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Abstract

Flow cytometry is used increasingly in clinical research for cancer, immunology and vaccines. Technological advances in
cytometry instrumentation are increasing the size and dimensionality of data sets, posing a challenge for traditional data
management and analysis. Automated analysis methods, despite a general consensus of their importance to the future of
the field, have been slow to gain widespread adoption. Here we present OpenCyto, a new BioConductor infrastructure and
data analysis framework designed to lower the barrier of entry to automated flow data analysis algorithms by addressing
key areas that we believe have held back wider adoption of automated approaches. OpenCyto supports end-to-end data
analysis that is robust and reproducible while generating results that are easy to interpret. We have improved the existing,
widely used core BioConductor flow cytometry infrastructure by allowing analysis to scale in a memory efficient manner to
the large flow data sets that arise in clinical trials, and integrating domain-specific knowledge as part of the pipeline through
the hierarchical relationships among cell populations. Pipelines are defined through a text-based csv file, limiting the need to
write data-specific code, and are data agnostic to simplify repetitive analysis for core facilities. We demonstrate how to
analyze two large cytometry data sets: an intracellular cytokine staining (ICS) data set from a published HIV vaccine trial
focused on detecting rare, antigen-specific T-cell populations, where we identify a new subset of CD8 T-cells with a vaccine-
regimen specific response that could not be identified through manual analysis, and a CyTOF T-cell phenotyping data set
where a large staining panel and many cell populations are a challenge for traditional analysis. The substantial
improvements to the core BioConductor flow cytometry packages give OpenCyto the potential for wide adoption. It can
rapidly leverage new developments in computational cytometry and facilitate reproducible analysis in a unified
environment.
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This is a PLOS Computational Biology Software Article. results, particularly in multi-center trials [7,8]. Automated data
analysis pipelines [9—14], which have developed rapidly in the past

few years [12], have failed to gain widespread adoption outside of

Introduction

Technological advancements in cytometry instrumentation
have enabled rapid, multidimensional quantification of millions
of individual cells to define cellular subpopulations and assess
cellular heterogeneity [1-6]. Traditional analysis of these data
involves time-consuming sequential manual gating that is unten-
able for larger studies in the long-term [7]. The subjectivity of
manual gating introduces variability into the data and significantly
impacts the reproducibility, robustness and comparability of
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specialized computational labs. We hypothesize this is due to the
usual factors that limit the uptake of new technologies, specifically
a perceived difficulty in to learning to use the tools, and a lack of
confidence in the veracity of generated results [15]. Although a
recent study by the FlowCAP consortium aimed to boost user
confidence in the viability of automated gating methods, many of
the pipelines described therein were tailored for exploratory,
discovery-oriented data analysis, which often generates tens to
hundreds of cell population phenotypes, lacking the hierarchical
cell population relationships that make the data easier to interpret
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[12]. Consequently, many of these tools are less suitable for use in
a clinical research setting where analysis must be standardized,
reproducible, and interpretable [16-18].

Clinical assays must be extremely well controlled in order to
generate data that is comparable over time and across centers [8].
In order for automated approaches to gain traction in clinical flow
studies, pipelines must produce results that are reproducible,
robust, and easy to interpret. Likewise, the pipelines must be easier
to use for flow data analysts who are not trained programmers,
they must facilitate data sharing and collaboration, and they must
enable users to make comparisons of different analysis approaches
in order to evaluate the viability of an automated vs. a manual
approach and thereby build user confidence. While the high-
dimensional, unbiased automated gating approaches that have
been developed to date have been shown to expedite the gating of
FCM (flow cytometry) data sets and to remove the subjectivity
intrinsic to manual gating [10-14,19], these methods do not meet
all of these other criteria. The output of high-dimensional gating
methods generally requires post-processing and careful manual
curation to ensure valid results [20,21]. Yet, in clinical research,
cell populations of interest are generally defined a-priori, and there
is less immediate need for exploratory approaches. The implica-
tions for automated gating in a clinical trials setting are that any
proposed analysis method must be validated and verified by
demonstrating certain performance characteristics, including:
accuracy, precision, reportable range of test results for the test
system, verification that reference intervals are appropriate for the
laboratory’s patient population [22]. The specifics would vary
from assay to assay, but robustness and reproducibility, i.e. the
ability to consistently and accurately identify target populations,
are key requirements that high-dimensional, unsupervised meth-
ods cannot yet meet.

