions of the

empirical data with those of simulated data. The cumulative ICI

distributions of empirical and simulated data were similar to each

other, with the simulated data exhibiting a heavy tail with

bimodality in agreement with that of the empirical data

(Figure 4B–C). Next, we compared the periodicity of the simulated

and empirical data. The simulations exhibited the 24-hour period

consistent with a circadian rhythm in the empirical data

(Figure 4D).

Sequential features of the model. To determine whether

the dual-control choice model could capture the two key

sequential features in the choice patterns – a biased rank

distribution and a heavy-tailed run distribution – we simulated

choice sequences for individual rats with the best-estimated free

parameters and then compared the fits of the models to the

empirical data. We estimated the free parameters of the model for

each rat by minimizing the negative log-likelihood of the

individual choice sequences (Table 3) [72].

We found that the predictions of the dual-control model

significantly deviated from that of a random choice model for all

subjects, indicating that the model fit to the empirical data was

significantly better than chance (the pseudo- r2 results in the far

right column of Table 4). The nested models of the dual-control

model (goal-directed and habitual control alone) and their variants

also showed a significant deviation from the random choice model

(Table 4), indicating that each component of the dual-control

model alone also fit the data significantly better than chance.

Figures 5A and B show two examples of the close agreement

between the cumulative run distributions of the empirical data and

the simulated data generated by the dual-control model. The

simulations of the dual-control model exhibited a similar degree of

bias in the rank distribution as seen in the empirical data (see

Table 2. Parameter estimates of the dual-state temporal
model.

tmin 10.260.42

t0 532.0654.4

m 2.0160.01

blight 1.0160.005

bdark 1.0360.003

rp (2.4360.21) 61024

j (5.3460.87) 61022

The estimated parameters averaged over 12 subjects for the dual-state
temporal model. Values are given as mean (s.e.m). See text for parameter
definitions. See text for parameter definitions.
doi:10.1371/journal.pcbi.1003759.t002
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‘‘Choice model comparison’’ in Text S1 for details). In addition,

the cumulative choice frequency graph of both the empirical and

the simulated data evolved similarly across trials (Figures 5C and

D), indicating that the model captured the dynamic changes in

choice behavior.

Finally, to test whether the dual-control model provided a

better fit to the empirical choice behavior than its nested models,

we conducted comparisons among models: (1) The goal-directed

control model alone with update for the chosen option and decay

for the unchosen options (Goalc+u); (2) the goal-directed control

model alone with update for the chosen option only, i.e.,

standard TD learning for the chosen option (Goalc); (3) the

habitual control model alone (Habit); (4) the submodel of dual-

control (Goalc+Habit) composed of the mixture of Goalc (with

update for the chosen option only) and Habit; and (5) The dual-

control model (Dual) composed of the mixture of Goalc+u (with

update for the chosen option and decay for the unchosen

options)and Habit (see ‘‘Choice model comparison’’ in Text S1

for details). The dual-control model was superior to the Goalc+u

model in 10 out of 12 subjects and to the other submodels in all

subjects according to the Bayesian information criterion

(Table 4) [73].

Discussion

In this study, we examined how dynamic foraging behavior can

arise even in a stable, certain, and over-trained environment.

Specifically, we uncovered underlying structures of the when and

what components of foraging behavior and accounted for these

components with distinct computational mechanisms.

Temporal features of choice dynamics
Regarding when choices were made, we found bursts of rapidly

occurring actions separated by time-varying inactive periods,

partially based on a circadian rhythm. These characteristics of

foraging behavior were reflected in a bimodal inter-choice interval

(ICI) distribution comprised of a power-law for the short timescale

(i.e., short ICIs) and the Weibull distribution for the longer

timescale (i.e., longer ICIs). Although the specific mechanisms of

the bimodal inter-event times could vary across different systems

[9,10,14,24,25,74,75], a common dynamical feature of the

underlying mechanisms appears to be the combination of distinct

processes at different timescales [14,25,37]. To capture the

temporal dynamics underlying foraging behavior, we propose a

dual-state model consisting of active and inactive states for short

and longer timescales based on a satiation-attainment process for

bursty activity in the active states, and a non-homogeneous

Poisson process for longer inactivity between bursts in the inactive

states.

For the short timescale, we found an inverse square power-law

distribution for short ICIs with exponent m&2. Interestingly, a

recent study in human short message correspondence, which

requires feedback between individuals, suggests that the waiting

time of the bursty communication follows the power-law

distribution with exponent m&2. Analogously, a satiation-attain-

ment process could govern the timing of feeding activity by waiting

for satiation feedback. In fact, it is well known that short-term

feeding is regulated by feedback from the delayed gastrointestinal

aftereffects of eating and satiety signals: based on this feedback,

meal termination is determined [36,76].

