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Abstract

Flow cytometry is used increasingly in clinical research for cancer, immunology and vaccines. Technological advances in
cytometry instrumentation are increasing the size and dimensionality of data sets, posing a challenge for traditional data
management and analysis. Automated analysis methods, despite a general consensus of their importance to the future of
the field, have been slow to gain widespread adoption. Here we present OpenCyto, a new BioConductor infrastructure and
data analysis framework designed to lower the barrier of entry to automated flow data analysis algorithms by addressing
key areas that we believe have held back wider adoption of automated approaches. OpenCyto supports end-to-end data
analysis that is robust and reproducible while generating results that are easy to interpret. We have improved the existing,
widely used core BioConductor flow cytometry infrastructure by allowing analysis to scale in a memory efficient manner to
the large flow data sets that arise in clinical trials, and integrating domain-specific knowledge as part of the pipeline through
the hierarchical relationships among cell populations. Pipelines are defined through a text-based csv file, limiting the need to
write data-specific code, and are data agnostic to simplify repetitive analysis for core facilities. We demonstrate how to
analyze two large cytometry data sets: an intracellular cytokine staining (ICS) data set from a published HIV vaccine trial
focused on detecting rare, antigen-specific T-cell populations, where we identify a new subset of CD8 T-cells with a vaccine-
regimen specific response that could not be identified through manual analysis, and a CyTOF T-cell phenotyping data set
where a large staining panel and many cell populations are a challenge for traditional analysis. The substantial
improvements to the core BioConductor flow cytometry packages give OpenCyto the potential for wide adoption. It can
rapidly leverage new developments in computational cytometry and facilitate reproducible analysis in a unified
environment.
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Introduction

Technological advancements in cytometry instrumentation

have enabled rapid, multidimensional quantification of millions

of individual cells to define cellular subpopulations and assess

cellular heterogeneity [1–6]. Traditional analysis of these data

involves time-consuming sequential manual gating that is unten-

able for larger studies in the long-term [7]. The subjectivity of

manual gating introduces variability into the data and significantly

impacts the reproducibility, robustness and comparability of

results, particularly in multi-center trials [7,8]. Automated data

analysis pipelines [9–14], which have developed rapidly in the past

few years [12], have failed to gain widespread adoption outside of

specialized computational labs. We hypothesize this is due to the

usual factors that limit the uptake of new technologies, specifically

a perceived difficulty in to learning to use the tools, and a lack of

confidence in the veracity of generated results [15]. Although a

recent study by the FlowCAP consortium aimed to boost user

confidence in the viability of automated gating methods, many of

the pipelines described therein were tailored for exploratory,

discovery-oriented data analysis, which often generates tens to

hundreds of cell population phenotypes, lacking the hierarchical

cell population relationships that make the data easier to interpret
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[12]. Consequently, many of these tools are less suitable for use in

a clinical research setting where analysis must be standardized,

reproducible, and interpretable [16–18].

Clinical assays must be extremely well controlled in order to

generate data that is comparable over time and across centers [8].

In order for automated approaches to gain traction in clinical flow

studies, pipelines must produce results that are reproducible,

robust, and easy to interpret. Likewise, the pipelines must be easier

to use for flow data analysts who are not trained programmers,

they must facilitate data sharing and collaboration, and they must

enable users to make comparisons of different analysis approaches

in order to evaluate the viability of an automated vs. a manual

approach and thereby build user confidence. While the high-

dimensional, unbiased automated gating approaches that have

been developed to date have been shown to expedite the gating of

FCM (flow cytometry) data sets and to remove the subjectivity

intrinsic to manual gating [10–14,19], these methods do not meet

all of these other criteria. The output of high-dimensional gating

methods generally requires post-processing and careful manual

curation to ensure valid results [20,21]. Yet, in clinical research,

cell populations of interest are generally defined a-priori, and there

is less immediate need for exploratory approaches. The implica-

tions for automated gating in a clinical trials setting are that any

proposed analysis method must be validated and verified by

demonstrating certain performance characteristics, including:

accuracy, precision, reportable range of test results for the test

system, verification that reference intervals are appropriate for the

laboratory’s patient population [22]. The specifics would vary

from assay to assay, but robustness and reproducibility, i.e. the

ability to consistently and accurately identify target populations,

are key requirements that high-dimensional, unsupervised meth-

ods cannot yet meet.

In order to begin addressing the above issues, some high-

dimensional automated gating tools have taken a supervised or

semi-supervised approach to gating. One such tool is the Xcyt

software, which aims to mitigate problems of population matching

by implementing a supervised classification approach wherein the

user fits a model to training data, which is then used to classify cells

in other samples [19]. This facilitates population matching and

helps ensure that consistent cell populations are identified across

samples [20]. We believe this is a step in the right direction, but

the approach is limited by an appropriate choice of template, and

by the mixture modeling framework, which has known limitations

[12]. Furthermore, constructing complex, multi-step analysis

pipelines in that framework still requires extensive coding by the

user. What is lacking in the computational flow ecosystem is a

software infrastructure that provides the flexibility to quickly

construct data analysis pipelines that can utilize different gating

algorithms and handle large data sets efficiently. In our view,

‘‘gating’’ has become easier, while getting the data into and out of

the different gating algorithms remains a difficult task. Without

such infrastructure, there will continue to be a disconnect between

the requirements of flow cytometry experimentalists, and the

features provided by available tools [12].

