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Abstract

For patients infected with hepatitis C virus (HCV), the combination of the direct-acting antiviral agent telaprevir, pegylated-
interferon alfa (Peg-IFN), and ribavirin (RBV) significantly increases the chances of sustained virologic response (SVR) over
treatment with Peg-IFN and RBV alone. If patients do not achieve SVR with telaprevir-based treatment, their viral population
is often significantly enriched with telaprevir-resistant variants at the end of treatment. We sought to quantify the
evolutionary dynamics of these post-treatment resistant variant populations. Previous estimates of these dynamics were
limited by analyzing only population sequence data (20% sensitivity, qualitative resistance information) from 388 patients
enrolled in Phase 3 clinical studies. Here we add clonal sequence analysis (5% sensitivity, quantitative) for a subset of these
patients. We developed a computational model which integrates both the qualitative and quantitative sequence data, and
which forms a framework for future analyses of drug resistance. The model was qualified by showing that deep-sequence
data (1% sensitivity) from a subset of these patients are consistent with model predictions. When determining the median
time for viral populations to revert to 20% resistance in these patients, the model predicts 8.3 (95% CI: 7.6, 8.4) months
versus 10.7 (9.9, 12.8) months estimated using solely population sequence data for genotype 1a, and 1.0 (0.0, 1.4) months
versus 0.9 (0.0, 2.7) months for genotype 1b. For each individual patient, the time to revert to 20% resistance predicted by
the model was typically comparable to or faster than that estimated using solely population sequence data. Furthermore,
the model predicts a median of 11.0 and 2.1 months after treatment failure for viral populations to revert to 99% wild-type
in patients with HCV genotypes 1a or 1b, respectively. Our modeling approach provides a framework for projecting
accurate, quantitative assessment of HCV resistance dynamics from a data set consisting of largely qualitative information.
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Introduction

Hepatitis C is an inflammatory infection of the liver caused by

the hepatitis C virus (HCV). HCV chronically infects approxi-

mately 170 million people worldwide [1]. HCV infection is a

major risk factor for cirrhosis and hepatocellular carcinoma, and

has become one of the leading causes of both liver transplant and

cancer-related death in the United States [2,3]. In contrast to

other chronic viral diseases such as HIV and HBV, the goal of

HCV treatment is eradication of the virus as determined by

achievement of a sustained virologic response (SVR).

Telaprevir is a direct-acting antiviral that inhibits viral

replication by binding to the active site of the HCV NS3-4a

protease, an enzyme essential for viral replication [4–6]. In

combination with pegylated-interferon alfa (Peg-IFN) and ribavi-

rin (RBV), telaprevir increased SVR rates over Peg-IFN/RBV

alone [7,8]. Telaprevir exerts a strong directional selective

pressure on the viral population, which leads to enrichment of

variants with decreased sensitivity to the inhibitor. These

telaprevir-selected variants have been well characterized and

occur at or near the catalytic site of the protease, resulting in

decreased sensitivity to telaprevir and other HCV protease

inhibitors [9]. Given that other protease inhibitors besides

telaprevir may be included as components of future drug regimens

for patients that fail a telaprevir-based regimen, presence of

telaprevir resistant variants may limit future treatment options. It

is therefore essential to understand viral evolutionary processes

and the rates at which telaprevir-resistant variants are outcom-

peted by wild-type virus to optimally inform patient’s future

treatment options.

In clinical studies, telaprevir-resistant variants were identified in

the majority of patients who did not achieve an SVR with

telaprevir treatment [10–13]. Monitoring of telaprevir-resistant

variants after treatment failure revealed that these variants tend to

be replaced over time by telaprevir sensitive, wild-type (WT) virus

[14], presumably due to the lower intrinsic fitness of the resistant

variants [10,11]. However, monitoring was performed only by

direct sequencing of RT-PCR products amplified from HCV
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RNA extracted from patient plasma (i.e., ‘population sequencing’).

Population sequencing infers genetic variation within a population

from polymorphic peaks within sequence chromatograms, and

therefore provides only qualitative information about the frequen-

cy of the variants. Industry-standard interpretation of these data

assumes a limit of sensitivity of minority variant detection of

,20% (see, for example, [12,15–18]). Thus, although these

clinical studies analyzed a large number of samples [14], the

interpretation of the results is limited by the sensitivity of the assay

used.

The analysis reported here builds upon the work of Sullivan

et al. [14] in two key ways. First, the data set was augmented with

clonal sequence data from a subset of the patients previously

analyzed. The previous work used only population sequence

analysis. Compared to population sequence analysis, clonal

sequence analysis has a LOD of ,5% and provides a quantitative

estimate of the frequency of resistant variants in a patient sample.

Second, computational modeling was used to integrate the

qualitative information provided by population sequence data

with the quantitative information provided by clonal sequence

data. Overall, the combination of these two approaches resulted in

a more quantitative and patient-level understanding of resistant

variant evolution which allows extrapolation of viral resistance

quantification both beyond the sampling period and to a greater

sensitivity than can be estimated by the bioanalytical methods

alone.

