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Abstract

A 30-node signed and directed network responsible for self-renewal and pluripotency of mouse embryonic stem cells
(mESCs) was extracted from several ChIP-Seq and knockdown followed by expression prior studies. The underlying
regulatory logic among network components was then learned using the initial network topology and single cell gene
expression measurements from mESCs cultured in serum/LIF or serum-free 2i/LIF conditions. Comparing the learned
network regulatory logic derived from cells cultured in serum/LIF vs. 2i/LIF revealed differential roles for Nanog, Oct4/
Pou5f1, Sox2, Esrrb and Tcf3. Overall, gene expression in the serum/LIF condition was more variable than in the 2i/LIF but
mostly consistent across the two conditions. Expression levels for most genes in single cells were bimodal across the entire
population and this motivated a Boolean modeling approach. In silico predictions derived from removal of nodes from the
Boolean dynamical model were validated with experimental single and combinatorial RNA interference (RNAi) knockdowns
of selected network components. Quantitative post-RNAi expression level measurements of remaining network
components showed good agreement with the in silico predictions. Computational removal of nodes from the Boolean
network model was also used to predict lineage specification outcomes. In summary, data integration, modeling, and
targeted experiments were used to improve our understanding of the regulatory topology that controls mESC fate
decisions as well as to develop robust directed lineage specification protocols.
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Introduction

mESCs are derived from the inner cell mass of a developing

blastocyst and can be propagated indefinitely in culture. Cultured

mESCs can contribute to all adult cell populations, including the

germ-line. Human ESCs have similar in-vitro differentiation

potential. It is now established that somatic cells can be

reprogrammed into induced pluripotent stem cells (iPSCs) using

simple combinations of transcription factors (TFs) [1–3] or other

methods. Mouse and human iPSCs closely resemble ESCs,

potentially removing ethical and tissue rejection barriers to

applications in regenerative medicine. In order to harness the full

potential of stem cell therapeutics there is a pressing need to

further characterize the regulatory topology that controls pluripo-

tency as well as commitment and differentiation to specific

lineages. Pluripotency is maintained by a densely interconnected

network of auto- and cross-regulatory TFs and other transcription

regulators. These TFs and regulators promote the expression of

other pluripotency genes and simultaneously suppress the expres-

sion of differentiation inducers [4]. To dissect the ESC regulatory

topology, genome-wide high-throughput technologies such as

cDNA microarrays, RNA-seq, ChIP-seq, immuno-precipitation

followed by mass spectrometry (IP-MS) proteomics and phospho-

proteomics, inhibitory RNA (RNAi) screens, as well as other

emerging technologies have been applied. However, it remains a

challenge to integrate multiple datasets, obtained from distinct

sources and molecular regulatory layers into a systems level view of

ESC regulation. Such data integration is necessary in order to

build reliable predictive regulatory models that would provide a

global view of the entire system. While static network diagrams

can provide snapshot views of the information processing that

controls cell fate decisions, it is necessary to develop regulatory

models that capture the dynamical behavior of key regulatory

components over time.

In recent years, several stem cell-centered dynamical models

have been developed from low-throughput functional studies.

Most models employed ordinary differential equations (ODEs) and

simulate interactions among a small number of well-studied TFs

[5–7]. For example, a stochastic ODE model that linked Nanog,

Oct4/Pou5f1 and Sox2 to an osteoblast differentiation circuit
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comprised of three additional TFs showed that cells can jump from

one state to another if enough noise is added to the system [8]. In

general, predictions made from computational dynamical models

of embryonic stem cell have not been extensively experimentally

validated until very recently. In the past year, few other

comprehensive studies that integrated various datasets and

constructed larger models of the ESC regulatory circuitry have

emerged [9–12]. For example, Dowell et al. [11] integrated gene

expression, ChIP-seq, protein interactions, RNAi screens and

epigenetics markers to build a Bayesian network model of

pluripotency genes. Their main focus was comparing human

and mouse ESCs and their networks models are static. One of the

advantages of their approach is that the network was not

determined a priori which allowed the discovery of novel self-

renewal and pluripotency components. Dowell et al. also present a

database that is similar to our ESCAPE database [13] called

StemSite. Lee and Zhou [10] combined ChIP-seq, gene expression

and motif finding data to identify pairs of transcription factors that

potentially work together within the pluripotency circuitry. They

established 27 interactions between 14 factors. Many of the

interactions they identified are consistent with our study. In

another similar study Dunn et al. [9] implemented a data

constrained Boolean model that connected 12 transcription factors

through 16 interactions to suggest the minimal possible circuitry

required to maintain pluripotency of mESC. In contrast with these

studies, our study has primary gene expression data from single

cell mESC, we also consider lineage markers and predict lineage

propensity after perturbations, and provide extensive experimental

validation with double and triple knockdowns followed by gene

expression profiling of both pluripotency regulators and lineage

markers.

In order to address the need for multi-level data integration and

broader experimentally validated dynamical models, we first

extracted a signed and directed network from published ChIP-

seq and knockdown followed by expression studies. All included 15

pluripotency network nodes and their interactions are supported

by ChIP-seq data providing TF/target-gene binding evidence, as

well as significant mRNA expression change following depletion or

over-expression of a given TF. The ChIP-seq TF/target-gene

binding evidence provides the directionality of the edges; whereas

the knockdown or over-expression followed by genome-wide

expression evidence establishes positive or negative regulatory

edge sign. The underlying network regulatory logic was then

learned using single-cell gene expression data collected with a

microfluidic device. The learned model was validated by

comparing predictions from in silico single or combinatorial node

knockdowns to experimental single or combinatorial RNAi

knockdowns of selected nodes followed by quantitative PCR

expression level measurements of the remaining network compo-

nents. Finally, lineage specification outcomes of single and

combinatorial perturbations were predicted for all possible

knockdown combinations.