In order to help bridge this gap, we have developed the

OpenCyto framework. A recent review of flow cytometry

bioinformatics highlighted the four components of an analysis

pipeline: preprocessing, cell population identification, population

matching and correlation with outcome variables [21]; OpenCyto

fulfills all of these components, and aims to meet the challenges of

ease of use, interpretability, scalability, collaboration, comparative
analysis, reproducibility and robustness, while allowing analysts to

integrate domain-specific knowledge into the analysis pipeline. We

have extended the core BioConductor flow cytometry packages

(flowCore and flowViz) to support HDF5/NetCDF-backed data

storage via the new ncdfFlow package, and made the flow

visualization framework more flexible and familiar to flow data

analysts. This allows all FCM packages that utilize the core flow

data structures in R to efficiently handle large data sets and benefit

from improved visualizations. We have also developed two new

packages; flowWorkspace implements the data structures required

to represent hierarchical gating pipelines that can chain together

different gating algorithms in series, allowing users to select the

best suited analysis tools from BioConductor’s flow cytometry

ecosystem, or to import manually gated data from external tools

like FlowJo (TreeStar Inc., Ashland, OR). The openCyto package

abstracts the data, and simplifies construction of these pipelines via

gating templates that don’t rely on a training data set. These

templates are staining panel specific, and provided experiments

are well standardized, a template can be applied to any flow data

set utilizing the same staining panel. The core FCM packages have

exhibited a ten-fold increase in use over the past year (from 486 to

4776 distinct IP downloads in ten months), consequently this new

infrastructure has the potential to have a significant impact for the

computational flow community.

Design and Implementation

Overview
The OpenCyto framework is a collection of well-integrated

open-source R/BioConductor packages: ncdfFlow, flowCore,

flowViz, flowWorkspace, and openCyto (the package). The Open-

Cyto infrastructure and typical workflow is summarized in

Figure 1. The framework consists of a near-complete re-imple-

mentation and extension of the core BioConductor flow cytometry

infrastructure [23–26], allowing it to process large data sets

(limited only by disk space and the maximum file size supported by

the operating system) through native support of the HDF5/

Network Common Data Format (NetCDF) [27]. The flowWork-
space package is built on top of this infrastructure and provides a

new set of core objects termed GatingHierarchy, GatingSet and

GatingSetList, which are used to associate an individual sample or

set of samples with preprocessing (compensation and transforma-

tion) steps and hierarchical gating scheme(s).

The openCyto package, which depends on the core infrastruc-
ture, implements a hierarchical automated gating pipeline that

incorporates data preprocessing and reproducible, data-driven

automated gating. Installing the openCyto package will install all its

dependencies, including the core flow cytometry packages.

Throughout the paper, we use the name OpenCyto (capital O) to

refer to both the package and the framework, and will make the

distinction when necessary. The hierarchical structure encodes

relationships amongst cell subpopulations that have a familiar

interpretation and are informed by the biology of the study.

Additionally, this structure allows effortless cell population

matching since the relationships amongst cell sub-populations

are preserved across samples (ensuring each sample has the same

population defined). The objects representing the data analysis are

associated with sample and experimental metadata, such as

outcome variables, making it straightforward to leverage the

classical statistical tools of the R language to test for association

between extracted cell populations and study outcome within a

single framework.

The hierarchical gating structure diverges from the usual

approach to automated gating, wherein all cell events are clustered

on all dimensions simultaneously, however, this structure encodes

significant domain-specific knowledge about an experiment,

including the relationships amongst known cell populations that
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can be defined using a given set of markers. In fact, users who run

automated pipelines often impose such a structure implicitly,

either as part of data cleaning prior to gating (equivalent to

manual gating on debris or boundary events), or by applying

automated algorithms in a sequential manner to subsets of flow

data (e.g. lymphocytes are often gated prior to, and separate from

other markers, even in a typical discovery-oriented automated

analysis). OpenCyto provides a framework that forces these steps

to be explicitly included and tracked, facilitating reproducibility.

This framework can be used to encode analysis using high

dimensional gating algorithms, or traditional sequential gating

(Figure S1 A, B). The latter may be imported from a manual

analysis using external software (i.e., FlowJo) or via an automated

analysis wherein gates are defined in a data-driven fashion using

the variety of gating algorithms available in R/BioConductor. A

hybrid approach may also be used wherein high-dimensional

gating can be applied to specific cell subpopulations defined using

hierarchical 2-D gating (Figure S1 C). Importantly, new

algorithms can be easily integrated via a plug-in architecture,

ensuring the framework can adapt and remain current with new

technological developments. The core flowWorkspace objects are

implemented in C++ for increased speed and memory efficiency.