In Sullivan et al. [14], we performed Kaplan-Meier analysis

across a population of patients to determine the ‘time-to-wildtype’.

‘Wildtype’ (WT) simply indicated that resistance was present at

20% or less of the viral population. From both a scientific and

clinical standpoint, this answer is unsatisfactory: 19% of the viral

population could be resistant by population sequencing and

represent a major undetectable reservoir of drug resistance. Our

modeling here addresses this significant shortcoming by allowing

calculation of time-to-event analyses across patients based on levels

of resistance below the sequencing assay limits of detection (e.g.,

1%). Additionally, in our present analysis, we model rates of viral

decline within individual patients. This ‘within patient’ analysis

allows calculation within an individual of the rate of decline of

resistant virus, and therefore allows (1) extrapolation of resistance

levels at time points which were not sampled and (2) calculation of

the time it takes for a given patient to revert to a given %

resistance (e.g., 1%). Significantly, population level analyses can be

performed across patients for any of these metrics. As such, our

models and pipeline described here form a framework for future

antiviral resistance monitoring programs. We propose that this

methodology could be applied across both antiviral and antibac-

terial therapeutics.

Results

Modeling Context
To illustrate the concept of resistance monitoring, Figure 1

displays hypothetical viral dynamics for a patient who experiences

viral breakthrough before Week 12 of treatment. Up to Week 12,

the WT virus is strongly suppressed by the treatment, whereas

some resistant variants may be able to replicate even in the

presence of the treatment. At Week 12, all treatment is terminated,

and the competition between WT and resistant virus continues in

the absence of drug selective pressure. By Week 24, the WT virus

overtakes the resistant variant population as the dominant viral

species, and the level of the resistant variant continues to decline

(Figure 1A). Resistance monitoring in patients with HCV infection

can effectively quantify the frequency of resistant virus over time,

when the total viral load exceeds the sequencing limit of detection

(Seq. LOD; see Figure 1). In the example shown, sequence

analysis can be performed at the beginning of treatment and after

treatment has stopped, as denoted by the solid red line. This

analysis is focused on the latter portion of this time frame, once

treatment is terminated. Dynamic sequence data from 388

genotype 1 HCV patients who did not achieve an SVR with a

telaprevir-based regimen were available for the analysis. Figure S1

presents more detailed information on the number of population

and clonal sequence data points obtained per patient.

Fitting the Model with Population and Clonal Sequence
Data

The logistic model given by Equation 3 was used to describe the

dynamics of the resistant virus for each individual patient. The

model assumed that the treatment-free equilibrium level of

resistance is 0%. To fit this model to the available data, a two-

step estimation procedure was used. First, we fit the model to the

subset of patients who had both clonal (quantitative) and

population (qualitative) sequence data after treatment failure.

For model fitting, each qualitative (population sequence) data

point was converted into a ranged value, with binned resistance

values of (1) 0 to 20% (i.e., WT population result), (2) 20 to 80%

(i.e., polymorphic population sequence result), or (3) 80 to 100%

(i.e., resistant population result). HCV genotypes 1a and 1b were

fit independently because their resistance profiles are different

[14]. We used this fitted subset to approximate the expected prior

parameter distributions for each genotype using a log-normal

distribution. We then refit all patients individually, including those

who had clonal sequence data (i.e., those that had already been fit),

approximating the estimated parameters as distributed according

to these priors. The resulting fits for all patients are shown in

Figure 2. For patients who had only population sequence

(qualitative) data, imposing this prior allowed us to determine a

unique set of parameters for those individual patients that fit the

data.

To examine how well the model fit the data across all patients,

histograms of the objective function values (w) were generated

Author Summary

Hepatitis C virus (HCV) chronically infects approximately
170 million people worldwide. The goal of HCV treatment
is viral eradication (sustained virologic response; SVR).
Telaprevir directly inhibits viral replication by inhibiting the
HCV protease, leading to high SVR rates when combined
with pegylated-interferon alfa and ribavirin. Telaprevir-
resistant variants may be detected in the subset of patients
who do not achieve SVR with telaprevir. While the clinical
impact of viral resistance is unknown, typically the
telaprevir-sensitive virus re-emerges after the end of
treatment due to competition between the telaprevir-
sensitive and resistant variants. Previous estimates of these
competition dynamics were obtained from population
sequence data, which are qualitative and have a limited
sensitivity of ,20%. We sought to improve these estimates
by combining these data with clonal sequence data, which
are quantitative and have a sensitivity of ,5%, and using
quantitative modeling. The resulting model, which was
verified with an independent data set, predicted that the
median time for telaprevir-resistant variants to decline to
less than 1% of the viral population was #1 year. Our
modeling approach provides a framework for accurately
projecting HCV resistance dynamics from a dataset
consisting of largely qualitative information.
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(Figure 3(A) and Figure 4(A)). Each w value represents a scalar

quantity that can be used to assess how well the model fits the

result for a single patient, with larger w values signifying worse fits

to the data. In Figure 3 (B–E) and Figure 4 (B–E), representative

fits for individual patients are shown for various quantiles to

demonstrate the quality of fit for different w values.