Results/Discussion

Construction of a signed and directed network
composed of pluripotency regulators and lineage
markers

We first extracted a signed and directed pluripotency network of

mESCs consisting of 15 transcription regulators and 15 lineage

markers from the ESCAPE database (Figure 1) [14]. The

ESCAPE database contains TF/target-gene interactions extracted

from a collection of ChIP-seq studies applied to mESCs. In

addition, the ESCAPE database also contains regulatory causal

interactions connecting perturbed TFs to affected target genes

based on mRNA expression. Such interactions were extracted

from the loss-of-function (LOF) knockdown/knockout of TFs, or

gain-of-function (GOF) over-expression followed by global tran-

scriptional profiling measured by microarrays or RNA-seq

database tables in ESCAPE. The 15 pluripotency regulators were

selected only if both ChIP-seq and LOF/GOF evidence was

available; whereas the selection of the 15 lineage markers was

determined by expert curation. The network nodes represent 15 of

the mostly well-studied pluripotency TFs and 15 of the most

established early differentiation lineage markers. The selected

factors also have phenotypic evidence that is important for

sustaining normal mESC functions based on cell phenotype

profiling after knockdown or over-expression. In addition most of

the 15 selected pluripotency factors are well studied where some

also were shown to play central role in iPSC reprogramming. The

15 lineage markers were selected to be the most established

markers with having a relatively even representation for each

lineage. The list of studies and the criteria used for inclusion of

network nodes are described in Table S1. The initial network

created from the high-content studies had few links with

conflicting signs. These conflicting signed links were resolved by

citing specific publications from the literature (Table S2). The final

network contains 30 nodes, 106 links, 10 positive auto-regulatory

feedback loops, as well as 26 positive and 13 negative other

feedback loops (Figure S1).

Measuring gene expression in single cells
The 30-node pluripotency network described above can suggest

some novel regulatory mechanisms governing mESCs regulation.

However, the directed and signed graph representation still lacks

crucial regulatory information. Specifically, the transition func-

tions (logic gates) that tie the activity of each node to the activities

of its upstream regulators are not specified. In other words, the

representation does not provide information on how the combi-

natorial state of upstream parent nodes determines the expression

and activity of a given downstream node. The coding of

transcriptional regulation to Boolean logic gates is a mathematical

idealization and abstraction of the complex biochemical processes

of transcriptional regulations. As such, a Boolean model can

capture the essence of the regulatory relationships but may still

lose important details. In addition, the network was created from

data collected in different laboratories, under different experi-

mental conditions and over different time scales. Moreover, all

Author Summary

For this study we first constructed a directed and signed
network consisting of 15 pluripotency regulators and 15
lineage commitment markers that extensively interact to
regulate mouse embryonic stem cells fate decisions from
data available in the public domain. Given the connectivity
structure of this network, the underlying regulatory logic
was learned using single cell gene expression measure-
ments of mESCs cultured in two different conditions. With
connectivity and logic learned, the network was then
simulated using a dynamic Boolean logic framework. Such
simulations enabled prediction of knockdown effects on
the overall activity of the network. Such predictions were
validated by single and combinatorial RNA interference
experiments followed by expression measurements. Final-
ly, lineage specification outcomes upon single and
combinatorial gene knockdowns were predicted for all
possible knockdown combinations.

Regulatory Network of Embryonic Stem Cells
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data were from bulk populations of mESCs and there is evidence

for cell-to-cell heterogeneity in mESCs [15,16]. Hence, some links

may be inaccurate, missing, or present in different contexts in

individual cells, or in certain subpopulations. We therefore

attempted to refine the network topology by learning the transition

functions regulatory logic, and as a result enhancing the

information about the network links based on gene expression

measurements in single mESCs.

Expression levels were measured using the Fluidigm micro-

fluidic quantitative RT-PCR platform for single cell gene

expression profiling [17]. In those experiments the expression of

96 genes was measured in 96 individual cells, including the 30

genes/nodes in the network assembled from ESCAPE (Figures 2,

3, and S2). The remaining 66 genes measured in single cells

represent early differentiation markers and controls (Table S3).

Measuring 96 individual genes in 96 single cells is a much more

direct method to learn the regulatory logic of the pluripotency

network. Analysis of data collected from a combined bulk of cells

across a set of samples is less direct than single cell data because

the regulatory relationships are masked by population averages.

Two culture conditions were employed, +serum/LIF (serum/LIF)

and –serum/+2i/LIF (2i/LIF). Serum can be a source of

variability and with serum-free 2i media, two pharmacological

inhibitors targeting the kinases MEK and GSK3b are sufficient to

maintain pluripotency [18]. Both conditions benefit from the

inclusion of LIF. However, it is still not completely clear how such

variable conditions alter the connectivity of the core transcrip-

tional network that maintains pluripotency. The various condi-

tions when compared can give us clues about the required core

circuitry that is needed to maintain pluripotency [19], as well as

the subtle differences that are expected to exist between

conditions, particularly at the single cell level.

Heterogeneous gene expression could arise from stochastic

fluctuations or from natural global fluctuations in the pluripotent

state [20]. As expected, a comparison of gene expression

heterogeneity using indicator dispersion indices revealed less

heterogeneity in the 2i/LIF condition as compared to serum/

LIF (p,1025, one-tailed paired t-test, Figure S2). This can be seen

in the generally narrower distributions for most mRNAs in the 2i/

LIF condition (Figure 2). Our results show that Nanog and Zfp42/

Figure 1. Signed and directed network extracted from ChIP-seq and knockdown or over-expression followed by genome-wide
expression. Edges are established where there is evidence for transcription factor binding to the gene proximal region and also change in
expression after knockdown or over-expression. The 15 pluripotency nodes are color coded in light blue, and the lineage markers are color coded for
the four major early differentiation lineages. Red diamond-heads denote inhibition and black arrowheads denote activation. Dashed lines connect
pluripotency regulators to lineage markers and solid arrows connect pluripotency regulators to other pluripotency regulators.
doi:10.1371/journal.pcbi.1003777.g001

Regulatory Network of Embryonic Stem Cells
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Rex1 expression is more homogeneous in the 2i/LIF condition

compared with the serum/LIF condition, consistent with a

previous study [21]. More globally, with the exception of Tbx3,

Fgf5 and Otx2 (highlighted in bold and blue in Figure S2), gene

expression patterns are generally similar in the two conditions in

terms of expression distributions (Figure 2). In agreement with

previous observations, the 2i/LIF media stimulates the Wnt

pathway, known to regulate the expression of Otx2 and Fgf5
[22,23]. Also, certain lineage-specific genes, namely Fgfr2, Gata4,

T, Gata6, Hand1 and Ncam1 display overall lower expression

levels in 2i/LIF (Table S5). To address the possibility that these

observations may be unique to the type of mESCs we used in our

experiments, we compared the Esrrb expression level distribution

to data from another study [24] (Figure S2 and Text S1). In both

cases, Esrrb mRNA levels are bi-modal and similarly distributed in

single cell populations. In addition, we demonstrated previously

that Esrrb protein levels are comparable in the mESCs we used

and wild-type cells [25]. Since the distribution of Esrrb mRNA

expression is similar in the Esrrb removed (Esrrb_R), CCE and

Nanog removed (Nanog_R) mESCs using the same Fluidigm

BioMark platform, we believe that Esrrb levels are well controlled

in the Esrrb_R cell line and the results can be generalized to wild-

type mESCs.