In order to begin addressing the above issues, some high-
dimensional automated gating tools have taken a supervised or
semi-supervised approach to gating. One such tool is the Xcyt
software, which aims to mitigate problems of population matching
by implementing a supervised classification approach wherein the
user fits a model to training data, which is then used to classify cells
in other samples [19]. This facilitates population matching and
helps ensure that consistent cell populations are identified across
samples [20]. We believe this is a step in the right direction, but
the approach is limited by an appropriate choice of template, and
by the mixture modeling framework, which has known limitations
[12]. Furthermore, constructing complex, multi-step analysis
pipelines in that framework still requires extensive coding by the
user. What is lacking in the computational flow ecosystem is a
software infrastructure that provides the flexibility to quickly
construct data analysis pipelines that can utilize different gating
algorithms and handle large data sets efficiently. In our view,
“gating” has become easier, while getting the data into and out of
the different gating algorithms remains a difficult task. Without
such infrastructure, there will continue to be a disconnect between
the requirements of flow cytometry experimentalists, and the
features provided by available tools [12].

In order to help bridge this gap, we have developed the
OpenCyto framework. A recent review of flow cytometry
bioinformatics highlighted the four components of an analysis
pipeline: preprocessing, cell population identification, population
matching and correlation with outcome variables [21]; OpenCyto
fulfills all of these components, and aims to meet the challenges of
ease of use, interpretability, scalability, collaboration, comparative
analysis, reproducibility and robustness, while allowing analysts to
integrate domain-specific knowledge into the analysis pipeline. We
have extended the core BioConductor flow cytometry packages
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(flowCore and flowViz) to support HDF5/NetCDF-backed data
storage via the new ncdfFlow package, and made the flow
visualization framework more flexible and familiar to flow data
analysts. This allows all FCM packages that utilize the core flow
data structures in R to efficiently handle large data sets and benefit
from improved visualizations. We have also developed two new
packages; flowWorkspace implements the data structures required
to represent hierarchical gating pipelines that can chain together
different gating algorithms in series, allowing users to select the
best suited analysis tools from BioConductor’s flow cytometry
ecosystem, or to import manually gated data from external tools
like FlowJo (TreeStar Inc., Ashland, OR). The openCyto package
abstracts the data, and simplifies construction of these pipelines via
gating templates that don’t rely on a training data set. These
templates are staining panel specific, and provided experiments
are well standardized, a template can be applied to any flow data
set utilizing the same staining panel. The core FCM packages have
exhibited a ten-fold increase in use over the past year (from 486 to
4776 distinct IP downloads in ten months), consequently this new
infrastructure has the potential to have a significant impact for the
computational flow community.

Design and Implementation

Overview

The OpenCyto framework is a collection of well-integrated
open-source R/BioConductor packages: ncdfFlow, flowCore,
flowViz, flowWorkspace, and openCyto (the package). The Open-
Cyto infrastructure and typical workflow is summarized in
Figure 1. The framework consists of a near-complete re-imple-
mentation and extension of the core BioConductor flow cytometry
infrastructure [23-26], allowing it to process large data sets
(limited only by disk space and the maximum file size supported by
the operating system) through native support of the HDF5/
Network Common Data Format (NetCDF) [27]. The flowWork-
space package is built on top of this infrastructure and provides a
new set of core objects termed GatingHierarchy, GatingSet and
GatingSetList, which are used to associate an individual sample or
set of samples with preprocessing (compensation and transforma-
tion) steps and hierarchical gating scheme(s).

The openCyto package, which depends on the core infrastruc-
ture, implements a hierarchical automated gating pipeline that
incorporates data preprocessing and reproducible, data-driven
automated gating. Installing the openCyto package will install all its
dependencies, including the core flow cytometry packages.
Throughout the paper, we use the name OpenCyto (capital O) to
refer to both the package and the framework, and will make the
distinction when necessary. The hierarchical structure encodes
relationships amongst cell subpopulations that have a familiar
interpretation and are informed by the biology of the study.
Additionally, this structure allows effortless cell population
matching since the relationships amongst cell sub-populations
are preserved across samples (ensuring each sample has the same
population defined). The objects representing the data analysis are
associated with sample and experimental metadata, such as
outcome variables, making it straightforward to leverage the
classical statistical tools of the R language to test for association
between extracted cell populations and study outcome within a
single framework.

