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Abstract

Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time.
Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to
DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs,
giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory
interactions between TFs. Computational studies have linked several topological properties of TFNs — such as their degree
distribution — with the robustness of a TFN’s gene expression phenotype to genetic and environmental perturbation.
Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of
edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an
assortativity signature. We know very little about how a TFN’s assortativity signature affects the robustness of its gene
expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a
TFN’s assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently
limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether
these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the
assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to
measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs
share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we
determine the extent to which each of the four components of the assortativity signature contributes to this robustness.
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Introduction

Cells are capable of expressing specific subsets of their gene

complement in a coordinated fashion, leading to stable gene

expression phenotypes. Such gene expression phenotypes may, for

example, characterize the differentiation stage of a cell [1] or a

cell’s ability to thrive under specific environmental conditions [2].

The spatiotemporal regulation of gene expression is thus an

important means by which cells cope with their surroundings, and

is also instrumental in the processes driving organismal develop-

ment [3].

Transcription factors (TFs) constitute one means by which this

regulation is carried out. TFs are proteins that bind DNA to

regulate the expression of their target genes. Since some of the

targets are themselves TFs, the resulting cross-regulation forms a

transcription factor network (TFN). In a TFN, an edge A ? B
exists if the protein product of TF-A regulates the expression of the

gene that encodes TF-B [4]. TFNs are responsible for metazoan

developmental programs, such as the development of skeletal

muscle [5] and the formation of the retina [6]. They are also

involved in generating oscillatory gene expression patterns, such as

those that drive the cell cycle [7] and the mammalian circadian

clock [8]. TFNs have been studied across a range of organisms,

including the bacterium Escherichia coli [9], the yeast Saccharo-
myces cerevisiae [10], the sea urchin Strongylocentrotus purpuratus
[11], and human [12,13]. The characterization of transcriptional

regulation as TFNs has enabled researchers to implement a host of

analytical tools from network science. In particular, the topology of

TFNs has been the subject of work seeking a greater understand-

ing of how the structure of a TFN affects its function [14], and

likewise how evolution may [15] or may not [16] mold its

structural properties.

In conjunction with such analyses, there have been a number of

theoretical studies linking the topology of TFN models with the

robustness of their gene expression patterns (phenotypes). For

example, both increased modularity [17] and a heavy-tailed

degree distribution [18] have been shown to confer robustness to

genetic mutation and environmental noise. Furthermore, evolu-

tionary processes can alter the robustness of a TFN model through

incremental changes in topology [19].
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Another topological property that has been linked to the

robustness of TFN models is degree assortativity. This is a measure

of the tendency for nodes with similar numbers of connections to

themselves be connected, where a strong tendency approaches the

value of 1 and the opposite tendency approaches the value -1 [20].

Theoretical work has shown that TFN models with increased

assortativity exhibit increased robustness to both mutation in cis-
regulatory sites [21] and to gene duplication [22]. This occurs

because increased assortativity may either shrink the average size

of nested subgraphs within the network (in-components) [21] or

increase the average number of regulatory links that separate TFs

(characteristic path length) [23], both of which tend to dampen the

phenotypic effects of mutations. This earlier work focused

exclusively on the assortativity of outgoing connections, referred

to as out-out assortativity, and thus the findings suggest that TFNs

are more robust when for some edge A ? B it is frequently the

case that TFs A and B regulate a similar number of targets.

However, because TFNs are directed networks where each TF

may have both incoming and outgoing connections, there are a

total of four types of degree assortativity that may be measured.

The other three types are referred to as out-in, in-out, and in-in

assortativity. Along with out-out assortativity, they convey

topological information about which TFs regulate which other

TFs, and it is an open question as to whether these types of

assortativity influence the robustness of TFNs to genetic perturbation.

These four types of assortativity have been measured for a

number of real-world directed networks, including online and

social networks, food webs, and linguistic networks [24], revealing

two striking trends. First, assortativity was found to deviate from

the null expectation in a manner specific to the type of networked

system being considered. Second, discipline-specific methods for

the modeling of these real-world networks did not always

recapitulate the observed assortativity, implying a gap in the

understanding of why certain networks are structured the way they

are. It is therefore possible that the four types of assortativity may

affect the dynamical properties of networked systems, such as

TFNs. However, little is currently known about the assortativity of

real-world TFNs.

In this study, we calculate the assortativity of 41 recently

elaborated human cell-specific TFNs [13]. We assess to what

extent the four assortativity values differ from those expected at

random, resulting in an assortativity signature for each TFN. We

then investigate the effects of common elements of these signatures

on the phenotypic robustness of TFN models to genetic

perturbation. Finally, we create a suite of artificial signatures to

further explore how the four different components of assortativity

contribute to phenotypic robustness.

Results

The Data
In order to address the question of whether human regulatory

networks have nonrandom assortativity, we chose to examine the

topology of 41 human cell-specific transcription factor networks

(TFNs) [13]. These TFNs were generated through genomic

footprinting [25]. This approach combines DNase I sensitivity

analysis with known TF-specific DNA binding motifs, and thus

enables the inference of a large number of specific TF-DNA

binding events. The 41 TFNs contain between 485 and 526 TFs

and between 8,821 and 18,348 directed edges (Table S1), where

an edge is defined as the inferred binding of a specific TF within

the cis-regulatory region of a gene encoding another TF. Inferring

the identity of the bound TF is made possible through the

recognition of known TF binding motifs. As an example, if there

were evidence that the cis-regulatory region of the gene encoding

TF-A is bound by the protein TF-B, then a directed edge from

TF-B to TF-A would be included in the TFN (Fig. 1).