Assessing the Model Using Deep Sequence Analysis
To assess the predictive capability of the model, we compared

model predictions to resistance quantified by massively parallel

sequencing (deep sequencing; DS) from a subset of samples

included in our modelling analysis using an Illumina platform

(LOD: 1%). These data provided a more quantitative measure of

Figure 1. Hypothetical viral dynamics for a patient with viral breakthrough during telaprevir-based treatment. (A) Dynamics for the
total viral load (Total, green), wild-type virus (WT, blue), and a telaprevir-resistant variant (Resistant, red) during and after treatment with telaprevir-
based treatment. LOD is the limit of detection for the ‘total’ viral load quantification, and Seq. LOD is the limit of detection above which sequencing
can be reliably performed (1000 IU/ml). The treatment phase is shown by the gray bar. (B) Corresponding percent resistance dynamics on a linear
scale. Viral sequencing can be performed when the total viral load exceeds the sequencing assay LOD (solid red curve). The dashed lines at 20% and
5% show the limits of detection for population and clonal sequence data, respectively.
doi:10.1371/journal.pcbi.1003772.g001
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resistance as resistance from these samples had previously been

determined using only population sequencing. As the patients and

time points chosen for quantification were selected and analyzed

independently of this modeling work [19], they served as an

independent validation of our approach. Because we fit our model

(Equation 3) to each individual patient, we were able to predict, for

each patient with DS data, the expected resistance at the precise

time of the DS. There were 52 time points sequenced, each from a

different patient. 32 samples had no detectable resistant virus

(below the LOD), and the remaining 20 samples had 1.06%–

98.58% resistant virus. For samples with no detectable resistance,

the model predicted that the majority (n = 25; 78%) should have

resistance values below 1% (Figure 5(A)). For all samples

sequenced, the model predictions showed good agreement with

the sequence results (Figure 5(B)). To determine the significance of

these results, Monte Carlo simulation was used to generate 104

equivalently sized datasets for the DS samples. None of these

datasets had a smaller sum of squared errors than that observed in

this analysis, indicating that our observations have a ,1024

probability of being generated by chance alone. Additionally, we

assessed the null hypothesis that the difference between the actual

and predicted % resistance values was equal to 0 (Figure 5(C)).

After arcsine square root transformation of the differences, neither

a t-test (p = 0.86) nor a Wilcoxon-signed rank test (p = 0.16) suggest

a significant difference between the actual and model-predicted

results.

Model Predictions: Reversion from Resistant to WT Virus
The model was used to predict population statistics for reversion

of virus from the resistant to the WT, non-resistant state.

Specifically, Kaplan-Meier analysis was used to calculate the

median time to reversion for each HCV subtype. Previously, the

estimated time it takes for a population of patients to revert from

resistant to WT virus was calculated using only population

sequence data [14]. Given the 20% sensitivity of that sequence

method, this time was considered to represent the ‘time-to-20%.’

Here, those results were compared against the model derived time-

to-20% estimates. The modeled Kaplan-Meier analysis of this

reversion was less than (genotype 1a) or equal to (genotype 1b) the

time-to-20% estimated by population sequence data (Figure 6,

Table 1). For both genotypes, the upper 95% confidence interval

for the median model prediction is lower than that for the

population sequence result.

Notably, fewer patients are censored in the modeled results as

compared with the population sequence results (Table 1). This

difference results from patients whose last population sequence

data point is polymorphic (i.e., between 20% and 80% resistant).

Because resistance is still present, the direct population sequence-

based Kaplan-Meier survival analysis censors these points. In

contrast, the model can predict reversion times for these patients.

For patients that are considered to have achieved #20% resistance

by the model and population sequence data (i.e., patients whose

last sequenced time point had no detectable resistance by

population sequence data), the model consistently predicts shorter

times-to-20% resistance than the population sequence results

(Figure 7).

The predicted time-to-1% resistance was also determined as this

value represents the measure of resistance theoretically obtainable

by recent massively parallel sequencing approaches (e.g. [19]).

Interestingly, these predictions are similar to the estimated time-to-

20% resistance determined using population sequence data alone

(Table 1, Figure 6). Note that these predictions did not account for

uncertainty in the parameter estimates for individual patients.

Monte Carlo simulations of this uncertainty suggested that it

minimally affected the median reversion time determined by

Kaplan-Meier analysis (see Text S1).

The predicted time-to-1% resistance was also used to assess the

effect of a number of covariates on reversion times. The covariates

assessed were: (1) baseline resistance status, (2) failure modality, (3)

prior treatment status, and (4) the length of time PR treatment

persisted after the time of treatment failure (Figure S2). Of these

covariates, the presence of resistance at baseline exerted a large

effect on resistant variant retention after treatment failure which

was statistically significant in the case of genotype 1a infections.