The hierarchical gating structure diverges from the usual
approach to automated gating, wherein all cell events are clustered
on all dimensions simultaneously, however, this structure encodes
significant domain-specific knowledge about an experiment,
including the relationships amongst known cell populations that
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Figure 1. An overview of the OpenCyto infrastructure. When reproducing manual gating, raw FCS files and FlowJo workspace XML files are
read into the R environment using parseWorkspace, creating a GatingSet object that represents the compensated, transformed and gated data stored
in an ncdfflowSet on disk. Cell populations annotated with gates can be visualized using plotGate, from the flowViz package Gating schemes can be
visualized using plot. To perform automated gating, the user defines a csv representation of a gating tree, which is read by the OpenCyto package to
generate a gatingTemplate object. This template can be applied to a GatingSet containing data, but no gates, provided the data uses the markers
defined in the template. OpenCyto utilizes built-in automated gating methods, or external methods registered via a plug-in framework, to gate
different cell subsets and populate the GatingSet with data-driven gate definitions for each sample. Manual and automated gating may be readily
compared within a single framework. Cell populations and features can be extracted for further statistical analysis with other R and BioConductor
software packages. Data (red boxes), software packages (blue boxes), framework functionality (gray boxes), and data flow/data structures (arrows/
labeled arrows) are represented. flowCore, flowStats, and flowViz, are the core Bioconductor flow packages that benefit from the substantial
infrastructure changes we have made to improve scalability and data visualization.

doi:10.1371/journal.pcbi.1003806.9g001

can be defined using a given set of markers. In fact, users who run
automated pipelines often impose such a structure implicitly,
either as part of data cleaning prior to gating (equivalent to
manual gating on debris or boundary events), or by applying
automated algorithms in a sequential manner to subsets of flow
data (e.g. lymphocytes are often gated prior to, and separate from
other markers, even in a typical discovery-oriented automated
analysis). OpenCyto provides a framework that forces these steps
to be explicitly included and tracked, facilitating reproducibility.
This framework can be used to encode analysis using high
dimensional gating algorithms, or traditional sequential gating
(Figure S1 A, B). The latter may be imported from a manual
analysis using external software (i.e., FlowJo) or via an automated
analysis wherein gates are defined in a data-driven fashion using
the variety of gating algorithms available in R/BioConductor. A
hybrid approach may also be used wherein high-dimensional
gating can be applied to specific cell subpopulations defined using
hierarchical 2-D gating (Figure S1 C). Importantly, new
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algorithms can be easily integrated via a plug-in architecture,
ensuring the framework can adapt and remain current with new
technological developments. The core flowWorkspace objects are
implemented in C++ for increased speed and memory efficiency.

OpenCyto Facilitates Comparative Data Analysis

The framework supports importing gates from external software
(i.e., Flow]Jo), faithfully reproducing manual analysis within R. The
gated data objects can be saved to disk. This allows users to easily
share raw FCM data, together with associated analyses, and
facilitates the comparison of automated or semi-automated gating
approaches with manual gating, and enabling validation of
automated gating schemes against expert manual results. Further-
more, these features facilitate collaboration between computation-
al and non-computational researchers and have enabled the
development of advanced downstream data analysis algorithms for
FCM data in vaccine trials [28,29], as well as a recent
comprehensive comparison of automated gating algorithms via
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the FlowCAP effort [12]. The framework also facilitates extracting
specific cell populations for downstream analysis from any step of a
pipeline, as we demonstrate with the two data sets analyzed here

[30].

Automated Analysis via Gating Templates Promote

Reproducible Results

The OpenCylo package allows users to define general gating
schemes represented by gatingTemplate objects. A gating scheme
is user-defined in a text file (CSV) that describes cell sub-
populations and their parent-child-relationships, together with
markers and algorithms to be used to gate each population. This
defines a free much like one would define a gating scheme in
traditional manual analysis, except that the user does not draw
gates or define gate coordinates. OpenCylo generates the gate
coordinates in a data-driven manner when the template is applied
to a data set. It can be applied to any data set that uses the staining
panel defined in the template. This facilitates reproducible
research by standardizing the data analysis as well as promoting
code reuse. Given the template and the same data, any user will be
able to generate the same results. This also simplifies repetitive
data analysis for users that frequently analyze data from the same
types of assays.