OpenCyto Facilitates Comparative Data Analysis
The framework supports importing gates from external software

(i.e., FlowJo), faithfully reproducing manual analysis within R. The

gated data objects can be saved to disk. This allows users to easily

share raw FCM data, together with associated analyses, and

facilitates the comparison of automated or semi-automated gating

approaches with manual gating, and enabling validation of

automated gating schemes against expert manual results. Further-

more, these features facilitate collaboration between computation-

al and non-computational researchers and have enabled the

development of advanced downstream data analysis algorithms for

FCM data in vaccine trials [28,29], as well as a recent

comprehensive comparison of automated gating algorithms via

Figure 1. An overview of the OpenCyto infrastructure. When reproducing manual gating, raw FCS files and FlowJo workspace XML files are
read into the R environment using parseWorkspace, creating a GatingSet object that represents the compensated, transformed and gated data stored
in an ncdfFlowSet on disk. Cell populations annotated with gates can be visualized using plotGate, from the flowViz package Gating schemes can be
visualized using plot. To perform automated gating, the user defines a csv representation of a gating tree, which is read by the OpenCyto package to
generate a gatingTemplate object. This template can be applied to a GatingSet containing data, but no gates, provided the data uses the markers
defined in the template. OpenCyto utilizes built-in automated gating methods, or external methods registered via a plug-in framework, to gate
different cell subsets and populate the GatingSet with data-driven gate definitions for each sample. Manual and automated gating may be readily
compared within a single framework. Cell populations and features can be extracted for further statistical analysis with other R and BioConductor
software packages. Data (red boxes), software packages (blue boxes), framework functionality (gray boxes), and data flow/data structures (arrows/
labeled arrows) are represented. flowCore, flowStats, and flowViz, are the core Bioconductor flow packages that benefit from the substantial
infrastructure changes we have made to improve scalability and data visualization.
doi:10.1371/journal.pcbi.1003806.g001
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the FlowCAP effort [12]. The framework also facilitates extracting

specific cell populations for downstream analysis from any step of a

pipeline, as we demonstrate with the two data sets analyzed here

[30].

Automated Analysis via Gating Templates Promote
Reproducible Results

The OpenCyto package allows users to define general gating

schemes represented by gatingTemplate objects. A gating scheme

is user-defined in a text file (CSV) that describes cell sub-
populations and their parent-child-relationships, together with

markers and algorithms to be used to gate each population. This

defines a tree much like one would define a gating scheme in

traditional manual analysis, except that the user does not draw

gates or define gate coordinates. OpenCyto generates the gate

coordinates in a data-driven manner when the template is applied

to a data set. It can be applied to any data set that uses the staining

panel defined in the template. This facilitates reproducible

research by standardizing the data analysis as well as promoting

code reuse. Given the template and the same data, any user will be

able to generate the same results. This also simplifies repetitive

data analysis for users that frequently analyze data from the same

types of assays.

OpenCyto Pipelines Are Flexible and Extensible
OpenCyto supports a number of different built-in automated

gating algorithms, including high-dimensional model-based meth-

ods (flowClust) [31], density-based methods (mindensity, flowDen-

sity), rare cell population identification (tailgate, quantileGate),

and various specialized gate algorithms (singletGate, transitional
B-cell, and referenceGate). These methods provide a suite of tools

that are well suited to gating lymphocytes, transitional B-cells,

singlets, bimodal or multimodal populations, or rare cell popula-

tions. They can be combined within a single gating scheme to

generate an optimal gating strategy for a given staining panel.

Additional algorithms are supported via a plug-in framework. The

DNA vs. DNA gate used to analyze the CyTOF data set presented

here, and the flowDensity algorithm used in FlowCAP III, are two

such examples integrated into the OpenCyto framework [30] via

the plugin mechanism.

OpenCyto Will Promote Flow Standardization Efforts
A core flow laboratory will generally have a set of well-

standardized flow assays with fixed staining panels. For example, a

core lab may have a standard T-cell assay that always uses the

same staining panel. The OpenCyto GatingTemplate is designed

to take advantage of this. Our automated gating approach allows

the gating of each cell population to be fine-tuned via cell sub-

population specific parameters in the template definition in order

to optimize cell population identification for the assay. OpenCyto

is sufficiently robust that, once set up, the GatingTemplate is

reusable for any data set from the same lab, provided the assay

remains well standardized (i.e., instrument parameters remain

well-controlled and stains don’t vary too much in their perfor-

mance). OpenCyto promotes rapid, exhaustive, and most impor-

tantly, reproducible gating, and the results are easy to interpret in

the context of a standard gating hierarchy. Importantly, variation

due to differing technical expertise of data analysts can be

eliminated [8].