The data suggest that resistance retention rates are greater for

patients that already had resistance variants present at baseline

Figure 2. Model fits for resistant variant decline. The fitted dynamics of resistant variant loss for each patient are shown for (A) genotype 1a
and (B) genotype 1b.
doi:10.1371/journal.pcbi.1003772.g002
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prior to treatment. Similarly, the data suggest that genotype 1a

infected patients who experience on treatment virologic failure (as

compared to patients that relapse after the end of treatment) as a

group have statistically significantly longer retention times of

resistant variants. Significantly, by protocol, a subset of patients

that experienced on treatment virologic failure continued to be

treated with pegylated interferon and ribavirin (PR) after they

experienced viral breakthrough. Consequently, Cox proportional

hazards analysis of this covariate is largely overlapping with the

analysis of failure modality and suggests that continued dosing

with PR after treatment failure also increases the time that it takes

for a viral population to revert to 1% resistant. In contrast to these

two covariates, prior treatment status did not provide any strong

signals for affecting the retention time of resistant variants.

Discussion

Previously, resistance monitoring of patients who did not

achieve an SVR with telaprevir-based treatment in the Phase 3

studies ADVANCE, REALIZE, and ILLUMINATE showed that,

after treatment failure in the absence of drug, resistant variants

decline over time and are replaced by WT (drug-sensitive) virus

[14]. One limitation of this previous work is that the analysis

included only qualitative data obtained from population sequenc-

ing [14]. To provide a more quantitative understanding of viral

dynamics after telaprevir-based treatment, we generated a

quantitative clonal sequence dataset for a subset of the patient

samples. We then employed mathematical modeling to continu-

ously fit both the quantitative (clonal sequence) and qualitative

(population sequence) datasets. The model explored the rate at

which resistant virus reverts to WT virus (see Figure 1).

Of note, existing methodology for analysis of population

sequence results allows estimation of resistance levels at only

discrete time points, and therein can only describe resistance levels

in gross bins (e.g., 0–20%; 20–80%, or 80–100%). By developing

patient-level models that describe how resistance levels change

over time, and by merging population and clonal sequence data,

our analysis provides substantial additional advantages:

1) Because the model uses a continuous function, a patient’s

resistance level can be calculated within a patient’s population

sequence binned result at a given time (e.g., a 20–80%

population sequence result could be calculated, as, for

example, 20%).

2) In contrast to analysis of individual data points (as in Sullivan

et al. [14]), our model allows estimation of resistance levels at

points in time for a given patient that have not been sampled.

3) Both population and clonal sequencing have limitations in

terms of their sensitivity, namely 20% and 5% resistance,

respectively, as they are commonly employed. Our model

allows for estimation of resistance levels below the sensitivity

of the two data types used to generate the models.

Model Performance
Overall, the results suggest that the model captures the

resistance dynamics for the majority of patients quite well

(Figure 3 and Figure 4). We found that numerous patients with

the best model fits (w#10210) had only population sequence data.

We observed that the resistance dynamics for these patients were

well fit by the population average parameters. Of note, one of the

reasons why these patients’ dynamics were well fit may be explained

by the lack of specific information within the population sequence

dataset since data are binned into ranges of between 0 and 20%, 20

and 80%, and 80 and 100% resistance. As such, many fits are

possible through many of the population sequence curves which are

consistent with the observed population sequence results.

Figure S3 illustrates this point as substantial variability in the model

fits is observed in the two patients (A and B) having only population

sequence data, whereas the variability is notably diminished in the

patient C having both population and clonal sequence data.

In order to validate the model, we compared the quantitative

model predictions of % resistance against actual quantitative

results generated by an independent test set (DS). Monte Carlo

simulation analyses suggest that the model predictions of %

resistance for this test set are accurate with the null hypothesis of

equivalence between the methods not refuted. The consistency

between the model predictions and the DS results (1% resistance

sensitivity) suggests that the model can accurately predict the

resistance dynamics between 100% and 1% resistance even

though neither of the sequence data types (population and clonal)

used to train the model had sensitivities below 5%.

Model Limitations
The model cannot fit two modalities of viral evolution. First, the

model cannot fit patients whose % resistance increases over time

because the model’s logistic expression decreases monotonically

over time. For example, as in the rare case shown in Figure 4(E),

the measured resistance dynamics start at 0–20% resistance,

change to 80–100% resistance, and then revert again to 0–20%

resistance. Not surprisingly, this patient had the worst fit viral

dynamics for the genotype 1b population. Such phenomena were

observed infrequently, and are likely attributable to the stochas-

ticity associated with PCR amplification in populations with HCV

RNA levels near the assay LOD.

Second, the model does not accurately fit virus that appears to

have a natural resistance level greater than 1% (e.g., Figure 3(E)).

While an equilibrium resistance level of ,20% would result in a

better fit of the data from this patient, the final equilibrium

resistance was fixed at 0% for all patients. Due to the dynamic

nature of viral evolution after the strong selective pressure of the

direct-acting antiviral is removed and the potential stochasticity of

PCR amplification, the longitudinal sampling for this patient may

not have been sufficiently long to capture the dynamics implied by

the model’s functional formula. Support for the placement of

equilibrium resistance levels below 20% and closer to 0% is

provided by a previous analysis by Bartels et al., who found that

none of 3447 patients assayed for resistance by population

sequencing had naturally occurring telaprevir resistant variants

present as polymorphisms [18].