Importantly, single cell expression profiles show bimodal

distributions for numerous genes (Figures 2 and S2). Therefore,

we reasoned that a Boolean framework for learning the underlying

network regulatory logic by assigning values of 1 or 0 to high or

low expression states, respectively, was a valid initial approach.

Boolean modeling of gene-regulatory networks had first been

proposed in the late 1960s [26]. Recently this approach regained

popularity with the availability of more detailed systems level

experimental data and networks [27]. In order to implement a

Boolean representation, continuous Ct-value mRNA expression in

single cells were converted to binary values (1 or 0) using a single

K-means clustering step for all genes with K = 2 (Figure 3A-B and

Figure S2). Delta Ct-values are used instead of the exponential of

the delta Ct since this way it is more convenient for binarization.

Hierarchical clustering of continuous (Figure 3C–D) and binarized

Figure 2. 30 mRNA gene expression measurements in 96 single mESCs cell using the Fluidgm single cell microfluidic device.
Histograms of gene expression Ct-values from RT-PCR data collected from single mESCs in +serum/LIF (serum/LIF, blue) and -serum/2i/LIF (2i/LIF,
red). Ct-values were normalized using the housekeeping gene Gapdh. x-axis represents -DCt values and y-axis represents the percentage of total cells.
Alpha blending is used to show the results from the other condition for clearer visual comparison.
doi:10.1371/journal.pcbi.1003777.g002

Regulatory Network of Embryonic Stem Cells
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Ct-values (Figure S2) of the 30 network gene-products across the

96 cells show that there are no distinct single cell states but rather a

level of variability across most cells. We actually expected to

observe distinct subpopulations that represent few cell states. The

bimodality in single cells has been observed before for single genes

and the theory of having few distinct subpopulations is attractive

from a modeling perspective. Yet the results confirm the

bimodality of gene expression but not the idea of few distinct

Figure 3. (A-B) Plots of normalized Ct-values partitioned into two clusters. (C–D) Hierarchical clustering of gene expression in single mESCs
using normalized Ct-values from RT-PCR data measuring levels of 15 pluripotency genes (orange) and 15 lineage-specific genes (purple) in 96 cells
cultured in serum/LIF (C) and in 2i/LIF (D). The x-axis represents individual cells and the y-axis represents genes. Yellow represents ‘high’ and blue
represents ‘low’ levels of gene expression. (E–F) Association of 30 genes based on gene expression in single mESCs cultured in serum/LIF or 2i/LIF.
Numeric values in the color bars represent the distance score calculated as 1 – Pearson-Correlation Coefficient (PCC). Average-linkage, Euclidean-
distance-based hierarchical clustering was performed the gene expression data.
doi:10.1371/journal.pcbi.1003777.g003
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subpopulations within mESCs. Such variability may be associated

with differentiation priming, perhaps to distinct lineages depend-

ing on the exact constellation of ON and OFF regulatory nodes in

single cells. Priming toward different lineages is supported by the

observation that lineage marker genes of the same lineage cluster

together due to their high correlation coefficients of expression

across the 96 single cells (Figure 3E–F). For example, the ectoderm

marker genes Rai1, Ncam1 and Otx2 form a cluster and the

trophectoderm marker genes Tead4, Hand1, Eomes and Cdx2
form another cluster.

Figure 4. Learned Boolean networks. (A–B) Networks with learned Boolean logic transition functions consisting of 30 genes/proteins. Learning
was achieved using the serum/LIF (A) or 2i/LIF (B) single cell data. Light cyan nodes represent genes; gray squares represent learned regulatory logic
transition functions. The shadowed inset box exemplifies one such learned transition function upstream of Gata6. The sign represents ‘NOT’, ‘

represents ‘AND’ and ~ represents ‘OR’ logic operators. Boolean functions for all genes are available in Supplementary Information. Links from
upstream parent nodes appearing in more than 90% of equally well-fitted Boolean functions are colored in green (activation) and red (repression).
Other links are not shown. Novel links that resulted from the learning process are highlighted in dark red. (C) Overlap between the networks learned
using data from mESCs cultured in serum/LIF or 2i/LIF. Links that are shared in the two conditions are in gray. Non-shared links are solid or dashed
based on their source (solid for serum/LIF and dashed for 2i/LIF).
doi:10.1371/journal.pcbi.1003777.g004
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Learning the regulatory logic functions inter-connecting
pluripotency components from single cell gene
expression measurements