OpenCyto Pipelines Are Flexible and Extensible

OpenCyto supports a number of different built-in automated
gating algorithms, including high-dimensional model-based meth-
ods (flowClust) [31], density-based methods (mindensity, flowDen-
sity), rare cell population identification (tailgate, quantileGate),
and various specialized gate algorithms (singletGate, transitional
B-cell, and referenceGate). These methods provide a suite of tools
that are well suited to gating lymphocytes, transitional B-cells,
singlets, bimodal or multimodal populations, or rare cell popula-
tions. They can be combined within a single gating scheme to
generate an optimal gating strategy for a given staining panel.
Additional algorithms are supported via a plug-in framework. The
DNA vs. DNA gate used to analyze the CyTOF data set presented
here, and the flowDensity algorithm used in FlowCAP III, are two
such examples integrated into the OpenCyto framework [30] via
the plugin mechanism.

OpenCyto Will Promote Flow Standardization Efforts

A core flow laboratory will generally have a set of well-
standardized flow assays with fixed staining panels. For example, a
core lab may have a standard T-cell assay that always uses the
same staining panel. The OpenCyto GatingTemplate is designed
to take advantage of this. Our automated gating approach allows
the gating of each cell population to be fine-tuned via cell sub-
population specific parameters in the template definition in order
to optimize cell population identification for the assay. OpenCyto
is sufficiently robust that, once set up, the GatingTemplate is
reusable for any data set from the same lab, provided the assay
remains well standardized (i.e., instrument parameters remain
well-controlled and stains don’t vary too much in their perfor-
mance). OpenCyto promotes rapid, exhaustive, and most impor-
tantly, reproducible gating, and the results are easy to interpret in
the context of a standard gating hierarchy. Importantly, variation
due to differing technical expertise of data analysts can be
eliminated [8].

Results

In this section we describe the analysis of two data sets using the
OpenCyto framework. The raw and processed data, as well as the
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R code used to generate the figures in this paper as well as further
documentation, can all be found online at http://www.opencyto.
org. The first data set is from the HIV Vaccine Trials Network
(HVTN) consisting of FCS data from clinical trial HVTNO080 [32]
(flowrepository.org accession FR-FCM-ZZ7U). The data set is a
13-parameter intracellular cytokine-staining (ICS) assay compar-
ing pre- and post-vaccine T-cell response to antigen stimulation
(Env, Gag, Pol) and negative control stimulation (i.e. background)
from 47 subjects consisting of 470 FCS files, 18.8 GB in size. The
study compared two vaccine regimens, Pennvax B alone and
Pennvax B + IL12 DNA. We gate these data with OpenCyto and
show that the results recapitulate manual analysis. The second
data set is smaller in size (74 MB), but higher dimensionality (32
parameter). It is mass cytometry time of flight (CyTOF) data from
a study examining the diversity and combinatorial expression of
nine cytokines and functional markers on CD8" T cells. Here we
re-analyze the three samples presented in the published figures of
the original study [30].

OpenCyto Can Recapitulate Manual Gates

The data in the original HVTNO080 study was manually gated at
the HVTN using FlowJo, and distributed amongst 16 workspaces.
We imported the FlowJo workspaces and raw FCS files into R
using the flowWorkspace package.

To perform automated gating of this data, we defined a
gatingTemplate (File S1) to reproduce the manual gating hierarchy
(Figure S2 A, B) using the variety of automated gating algorithms
available to the openCylo package. Briefly, the data were gated for
CD4" and CD8" T-cells using the FSC vs. SSC (lymphocytes),
Live/Dead, CD3, CD4, and CD8 markers, followed by gating of
cytokine positive cells within the two T-cell subsets. The
automated gating hierarchy has additional gates to remove
boundary events and debris (Figure S2). A subset of automated
manual gates from a representative sample are shown for
comparison in Figure 2 (the complete gating scheme is shown in
Figures S3 and S4). The manual and automated gates are very
similar, and share a common hierarchical structure that facilitates
direct comparison of cell populations between them. This is an
important feature of OpenCyto, as it produces cell subsets that are
easy to interpret in terms that are familiar to flow data analysts.
The relationships amongst known cell populations are preserved in
the gating hierarchy.