Human Transcription Factor Networks Possess a Distinct
Assortativity Signature

We first computed each of the four assortativity values for all 41

human TFNs, and converted these values into their corresponding

Z-scores [24]. Each Z-score is defined as the difference between

the observed assortativity value for the TFN and the mean of its

null distribution, scaled by the standard deviation of its null

distribution (see Methods). The advantage of using Z-scores

instead of raw assortativity values is that they are directly

comparable across different TFNs, and convey the extent to

which assortativity deviates from the null expectation. The

assortativity Z-scores of the 41 human TFNs revealed a distinct

signature (Fig. 2). There are two notable features of this signature,

which we will refer to as the human signature. First, few of the

TFNs appear nonrandom with respect to in-out (7 of 41 TFNs) or

in-in (8 of 41 TFNs) assortativity. In contrast, nearly all the TFNs

display greater-than-expected out-in (40 of 41 TFNs) and out-out

assortativity (40 of 41 TFNs).

We then investigated whether the increased out-out assortativity

of human TFNs was associated with other nonrandom topological

properties, in particular average in-component (IC) size and

characteristic path length (L). The IC of a TF i is the set of TFs

that directly or indirectly regulate i, and average IC size has been

shown to be negatively correlated with out-out assortativity in

TFN models [21]. However, here we rarely observed smaller-

than-expected average IC size in the human TFNs (5 of 41 TFNs,

pv :05 computed from the null distributions; see Methods)

despite their increased out-out assortativity. In contrast, L (i.e., the

average length of the shortest directed paths between all pairs of

TFs) is positively correlated with out-out assortativity in TFN

models, specifically when average IC size is not smaller-than-

expected [23]. In line with this finding, we observed greater-than-

expected L in almost all of the human TFNs (39 of 41 TFNs,

Fig. 2).

Author Summary

The cells of living organisms do not concurrently express
their entire complement of genes. Instead, they regulate
their gene expression, and one consequence of this is the
potential for different cells to adopt different stable gene
expression patterns. For example, the development of an
embryo necessitates that cells alter their gene expression
patterns in order to differentiate. These gene expression
phenotypes are largely robust to genetic mutation, and
one source of this robustness may reside in the network
structure of interacting molecules that underlie genetic
regulation. Theoretical studies of regulatory networks have
linked network structure to robustness; however, it is also
necessary to more extensively characterize real-world
regulatory networks in order to understand which struc-
tural properties may be biologically meaningful. We
recently used theoretical models to show that a particular
structural property, degree assortativity, is linked to
robustness. Here, we measure the assortativity of human
regulatory networks in 41 distinct cell and tissue types. We
then develop a theoretical framework to explore how this
structural property affects robustness, and we find that the
gene expression phenotypes of human regulatory net-
works are more robust than expected by chance alone.

Assortativity of Human TFNs
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Figure 1. Constructing human transcription factor networks (TFNs) from genome-wide DNase I hypersensitivity profiles and motif
analysis. (A) The cis-regulatory regions of DNA directly upstream of the genes encoding hypothetical TFs (TF-A, TF-B, and TF-C) contain DNase I
hypersensitive sites that are accessible to protein binding. The evidence for binding events are the DNase I resistant footprints within the
hypersensitive sites. Although the identity of the protein that leaves a footprint is not directly observed, the recognition of a TF-specific DNA binding
motif enables the inference of which TF is bound at that footprint. In this hypothetical example, binding sites for both TF-B and TF-C are found within
footprints in DNase I hypersensitive sites upstream of the gene encoding TF-A. Therefore, TF-B and TF-C are inferred to be bound upstream of the
gene for TF-A. Likewise, TF-B and TF-C are bound upstream of each other’s genes. (B) These inferred binding events are represented as directed edges
in the TFN, i.e., B ? A, C ? A, C ? B, and B ? C. The dynamics of this TFN can be modeled using a Boolean framework, as follows. The state of
each TF is considered either off or on at any given time, and regulatory rules (shown here as truth tables) dictate the future states of TFs based on
their current states. (C) The regulatory rules for the entire TFN model is its genotype. (D) The states of all the TFs in the TFN model at a particular time
is referred to as its configuration at that time. Given an initial configuration, the configuration at each subsequent time point is updated according to
the genotype. The TFN model has a finite number of possible configurations, and the genotype synchronously and deterministically updates one to
the next. Therefore, the TFN model inevitably encounters an indefinitely repeating cycle of configurations, which represents the model’s phenotype.
doi:10.1371/journal.pcbi.1003780.g001

Assortativity of Human TFNs
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The Human Assortativity Signature Confers Robustness
to Dense Transcription Factor Network Models

Since the human TFNs possess topological properties that

include increased out-out assortativity and increased L, we asked

whether they also display increased phenotypic robustness in

response to mutation. To address this, we created random Boolean

networks [26] as TFN models to approximate the human TFNs

(Fig. 1B; see Methods). Due to the computational burden of

simulating individual phenotypes for TFN models as large as the

human TFNs (N§ 485), and the infeasibility of estimating

robustness for multiple phenotypes over thousands of large model

networks, we constructed more manageable TFN models with

N~ 30. TFN models of this size are: 1) small enough to provide

computational tractability, 2) large enough to uncover trends

between assortativity and model dynamics [21], and 3) recapitulate

the same trends seen in models with hundreds of nodes [22].