For the longer timescale, we found that longer ICIs follow the

Weibull distribution in both the light and dark cycles. At the same

time, the cumulative distributions of the longer ICIs in the light

and dark cycles exhibited different decay rates. One possible

account for this difference between the light and dark cycles is the

effects of the circadian rhythm on the motivation for general

activity [77], as well as on specific activities such as sleep and

feeding. A previous study on sleep-wake transitions suggested that

long and periodic awake episodes in the sleep period are governed

by the homeostatic sleep drive [78]. Thus, the long inactivity

Table 3. Parameter estimates of the dual-control choice model.

s ac au bG bH v

8.0861.14 0.2760.03 0.1660.04 3.5760.16 1.3460.18 73.4622.9

The estimated parameters from 12 subjects for the dual-control choice model. Values are given as mean (s.e.m). See text for parameter definitions.
doi:10.1371/journal.pcbi.1003759.t003

Table 4. Comparisons among choice models.

-LL LRT Number favoring Dual BIC p- r2

Dual (Goalc+u+Habit) 37016397 - - 74546794 0.5160.05

Goalc+u 37166396 x2
2 = 30.5 10/12 74676792 0.5160.05

p,2.40e-7

Goalc 59526316 x2
3 = 4501.7 12/12 119306632 0.2360.03

p = 0

Habit 40026423 x2
4 = 601.7 12/12 80216847 0.4760.05

p = 0

Goalc+Habit 38586403 x2
1 = 312.8 12/12 77586806 0.4960.05

p = 0

Qualities of behavioral fits of choice models. Values are given as mean (s.e.m). –LL, Negative log-likelihood; LRT, Likelihood ratio test statistic against the dual-control
choice model (Dual); BIC, Bayesian information criterion; p-r2, pseudo-r2 statistic.
doi:10.1371/journal.pcbi.1003759.t004
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patterns might result from sleep-wake patterns. However, in

contrast to the previous study, we found long inactivity patterns

not only in the light cycles (the sleep period in rats) but also in the

dark cycles. Thus, although it appears that sleep-wake patterns can

contribute to generating longer inactivity patterns in the sleep

period, it does not appear that the long inactivity patterns in the

current study can be explained entirely by the homeostatic sleep

drive.

The longer ICIs are likely influenced by the homeostatic

hunger drive. The Weibull distribution is commonly used to

describe the time to a first event [79], which in our case would be

the time to the next foraging bout, i.e., to the next burst.

Consistent with the use of the Weibull distribution, a threshold

mechanism can be implemented in controlling the timing

between independent bursts [36]. Physiological regulatory

mechanisms associated with satiety have been suggested to

control the time interval between bouts in a wide range of

animals: when the satiety signal reaches or rises above a certain

threshold, animals stop eating; whereas, when the satiety signal

falls below the threshold due to a long period of non-feeding,

they initiate eating again [35,36,38]. In fact, a simple ‘‘bang-

bang’’ control system has been proposed that describes such a

straightforward mechanism that uses the comparison of a satiety

signal to a threshold, with the first ‘bang’ occurring when below

threshold, and the other once threshold is reached. Moreover, a

change in the threshold level between night and day (and

potentially from hour-to-hour) provides a possible time-varying

mechanism for the time interval between meals [36].

Sequential features of choice dynamics
Regarding what was chosen, we examined sequential dynamics

underlying free choice patterns in a stable environment in which

an animal could obtain the food items with certainty. Despite the

certainty of reward delivery as well as a stable reward value, the

rats exhibited rich choice dynamics rather than a monotonous

pattern. In contrast to the popular notion that goal-directed

behavior gives way to automatic habitual behavior in a stable

environment [51], we found that the entropy of the choice patterns

remained relatively stable over the course of the experiment,

suggesting that the animals maintained a balance between

exploration and exploitation. This sustained balance suggests that

the goal-directed process is indeed maintained, in order to

maximize rewards even in stable, deterministic environments

[80–82]. Instead of persisting with a particular option as a habit,

maintaining the balance allows animals to monitor the environ-

ment for potential changes and to adapt more flexibly if and when

changes occur. Such rich choice dynamics reveal that internal

factors such as the value of available options and the previous

choice history [42,55,83–85] play a critical role in generating

choices.