Results

In this section we describe the analysis of two data sets using the

OpenCyto framework. The raw and processed data, as well as the

R code used to generate the figures in this paper as well as further

documentation, can all be found online at http://www.opencyto.

org. The first data set is from the HIV Vaccine Trials Network

(HVTN) consisting of FCS data from clinical trial HVTN080 [32]

(flowrepository.org accession FR-FCM-ZZ7U). The data set is a

13-parameter intracellular cytokine-staining (ICS) assay compar-

ing pre- and post-vaccine T-cell response to antigen stimulation

(Env, Gag, Pol) and negative control stimulation (i.e. background)

from 47 subjects consisting of 470 FCS files, 18.8 GB in size. The

study compared two vaccine regimens, Pennvax B alone and

Pennvax B + IL12 DNA. We gate these data with OpenCyto and

show that the results recapitulate manual analysis. The second

data set is smaller in size (74 MB), but higher dimensionality (32

parameter). It is mass cytometry time of flight (CyTOF) data from

a study examining the diversity and combinatorial expression of

nine cytokines and functional markers on CD8+ T cells. Here we

re-analyze the three samples presented in the published figures of

the original study [30].

OpenCyto Can Recapitulate Manual Gates
The data in the original HVTN080 study was manually gated at

the HVTN using FlowJo, and distributed amongst 16 workspaces.

We imported the FlowJo workspaces and raw FCS files into R

using the flowWorkspace package.

To perform automated gating of this data, we defined a

gatingTemplate (File S1) to reproduce the manual gating hierarchy

(Figure S2 A, B) using the variety of automated gating algorithms

available to the openCyto package. Briefly, the data were gated for

CD4+ and CD8+ T-cells using the FSC vs. SSC (lymphocytes),

Live/Dead, CD3, CD4, and CD8 markers, followed by gating of

cytokine positive cells within the two T-cell subsets. The

automated gating hierarchy has additional gates to remove

boundary events and debris (Figure S2). A subset of automated

manual gates from a representative sample are shown for

comparison in Figure 2 (the complete gating scheme is shown in

Figures S3 and S4). The manual and automated gates are very

similar, and share a common hierarchical structure that facilitates

direct comparison of cell populations between them. This is an

important feature of OpenCyto, as it produces cell subsets that are

easy to interpret in terms that are familiar to flow data analysts.

The relationships amongst known cell populations are preserved in

the gating hierarchy.

In order to better quantify the similarity of the cell subsets

identified through manual and automated gating, we extracted the

proportions of CD4+ and CD8+ T-cells in all 25 disjoint cell subsets

of the 5 functional markers (IFN-c, IL-2, CD57, Granzyme B, and

TNF-a) from the manual and automated gating results (stored as

GatingSet objects). Although we are interested in comparing the

cell subset proportions between manual and automated gating, not

all of the 64 possible cell subsets are necessarily of interest.

Importantly, an endpoint of this type of study would be to identify

cytokine producing cell subsets where the proportion of cells

increases significantly upon antigen stimulation at the post-

vaccination time-point compared to the pre-vaccination time-

point. To this end, and to filter out uninteresting subsets, we fit a

linear mixed effects model (with random subject effect) to the

background (negative control) corrected proportions of each cell

subset and tested for a significant and positive interaction

coefficient between visit and treatment (see Supporting Text S1,

one-sided generalized linear hypothesis test, Bonferroni adjusted

p-value#0.05). We selected significant cell subsets from the model

for further analysis. This ability to extract interesting features from

flow cytometry data directly for downstream analysis within a rich

statistical analysis environment like R, while maintaining access to
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the raw data is a powerful feature of OpenCyto that can help limit

the propagation of data entry errors sometimes introduced when

data are copied and pasted or annotated in external data analysis

tools, and that promote the production of reproducible research

results.

In Figure 3A, we show box-plots of the paired differences for

cell subsets identified by the model, and stratified by vaccine

regimen. We observe a vaccine-regimen specific response to

antigen stimulation within the Gag and Pol treatment groups. The

Env stimulation shows the weakest response, with the fewest

significant cell subsets, followed by Gag, and Pol. Furthermore, the

response in CD4+ T-cells is greater than in CD8+ T-cells, and the

response following Pennvax B + IL12 DNA vaccination is greater

than Pennvax B alone. The CD4+ and CD8+ T-cell subsets

producing IFN-c or IL-2 (IL2.IFNg) are used by the HVTN as the

readouts for the ICS assay. We note that we detect an antigen-

specific response in these subsets and that the CD4 subsets have

the strongest response to antigen stimulation by both methods,

consistent with the original study findings [32,33]. Most impor-

tantly, there are no significant differences between the manual and

OpenCyto gating results for any of the cell subsets (two-sided

paired Wilcoxon test). The concordance correlation coefficient

between manual and automated gating across all subsets was 0.82,

0.96, 0.97, respectively for Env, Gag, and Pol stimulation, further

demonstrating that OpenCyto can faithfully reproduce manual

gating results in an automated manner, even for rare cell

populations (Figure 3B) [34,35]. The ability to directly compare

manual vs. automated gating in an objective and quantitative

manner can help users to develop new gating templates for their

assays while promoting confidence in the veracity of automated

gating results.

An important feature of the HVTN ICS data presented here is

that it is a highly standardized assay within the HVTN lab. This

standardization highlights an important feature of our framework.