In order to better quantify the similarity of the cell subsets
identified through manual and automated gating, we extracted the
proportions of CD4* and CD8" T-cells in all 2° disjoint cell subsets
of the 5 functional markers (IFN-y, IL-2, CD57, Granzyme B, and
TNF-a) from the manual and automated gating results (stored as
GatingSet objects). Although we are interested in comparing the
cell subset proportions between manual and automated gating, not
all of the 64 possible cell subsets are necessarily of interest.
Importantly, an endpoint of this type of study would be to identify
cytokine producing cell subsets where the proportion of cells
increases significantly upon antigen stimulation at the post-
vaccination time-point compared to the pre-vaccination time-
point. To this end, and to filter out uninteresting subsets, we fit a
linear mixed effects model (with random subject effect) to the
background (negative control) corrected proportions of each cell
subset and tested for a significant and positive interaction
coefficient between visit and treatment (see Supporting Text S1,
one-sided generalized linear hypothesis test, Bonferroni adjusted
p-value=0.05). We selected significant cell subsets from the model
for further analysis. This ability to extract interesting features from
flow cytometry data directly for downstream analysis within a rich
statistical analysis environment like R, while maintaining access to
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Figure 2. Comparison of a subset of manual gates and OpenCyto automated gates for a representative sample from the HVYTN080
ICS data set. The automated gates are data-driven. Each panel shows a corresponding manual and automated gate side-by-side. The left panel is
the manual gate; the right panel is the OpenCyto data-driven gate. Parent population names differ between manual and automated gates for singlets
and lymphocytes because the automated gating hierarchy differs from the manual gating by including boundary and boundary debris gates,
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CD3" T-cells, CD4* and CD8"* T-cells, IFN-y* and IL2* expressing CD4" and CD8" T-cells, and Granzyme B* and CD57" expressing CD8" T-cells. The

manual and automated gates are very comparable.
doi:10.1371/journal.pcbi.1003806.9002

the raw data is a powerful feature of OpenCyto that can help limit
the propagation of data entry errors sometimes introduced when
data are copied and pasted or annotated in external data analysis
tools, and that promote the production of reproducible research
results.

In Figure 3A, we show box-plots of the paired differences for
cell subsets identified by the model, and stratified by vaccine
regimen. We observe a vaccine-regimen specific response to
antigen stimulation within the Gag and Pol treatment groups. The
Env stimulation shows the weakest response, with the fewest
significant cell subsets, followed by Gag, and Pol. Furthermore, the
response in CD4" T-cells is greater than in CD8" T-cells, and the
response following Pennvax B + IL12 DNA vaccination is greater
than Pennvax B alone. The CD4" and CD8" T-cell subsets
producing IFN-y or IL-2 (IL2.IFNg) are used by the HVTN as the
readouts for the ICS assay. We note that we detect an antigen-
specific response in these subsets and that the CD4 subsets have
the strongest response to antigen stimulation by both methods,
consistent with the original study findings [32,33]. Most impor-
tantly, there are no significant differences between the manual and
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OpenCyto gating results for any of the cell subsets (two-sided
paired Wilcoxon test). The concordance correlation coefficient
between manual and automated gating across all subsets was 0.82,
0.96, 0.97, respectively for Env, Gag, and Pol stimulation, further
demonstrating that OpenCyto can faithfully reproduce manual
gating results in an automated manner, even for rare cell
populations (Figure 3B) [34,35]. The ability to directly compare
manual vs. automated gating in an objective and quantitative
manner can help users to develop new gating templates for their
assays while promoting confidence in the veracity of automated
gating results.

An important feature of the HVTN ICS data presented here is
that it is a highly standardized assay within the HVTN lab. This
standardization highlights an important feature of our framework.
We were able to construct and refine the OpenCyto gating
template (Supplementary File 1) for this assay by working with just
a few subjects” worth of data, rather than the entire data set.
OpenCyto gating templates are staining-panel specific, but data
agnostic, and can be applied to any standardized data set that uses
the same staining panel. In this way, the gatingTemplate object
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Figure 3. Comparison of OpenCyto automated gating and manual gating (performed with FlowJo and imported and reproduced in
R using OpenCyto) for HVTN 080. A) Box-plots of the paired differences (post-vaccination - baseline) in proportions of cytokine-producing cells
from significant cell subsets identified by the linear model (see Supplementary Methods) for each stimulation condition, gating method, and vaccine
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concordance correlation coefficients shown for all stimulations.
doi:10.1371/journal.pcbi.1003806.g003

abstracts the data, eliminating the need to write data set specific
code. This functionality should be particularly attractive to core
facilities and clinical trials networks that regularly process large
numbers of samples through standardized flow cytometry assays.
The analysis of such data is standardized, but time consuming; it is
an important niche we have designed our framework to fill.