To learn the Boolean transition functions upstream of each

network node, we applied an exhaustive symbolic search that is

limited to the AND, OR and NOT logic operators and

composition of these operators with the restriction of allowing

each input to feed into only one of gate [28]. Based on the network

topology extracted from the ESCAPE database and the single cell

data measured with the microfluidic device, we attempted to fit all

combinations of the three logic operators for each node given its

parental inputs. The learning process used the single cell mRNA

levels measured for each gene together with the original topology

extracted from the ESCAPE database to derive a truth table for

each Boolean transition function composed of AND, OR and

NOT operators (Figures 4, S3, and Table S4). We assumed that

single cell expression values reflect causal relationships between

upstream regulators and downstream targets. Allowing only AND,

OR and NOT gates, without nesting them, limits the search space

to make the computation sufficiently efficient. However, such

simplification may miss important biologically relevant Boolean

functions. For example, exclusive OR (XOR) gates likely exist

within mammalian cellular gene regulatory networks. In addition,

threshold Boolean functions, which are Boolean functions that

require at least several but not specific inputs to be active in order

to turn on the target output are also missed by our symbolic

search. The degeneracy of the possible functions listed in Table S4

suggests that such canalizing functions are likely present in the

pluripotency circuits and finding them may reduce the degeneracy

and complexity of the ensemble of dynamical Boolean models we

obtained. Although there can be many Boolean functions that fit

the same experimental observations, we attempted to find those

that are most consistent with the direction and sign of edges of the

network topology extracted from the ESCAPE database. For some

input/output relationships many Boolean functions satisfied the

input/output relationships (Table S4). For each gene, if no

consistent function emerged with the initial topology, we

performed a refinement process. The refinement process starts

by testing all possible transition functions using a single regulator,

sampling all possible regulators, then pairs and so on, until a

defined threshold of input/output agreement was reached. For

each gene, if no consistent function emerged, we performed the

pruning refinement step by systematically removing all parental

input links one-by-one and re-sampling all possible transition

functions. This refinement and pruning procedure was executed

recursively until a defined threshold of input/output agreement

was reached. Specifically, if none of the combinations of plausible

parents from the input network fulfilled the criteria, where is the

number of single cell expression vectors, the algorithm exhaus-

tively introduces single links from all the 15 pluripotency nodes. If

still no single reassigned of a parent can explain the behavior of the

downstream target by satisfying the criteria, we attempted all pairs

of parents. For only four nodes from the serum/LIF learned

network, and two nodes from the 2i/LIF learned network this

process was necessary (Table S4). Auto-regulatory interactions are

not considered in the dynamic Boolean models to keep the model

dynamics simple.

After learning, we obtained a large ensemble of Boolean

network models where, in some cases, many distinct transition

functions can satisfy the input/output relationships almost equally

well. The average number of feedback loops after sampling 100

network models and without considering auto-regulatory loops,

was 14.39, including an average of 9.38 positive and 5.01 negative

feedback loops (Figure S3). This number of feedback loops is

significantly lower than the 39 feedback loops found in the initial

network prior to learning the transition functions (p-value ,10265,

t-test). The initial topology of the network created from the

ESCAPE database has many more links than the pruned network,

after fitting this network to be in concordance with the single cell

data. The pruning and refinement step eliminates links iteratively,

from the original topology of the initial network, with the goal of

finding transition functions that are consistent with the original

topology as well as with the single cell data. We next enumerated

all feedback loops present in the sampled Boolean network models

and ranked positive and negative loops based on their occurrence

(Figure S3). The most common positive feedback loop in randomly

selected models is the mutual activation of the Oct4/Pou5f1 gene

by Nanog and the Nanog gene by the transcription factor Oct4/

Pou5f1; whereas, the most common negative feedback loop is the

activation of the gene Tcf3 by Oct4/Pou5f1 and the inhibition of

the Oct4/Pou5f1 genes by the Tcf3 transcription factor (Figure

S3).

While it is established that 2i/LIF can replace serum/LIF to

maintain the mESC ground pluripotency state [18], detailed

mechanisms responsible for culture-dependant similarities and

differences remain elusive. Comparing the networks learned from

both conditions, we found that the two networks re generally

consistent with 21 out of 30 nodes having exactly the same

connectivity. While the original topology of the serum/LIF and

2i/LIF networks is identical, during the pruning and refinement

stage, some links can be removed, sign switched or added to obtain

transition functions that are consistent with the single cell gene

expression data. Therefore, the connectivity of the learned serum/

LIF and 2i/LIF networks are slightly different from each other.

We observed differences in the predicted regulation of the genes

Klf4, Tbx3, Jarid2, Fgf5, Gata4, Hand1, Otx2, Gli2 and Ptpn11
(Figure 4). In addition, the regulation by the key TF genes Oct4/
Pou5f1, Nanog, Sox2, Esrrb and Tcf3 all showed some level of

difference when comparing the two conditions (Figure 4C). For

example, Nanog appears to be a positive regulator of Klf4 and a

negative regulator of Gata4 and Hand1 only in the 2i/LIF

condition, while appearing as a negative regulator of Fgf5 under

the serum/LIF condition. The family of learned Boolean functions

confirmed known regulatory interactions and identified new ones.

For example, Oct4/Pou5f1 is positively regulated by Sox2 and

Nanog, which is known [29–31]. In turn, these links are reinforced

by positive regulation of Sox2 and Nanog by Oct4/Pou5f1.

Furthermore, Esrrb was singled out as an activator of Klf4;

whereas before learning, Nanog was a second potential Klf4
regulator. Direct activation of Klf4 by Esrrb may explain the

ability of Esrrb to replace Klf4 for iPSC reprogramming [32].

Similarly, the repressive regulation of Nr0b1 (Dax1) by Tcf3 and

Sall4 was highlighted after refining the network topology with

single cell data. Based on out-degree centrality (direct targets per

TF), Oct4/Pou5f1 emerges as the master regulator of the entire

circuit (Table S6). This is not surprising since previous studies have

shown that Oct4/Pou5f1 has the strongest effect on gene

expression following its depletion in mESCs, and Oct4/Pou5f1

is the most critical factor for successful iPSC reprogramming

[25,29,33,34].

Four new interactions were suggested from the learned model

(dark red links in Figure S3). These are the inhibitory interactions

from Oct4/Pou5f1 to Hand1, Gata4 and Ptpn11, and a negative

link from Nr0b1 (Dax1) to Jarid2. Hand1 is associated with

trophectodermal commitment. The inclusion of an inhibitory link

from Oct4/Pou5f1 to Hand1 is consistent with the trophecto-

dermal phenotype observed after Oct4/Pou5f1 depletion [35]. In

addition, it has been reported that Oct4/Pou5f1 binds to Hand1

Regulatory Network of Embryonic Stem Cells
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and Gata4 promoters in hESCs [36]. We confirmed the repressive

effect of Oct4/Pou5f1 on Hand1, Gata4 and Ptpn11 expression

by depleting Oct4/Pou5f1 using two separate shRNAs followed by

RT-PCR (Figure S3). In addition, motif analysis revealed potential

Oct4/Pou5f1 binding sites within promoter regions of the three

genes (Figure S3). While such data suggest direct regulation by

Oct4/Pou5f1 for these genes, it is possible and still consistent with

the model, that there are additional unidentified intermediates.