We were able to construct and refine the OpenCyto gating
template (Supplementary File 1) for this assay by working with just

a few subjects’ worth of data, rather than the entire data set.

OpenCyto gating templates are staining-panel specific, but data

agnostic, and can be applied to any standardized data set that uses

the same staining panel. In this way, the gatingTemplate object

Figure 2. Comparison of a subset of manual gates and OpenCyto automated gates for a representative sample from the HVTN080
ICS data set. The automated gates are data-driven. Each panel shows a corresponding manual and automated gate side-by-side. The left panel is
the manual gate; the right panel is the OpenCyto data-driven gate. Parent population names differ between manual and automated gates for singlets
and lymphocytes because the automated gating hierarchy differs from the manual gating by including boundary and boundary debris gates,
respectively, before these populations. Starting at the top left and proceeding along the rows, the gates shown are singlets, live cells, lymphocytes,
CD3+ T-cells, CD4+ and CD8+ T-cells, IFN-c+ and IL2+ expressing CD4+ and CD8+ T-cells, and Granzyme B+ and CD57+ expressing CD8+ T-cells. The
manual and automated gates are very comparable.
doi:10.1371/journal.pcbi.1003806.g002
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abstracts the data, eliminating the need to write data set specific

code. This functionality should be particularly attractive to core
facilities and clinical trials networks that regularly process large

numbers of samples through standardized flow cytometry assays.

The analysis of such data is standardized, but time consuming; it is

an important niche we have designed our framework to fill.

OpenCyto Improves Gating of Markers with High
Variability

One of the markers (perforin) in the HVTN data set shows

considerable variability in MFI that has been described elsewhere

[29]. This marker was not included in the original analysis of the

data [32]. In order to determine whether OpenCyto could

correctly account for the sample-to-sample variation in this marker

when placing data-driven gates on the perforin-positive cells, we

included perforin in the pipeline. Existing approaches used to

account for this variation include cell-subset and channel specific

data normalization approaches [29]. Figure 4 shows OpenCyto

gates for CD8+ T-cells expressing perforin from six randomly

selected samples in the ICS data. Perforin staining shows clear

variability both in the width and position of the negative peaks.

Despite this variation, the automated gates are reasonably placed

to discriminate perforin negative from perforin positive cells. As a

proof of principle, automated gating of perforin allowed us to

detect a vaccine regimen specific trend for post-vaccine response in

CD8+ T-cells stimulated with Pol antigen, expressing any cytokine

(i.e., IL2 or IFN-c or TNF-a) and (i.e., simultaneously with)

perforin in the Pennvax B + IL12 DNA group but not in the

Pennvax B group alone (Figure S5). This trend was present, but

not significant in CD4 T-cells, in agreement with the known

biology of perforin expression (i.e., constitutive expression on

CD8+ T-cells). The decision to model expression of any cytokine

jointly with perforin is motivated by the fact that perforin is

constitutively expressed on CD8 T-cells and interpretation of its

expression in response to antigen stimulation is only valid when

considered jointly with other cytokines. We examined the POL-1-

Figure 3. Comparison of OpenCyto automated gating and manual gating (performed with FlowJo and imported and reproduced in
R using OpenCyto) for HVTN 080. A) Box-plots of the paired differences (post-vaccination – baseline) in proportions of cytokine-producing cells
from significant cell subsets identified by the linear model (see Supplementary Methods) for each stimulation condition, gating method, and vaccine
regimen. Differences between baseline and post-vaccination are background-corrected (stimulated – non-stimulated). There were no significant
differences between the observed distributions for manual or OpenCyto gating (paired Wilcoxon test). B) Scatter plots comparing manual gating vs.
OpenCyto gating. The per-subject, background-corrected difference between vaccine and baseline is plotted for OpenCyto and manual gating, with
concordance correlation coefficients shown for all stimulations.
doi:10.1371/journal.pcbi.1003806.g003
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PTEG stimulation because, for other T-cell subsets, it exhibited

the strongest response of all the stimulations considered (Figure 3).

Importantly, this analysis was only possible for the OpenCyto

gated data since perforin was not gated in the manual analysis.

Our automated gating approach can allow markers that exhibit

such staining variability to be used regularly for downstream

analysis, without requiring time-consuming manual intervention to

adjust traditional template gates.

Until now, a limiting factor of the BioConductor FCM

infrastructure has been the inability to handle large data sets.

We have eliminated this shortcoming by implementing support for

disk-backed storage of FCM data in HDF5/NetCDF [27,36–38]

files. The flowSet and flowFrame data structures, which represent

FCS files and sets of FCS files (sharing a common set of markers),

can now store their data on disk in a NetCDF-compatible file

(using the HDF5 library), which is efficiently accessed by slices

(each slice represents an FCS file), eliminating the limitations of

storing an entire flow study in memory. We used this functionality

to analyze the HVTN ICS data set. We were able to load and

merge the 470 FCS files and corresponding manual gates from the

16 FlowJo workspaces (corresponding to 16 plates) within a single

R-session, and manipulate and interact with the data. To our

knowledge, no other automated flow data analysis infrastructure

allows for this kind of scalability for event-level data (we note that

cloud-based platforms like Cytobank [18] scale well, but do not

currently handle automated gating). Since large, manually gated

data sets are often stored across multiple workspaces, this

functionality is critical for automated analysis of the data sets

generated in clinical research.