OpenCyto Improves Gating of Markers with High
Variability

One of the markers (perforin) in the HVTN data set shows
considerable variability in MFI that has been described elsewhere
[29]. This marker was not included in the original analysis of the
data [32]. In order to determine whether OpenCyto could
correctly account for the sample-to-sample variation in this marker
when placing data-driven gates on the perforin-positive cells, we
included perforin in the pipeline. Existing approaches used to
account for this variation include cell-subset and channel specific
data normalization approaches [29]. Figure 4 shows OpenCyto
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gates for CD8" T-cells expressing perforin from six randomly
selected samples in the ICS data. Perforin staining shows clear
variability both in the width and position of the negative peaks.
Despite this variation, the automated gates are reasonably placed
to discriminate perforin negative from perforin positive cells. As a
proof of principle, automated gating of perforin allowed us to
detect a vaccine regimen specific trend for post-vaccine response in
CD8" T-cells stimulated with Pol antigen, expressing any cytokine
(e, IL2 or IFN-y or TNF-a) and (i.e., simultaneously with)
perforin in the Pennvax B + IL12 DNA group but not in the
Pennvax B group alone (Figure S5). This trend was present, but
not significant in CD4 T-cells, in agreement with the known
biology of perforin expression (i.e., constitutive expression on
CD8" T-cells). The decision to model expression of any cytokine
jointly with perforin is motivated by the fact that perforin is
constitutively expressed on CD8 T-cells and interpretation of its
expression in response to antigen stimulation is only valid when
considered jointly with other cytokines. We examined the POL-1-
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PTEG stimulation because, for other T-cell subsets, it exhibited
the strongest response of all the stimulations considered (Figure 3).
Importantly, this analysis was only possible for the OpenCyto
gated data since perforin was not gated in the manual analysis.
Our automated gating approach can allow markers that exhibit
such staining variability to be used regularly for downstream
analysis, without requiring time-consuming manual intervention to
adjust traditional template gates.

Until now, a limiting factor of the BioConductor FCM
infrastructure has been the inability to handle large data sets.
We have eliminated this shortcoming by implementing support for
disk-backed storage of FCM data in HDF5/NetCDF [27,36-38]
files. The flowSet and flowFrame data structures, which represent
FCS files and sets of FCS files (sharing a common set of markers),
can now store their data on disk in a NetCDF-compatible file
(using the HDF) library), which is efficiently accessed by slices
(each slice represents an FCS file), eliminating the limitations of
storing an entire flow study in memory. We used this functionality
to analyze the HVTN ICS data set. We were able to load and
merge the 470 FCS files and corresponding manual gates from the
16 FlowJo workspaces (corresponding to 16 plates) within a single
R-session, and manipulate and interact with the data. To our
knowledge, no other automated flow data analysis infrastructure
allows for this kind of scalability for event-level data (we note that
cloud-based platforms like Cytobank [18] scale well, but do not
currently handle automated gating). Since large, manually gated
data sets are often stored across multiple workspaces, this
functionality is critical for automated analysis of the data sets
generated in clinical research.

Importantly, the time required to perform automated gating
using OpenCyto can be greatly reduced compared to manual
analysis, although it is dependent on the dimensionality of the data
set. For the ICS data set, the majority of the computation time is
spent gating the individual samples, whereas for the CyTOF data
set (described next), most of the time is spent computing the
Boolean subsets (Table 1). The time to extract Boolean gates in

An Infrastructure for Scalable and Reproducible Flow Data Analysis

OpenCyto is already an improvement over some manual analysis
tools (7.4 minutes for the ICS and 2.6 minutes for the CyTOF
data). This improvement is attained through an optimized
polyfunctionality gating method that caches event indices for each
gate, ensuring that cell subset counts are returned for each cell
subset in an efficient manner. Although there is some overhead in
retrieving data from the NetCDY/HDFY) file, the benefits of being
able to access single-cell data from an entire study at once
outweighs the additional cost in time. For smaller studies, if
sufficient RAM is available, storage of FCS data in flowSets is still
an option.