Taken together, our results suggest that the learning framework

can identify new regulatory relationships that can be experimen-

tally validated. Although the network model topology does not

consider protein-protein interactions, the learning process auto-

matically captures functional relationships between multiple

pluripotency TFs that are also likely to physically interact. The

AND logic operator can indirectly suggest physical binding

interactions. Among the 20 known protein-protein interactions

that we have collected from prior studies that interconnect the 15

pluripotency regulators, 15 are supported by at least one AND

operator (Table S7A). This is a high over-representation compared

to random assignments of logic gates (p,0.001, one-tailed Fisher

exact test).

Conversely, we rank the protein-protein pairs connected by an

AND gate by their co-occurrence frequency in all learned Boolean

functions, among the top 10 ranked protein-protein pairs, 6 were

previously reported as interaction partners in large-scale inter-

actome studies and 4 were reported in low-throughput studies

(Table S7B). Therefore, the optimized network with the learned

logic functions is capable of predicting potential protein-protein

interactions between TFs. Nevertheless, an AND gate does not

necessitate a physical interaction between TFs. Since the top two

ranked AND relationships were not supported by direct physical

interaction studies, we decided to conduct a co-IP experiment to

test one of these, namely the interaction between Nanog and Sox2.

Nuclear extract from a mESC line expressing an epitope-tagged

Nanog was used to directly test this potential interaction (see Text

S1 and Figure S3). The results were negative, suggesting that

Nanog and Sox2 may not interact directly. This remains consistent

with the model because an AND gate only requires that two or

more TFs cooperate to regulate the same target genes by co-

binding to promoter or enhancer regions but those factors do not

have to physically interact.

Single and combinatorial in silico perturbations, model
dynamics and experimental validations

The refined 30-node network with the learned regulatory logic-

gate relationships can be used for dynamical Boolean simulations.

However, whether such simulations are predictive requires

experimental validation. To this end, we first performed in silico
and subsequently, experimental knockdowns of Esrrb, Oct4/

Pou5f1 and Nanog individually and in all possible double and

triple combinations (Figure 5A). The learned ensemble of Boolean

dynamical models was used to make predictions about the network

response to perturbations. Many Boolean networks consisting of

30 genes/nodes and a set of Boolean functions were sampled

randomly from all learned Boolean functions calibrated through

the learning workflow. Computational simulations were achieved

by forcing a node(s) into a stable OFF state. Starting with 100

random initial condition for each sampled network, step-wise

simulations were performed and the resultant stable values for all

network nodes (steady-state attractors) were obtained (Figure 5B,

Text S1). Technically, simulations were performed using discrete

Boolean dynamics with synchronous updating in 30 steps with 10

sampled networks, and 100 random initial conditions. In most

cases, steady states were reached within 3 to 9 simulation steps. In

the attractor space, on average 83% of the time there was a

dominant attractor that is achieved from the 100 random initial

conditions. We then performed the same knockdowns in mESCs

and measured alkaline phosphatase activities (Figure S4) as well as

changes in mRNA and protein levels to verify knockdown

efficiencies (Figure S4). Alkaline phosphatase (AP) is a pluripotency

stem cell marker, whereas loss of AP activity, as determined by the

AP assay, is used to access differentiation of mESCs. We also

measured the expression levels of the 30 network genes/nodes

using RT-PCR in bulk mESC population, with each experiment

performed in duplicate (Figure 5C). To compare the binary

vectors from the in silico perturbations to continuous experimental

Ct-values representing the mRNA levels in the cell population, we

calculated post-knockdown gene expression changes relative to the

unperturbed condition from both simulations and experiments

(Figure 5B–D). A logistic function (see Text S1) was used to

compute the consistency between the predicted and measured

expression changes, including fold-change magnitudes (Figure 5D,

Table S8). Overall, experimental measurements following single or

combinatorial knockdowns showed significant agreement with the

in silico predictions (p-value ,10215 compared to a random

predictor, see Text S1 for more details) (Figure 5D).

All single and combinatorial in silico as well as experimental

knockdowns repressed some but not all core pluripotency

components and activated selective differentiation markers con-

sistent with published experimental results [25,37,38]. In addition,

in silico simulations showed that knocking down Oct4/Pou5f1 has

the most significant effect, in agreement with previous experimen-

tal results [25,29,33,34]. However, our dynamical model is

unsuccessful in predicting the correct activity values for Cdx2,

Fgf5, Tcf3 and Zfp281 for various knockdown conditions. We

adopted an alternative strategy to resolve these conflicts by

utilizing all data sources to train the model: 1) the initial network

topology; 2) the single cell gene expression measurements; and 3)

the measurements of the network components after the various

knockdowns. The re-learning process resulted in re-wired logic for

Cdx2 and Fgf5 that resolved the conflicts for these two nodes

(Figure S4G–H). For Tcf3 and Zfp281, the re-learning process did

not improve the predictions. It is possible that additional upstream

regulators are required to explain these discrepancies. For

example, Tcf3 may be differentially regulated by the b-catenin/

Wnt signaling pathway in mESCs. Alternatively, Tcf3 and Zfp281

could be differentially regulated in mESCs depleted of Oct4/

Nanog/Esrrb. The inconsistent behavior of Tcf3 in the model

versus the empirical observations in our experiments is intriguing.

The model predicts that knockdowns of Oct4/Nanog/Esrrb

would down-regulate Tcf3. However, experimental knockdowns

resulted in up-regulation of this factor. Increased Nanog and Oct4/
Pou5f1 expression after Tcf3 depletion was previously reported

[39]. Down-regulation of Tcf3 following depletion of Oct4/

Pou5f1 or Nanog has also been demonstrated [40]. The latter

result is consistent with our in-silico predictions while the former is

not. Training the model with single cell data assumed concordance

between mRNA levels and TF activities. For Tcf3 and Zfp281 this

assumption may be incorrect. Indeed, in our previous studies after

depletion of Nanog, we observed significant discordances between

mRNA and encoded protein levels [41]. In addition to the Nanog,

Oct4/Pou5f1 and Esrrb single and combinatorial knockdowns we

also depleted Jarid2 and observed significant agreement between

predicted and experimental results (Figure S4).