To extend beyond quantity-based decision-making, in this study

we focused on the dynamics underlying choices based on

individual preference with respect to qualitatively different rewards

with different flavors. Because qualitatively different rewards have

no obvious corresponding numerical value, we used rank as a

means to measure their relative subjective value based on

individual preference. Indeed, we found a highly biased rank

Figure 5. Comparison of a choice sequence generated from the dual-control model with the empirical data from two representative
rats. (A–B) Cumulative run distributions of the empirical data for the two representative rats and the simulated data in a log-log scale. The black
squares denote the empirical data and the blue circles the simulated data. (C–D) Cumulative choice frequency graphs for each rank for both the
empirical data (solid lines) and simulation (dashed lines). Red, orange, green, and blue represent the rank order from rank 1 to rank 4, respectively.
doi:10.1371/journal.pcbi.1003759.g005
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distribution toward an individual’s favorite option. This rank

distribution reflects one of goal-directed behavior’s key properties,

that action selection is guided by the value of outcomes to the

individual [44,45,86,87].

In our dual-control model, the subjective value of qualitatively

different rewards was deductively estimated from each individual’s

choice behavior on the basis of the generalized matching law in

which the choice rate matches the relative value of the options

modulated by a sensitivity parameter [43,52,57,70,81]. When we

tested the model with the empirical data, the reward value

estimation resulted in small differences between the options. At the

same time, the goal-directed control process successfully captured

the highly biased rank distributions. This suggests that quality-

based choice behavior can be modeled by a value-based process,

and that a small difference in subjective values for quality can

nonetheless generate large differences in choice behavior by an

internal amplifying control process.

To capture both the value-based and internal amplifying control

processes, we modified the standard TD algorithm [63] to update

the action value for the chosen option according to the outcome,

and at the same time, to apply a decay to the unchosen options

[66,68,69,88–90]. Thus, internal value representations for all

available options are updated in this model. This process provided

a superior fit to the empirical data. The addition of value updating

of all options to the standard TD algorithm results in the action

value of the chosen option increasing over trials and that of the

unchosen options decreasing. The decay of action values for the

unchosen options in turn results in a larger reward prediction error

when the unchosen option is later chosen. Thus, the decay effect

can lead to dynamic changes in choices due to variation in reward

prediction errors over trials even in a stable environment.

For habitual control, the dynamic choice patterns revealed two

key characteristics of habitual behavior: repeated responses and

insensitivity to outcome [44–46]. We found that the rats

intermittently generated very long runs throughout the experi-

ment, resulting in a heavy tail in the run distribution. Further-

more, the run distributions for all ranks exhibited this heavy-tailed

property, indicating a general persistence or ‘stickiness’ to past

choices regardless of outcome. This insensitivity is consistent with

a recent study on monkeys showing heavy-tailed run distributions

regardless of reward types (water and apple juice) [58], as well as

other studies showing that trial-by-trial choice dynamics are

strongly influenced by past choices [40,42,54,57]. While a large

number of studies that model goal-directed and habitual processes

have recognized this effect of previous choices on current ones

[40,54,59,91–94], the detailed process underlying choice persis-

tence has not been fully described. We have built upon this work

by delineating the mechanism more explicitly.

Conclusions
Our empirical study shows that even in stable environments

animals can exhibit rich temporal and sequential behavioral

dynamics. In addition, our modeling work demonstrates how the

interaction of different underlying processes can give rise to

dynamic activity patterns. A dual-state model suggests that

dynamic transitions between active and inactive states produce

bursty and circadian rhythmic properties of temporal dynamics. A

dual-control model suggests that goal-directed and habitual

control processes cooperate, rather than compete, to generate

sequential dynamics of choices that lead to a better option and

increase the reliability of a performed action. Considering the

ubiquity of decision-making in the lives of animals and in our

everyday lives, temporal and sequential dynamics of spontaneous

choice behavior raise the intriguing possibility that such dynamics

derive from a harmonious collaboration of multiple underlying

neural control systems – a collaboration that, when discordant,

may lead to aberrant decisions such as binge eating or other forms

of addictive behavior.

Materials and Methods

Ethics statement
All procedures of animal care and experiment were performed

according the KAIST guidelines for the care and use of laboratory

animals and approved by the KAIST Institutional Animal Care

and Use Committee.

Subjects
Twelve eight-week-old naı̈ve male Sprague Dawley rats

weighing 250–350 g were used in the study. The rats had all

experienced a standard laboratory diet, and none had experience

with the flavors used in the experiment.

Behavioral testing
Each rat was individually housed in an operant chamber (see

Text S1 for details and Figure S1) and maintained on a 12-h light/

dark cycle for two weeks. The animals had ad libitum access to

water. Food was available according to the experimental task

described below. The four types of flavored 45 mg pellets—

chocolate, banana, coffee, and cinnamon—were made from the

same meal substrate (Bio-Serv, Frenchtown, NJ, USA) and were

consequently matched with regards to all macro- and micro-

nutrients. The locations of the flavored pellets were counterbal-

anced across subjects.