Although much smaller than the human TFNs, the models were

constructed with two important characteristics of the human TFNs

in mind. First, these TFN models incorporated the human

assortativity signature, taken as the average of all 41 signatures

observed for the human TFNs (Fig. 2). Second, their average IC

sizes were constrained to what would be expected by random

chance, since very few (5 of 41) human TFNs deviated from the null

expectation (Fig. 2). These two requirements produced TFN

models with above average L, as expected theoretically [23] and

observed in the human TFNs (Fig. 2).

We then estimated the phenotypic robustness, here referred to

simply as robustness, of the TFN models according to Pechenick et

al. [21] (see Methods). In brief, a random walk was conducted in

the space of possible genotypes for each TFN model, where the

Figure 2. Human transcription factor networks (TFNs) share a common assortativity signature. Z-scores for all four types of degree-
assortativity (out-in, in-out, out-out, and in-in) are plotted for each of the 41 human TFNs, grouped in panels by cell type [13]. The colored lines
connecting the four scores are provided as a visual representation of the assortativity signature of each TFN. Z-scores for characteristic path length (L)
are plotted separately from the assortativity signature as triangles. Z-scores for each TFN were generated by comparing the observed TFN to a null
distribution of 1000 randomly rewired TFNs (see Methods). A Z-score greater than 2 or less than -2 is considered significant.
doi:10.1371/journal.pcbi.1003780.g002

Assortativity of Human TFNs
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genotype is the set of regulatory rules that governs the timing of

TF expression in the model (Fig. 1C). This timing results in a

stable pattern of gene expression, which is regarded as the

phenotype of the TFN model (Fig. 1D). A single point mutation

within the genotype serves as a step in the random walk, and

corresponds to a perturbation in a gene’s cis-regulatory region,

such as a single nucleotide change that alters the affinity of the TF

that binds that region [27]. In our model, this translates to

changing a single, randomly chosen element of the genotype (from

0 to 1, or vice versa) without modifying network topology. Such a

change to a network’s regulatory logic may or may not affect the

gene expression phenotype. If the mutated genotype does not alter

the phenotype, then the step is considered successful and the walk

proceeds from the new genotype. Not all steps are successful (i.e.,
some steps perturb the phenotype), and the proportion of

successful steps serves as a measure of phenotypic robustness.

In this fashion, we compared TFN models that closely

resembled the human TFNs to random TFN models that were

constructed without considering assortativity or average IC size.

For less dense TFN models, we found that the human signature

did not confer robustness compared to random models (Fig. 3,

average out-degree �kkout[f1:3,2:0g). In contrast, dense TFN

models with the human signature displayed marked increases in

robustness over random models (Fig. 3, �kkout[f3:0,4:0g). Specifi-

cally, the average robustness increased by 9% and 25%,

respectively. Considering the increased out-out assortativity in

the human signature, each of these observations is consistent with

previous work which showed that the robustness of TFN models is

not closely related to out-out assortativity when �kkout is small, but is

positively correlated with out-out assortativity when �kkout is large

[21,22]. Given the large �kkout of the 41 human TFNs

(�kkout [ ½17:7, 35:5�), this suggests that the increased out-out

assortativity in the human signature contributes to increased

robustness. However, since the previously established link between

out-out assortativity and robustness does not take into account the

three other types of assortativity, these components of the human

signature must be evaluated explicitly for their respective influence

on robustness.

Out-Out Assortativity Is the Main Driver of Robustness
In order to address the question of how the various components

of the human signature influence robustness, we created TFN

models that approximate 81 different signatures. These signatures

were selected based on all possible combinations of less-than-

expected (Z~ {2), expected (Z~ 0), and greater-than-expected

(Z~ 2) Z-score values for each of the four components of an

assortativity signature (34 ~ 81; see Methods). For each �kkout, the

signatures were ranked by the average robustness of their TFN

models, and statistically compared to random TFN models

(Fig. 4).

Of the 81 signatures, the one that most closely resembles the

human signature consists of greater-than-expected out-in and out-

out assortativity, along with expected in-out and in-in assortativity

(Fig. 4, orange lines). For small �kkout, this signature displays

random or near-random robustness (Fig. 4, �kkout [ f1:3, 2:0g),
whereas for large �kkout, this signature displays increasing robustness

(Fig. 4, �kkout [ f3:0, 4:0g). This is evident in the robustness rank

of this signature, which rises from 37 to 20 (out of 81) asth th �kkout

increases. This is consistent with the observation that the human

signature becomes increasingly robust compared to random TFN

models as �kkout increases (Fig. 3). To qualitatively inspect whether

increased out-out assortativity plays a role in the robustness

rankings of the 81 signatures, Fig. 4 displays the signatures

ordered by their average robustness and highlights those with

greater-than- or less-than-expected out-out assortativity in yellow

or blue, respectively. As �kkout increases, the separation between

yellow- and blue-highlighted signatures becomes more pro-

nounced, with yellow occupying many of the top and blue

occupying many of the bottom rankings. This hints that as �kkout

increases, out-out assortativity becomes more influential in

determining robustness.