Comparison to Existing Dynamic Models of HCV
Resistance

To the best of our knowledge, population sequence data have

not been explicitly used in any mechanistic modeling analyses thus

Figure 3. Model fit for patients with genotype 1a HCV. (A): Histogram of the log10 objective function values (w; see Equation 5) for all patients
with genotype 1a. Dashed lines and numbers show quantile information for the fits. Also shown are representative fits for patients whose objective
function values fall in the (B) 60%, (C) 90%, (D) 95%, and (E) 100% quantiles. Solid lines represent model predictions, solid points represent the clonal
sequence data, and error bars show the range for population sequence results.
doi:10.1371/journal.pcbi.1003772.g003
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far. Previously, clonal sequence data were used to construct a

multi-variant HCV dynamic model that explained the dynamics of

specific telaprevir-resistant variants before and after telaprevir

treatment [20,21]. This model was originally developed by fitting

viral kinetics from patients treated with telaprevir monotherapy,

with clonal sequence data used to quantify the relative fitness of

specific telaprevir-resistant mutants [20]. The model was then

refined in order to predict SVR rates by estimating relative fitness

rates of different resistant variants using viral kinetics from Phase 2

telaprevir studies, but in this refinement no additional sequence

data beyond the Phase 1 clonal sequence data were used to

estimate model parameters [21]. Similarly, Rong et al. used an

HCV model accounting for drug-resistant and drug-sensitive

viruses to explain viral dynamics with telaprevir-based treatment;

only clonal sequence data were used to inform the model

parameters [22]. These modeling works differ from ours in two

Figure 4. Model fit for patients with genotype 1b HCV. (A): Histogram of the log10 objective function values (w; see Equation 5) for all patients
with genotype 1b. Dashed lines and numbers show quantile information for the fits. Also shown are representative fits for patients whose objective
function values fall in the (B) 70%, (C) 90%, (D) 95%, and (E) 100% quantiles. Solid lines represent the model predictions, solid points represent the
clonal sequence data, and error bars show the range for population sequence results.
doi:10.1371/journal.pcbi.1003772.g004

Figure 5. Validation of the model predictions using deep sequence data. Comparison of the model-predicted and actual (deep sequence)
resistance frequency. (A) Predicted resistance frequency for samples with undetectable resistance by deep sequencing. (B) Predicted versus actual
resistance frequency for samples with measurable resistance by deep sequencing. The p-value of the prediction is ,1024 as determined by Monte
Carlo simulation. (C) The differences between the modeled and actual resistance frequency are depicted in the histogram (counts indicated above
each bar), with a median % difference of -3.3e-5 and a mean % difference of 1.3.
doi:10.1371/journal.pcbi.1003772.g005
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primary ways. First, these prior models [20–22] used clonal

sequence data from a Phase 1 study with small numbers of patients

(i.e., tens). In contrast, our work used both clonal and population

sequence data from Phase 3 studies with large numbers of patients

(i.e., hundreds). Second, these prior models [20–22] included

substantially more mechanistic detail and greater numbers of free

parameters than the approach presented here. However, Ganusov

et al. elegantly demonstrated that these more complex models

reduce to the simpler model used here under the limiting

assumptions of a variant initially present at low frequency (in this

case, WT) and a small mutation rate [23]. Thus, both the current

analysis and the aforementioned analyses implicitly employ the

same basic framework. Namely, viral dynamics are characterized

as a competition between viral variants with different fitness levels,

and the dynamics of the variant most fit for the environment (e.g.,

with versus without treatment) outcompeting the other variants are

described by exponential growth capped at a specific maximum.

The relative simplicity of the approach presented here (only two

free parameters per patient) provides a more tractable framework

for addressing the quantitative questions surrounding resistance

reversion and is less likely to be subject to model over-fitting.

Model Predictions
We used Kaplan-Meier estimation to determine the expected

time frames for given events (e.g., the time-to-20% reversion, time-

to-1% reversion). This data rich Kaplan Meier analysis (Figure 6)

used all available data, and included 391 distinct visit results

(Figure S1). We found that population sequencing provides a

conservative estimate for the time-to-20% reversion (Figure 6,

Figure 7, and Table 1). Intuitively, this finding is reasonable:

population sequence data discretely sample a continuous process

and reversion is marked as occurring at the first single time point it

is observed. However, reversion of virus to WT may have occurred

prior to this sampled time. Consequently, the estimates based on

this approach should become more conservative as the frequency

of sampling decreases. The modeling approach presented here

offers one means of overcoming these issues by considering the

process of reversion along a continuum.

Table 1. Population sequence-based and model-predicted median reversion times.