Importantly, the time required to perform automated gating

using OpenCyto can be greatly reduced compared to manual

analysis, although it is dependent on the dimensionality of the data

set. For the ICS data set, the majority of the computation time is

spent gating the individual samples, whereas for the CyTOF data

set (described next), most of the time is spent computing the

Boolean subsets (Table 1). The time to extract Boolean gates in

OpenCyto is already an improvement over some manual analysis

tools (7.4 minutes for the ICS and 2.6 minutes for the CyTOF

data). This improvement is attained through an optimized

polyfunctionality gating method that caches event indices for each

gate, ensuring that cell subset counts are returned for each cell

subset in an efficient manner. Although there is some overhead in

retrieving data from the NetCDF/HDF5 file, the benefits of being

able to access single-cell data from an entire study at once

outweighs the additional cost in time. For smaller studies, if

sufficient RAM is available, storage of FCS data in flowSets is still

an option.

OpenCyto Can Explore Cytokine Expression in CD8+ T
Cell Subsets from CyTOF Data

Cytometry by time of flight was used to explore the expression

of nine cytokine and functional markers on CD8+ T cells. The

markers included TNF-a, IFN-c, MIP1a, MIP1b, IL-2, GMCSF,

CD107, Granzyme B, and perforin. In addition to these, the panel

included markers used to identify naı̈ve, short-lived effector,

effector memory, and central memory T-cell maturational subsets.

In total, twenty-three different markers or measurements of

physical characteristics were used to identify individual events

[30]. The thresholds for cytokine and functional marker positivity

were derived from the non-stimulated sample and applied to the

two stimulated samples presented in the figures of the original

study [30]. This is a straightforward procedure within the

OpenCyto framework (reproducible code can be found at

opencyto.org). The complete gating hierarchy for the negative

control and stimulated samples can be found in Figures S6 and S7,

respectively. The same positivity threshold is used across samples

and is based on the 99th percentile of expression in the non-

stimulated sample, as in the original publication [30]. The

automated gating templates used to derive data-driven gates for

the non-stimulated and stimulated samples are available in Files S3

and S4, and representative gates for non-stimulated and stimulated

samples are shown in Figures S8 and S9, respectively. The data

Figure 4. Example of OpenCyto automated gates on the perforin channel for CD8+ T-cells for six randomly selected samples from
the HVTN 080 ICS data set. The perforin marker exhibits staining variability as evidenced by the varying width and position of the negative peak
and was not gated by the manual template-gating approach. Despite this variability, OpenCyto data-driven automated gating is able to identify a
reasonable threshold for perforin positive cells.
doi:10.1371/journal.pcbi.1003806.g004
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were filtered to remove cytokine producing cell subsets with less

than 1% expression. This reduced the set of features to forty-three

unique subsets of cytokine expressing cells across the 4 matura-

tional states (Figure 5). In Figure 5 we show the average

proportion of each cell subset across the two samples analyzed

here, and observe clear differences across maturational states. We

further summarized the expression in each maturational T-cell

subset by computing the degree of functionality (polyfunctionality)

of each set of cytokine producing cells and plotting their

distributions (Figure 6). Naı̈ve CD8 T-cells were observed to

express zero, one or two cytokines, while short-lived effector CD8

T-cells were seen to have the highest degree of polyfunctionality,

consistent with our understanding of the biology of these

compartments (Figure 6).

Importantly, the analysis of the CyTOF data set demonstrates

the flexibility of our framework, and how it can be extended to

accommodate new types of data from new single-cell cytometric

assays. For example, to analyze the CyTOF data set we

implemented a new gate type (dnaGate) to identify ‘‘single-cells’’

in the DNA-DNA dimensions (Supporting Figures S8, S9 and Files

S3 and S4). This is a non-standard gate that is the CyTOF

equivalent of a singlet gate. Our plugin framework allows

automated gating pipelines written in OpenCyto to be easily

extended to leverage any of the automated gating or clustering

algorithms available in the BioConductor ecosystem. This

flexibility enables users to easily construct analyses specifically

tailored to identify the cell populations of interest in their assays.

The hierarchical gating strategy, which is an explicit and

integral part of the OpenCyto framework, is compatible with both

classical manual analyses, as well as new, high-dimensional

approaches (Figure S1 A–C). Importantly, by keeping track of

the cell population hierarchy, the pipeline facilitates cell-popula-

tion matching across samples, irrespective of which gating

algorithm is used to identify specific cell subsets. This enabled us

to identify and analyze all cytokine-producing cell subsets across

the four T-cell maturational states in the CyTOF data without

resorting to ad-hoc or heuristic cell population matching

approaches. The framework even allows for missing populations.