Figure 3. Dense TFN models that possess the human assorta-
tivity signature are more robust than random models. Z-scores
for the four types of assortativity are represented as signatures, as in
Fig. 2. The average human assortativity signature was computed from
the signatures of the 41 human TFNs, and is represented as a blue line.
For each average out-degree �kkout, 1000 TFN models (N~ 30) were
generated to approximate the human signature, and the resulting
signatures are shown as orange lines. For each TFN model, we
constructed 1000 randomly-rewired null models for computing Z-
scores. Box-and-whisker plots show the robustness for the 1000 TFN
models that approximate the human signature (orange) compared to
1000 random models (grey). For �kkout~ 2, p~ :002, and for all other
�kkout, p % :001 (paired t-test).
doi:10.1371/journal.pcbi.1003780.g003

Assortativity of Human TFNs
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To quantitatively assess how much influence each of the four

components of the assortativity signature exerts over robustness,

we employed simple linear regression. For each combination of
�kkout and assortativity type, the independent variable was the Z-

score of that assortativity type (Z [ f{2, 0, 2g), and the

dependent variable was the average robustness of the signature

(Fig. 5). The slopes of these linear models reveal to what extent

each component of the signature affects robustness. For all �kkout, in-

out assortativity maintains a strong negative influence over

robustness, and for small �kkout, it has the strongest effect on

robustness (Fig. 5, circles). However, as �kkout increases, out-out

assortativity has an increasingly strong positive influence over

robustness, and for �kkout~ 4 it is the component that exerts the

strongest influence (Fig. 5, triangles). Thus for dense TFNs, out-

out assortativity is the component of the signature that contributes

Figure 4. TFN models incorporating 81 different assortativity
signatures highlight out-out assortativity as driving the
robustness of dense TFNs. Each assortativity signature contains a
different combination of the four types of assortativity where
Z [ f{2, 0, 2g (34 ~ 81). We built 1000 TFN models for each
signature, and measured their robustness. Signatures in each column
are sorted top-to-bottom in decreasing order by the average
robustness of the 1000 TFN models. Faded signatures are not
significantly different from the average robustness of random TFN

models (paired t-test; significant Bonferroni-corrected pv

:05

4 | 81
).

Yellow highlights signatures where Zoutout~ 2 and blue highlights
signatures where Zoutout~ { 2. The orange lines correspond to the
signature that is most similar to the average human signature (Fig. 3).
doi:10.1371/journal.pcbi.1003780.g004

Figure 5. Of the four components of the assortativity
signature, out-out assortativity is the strongest predictor of
robustness in dense TFN models. Simple linear regression was used
to explain the variation in the average robustness for the 81 test
signatures (as shown in Fig. 4). For each �kout, the Z-score for each
assortativity type was used as the lone explanatory variable, resulting in
a total of 16 linear models. Black points represent positive slopes of best
fit lines (e.g., see inset), and red points represent negative slopes. Slopes

are significant (asterisks) if pv :003 (Bonferroni-corrected,
:05

16
).

doi:10.1371/journal.pcbi.1003780.g005

Assortativity of Human TFNs
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the most to robustness. In the case of the human signature, in-out

assortativity does not significantly differ from random in 34 of 41

human TFNs (Fig. 2), and is unlikely to exert a strong negative

influence on robustness. This leaves the increased out-out

assortativity in 40 of 41 human TFNs (Fig. 2) as the key

component governing the increase in the robustness of dense

TFN models that approximate the human signature (Fig. 3).

Discussion

We have used DNaseI-seq data [13] to characterize the

assortativity signatures of human transcription factor networks

(TFNs) with between 485 and 526 sequence-specific transcription

factors, revealing a common assortativity signature amongst 41

distinct cell and tissue types. This signature consists of greater-

than-expected values for both out-in and out-out assortativity,

along with values for in-out and in-in assortativity that do not

differ from the null expectation. Perturbation analyses of TFN

models demonstrated that the assortativity signature has a

pronounced influence on the robustness of a TFN’s gene

expression phenotypes. Moreover, out-out assortativity is the most

important of the four components of the assortativity signature in

driving this robustness in TFN models that begin to approach the

high edge density of the human TFNs. This is consistent with

earlier theoretical results that showed the relationship between this

type of assortativity and robustness [21,23].

Experimental work has repeatedly demonstrated the robustness

of TFNs to various forms of perturbation [28,29], including noisy

gene expression [30], gene knockouts [31], and the rewiring of

regulatory interactions [32]. The robustness of biological networks

stems from several structural sources, ranging from their heavy-

tailed degree distributions [33] to their overrepresentation of

autoregulatory subgraphs [34]. The results presented here suggest

that degree assortativity provides an additional structural source of

robustness in biological networks, and that human TFNs share an

assortativity signature that confers such robustness.

The observation that the human assortativity signature displays

differences among the four types of assortativity is broadly

consistent with previous work, which has shown that real-world

directed networks are rarely entirely assortative or disassortative

[24]. Indeed, barring a strong correlation between the in- and out-

degrees of a network (the human TFNs show only weak

correlations, Pearson’s r [ ½0:13, 0:27�), a neutral or adaptive

network rewiring process would be capable of modifying one

component of the signature without dramatically altering another.

Such rewiring is easily achieved by mutations in cis-regulatory

regions, such as point mutations or indels, that are capable of

adding or eliminating regulatory interactions between a TF and its

target genes [35], and evidence from comparative genomics shows

that this is common in the evolution of both microbes [36,37] and

vertebrates [38,39].

Genomic footprinting is not the only method that has been used

to incorporate sets of human TF-DNA binding events into TFNs.

For example, chromatin immunoprecipitation of individual TFs

combined with high-throughput sequencing (ChIP-seq) has also

been used for examining human TFN topology [12], and this

approach has the advantage of generating direct TF-DNA binding

data without the need to infer TF identity. However, the extent to

which ChIP-seq data can be used to construct genome-wide TFNs

is limited by (1) the availability of high affinity antibodies for

individual TFs, and (2) the need to perform deep sequencing

separately for each TF in each cell line. Recently, combining the

data from hundreds of ChIP-seq experiments across multiple cell

lines resulted in a human TFN containing 119 TFs [12], but this

massive dataset still represents only a small fraction of the

approximately 1400 TFs encoded in the human genome [40].