Population Sequence Model Prediction Model Prediction

HCV
subtype

Time-to-20%,
months (95% CI)

Censored/
Total (n/N)

Time-to-20%,
months
(95% CI1)

Censored/
Total (n/N)

Time-to-1%,
months (95% CI1)

Censored/
Total (n/N)

1a 10.7 (9.9,12.8) 114/255 8.3 (7.6,8.4) 75/255 11.0 (10.3,11.4) 75/255

1b 0.9 (0.0,2.7) 9/105 1.0 (0.0,1.4) 5/105 2.1 (1.1,2.6) 5/105

1The 95% CI assumes a single value for each patient and does not incorporate uncertainity of individual predictions (see Text S1).
doi:10.1371/journal.pcbi.1003772.t001

Figure 6. Kaplan-Meier curves for time-to-20% determined by population sequencing, model-predicted time-to-20%, and model-
predicted time-to-1%. Results for patients with HCV subtypes 1a and 1b are shown in plots (A) and (B), respectively. Hash marks (‘) denote the
censored observations indicating the time of the last visit for patients with virus that did not revert to ,20% resistant. For clarity, these patients are
explicitly denoted on the population sequence (‘‘Pop. Seq.’’) and model-predicted time-to-20% resistance curves only.
doi:10.1371/journal.pcbi.1003772.g006
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This analysis provides a novel framework for developing a

quantitative understanding of resistant variant evolutionary

dynamics. The model enabled prediction of the median time-to-

1% resistance for HCV subtypes 1a and 1b (11.0 months and 2.1

months, respectively) even though many patients solely had

population sequence data available, which can only be used to

determine reversion to 20% resistance. These model predictions

(median time-to-1% reversion) were comparable to the median

time-to-20% reversion as determined by a previous analysis using

only population sequence data [14]. Significantly, these predic-

tions suggest that if a patient does not achieve an SVR with

telaprevir-based treatment, the viral population is likely to contain

less than 1% resistant virus within a year following treatment

failure. These findings provide additional quantitative information

for patients with HCV infections and health care providers

concerned about the ramifications of not achieving SVR with

current treatment options.

Methods

Patient Population and Sequence Dataset
The dataset used for this analysis was previously reported by

Sullivan et al. [14] and is briefly described here. Samples were obtained

from 388 patients who had been enrolled in the Phase 3 telaprevir

studies (ADVANCE [7], REALIZE [8], and ILLUMINATE [24])

and did not achieve an SVR. The Phase 3 studies evaluated either 8

or 12 week telaprevir treatment durations with 24 or 48 week

durations of peg-IFN and RBV. Follow-up assessments monitored

the retention of resistant variants for those patients who did not

achieve an SVR.

Determining Percent Resistance from Various Sequence
Data Types

Population sequence analysis was performed with a minimum of

116coverage of the NS3 protease, and a median of 4 time points

per patient as described by Sullivan et al. [14]. In this analysis, a

mutation for a given variant is coded as ‘not present’, ‘present as a

polymorphism’, or ‘present and monomorphic,’ which quantita-

tively correspond to frequencies of ,20%, between 20 and 80%,

and $80%, respectively. As an alternative to population sequence

analysis, clonal sequence analysis can be used to quantitate each

variant with a theoretical 95% confidence limit of detection of

,5% when 96 clones are sampled. For this analysis, clonal

sequence data were obtained for a subset (n = 51) of samples for

which population sequence data were already available. Clonal

sequencing utilized the 9 KB amplicons used for the direct

population sequence analysis. These amplicons were cloned into a

TOPO PCR-XLH vector (Invitrogen) and transformed into

electrocompetent E. coli as previously described [25]. Plates

containing transformed E. coli were sent to Beckman Coulter

Genomics (Danvers, MA) or Genewiz (Cambridge, MA) where 96

clones were selected for sequencing of the NS3 protease with a

minimum of 36 coverage. If less than 50 clones contained inserts

in a given sample, the process was repeated for that sample. A

median of 2 time points and a median of 82.5 clones were

available per patient with an interquartile range (IQR) of 70–91.

From 32 genotype 1a patients, samples from 80 total visits were

obtained with a median (IQR) of 79.5 (69.75–91.25) clones

analyzed per visit. From 19 genotype 1b patients, samples from 54

total visits were obtained with a median of 84.0 (71.25–90.75)

clones analyzed per visit.

Modeling Resistance Dynamics
For patients that did not achieve an SVR, resistance evolutionary

dynamics after treatment were modeled as a competition between the

WT virus and telaprevir-resistant variants (an example from a

hypothetical patient is shown in Figure 1). Under the assumption that

in the absence of telaprevir, the WT virus is more fit than telaprevir-

resistant variants [10,14,19], the target-cell limited viral dynamics

were approximated using a logistic model for the WT virus, V:

Figure 7. Comparison of the population sequence- and model-predicted time-to-20% for HCV subtypes 1a (A) and 1b (B). The X-axis
represents the inferred time-to-loss of detectable resistance by population sequencing and reflects the first visit wherein the patient did not have
detectable resistant variants. The Y-axis relies on the algorithms defined here, wherein the rate of loss is modeled continuously for each patient. The
majority of the data points fall to the right of the unity line, indicating that the model predicts more rapid times-to-20% than those estimated from
population sequence data.
doi:10.1371/journal.pcbi.1003772.g007
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dV

dt
~kV 1{

V

Vmax

� �
ð1Þ

Here k is the rate at which WT virus out-competes telaprevir-resistant

variants. We assumed that V is the percent of the population that is

WT virus; therefore Vmax is 100%. Solving Equation 1 for V then

yields:

%WT~V~
100V0ekt

100zV0 ekt{1ð Þ ð2Þ

Here V0 is the amount of WT virus present at the beginning of

resistance monitoring after the patient did not achieve an SVR and t
is the relative time from the start of resistance monitoring. Equation 2

has been derived by Ganusov et al. [23] from more complex viral

dynamic models under the limiting assumptions of (1) a variant

initially present at low frequency (in this case, WT) and (2) a small

mutation rate.

The percent resistance (i.e., quantifying the fraction of resistant

variant) is simply:

% Resistance~R~100{%WT ð3Þ

~100{
100V0ekt

100zV0 ekt{1ð Þ

The dynamics in each individual patient were characterized via

Equation 3 by specifying the parameters V0 and k.

Fitting the Model to Individual Patient Data
Qualitative and quantitative information on percent resistance

(R) were obtained from population and clonal sequence data,

respectively. Because clonal sequence data are quantitative,

squared deviations between the model predictions and the percent

resistance determined by clonal sequencing for a given sample

were penalized. Statistically, this approach is equivalent to

assuming that the clonal sequence errors are independently and

identically distributed. Because population sequence data are

qualitative, only model predictions that fell outside of the expected

population sequence binned quantitative range (0–20%, 20–80%,

and 80–100% resistance) were penalized. In this case, squared

deviations were again penalized, with the deviation defined as the

difference between the model prediction and the population

sequence range extremum closest to the prediction. For example,

if the expected range were 20–80% resistance, then a model

prediction of 85% resistance at a given time point would have a

deviation of 85%–80% = 5%. Similarly, if the expected range from

a direct population sequence result were 20–80% resistance, then

a model prediction of 10% resistance would have a deviation of

10%–20% = 210%.

The log10 values of the model parameters V0 and k were

determined by minimizing the sum of squared errors over all

population and clonal sequence data points for a given patient.

Computationally, the population sequence data points were

handled efficiently as soft constraints, a technique used in

advanced process control (see [26] and the references contained

within). Assuming there are np population sequence and nc clonal

sequence data points, the optimization problem is then:

min
log10 k,log10 V0,�zz1,...,�zznp ,z

�1
1

,...,z
�

np

w~

1

2

Xnc

j~1

R tj

� �
{yc tj

� �� �2
z

1

2

Xnp

l~1

z
�

lz�zzlÞ2ð4Þ
�

s:t: : R tð Þ~100{
100V0ekt

100zV0 ekt{1ð Þ

�zzl§R tlð Þ{�yyp tlð Þ V l~1, . . . ,np

z
�

l§y
�

p tlð Þ{R tlð Þ V l~1, . . . ,np

�zzl§0,z
�

l§0 V l~1, . . . ,np

Here:

N y
�

p tlð Þ is the lower bound of the population sequence constraint

at time tl,

N �yyp(tl) is the upper bound of the population sequence constraint

at time tl,

N z
�

l is the soft constraint for the lower population sequence

bound,

N �zzl is the soft constraint for the upper population sequence

bound,

N yc(tj) is the clonal sequence measurement at time tj,

N np is the number of population sequence data points, and

N nc is the number of clonal sequence data points.

For example, considering an expected range of 20–80%

resistance with a model prediction of 85% resistance, the

constraints in Equation 4 dictate that �zz§85%{80%~5% and

�zz§0%, and since we minimize over �zz,�zz~5%. Similarly, the

constraints in Equation 4 also dictate that z
�
§20%{85%~{65%

and z
�
§0%, and since we minimize over z

�
,z
�
~0%.

Fitting the Model across a Population of Patients
Data from patients that had both population and clonal

sequence data were first fit using Equation 4. The parameters

V0 and k for the entire population were approximated using a log-

normal distribution; this distribution was selected to enforce

positivity of the parameters. The mean (�hh) and covariance (P) for

this distribution (h, consisting of both log10V0 and log10k) were

calculated from the subset of patients with both population and

clonal sequence data. Finally, data for each individual patient in

the population were fit using Equation 4 augmented with a term

penalizing deviations of h from its prior:

min
h,�zz1,...,�zznp ,z

�1,...,z
�

np

w’~wz
1

2
h{�hh
� �T

P{1 h{�hh
� �

ð5Þ

s.t.: same constraints as Equation 4

Some exceptions were made to this strategy:

1. To maintain a conservative methodology, patients whose

samples at the time of treatment failure had ,20% resistant

virus were assumed to have exactly 20% resistance at the time

of failure.
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2. If the sample collected at the final time point for a patient had

80–100% resistant virus as determined by population sequenc-

ing, virus in that patient was assumed never to revert to WT.