Experimental task
Trials were signaled by the illumination of the nose-poke light

(Med Associates, St Albans, VT) inside the box. When the light

was on, a nose-poke into the lighted opening resulted in the nose-

poke light turning off and four retractable levers (Med Associates,

St Albans, VT) extending on the opposite wall. A press of one of

the four levers initiated (a) the delivery of a food pellet according to

the flavor assigned to that lever as well as (b) the retraction of all

levers. After a pellet was delivered, the nose-poke light was turned

on again for the next trial. During the experiment, the

spontaneous choices and corresponding response times were

recorded (see Text S1 for details). All experimental events were

coordinated using MED-PC software (Med Associates, St Albans,

VT).

Estimation of parameters in the inter-choice interval (ICI)
distribution

We estimated the value of t0 as the crossover point from the

power-law to Weibull distribution, which would be represented as

the local minimum value between these two distributions. Thus we

calculated the value of t0 for individual rats as the local minimum

of the probability density function of ICIs in the range between 50

and 1000 seconds. For short ICIs, we estimated the power-law

exponent m based on maximum likelihood estimation and selected

the minimum time boundary tmin, which provides the minimum

value of the Kolmogorov-Smirnov goodness-of-fit statistic D [95].

For longer ICIs, the scale and shape parameters l and r for the

Weibull distribution were estimated by using a Matlab function,

wblfit.m, on the basis of maximum likelihood estimation.

The parameters of the dual-state model were estimated from the

empirical data for individual rats. We assumed that the ICIs in the

active states would be smaller than the periods of inactive states.
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For simulation, we set the time constant t0, the power-law

exponent m and the shape parameters for the light and dark cycles,

blight and bdark, as free parameters. Activities of empirical data

were grouped into an active state when their ICIs were less than

t0, and separated into independent active states if the ICI was

larger than t0; and thus the inactive state was defined as the time

between the last event in a given active state and the first event in

the next active state. Once the active and inactive states were

determined, we estimated the average rate of the inactive period

rp, i.e., the reciprocal of the mean inactive duration, the

probability of beginning an active state during a particular hour

of the day pd (t), and the transition rate j from the empirical data.

Using these parameters, we generated simulated time series with

the dual-state model. We estimated free parameters, t0, m, blight,

and bdark, for each rat by using a least-area estimation [6], which

provides the best-estimated parameters that minimize the area test

static between the cumulative ICI distributions of the empirical

and simulated data in a log-log scale.

Model comparisons
To compare the fit of the dual-choice model with that of its

nested models, i.e. the goal-directed or habit choice models alone,

we used likelihood ratio tests and the Bayesian information

criterion (BIC) [73] as follows:

BIC = 22NLL + kNln N

where LL is the log-likehood of the model, k is the number of

parameters of the model, and N is the number of trials. To

examine how much better the models fit to empirical data

compared to a random choice model, we calculated a pseudo-r2

statistic defined as (R-L)/R, where R is the log-likelihood of the

random choice model and L is that of our models [88]. A higher

value indicates a better model fit.

Supporting Information

Figure S1 Illustration of the experimental apparatus. The rat

was required to nose-poke and then press one of four levers to

receive the particular flavored food pellet in the corresponding

receptacle. Water was freely accessible and located above the nose-

poke hall.

(TIF)

Figure S2 Comparison of choice models for an example rat

(subject 7). (A) The cumulative run distributions of the empirical

data and the model predictions. (B) The cumulative choice

frequency of the empirical data for all four ranks (C–G) The

prediction of the dual-control model (Dual); the Goalc+u model;

the Goalc model; the Habit model; and the Goalc+Habit model for

all four ranks. (B–G) Red, orange, green, and blue represent the

rank order from rank 1 to rank 4, respectively.

(TIF)

Figure S3 Comparisons of the simulation of the dual-state

model with the empirical data. Cumulative ICI distributions of the

empirical data (black squares) and the simulated data (red circles)

are presented in a log-log scale for all 12 rats.

(TIF)

Figure S4 Comparisons of a choice sequence generated from

the dual-control model with the empirical data. Cumulative run

distributions of the empirical data and the simulated data are

displayed in a log-log scale for all 12 rats. The black squares

denote the empirical data and the blue circles the simulated data.

In addition, cumulative choice frequency graphs for each rank for

both the empirical data (solid lines) and simulation (dashed lines)

are displayed. Red, orange, green, and blue represent the rank

order from rank 1 to rank 4, respectively.

(TIF)

Table S1 The estimated parameters from 12 subjects for choice

models. Values are given as mean (s.e.m).

(DOCX)

Text S1 Supporting text. Experiment apparatus, data pre-

processing, choice model comparison, and appendix for modeling

results of all subjects are described.

(DOCX)
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