Thus, for the purposes of exploring global topological properties of

human TFNs, genomic footprinting provides a few important

advantages. First, the TFNs are substantially larger than those that

can currently be obtained using ChIP-seq data (§485 vs. 119

TFs). Although the human TFNs obtained from DNaseI-seq are

large and densely connected, the estimated false discovery rate

(FDR) of TF-DNA binding events is quite low (1%; [25]), and a

sensitivity analysis suggests that this level of false-positive binding

does not produce any substantial change to the assortativity

signatures of these TFNs (Fig. S1). Second, it is not necessary to

combine data from multiple cell lines in order to generate large

TFNs. This last point is crucial, as it frees us from the assumption

that the topology of a combined TFN approximates topologies

realized by individual cell types. Notably, this assumption appears

to be unwarranted for these TFNs, as their union displays a

markedly different topology from the individual TFNs [13].

Characterizing the regulatory networks that govern the

development, physiology, and behavior of organisms is a central

goal of modern genomics [3,11]. One of its main challenges is the

interpretation and synthesis of the wealth of data generated by the

various high-throughput technologies used in this endeavor, a

challenge that stems in part from the wide variety of post-

processing techniques associated with each technology. For

example, the topological properties of the TFN constructed using

ChIP-seq [12] depend heavily upon the post-processing techniques

used for peak calling and target gene assignment, as these choices

impact the set of DNA sequences considered bound by a

transcription factor [41] and the regulatory interactions included

in the TFN [42]. When target genes are assigned using a peak

calling algorithm coupled with a window-based approach (+1kb
of the transcription start site), the assortativity signature of the

TFN is qualitatively similar to that observed using DNaseI-seq

data (Fig. S2). In contrast, when target genes are assigned using a

probabalistic model of TF binding (TIP) that implicitly takes peak

intensity and distance from the transcription start site into account

[43], the assortativity signature of the TFN differs substantially

from that observed using DNaseI-seq data (Fig. S2). Such

discrepancies are problematic, because it is difficult to ascertain

which TFN best represents the true regulatory network, and they

highlight the importance of understanding whether and how

different technologies and data post-processing techniques bias our

understanding of TFN topologies.

One of the advantages of constructing TFNs from the DNaseI-

seq data of Neph et al. [13] is that a common post-processing

pipeline was used for each of the 41 diverse cell and tissue types,

allowing for a direct comparison of the assortativity signatures of

these TFNs. It is striking that regardless of tissue origin,

transformation, or differentiated state, all TFNs possessed

remarkably similar assortativity signatures. This parallels the

common network architecture observed through the analysis of

three-node subgraphs in these networks [13]. The absence of

markedly different signatures might suggest a core topology that is

shared across different cell types, and that functionally driven cell-

type specific network rewiring [13] ultimately converges on that

core topology. Alternatively, the shared topology could reflect that

this dataset captures proximal regulatory interactions while

ignoring those that are distal. Epigenetic marks, such as histone

methylation, show large variations between cell types at distal

enhancer sites, indicating that transcription factor binding is more

cell-type specific at enhancers than at promoters [44]. Under-

standing how the inclusion of such distal regulatory information

might affect the assortativity signatures of diverse cell and tissue

Assortativity of Human TFNs
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types, and how this in turn may affect the robustness of the

resulting TFNs, presents an exciting direction for future research.

Another advantage of this dataset is its size. Comprising

genome-wide binding information for between 485 and 526

transcription factors, this dataset is considerably larger than any

other used for constructing human TFNs [12,13]. Nevertheless, it

comprises only an approximate third of all human transcription

factors [40]. It is therefore important to understand how the

assortativity signatures of the TFNs constructed here may be

affected by the number of transcription factors in the dataset. To

this end, we performed a sensitivity analysis in which we randomly

removed a proportion of the transcription factors from the dataset,

constructed the resulting transcription factor subnetwork, and

analyzed its assortativity signature. Fig. S3 shows that the reported

assortativity signature is insensitive to the removal of up to 60% of

the transcription factors for a stromal cell type. Similar insensi-

tivities were observed across all 41 cell and tissue types. This is

consistent with a feature that was observed during the initial

analysis of these TFNs. Specifically, Neph et al. [13] removed 63

TFs from their analysis, as each of those TFs possessed

overlapping or duplicate DNA-binding motifs that could not be

distinguished from another TF that was ultimately included in the

TFNs. In doing so, they found that this did not substantially affect

the architecture of the TFNs as characterized by the frequency of

three-node subgraphs. This may indicate that as the number of

known TF-binding motifs grows, and the number of similar or

overlapping motifs grows, the topology of the TFNs will remain

relatively stable. To test this hypothesis, it will be necessary to

incorporate the growing body of TF-binding motif data made

available through high-throughput methods, such as protein-

binding microarrays [45] and HT-SELEX [46].

In addition to evaluating the sensitivity of TFN topology to

random TF removal, we also sought to understand what happens

to the assortativity signature upon removal of the most highly

connected TFs, referred to here as hubs. To this end, we

incrementally removed the hub TFs and determined the

assortativity signatures of the resulting networks (see Methods).