Next, we asked if prediction accuracy is mostly the result of

calibrating the initial network topology with the single cell data, or

if it is already largely embedded in the topology extracted from the

ESCAPE database, with the single cell data contributing only
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minor tuning. To address this question, we randomly and

sequentially flipped binary single cell gene expression values or,

similarly reassigned network links from ESCAPE (see Text S1).

We demonstrate this methodology using a toy network with

simulated data (Figure S7). Given any directed network and single

cell gene expression data (Figure S7), the regulatory logic can be

learned. Then, when in-silico knockdowns are performed,

computational knockdowns can be compared with experimental

knockdowns. Each entry in the comparison heatmap was

calculated as 1 – discordance-score. Note that the score didn’t

reach 100 despite the ideal example, due to the logistic function

used. Both shuffling single cell values, or links from the original

Figure 5. Comparison between computational in silico and experimental knockdowns followed by expression measurements. (A)
Design of in silico and experimental knockdowns. (B) Simulation results of computational knockdowns. Red represents up-regulation, blue represents
down-regulation and white represents no change with regards to the unperturbed condition. (C) Results of experimental knockdowns followed by
mRNA measurements of all network nodes, where each experiment was repeated twice. Colorbar illustrates log-scaled fold-change. Red represents
up-regulation and blue represents down-regulation with regard to the unperturbed condition. (D) Comparison of computational and experimental
knockdowns (see Text S1). Colors correspond to discordance score defined in the objective function in the supplementary material. Concordant
results are colored in yellow while discordant results are colored in blue with gradients representing the degree of (dis)agreeability.
doi:10.1371/journal.pcbi.1003777.g005
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topology of the network, reduced the predictive power of the

model to approximately equal extents, demonstrating that both

sources of data contribute to prediction accuracy (Figure S4).

Because the predictions obtained from the dynamical model are

generally reliable, we simulated all possible single or combinatorial

knockdowns to predict mESC lineage commitment outcomes

(Figure 6, Text S1). The 15 lineage-specific markers in the

network may be limited and biased because lineage specification

involves more genes. Therefore, we linked the simulated

knockdowns to a larger set of 40 lineage marker genes (Text S1).

We compared predictions that are based on the resultant state of

the network core components after simulated knockdowns, with

predictions that are based solely on the additive effect of the direct

targets of individual and combinations of TFs without simulations.

Interestingly, predictions made through the Boolean modeling

approach were more consistent with lineage commitment knowl-

edge compared with the direct TF target-based predictions; for

example, forcing Oct4/Pou5f1 into a stable OFF state in our

dynamical model results in more pronounced predicted trophec-

todermal differentiation when compared with predictions that are

based solely on Oct4/Pou5f1 target genes. Trophectoderm

induction after Oct4/Pou5f1 depletion is well-established [42].

We also examined lineage marker gene levels after depleting Esrrb

or Jarid2. For Esrrb, simulation-based predictions were more

consistent with experimental data showing greater effects on

neuroectodermal than trophectodermal or mesodermal differen-

tiation. In the case of Jarid2, both simulation-based and direct

targets lineage predictions were consistent with our experimental

observations which point to primitive endoderm differentiation

(Figures 6 and S5). Overall, the Boolean model appears to resolve

indirect effects of TFs on lineage commitment. The model may be

most useful for prioritizing combinations of knockdowns not easily

tested in high-throughput.

Consensus and unique interactions across four learned
models and two culture conditions

Finally, we constructed two additional dynamical models

learned from two recently published single cell gene expression

datasets collected from CCE and Nanog removed (Nanog_R)

mESCs using the same Fluidigm platform in the same laboratory

[43]. To compare the four dynamical models constructed from the

various types of mESCs we counted unique and shared regulatory

interactions (Figure S6). Interestingly, we identified 41 unique

interactions present only in one model under one condition, and

13 consensus interactions shared by all four models and

conditions. In addition, among all the learned interactions from

the four models, there are 42 interactions that appear in 3 out of 4

models, and 62 interactions that are found in 2 out of 4 models.

Hence, on average each model contains ,10 unique interactions

and ,40 interactions shared by at least one another model. One of

the consensus interactions is Nanog regulation of Zfp281,

reinforcing the importance of this interaction. Likewise, Oct4/

Pou5f1 consistently positively regulates Zfp42/Rex1 and Sall4.

Intriguingly, the positive feedback loop between Oct4/Pou5f1 and

Sox2 exists in all models in serum/LIF but not in 2i/LIF,

suggestive of culture-specific regulatory interactions. Other differ-

ences can stem from cell-line differences, differences in the times

the experiments were conducted, as well as instrument noise.

Overall we consider the agreement among all 4 models to be

relatively robust.

Conclusions and summary
For this study we first developed a directed and signed network

consisting of 15 pluripotency and self-renewal regulators

connected to 15 lineage marker genes. We then learned the

underlying regulatory logic among network components utilizing

single cell gene expression data. Gene expression in single cells

uncovered some differences in mESCs cultured under serum/LIF

versus 2i/LIF conditions. Characterizing such culture-dependent

differences is important for understanding the enhanced iPSC

reprogramming efficiency in the 2i/LIF condition [44]. Expres-

sion in single cells was found to be mostly bimodal and this fits well

with a Boolean modeling framework. The utility of such Boolean

modeling approach is the ability to perform predictions of network

behavior after in silico perturbations, and the ability to control and

constrain the free parameter space. The consistency such in silico
perturbations were compared to experimental combinatorial

shRNA perturbations. The good agreement between the model

and the experimental validation suggest that the model does

capture some of the real dynamics of the pluripotency and self-

renewal circuit. Nevertheless, many challenges remain. Our model

is binary, with genes and their products merged into single nodes

assuming a direct correlation between TF activity and mRNA

expression. We observed such correlations for Nanog, Oct4/

Pou5f1 and Esrrb (Figure S4), but for other TFs this may not be

the case. Furthermore, while there is ample evidence describing

how pluripotency TFs regulate lineage-specific genes, little is

known about lineage regulator-mediated suppression of the

pluripotency circuit. In addition, gene expression is controlled by

protein complexes and epigenetic modifications not explicitly

incorporated into the Boolean model. Integration of TFs, histone

modifications and DNA methylation may result in a more

complex model but also such model will be more accurate and

revealing [45]. Nevertheless, rapid progress in the field indicates

that we will gradually be able to obtain more refined and dynamic

view of pluripotency, self-renewal, lineage-specific commitment

and differentiation, as well as better understand the process of

iPSC reprogramming. Such views will enable the realization of

pluripotent cell-based applications in regenerative medicine.