3. If the sample collected at the initial time point for a patient had

$20% and ,80% resistant virus as determined by population

sequencing, only deviations of the log10k parameter from its

prior distribution were penalized. Deviations of the log10V0

parameter from its prior distribution were not penalized.

Assessing the Model Predictions with the Experimental
Assessment Dataset

Model predictions were compared to results of 52 samples

generated by deep sequencing (DS) [19]. The limit of detection for

this form of massively parallel sequencing was ,1%. This dataset

was compared against model results generated in this analysis if

the population sequence result were #80% resistance and clonal

sequence results were not available at a given time point (n = 37).

Assessment of the model was performed using two methods: (1)

Monte Carlo simulation and (2) an assessment of the null

hypothesis that the model-predicted results were not different

from the observed (actual) results. In both cases, a quantitative

result at some time t after treatment failure was obtained from the

DS dataset. The modeled patient-specific parameters V0, k, and t
were used to solve Equation 3 for R. Given a limit of sensitivity for

the DS assay of 1%, if the observed (actual) result were below the

assay LOD, the actual % resistance was imputed as 0%.

For the Monte Carol simulation, a sum of squared errors was

calculated from the difference between the actual and model

predicted % resistance. Monte Carlo simulations assumed a

uniform distribution within the measured population sequence

range. 10,000 replicate datasets were sampled to generate a

distribution of errors. The significance of the model prediction was

determined by calculating the percentage of errors in this

distribution that were less than or equal to the observed error.

To assess the null hypothesis that the modeled results were not

different from the actual results, the difference between the actual

and predicted result was determined for each sample, and the null

hypothesis that the mean of this difference equaled 0 was tested.

Because the resultant differences were not normally distributed,

the absolute differences were first arcsine square root transformed,

but the original sign of the difference was retained. Parametric (t-
test) and non-parametric (rank-sign) tests were performed on the

resultant dataset with a set to 0.05 for each test.

Estimating Median Reversion Times for the Patient
Population

Once parameters for all patient samples were estimated, the

modeled time required for virus from samples of each patient to

reach a specific percent resistance was calculated by setting the %

resistance (R) in Equation 3 and solving for t (specific time-to-x%

denoted by tx%). Kaplan-Meier curves were constructed to

determine statistics for the population tx%. Patients who are

modeled to retain resistance throughout their post-treatment

follow up were considered right censored in the Kaplan-Meier

analysis, with the time of the last observation in the population

sequence analysis dataset relative to the time after treatment

failure used as the time of the censoring event. To determine the

effect of covariates on time-to-1% reversion, Cox proportional

hazards models were applied across relevant covariates on the

Kaplan-Meier analysis, with this analysis performed separately for

genotypes 1a and 1b and with a null hypothesis of no effect.

Numerical Implementation
Population and clonal sequence data were queried using a

custom Oracle database with Perl scripts. R (v. 2.15.0) was used to

convert these numerical values into a format readable by Octave,

which was in turn used to estimate model parameters using the

optimization routine sqp.m. R was used to generate figures and

calculate Kaplan-Meier statistics using the survival library.

Kaplan-Meier statistics were confirmed by independent genera-

tion with JMP statistical software (SAS Institute, v. 8.0.1).

Data Availability
To ensure patient confidentiality, an anonymized dataset

containing a summatry of the raw data underlying these analyses

has been created and is available upon request to globalmedinfo@

vrtx.com.

Supporting Information

Figure S1 Number of patients by HCV genotype with a
given amount of population and clonal sequence data
points. Results are for patients with (A) genotype 1a HCV and (B)

genotype 1b HCV. The ‘‘Sum’’ column shows the total number of

patients with a given number of clonal sequence points (the row

sum).

(EPS)

Figure S2 Forest plot of covariate effect estimates on
the time it takes to revert to 1% resistance. Kaplan Meier

analysis was used to describe the time it takes for patients to revert

to 1% resistance (Figure 6). The figure displays the effect estimates

and 95% CI for those effects based on application of Cox

proportional hazard models to the Kaplan Meier analyses.

(EPS)

Figure S3 Monte Carlo model predictions generated by
importance sampling for representative patients with
genotype 1a HCV. Representative Monte Carlo simulations for

three patients with genotype 1a HCV. Gray lines represent the

model predictions from the 1000 Monte Carlo parameter sets

generated by importance sampling. Red lines represent the

median of those 1000 simulations. Solid points represent the

clonal sequence data. Error bars show the range for population

sequence results.

(EPS)

Figure S4 Variability in the Kaplan-Meier analysis due
to uncertainty in the parameter estimates for individual
patients. Kaplan-Meier analysis for patients with (A) genotype 1a

and (B) genotype 1b HCV. Solid and dashed lines represent the

median results and 95% confidence intervals of 1000 independent

Kaplan-Meier analyses. Caret marks (‘) denote patients who did

not revert to WT during the follow-up period. For clarity, these

patients are explicitly denoted on the population sequence (‘‘Pop.

Seq.’’) resistance curve only.

(EPS)

Text S1 Supporting information related to quantifying
uncertainty in Kaplan Meier point estimates.

(DOCX)
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