Signatures were relatively sensitive to this procedure, changing

markedly upon the removal of the top 5% of hub TFs (Figs. S4,

S5). These changes tended to take one of several forms. In some

cases, only one component of the signature was sensitive to the

removal of hub TFs (Fig. S4, left), whereas in other cases, multiple

components were sensitive (Fig. S4, right). Out-out assortativity,

the component that emerged as the most important to the

robustness of dense TFN models (Fig. 5), likewise displayed

variation in its sensitivity to hub TF removal (Fig. S4). These

results suggest that the assortativity signatures of currently established

human TFNs will be prone to changes if additional, highly connected

TFs are included. However, this analysis also suggests that out-out

assortativity is at least partially insensitive to even these drastic

changes to network topology. For example, whereas the out-in

assortativity of nearly all of the TFNs (38 of 41) was sensitive to the

removal of the top 2% of the hub TFs, the out-out assortativity of

only a third of the TFNs (14 of 41) was similarly sensitive (Fig. S5).

Computational models of TFNs are commonly used to study the

spatiotemporal dynamics of transcriptional regulation [47–49] and

the sensitivity of these dynamics to environmental [19,50,51] and

genetic perturbation [52,53]. To do so accurately, the structure of

TFN models are often engineered to reflect one or more salient

topological properties of known regulatory networks. For example,

the out-degree distribution is often chosen from a suite of heavy-

tailed distributions, reflecting a statistical feature of organisms as

different as microbes [52] and humans [12]. Similarly, TFN

models have been engineered to possess a modular structure [17],

which is considered a fundamental characteristic of biological

regulatory networks [54]. Our findings suggest that in addition to

these topological properties, it will be informative to consider the

important components of the assortativity signature in any work

designed to advance the theoretical understanding of networked

systems.

Methods

Assortativity
The assortativity of an undirected network measures the extent

to which the nodes at both ends of an edge have similar degrees

(numbers of connections). This is computed as the Pearson

correlation coefficient of the degrees of all pairs of nodes that have

an edge between them [20]:
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where ji and ki are the degrees of the nodes separated by the ith

edge, and M is the number of edges in the network.

In a directed network, such as a TFN, each node possesses both

an in-degree and an out-degree, defined as the number of

incoming and outgoing connections (respectively) for that node.

There are thus four types of assortativity, one for each of the four

possible combinations of in- and out-degree: out-in, in-out, out-

out, and in-in assortativity. These were calculated as follows [24]:
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number of edges in the network.

In-components and Characteristic Path Length
The in-component (IC) of a node i is the set of nodes from

which there exists a directed path to node i [55]. In other words, in

a TFN, the IC of a TF i is the set of TFs that either lie upstream of

i in its regulatory pathway or provide feedback to i. The size of the

IC of i is thus the number of nodes in this set (including i itself),

and the average IC size was calculated simply as the mean of the

IC sizes for all nodes in the network.

The characteristic path length (L) of a directed network is the

average length of the shortest directed path between any two

nodes i and j. In a TFN, it is the average number of regulatory

links between two TFs. The shortest paths were determined using

a breadth-first search algorithm.

Random Networks and Z-Scores
Random networks were generated for each human TFN using

an edge-swapping algorithm that preserves the in- and out-degree

of every node while randomizing which pairs of nodes are
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connected [56]. This preservation of degree distribution is

essential, both because a degree distribution has a pronounced

influence on network dynamics [57–59], including those of model

regulatory networks [18,60], and because the expected assortativ-

ity signature varies among networks with different degree

distributions [61]. By holding the degree distribution fixed for

each human TFN, the resulting random networks can be used to

interrogate whether assortativity deviates from what is expected at

random given the observed degree distribution. A single iteration

of this algorithm first considers two edges a ? b and x ? y.

Swapping these edges produces a ? y and x ? b. If these two

edges do not already exist in the network, then the new edges

remain and the old edges are discarded. Beginning with a human

TFN, 10 | M edge-swaps were performed, where M is the

number of edges in the TFN. This resulted a single random

network. The process was repeated to generate 1000 random

networks for each human TFN.

Self-loops were removed from the human TFNs prior to

random network generation, and were subsequently prevented

from reoccurring in random networks. This was done because the

presence of self-loops trivially inflates all four assortativity values.

Through their removal, assortativity can be examined separately

from any potential enrichment for self-loops. This results in a more

conservative estimate of how assortativity differs from the null

expectation.

Z-scores were used to enable the direct comparison of the

human TFNs with respect to assortativity and L. The Z-score of a

value reflects its distance from its expectation under the

assumption that the values are normally distributed, and its use

here thus depends on the assumption that the random networks

generated for each TFN possess normally distributed network

properties. This assumption was supported (i.e., the null hypothesis

of normality was not rejected) for all of the TFNs for out-in, in-out,

out-out, in-in assortativity, and L (Kolmogorov-Smirnov test,

pw:05). The Z-scores for each of these properties were calculated

separately for each human TFN, as follows. First, the null

distribution for a particular topological property of the human

TFN was calculated from the 1000 random networks (described

above). The Z-score was then calculated as

Z-score~
x{mnull

snull
, ð3Þ

where x is the observed value of the topological property, mnull is

the mean of the null distribution, and snull is the standard

deviation of the null distribution. A Z-score of less than -2 or

greater than 2 was used to assign statistical significance. These

thresholds follow a similar analysis [24], and represent a

confidence level of approximately 95% for each individual test.

Together, the Z-scores for the four types of assortativity (out-in, in-

out, out-out, and in-in) formed the assortativity signature of the TFN.

In contrast to assortativity and L, mean IC sizes were not

normally distributed among the random networks for any human

TFN (Kolmogorov-Smirnov test, pv:05). Therefore, instead of

computing a Z-score, the mean IC size of a TFN was determined

to differ significantly from its null expectation if its value lay

outside the middle 95% of the null distribution.