The cell hierarchy encodes important domain-specific knowledge

about an experiment, which is preserved in our approach. As an

example, the gatingTemplate for the ICS data set specifies the

PTID:VISITNO experimental variables in the groupBy column of

the template file for each cytokine gate (File S1). These correspond

to the subject and visit associated with a specific FCS file, and

instructs OpenCyto to combine these samples when gating cytokine

channels, ensuring samples that need to be directly compared (i.e.,

stimulations and controls within a visit and subject) have a

consistent gating threshold. This type of flexibility to combine and

collapse samples can also be used to increase the density of cell

subsets for very rare cell populations prior to gating, or to combine

samples for Bayesian prior elicitation when using the flowClust
gating method.

QA procedures and OpenCyto. Although OpenCyto does

not have an explicit QA module, the standard QA procedures

involving data visualization and exploration can readily be applied

to the OpenCyto workflow. The flowViz package allows for

flexible visualization of gates and cell populations, and R’s

statistical environment enables standard outlier detection methods

to be applied to cell population statistics. A typical QA workflow in

openCyto may involve iterative template development on a subset

of a complete data set, with concomitant exploratory analysis of

the results. Existing QA tools like QUALIFIER [26] are built

around the same flowWorkspace framework and can also be used

with OpenCyto GatingSet objects. Other tools like FCSClean/
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FlowClean can be integrated readily via the plugin framework

[39]. The various gating algorithm tuning parameters are

generally selected to provide gate thresholds that are subjectively

appealing to the user, but are defensible on objective grounds (i.e.

one can explain exactly why a given gating algorithm is selecting a

certain cut-point, given the parameters). In the examples shown

here, tuning parameters were selected with the idea in mind that

the resulting gates are not obviously wrong, rather than being

tuned to provide a good fit to manual gating. We would

recommend such a strategy in general.

Availability and Future Directions

While exhaustive documentation of the features of OpenCyto is

beyond the scope of a manuscript, we have aimed to provide

several use cases that demonstrate how the framework can be

applied in practice. Further details, documentation, tutorials, and

use case examples (including all code and data to reproduce the

figures in this paper) are available online (http://www.opencyto.

org), and the software can be downloaded from github (https://

github.com/RGLab/openCyto). and from BioConductor (http://

www.bioconductor.org).

The OpenCyto framework enables easy, automated, data-

driven gating of high-dimensional (e.g., many samples or many

dimensions) FCM data sets, eliminating the time-consuming task

of manual gating. By incorporating expert-elicited and data-driven

prior knowledge, OpenCyto attains accurate gating of cell

populations, including rare populations, in an objective manner

that is directly comparable to careful, expert manual gating. The

ability to construct abstract, data-driven gating templates that

incorporate any gating algorithm makes it a valuable tool for core
facilities that frequently generate and analyze highly standardized

data. The text-based gating template definitions lower the barrier

to adoption of automated FCM data analysis methods by making

the framework easier to use, minimizing the need to write data-set

specific code and promoting reproducible data analysis that is easy

to share. Similarly, built-in support for importing manual gates

from external tools is designed to promote collaboration and

facilitate the comparative analysis of the large quantities of existing

flow data sets. Importantly, the core BioConductor flow packages

already have a large user base and are widely used in a variety of

fields [12,16,40–50]. The significant infrastructure improvements

Figure 5. The average frequency of expression across two CyTOF samples for cytokine-producing cell subsets from four T-cell
maturational states. Samples were stimulated with PMA-Ionomycin for 3 hours. Rows represent different maturational cell subsets (TN: naı̈ve, TCM:
central memory, TEF: effector, TEM: effector memory) and are clustered by Euclidean distance similarity. Columns represent different cytokine-
producing cell subsets. The bottom legend defines the cell subset in a column. The legend is colored by degree of functionality of the cell subsets
(light blue: degree 1, dark blue: degree 2, light green: degree 3, dark green: degree 4, salmon: degree 5, red: degree 6, orange: degree 7). The shading
of individual blocks of the heatmap represents the average proportion of cells in the subset across the two samples, normalized to the total number
of CD8 T-cells. Naı̈ve cells have low polyfunctionality compared to effector, effector memory, and central memory cells.
doi:10.1371/journal.pcbi.1003806.g005

Figure 6. The distribution of cells of each maturational state
and their degree of functionality. The majority of naı̈ve CD8 T cells
(TN) do not express any cytokines (degree of functionality 0) or are
mono-functional, while effector memory cells (TEM) are the most
polyfunctional of the subsets (peaking at degree 5). Short-lived effector
(TEF) cells have lower polyfunctionality (peaking at degree 4), and
central memory (TCM) populations tend to have a constant level of
polyfunctionality from degree1 through degree 7. The area under the
curve for each cell subset integrates to one. The y-axis is transformed by
a hyperbolic-arcsine to facilitate visualization of differences between
subsets at higher degrees of polyfunctionality.
doi:10.1371/journal.pcbi.1003806.g006
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made to the core packages in order to support the OpenCyto

framework will also greatly benefit this community. Future work

will include further optimizations of the framework to improve

speed, expansion of the repertoire of gating algorithms to include

more CyTOF-specific methods, and development of a web-based

graphical user-interface to further facilitate defining OpenCyto

gating templates, as well as support for GatingML 2.0 compliant

output (using flowUtils) of openCyto gates for bi-directional

interoperability with FlowJo and better integration with cloud-

based platforms like CytoBank [18].