Methods

Cell culture and single cell RT-PCR analysis
The Esrrb_R rescue cell line was derived from AINV-15 ESCs

and cultured as previously described [25] in ESC media

containing doxycycline (1 mg ml-1 Sigma). CCE mESCs are one

of the first established stem cell lines [46]. They are derived from

the 129/Sv mouse strain. All cells used in these experiments were

under passage 80. Serum-free ESC cultures were performed as

previously described [47,48]. Briefly, cells were maintained

without feeders in serum-free N2B27 media prepared as described

[47] and supplemented with LIF (Chemicon, Millipore) and 2i

inhibitors [18]. The two inhibitors (Stemgent) block GSK3b,

(CHIR99021; 3 mM) and MEK1/2 (PD0325901; 1 mM). All

cultures were maintained at 37uC with 5% CO2. Inventoried

TaqMan assays (206, Applied Biosystems) were pooled to a final

concentration of 0.26 for each of the 96 assays. Single Esrrb_R

cells expressing both GFP and SSEA-1 were FACS-sorted directly

into 10 mL RT-PreAmp Master Mix (5.0 mL CellsDirect 26
Reaction Mix, 2.5 mL 0.26 assay pool, 0.2 mL SuperScript III

RT/Platinum Taq Mix from the (CellsDirect One-Step qRT PCR

Kits, Invitrogen) and 1.3 mL TE buffer. Cell lysis and gene-specific

reverse transcription were performed at 50uC for 20 min. Reverse

transcriptase was heat-inactivated for 2 min at 95uC. Subsequent-

ly, single cell cDNA was pre-amplified using a multiplexed, target-

specific amplification protocol (denaturation at 95uC for 15 sec,

and annealing and amplification at 60uC for 4 min for a total of 18

cycles). Pre-amplified products were diluted 5-fold prior to
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amplification using a Universal PCR Master Mix and inventoried

TaqMan gene expression assays (Applied Biosystems) in 96696

Dynamic Arrays on a BioMark System (Fluidigm). Amplification

included a 10 min, 95uC hot-start followed by 40 cycles of a two-

step program consisting of 15 sec at 95uC and 60 sec at 60uC. Ct-

values were calculated using BioMark Real-Time PCR Analysis

Software v2.0 (Fluidigm). Values greater than 35 were considered

non-detectable and recorded as 35.

Short hairpin (sh)RNA design and plasmid construction
Gene-specific 19nt shRNAs were designed based on a

previously described algorithm using an in-house Perl script

[49]. All shRNA sequences were BLASTed to ensure specificity.

Synthesized oligomers were annealed and ligated into the

pSuper.puro vector (Oligoengine). To make the Oct4/Nanog/

Esrrb combinatorial shRNA constructs, ClaI-XhoI sites were used

to insert H1-shRNA cassettes digested with BstBI-XhoI. The

shRNA encoding sequences are: Oct4– GAAGGATGTGGTTC-

GAGTA (shRNA_#1) and GCGAACTAGCATTGAGAAC

(shRNA_#2), Nanog– GAACTATTCTTGCTTACAA, Esrrb–

GATTCGATGTACATTGAGA and Jarid2 – TCACTGTCC-

TCCCAAATAA.

Cell culture and transfection
Mouse CCE ESCs were cultured feeder-free on 0.1% gelatin-

coated plates in ESC media (Dulbecco’s modified Eagle’s medium

(DMEM; Hi-Glucose), 15% fetal bovine serum, non-essential

amino acids, L-glutamine, b-mercaptoethanol, penicillin/strepto-

mycin, sodium pyruvate and LIF (Millipore). Serum was

purchased from HyClone. This serum is embryonic stem cell

qualified and therefore does not require heat inactivation. The

specific lot of serum was rigorously tested to ensure robust

Figure 6. Computational in silico knockdowns of all possible single and double perturbations linked to predicted lineage
differentiation outcomes. (A, C) Predicted lineage specification based on dynamical model simulations. (B, D) Lineage predictions based on direct
effects of knockdowns. Predictions are based on differentially expressed genes from LOF studies and promoter binding of transcription factors to
differentially expressed genes based on mESC ChIP-chip/seq studies from the ESCAPE database.
doi:10.1371/journal.pcbi.1003777.g006
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self-renewal with little spontaneous differentiation as assessed by

mESC morphologies and alkaline phosphatase staining. All cell

cultures were maintained at 37uC with 5% CO2. Gene-specific or

scrambled shRNA constructs, the GFP-shRNA construct and

empty vector (all 3 ug) were transfected using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions. Trans-

fected cells were selected for 48 hrs. in puromycin (1.5 ug/ml).

Mock transfections resulted in no surviving cells after selection.

Real-time quantitative PCR
Total RNA was Trizol-extracted (Invitrogen), column-purified

with RNeasy kits (Qiagen), and reverse transcribed using the High

Capacity reverse transcription kit (Applied Biosystems). All

quantitative PCR analyses were performed using the Fast SYBR

Green Master Mix (Applied Biosystems) following the manufac-

turer’s protocol on the LightCycler480 Real-Time PCR System

(Roche). Each PCR reaction generated a specific amplicon, as

demonstrated by melting-temperature profiles (Dissociation Curve

analysis). No PCR products were observed in the absence of

template. Data were normalized to Gapdh and represented relative

to empty-vector transfected controls. Primer sequences are

available in Table S9.

Western blot analysis
Cells were scraped/trypsinized, washed in PBS and incubated

for 20 min in cold RIPA buffer without SDS. Protein concentra-

tions were determined using Bradford Dye (Bio-Rad). Total

proteins (,10 ug) were separated on SDS–PAGE gels and

transferred to PVDF membranes (Millipore). Membranes were

probed with specific primary antibodies followed by HRP-

conjugated secondary antibodies and developed with ECL

(Amersham). Primary antibodies were: Oct4 (sc9081, Santa Cruz),

Nanog (A300-398A, Bethyl), Actin (sc1615, Santa Cruz), Sox2

(sc17320, Santa Cruz) and Esrrb (300–748, Novus Biologicals).