TFN Models
Transcription factor networks (TFNs) were modeled as random

Boolean networks [26], where nodes represent TFs and edges

represent regulatory interactions between TFs (Fig. 1B). The

dynamics of these TFN models produce simulated gene expression

patterns, as follows. At a discrete time t, each node i possesses a

Boolean state si(t) that encodes whether or not i is present as

protein at time t. The state of i at the next time point is updated

according to a deterministic Boolean function that takes as inputs

the present states of the regulators of i:

si(tz1)~fi(si1
(t), . . . ,sikin,i

(t)), ð4Þ

where s i1
(t) is the state of the first regulator, and there are kin, i

regulators for node i. Each node has its own Boolean function, and

together they form the set of regulatory rules, which we consider to

be the genotype of the TFN model (Fig. 1C). The set of states for

all nodes at time t is referred to as the configuration at that time,

and given an initial configuration, the regulatory rules synchro-

nously update the configuration to the next time point. Updating

the configuration proceeds until a configuration is reached that

exactly matches one of the configurations encountered previously

(Fig. 1D). This is guaranteed to occur as there are a finite number

of possible configurations (2N N is the number of nodes).

Because the regulatory rules update configurations synchronously

and deterministically, subsequent updates will eventually reproduce

the same configuration(s) seen before, resulting in a steady-state

attractor. The attractor represents a stable gene expression pattern

produced by the TFN model, and is thus regarded as its phenotype.

Random Boolean networks are both general and abstract, making

them a useful tool for studying the genotype-to-phenotype relation-

ship in genetic regulation. They also make a number of simplifying

assumptions. For example, these models assume that gene expression

is Boolean, when in reality mRNA and protein concentrations are

quantitative traits. Even under such an assumption, random Boolean

networks have accurately recapitulated the dynamics of a number of

model experimental systems. For example, they have been used to

model the spatiotemporal gene expression patterns in the developing

sea urchin embryo [49], the circadian oscillations of gene expression

in both the fungus Neurospora crassa and the plant Arabidopsis
thaliana [62], and the p53-dependent fate of a human breast cancer

cell line exposed to a therapeutic agent [63].

In another simplifying assumption, these models synchronously

update the states of all nodes at each time point, whereas in real

biological systems genetic regulation is asynchronous. Although

relaxing this assumption can lead to differences in attractors [64],

the methods employed in this present study do not rely specifically

on attractor identity, but instead depend on how easily ensembles

of attractors are perturbed (see Robustness, below). Furthermore, the

computational feasibility of this study would be compromised by trying

to account for the large number of asynchronous update orderings.

Generating TFN Models with Assortativity Signatures
Weakly connected TFN models without self-loops were used to

approximate the human signature and the set of 81 different

assortativity signatures. Self-loops were excluded to match their

removal from the human TFNs (see Random Networks and Z-

scores), and this has been shown to not significantly alter the

dynamics of these models [22]. TFN models were constructed by

randomly connecting N~ 30 nodes using a power-law degree

distribution, which is thought to better approximate real-world

TFNs than alternative distributions [52]. For each TF, the

probability of selecting kout targets depended on the exponent c:

p(kout)~
1

Z( )
k{

out , ð5Þ

where Z( ) ~
XN

j~ 1
j { . TFN models with different edge
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densities were constructed using [ f3:10, 2:25, 1:81, 1:55g,
resulting in an average number of targets �kkout [ f1:3,
2:0, 3:0, 4:0g . Since the dynamics of random Boolean networks

are heavily influenced by their dynamical regime, these �kkout values

were selected such that all three dynamical regimes were

represented. Here, TFN models with �kkoutv2 possess ordered

dynamics, �kkout~2 possess critical dynamics, and �kkoutw2 possess

chaotic dynamics. Increasingly dense TFN models are computa-

tionally difficult to simulate, as they generate increasingly complex

phenotypes (long attractors), and thus extensive simulations of
�kkoutw4 were not computationally feasible. For each �kkout, 1000

random TFN models were generated.

Each of these random TFN models was then rewired to

generate new TFN models (weakly connected and without self-

loops) that approximated specific assortativity signatures, as

follows. For each random TFN model, edge-swapping was used

to build a null distribution of networks (see Random Networks and

Z-scores). This enabled the conversion between raw assortativity

values and Z-scores for that model. Then, the random TFN model

was rewired as described previously, however in this case new

edges were only kept if the resulting change in network topology

either maintained or decreased the Euclidian distance between the

four assortativity Z-scores of the network and those of the desired

signature. Rewiring concluded either upon achieving the signature

to within a distance of 0.0001 or after 10000 edge-swaps that failed

to make progress toward the signature. Additionally, during

rewiring, the mean IC size of the model was restricted by

precluding edge-swaps that would have increased or decreased this

value beyond the middle 20% of the null distribution for that

model. This more accurately reflects the fact that most of the

human TFNs possess mean IC sizes that are not significantly

different from expected (Fig. 2). Rewiring of the random TFN

models resulted in 1000 TFN models for each signature, where the

precise combination of in- and out-degrees present in each of the

random TFN models was also represented for each signature.