Supporting Information

Figure S1 Three examples using OpenCyto to perform

automated gating using a hierarchical approach, a high-

dimensional automated approach, and a hybrid approach. A)

A hierarchical, pairwise gating scheme for identifying cytokine-

producing T-cells. B) A naı̈ve, high-dimensional approach to do

the same as A, C) a hybrid approach combining pairwise

hierarchical gating and high-dimensional gating of specific cell

subpopulations from the hierarchical scheme. Different colored

nodes represent cell populations identified via pairwise gating

(light gray), high-dimensional gating (dark gray), or all events in

the FCS file (white). Panel C) explicitly represents the approach

undertaken by many high-dimensional automated gating

algorithms.

(EPS)

Figure S2 Automated and manual gating hierarchy for HVTN

080. A) Hierarchy of automated gates and B) manual gates for

HVTN080. Some additional filtering gates (boundary and debris

event removal) were added to the automated gating scheme to

clean up the data. The visualization was created using flowWork-
space.

(EPS)

Figure S3 Automated gating layout for a representative sample

from data set HVTN 080. Data-driven gate thresholds were

derived using openCyto and the gating template defined in File S1.

The visualization was generated using the new functionality in the

flowViz package.

(EPS)

Figure S4 Manual gates for the HVTN 080 data set imported

from FlowJo. The layout shows the manual gates for a

representative sample of the HVTN 080 data set. The gates were

reproduced in openCyto from the FlowJo workspace using the

flowWorkspace package. The visualization was generated using the

flowViz package.

(EPS)

Figure S5 Paired difference of post-vaccine minus pre-vaccine

proportions of POL-1-PTEG stimulated, background corrected,

CD8+ and CD4+ T-cells expressing any cytokine AND perforin

in HVTN080. There is a vaccine regiment specific trend for post-

vaccine response in the CD8+ cell subset (one-sided simultaneous

test of linear hypotheses, post-vaccine - pre-vaccine .0 within

each vaccine regimen, based on a linear mixed effects model,

with random subject effect, fit to the proportions). We observe

more evidence for post-vaccine response in the CD8+ T-cell

subset than the CD4+ subset, as expected. The POL-1-PTEG

stimulation was chosen because it showed the largest response

magnitude. Such an analysis is not possible with the manually

gated data.

(EPS)

Figure S6 The hierarchy of automated gates for the negative

control in the CyTOF data set. Thresholds for Perforin and

Granzyme B were based on the spiked-in mouse lymphocytes

expressing CD8.

(EPS)

Figure S7 The hierarchy of automated gates for the CyTOF

data set. The visualization was created using flowWorkspace. The

2048 automatically generated Boolean gates are omitted for

clarity. The thresholds for Perforin and Granzyme B were derived

from the spiked-in mouse lymphocytes in the negative control

sample.

(EPS)

Figure S8 Automated gating of an unstimulated sample from

the CyTOF data set. The gating template in File S2 was applied to

the unstimulated CyTOF sample to generate the data-driven gates

shown here. The layout was generated using the new functionality

in the flowViz package.

(EPS)

Figure S9 Automated gating of a stimulated sample from the

CyTOF data set. The 2048 Boolean subsets automatically

generated from the functional markers are not shown. Thresholds

were taken from the gates derived from the non-stimulated

sample, as in the original publication. The threshold for positivity

of perforin and Granzyme B was defined using the spiked-in

negative control mouse cells for CD8+ T-cells, as in the original

publication.

(EPS)

File S1 OpenCyto gating template for the HVTN 080 study.

Each row contains a cell population definition. Columns are

provided for the population name (alias, pop), channels defining

the population (dims), its relationship to other populations (parent),

and the gating algorithm (gating_method) to be used to gate the

population. Additional columns for each population are provided

for algorithm-specific parameters (gating_args), and well as the

ability to group (collapseDataForGating, groupBy) samples for

gating and preprocessing based on sample-level metadata in the

‘‘phenoData’’ slot of the GatingSet object.

(XLSX)

File S2 OpenCyto gating template for gating the negative

control in the CyTOF data set. The T-cell maturational subsets

are not defined in this template, nor are the Boolean combinations

of cytokine producing cells; only the marginal cytokine subsets are

defined here, and used as reference gates for the stimulated

samples.

(XLSX)

File S3 OpenCyto gating template for gating the stimulated

samples from the CyTOF data set. The template contains

definitions for T-cell effector, effector memory, central memory,

and naı̈ve cells as well as their cytokine producing subsets.

(XLS)

Text S1 Description of the statistical model used to identify cell

subsets with antigen-specific changes induced upon vaccination in

the HVTN 080 data set.

(DOCX)
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