Amido-black was used to detect core histones. Quantification of

protein bands was performed using Adobe Photoshop. Relative

protein level differences were calculated by normalization to actin

levels and shown relative to empty-vector transfected sample.

Alkaline phosphatase staining assay
An alkaline phosphatase detection kit (Stemgent) was used to

measure activity according to the manufacturer’s instructions.

Signed directed network assembly
From the ESCAPE database, a network containing 15 core

pluripotency and 15 lineage-specific components was extracted.

Arrows were established if there was evidence for binding of a

specific TF to a target gene from mESC ChIP-chip/seq studies as

well as a change in target gene expression level after loss-of-

function (LOF) or gain-of-function (GOF) of the same TF in

mESCs. We applied a majority-voting function giving more weight

to LOF than to GOF evidence and binarized the output as either

activation (+1) or inhibition (21) using the sign function:

aij~sgn
X

k

Elof (i, j)z0:6|
X

p

Egof (i, j)

 !
|Iij ð1Þ

Where Elof i, jð Þ is 1 for activation or 21 for inhibition

according to the kth LOF study where gene i is depleted by

RNAi or deleted by homologous recombination. Egof i, jð Þ is 1 for

activation or otherwise 21 for inhibition according to the pth GOF

study where gene i is over-expressed. Iij C with value 1 if there

exists at least one protein-target gene promoter binding interaction

connecting transcription factor i to target gene j from ChIP-chip/

seq studies and 0 otherwise. A few links (8 out of 450 potential

interactions) were manually refined in cases with contradictory

evidence using information from small-scale functional studies

(Table S2).

K-means clustering
Experimental data from the Fluidigm platform measure

transcript abundance of up to 96 genes analyzed in 96 single

cells. Ct-values were normalized to the housekeeping gene Gapdh
levels in each cell and converted to binary values (1 for high

expression and 0 for low expression) using K-means clustering

with K = 2 (MATLAB, Bioinformatics Toolbox). Histogram

curves for normalized Ct-values were smoothened using the

Kernel smoothing algorithm (MATLAB, Statistics Toolbox).

Hierarchical clustering for binarized and continuous expression

levels of the 30 network genes in 96 individual cells were

hierarchically clustered using the average-linkage clustering

algorithm (MATLAB, Bioinformatics Toolbox).

Dynamical simulations and comparison between in silico
and experimental knockdowns

The calibrated network inferred from the Boolean-function-

learning-process is simulated using discrete Boolean dynamics with

synchronous updating and the learned Boolean functions. An

expression pattern y is defined as a state vector 0,1f gn
where ytz1

is determined by yt with the underlying Boolean functions as

follows: ytz1 við Þ~fi yt vi1ð Þ, . . . ,yt vikð Þð Þ. One Boolean network

consisting of 30 genes and a set of Boolean functions is sampled

randomly from all learned Boolean functions calibrated through

the learning workflow. For each in silico simulation setting, 10

networks were sampled and the gene status (0 or 1) is recorded in

Bij for each gene i in condition j as follows: for each sampled

network p, 100 random initial conditions are evolved for 30 steps

in synchronous mode. We set the step of 30 since all networks can

reach steady states within a step of 30 in our case. In silico
knockdowns are achieved by forcing gene(s) to the ‘OFF’ state all

the time while recording the final state of the Boolean network.

Each final state, as denoted by an attractor at is recorded with

weight wt based on the size of its basin (defined as the set of initial

states that lead to an attractor). Since a network can reach multiple

steady states with certain probabilities, we weighted each stable

state at by the probability of being in that particular state wt. Thus

the final binary state of each gene i in each condition j for a

sampled network p is determined by bijp~

1if
P

i

aitwtw0:5

0 if
P

i

aitwtƒ0:5

8<
: ,

where ait denotes the state of gene i in attractor t and wt is the

weight of attractor t. Then Bij for 10 sampled networks is

calculated as follows:

Bij~

1 if
1

10

X10

p~1

bijp

 !
w0:5

0 if
1

10

X10

p~1

bijp

 !
ƒ0:5

8>>>>><
>>>>>:

:

The formula for calculating the discordance score dij for gene i

in condition j between simulation and experiment is as follows:
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dij~
1

1ze{t
,

t~

{abs(DDCTij), if DBij|DDCTijw0

abs(DDCTij){1, if DBij|DDCTij~0

abs(DDCTij), if DBij|DDCTijv0

8><
>:

Where abs .ð Þis absolute value function; DBij

expression change for gene i in condition j relative to unperturbed

condition under in silico simulations, with values from {1,0,1f g
representing ‘down-regulation’, ’no-change’ and ‘up-regulation’,

respectively; DDCTij reflects log2 fold-change of gene expression

in knockdown mESCs relative to empty-vector transfected controls

measured by RT-PCR, with negative values representing ‘up-

regulation’ and positive values representing ‘down-regulation’. As

the logistic function is monotonically increasing, larger value of t
would result in larger discordance score.

Quantifying agreement between experimental results
and simulations results of networks learned from
randomized single cell data/network topology

Single cell expression data are gradually randomized by flipping

data points with a certain percentage a. The topology of the

network is randomized by rewiring a percent links represented as

entries in the adjacency matrix underlying the 30 node network

extracted from the ESCAPE database. An objective function L is

defined to quantify the error between in silico knockdown

simulations and the experimental results. L að Þ~
P

i

P
j dij , where

dij is the same discordance score defined above. Relative accuracy

is defined as 1{
L að Þ

#

� �
|100%. For each

Statistical significance of model prediction accuracy
Mean discordance scores across all genes and perturbation

conditions (3067 = 210) from the model were compared to

prediction results with a random predictor. This is a simple

predictor with outputs randomly chosen from 21, 0 or +1

representing ‘down-regulation’, ‘no change’ or ‘up-regulation’,

respectively. A total of 500 random M3067 matrices were

generated using the random predictor. Rows represent genes

and columns represent perturbation conditions. Individual mean

discordance scores were calculated for each of the 500 random

matrices. A one-sample t-test was performed to test the null

hypothesis that the random sample mean is equal to mean

discordance scores from the model.
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