Robustness
The phenotypic robustness of a TFN model was estimated by

computing a random walk through the space of genotypes that

produce the same phenotype, as described previously [21]. This

random walk was conducted as follows. A genotype (regulatory

rules, Fig. 1B) for the TFN model was constructed at random,

such that there was an equal probability of choosing either a 0 or a

1. Then, a random initial configuration was used to generate a

phenotype (attractor). A step in the random walk was attempted by

flipping one of the bits of the genotype, and regenerating the

phenotype using the same initial configuration as before. If the

original phenotype was recovered, then the step was successful and

the mutated genotype was kept. Otherwise, the mutation was

reverted to yield the previous genotype. Note that during this

process, network topology (as defined by TF-TF edges) is not

altered by mutations, and it is strictly the genotype (regulatory

rules) that is mutated. This process was repeated for 500 attempted

steps, and the proportion of successful steps served as an estimate

of the robustness for that particular phenotype. One random walk

was performed for each of 100 different combinations of random

genotypes and initial configurations, and the resulting proportions

were averaged to produce an estimate of the phenotypic

robustness for the TFN model.

Sensitivity Analysis
The sensitivity of each of the 41 human TFNs to random node

removal was performed by randomly removing 20%, 40%, or

60% of the total nodes in the network. For each of these values,

100 subnetworks were generated by removing random sets of

nodes, and for each of these subnetworks a null distribution of 100

networks was generated by performing edge-swaps, as described

previously. This enabled the conversion of assortativity values into

Z-scores, and the average of the Z-scores for the 100 subnetworks

served as an approximation of the assortativity signature for that

level of node removal.

The sensitivity of the human TFNs to hub TF removal was

performed by removing the top 1%, 2%, 3%, 4%, or 5% of hubs,

as determined by the total degree (sum of in- and out-degrees) of

each TF. Hub removal was only performed once for each TF and

each level of hub removal, since hubs were chosen for removal in a

deterministic fashion. The signature for each resulting subnetwork

was computed as described above. The signatures for the

subnetworks were then used to determine the sensitivity of each

component of the assortativity signature for each TFN. For each

level of hub TF removal, a particular component of the

assortativity signature of a TFN was determined to be sensitive if

that component of the new signature possessed a different

relationship to its null expectation than observed in the original

signature. For example, if out-out assortativity was greater-than-

expected in the original TFN but did not differ from the null

expectation in the new subnetwork, then out-out assortativity in

that TFN was determined to be sensitive to that level of TF hub

removal. On the other hand, if the new signature instead showed

greater-than-expected out-out assortativity, then that component

of the signature of the TFN was not sensitive to that level of TF

hub removal.

The sensitivity of human TFNs to TF-TF edge removal was

performed by randomly removing 0.5%, 1%, or 2% of the total

edges in the network. For each of these values, 100 subnetworks

were generated by removing random sets of edges, and Z-scores

were calculated as described above.

Supporting Information

Figure S1 The assortativity signature for a stromal cell
type (AG10803) is insensitive to edge removal. Varying

proportions (0.5%, 1%, or 2%) of TF-TF edges were removed

from the AG10803 TFN, and average assortativity signatures were

calculated for the subnetworks (see Methods). The original

signature is displayed, along with the 95% confidence intervals

for the subnetwork signatures. This particular stromal cell type

(AG10803; Table S1) is shown as a representative example.

(TIFF)

Figure S2 TFN assortativity signatures are sensitive to
the method used for identifying TF targets. The average

human signature derived from the DNaseI-seq TFNs and

presented in this paper (blue) is shown with the two signatures

for the proximal TFNs assembled from ChIP-seq data [12]. One

of these ChIP-seq TFNs was derived by using a peak-calling

algorithm and window-based gene assignment on the ChIP-seq

data (solid brown), and the other TFN by using a window-free

probabilistic model of TF binding (TIP; dashed brown) on the

same data. These two TFNs were downloaded from http://

encodenets.gersteinlab.org/, where they are labeled as ‘‘raw’’

(window-based) and ‘‘filtered’’ (TIP). All self-loops were removed.

Signatures were calculated as described in Methods.

(TIFF)

Figure S3 The assortativity signature for a stromal cell
type (AG10803) is insensitive to node removal. Varying

proportions (20%, 40%, or 60%) of nodes were removed from the
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AG10803 TFN, and average assortativity signatures were

calculated for the subnetworks (see Methods). The original

signature is displayed, along with the 95% confidence intervals

for the subnetwork signatures. This particular stromal cell type

(AG10803; Table S1) is shown as a representative example.

(TIFF)

Figure S4 The sensitivity of the assortativity signature
to hub TF removal depends on the TFN. Varying

proportions (1–5%) of hub TFs, defined as the most highly

connected TFs according to the sum of their in- and out-degrees,

were removed from each of the 41 human TFNs, and the new

assortativity signature in each case was calculated (see Methods).

The signatures for stromal and visceral cell types are shown as

representative examples of TFNs where the signature is perturbed

by hub TF removal. The original signatures are displayed as black

lines, and shaded lines represent the signatures after hub TF

removal (see legends). This particular stromal cell type (AG10803;

Table S1) is shown as representative example of TFNs where

much of the signature was relatively insensitive to hub TF

removal. In contrast, the visceral cell type (HA-h; Table S1) is

shown as a representative example of TFNs where the signature

was heavily perturbed by hub removal.

(TIFF)

Figure S5 There is variation in the sensitivity of the four
assortativity signature components to hub TF removal.

Varying proportions (1–5%) of hub TFs, defined as the most

highly connected TFs according to the sum of their in- and out-

degrees, were removed from each of the 41 human TFNs, and the

assortativity signature in each case was calculated (see Methods).

For each proportion, the y-axis displays separately for each type of

assortativity the number of TFNs that were sensitive to that level of

hub TF removal (see Methods).

(TIFF)

Table S1 Human transcription factor networks. Net-

works were downloaded from www.regulatorynetworks.org

(v09042012) [13], and self-loops were removed.

(PDF)
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