OpenCyto Can Explore Cytokine Expression in CD8* T
Cell Subsets from CyTOF Data

Cytometry by time of flight was used to explore the expression
of nine cytokine and functional markers on CD8" T cells. The
markers included TNF-o, IFN-y, MIP1o, MIP18, IL-2, GMCSF,
CD107, Granzyme B, and perforin. In addition to these, the panel
included markers used to identify naive, short-lived effector,
effector memory, and central memory T-cell maturational subsets.
In total, twenty-three different markers or measurements of
physical characteristics were used to identify individual events
[30]. The thresholds for cytokine and functional marker positivity
were derived from the non-stimulated sample and applied to the
two stimulated samples presented in the figures of the original
study [30]. This i1s a straightforward procedure within the
OpenCyto framework (reproducible code can be found at
opencyto.org). The complete gating hierarchy for the negative
control and stimulated samples can be found in Figures S6 and S7,
respectively. The same positivity threshold is used across samples
and is based on the 99™ percentile of expression in the non-
stimulated sample, as in the original publication [30]. The
automated gating templates used to derive data-driven gates for
the non-stimulated and stimulated samples are available in Files S3
and S4, and representative gates for non-stimulated and stimulated
samples are shown in Figures S8 and S9, respectively. The data

Perforin Expression
OpenCyto Gate

010> 10° 10* 10°

431361.fcs 505211.fcs

—_ o
o O O
w Ao
| | |

CSDr\J
[

<Alexa 680-A> Granzyme B

010 10° 10* 10°

505224.fcs

010 10° 10* 10°

<APC-A> Perforin

Figure 4. Example of OpenCyto automated gates on the perforin channel for CD8" T-cells for six randomly selected samples from
the HVTN 080 ICS data set. The perforin marker exhibits staining variability as evidenced by the varying width and position of the negative peak
and was not gated by the manual template-gating approach. Despite this variability, OpenCyto data-driven automated gating is able to identify a

reasonable threshold for perforin positive cells.
doi:10.1371/journal.pcbi.1003806.9004
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were filtered to remove cytokine producing cell subsets with less
than 1% expression. This reduced the set of features to forty-three
unique subsets of cytokine expressing cells across the 4 matura-
tional states (Figure 5). In Figure 5 we show the average
proportion of each cell subset across the two samples analyzed
here, and observe clear differences across maturational states. We
further summarized the expression in each maturational T-cell
subset by computing the degree of functionality (polyfunctionality)
of each set of cytokine producing cells and plotting their
distributions (Figure 6). Naive CD8 T-cells were observed to
express zero, one or two cytokines, while short-lived effector CD8
T-cells were seen to have the highest degree of polyfunctionality,
consistent with our understanding of the biology of these
compartments (Figure 6).

Importantly, the analysis of the CyTOF data set demonstrates
the flexibility of our framework, and how it can be extended to
accommodate new types of data from new single-cell cytometric
assays. For example, to analyze the CyTOF data set we
implemented a new gate type (dnaGate) to identify “single-cells”
in the DNA-DNA dimensions (Supporting Figures S8, S9 and Files
S3 and S4). This is a non-standard gate that is the CyTOF
equivalent of a singlet gate. Our plugin framework allows
automated gating pipelines written in OpenCyto to be easily
extended to leverage any of the automated gating or clustering
algorithms available in the BioConductor ecosystem. This
flexibility enables users to easily construct analyses specifically
tailored to identify the cell populations of interest in their assays.

The hierarchical gating strategy, which is an explicit and
mtegral part of the OpenCyto framework, is compatible with both
classical manual analyses, as well as new, high-dimensional
approaches (Figure S1 A-C). Importantly, by keeping track of
the cell population hierarchy, the pipeline facilitates cell-popula-
tion matching across samples, irrespective of which gating
algorithm 1s used to identify specific cell subsets. This enabled us
to identify and analyze all cytokine-producing cell subsets across
the four T-cell maturational states in the CyTOF data without
resorting to ad-hoc or heuristic cell population matching
approaches. The framework even allows for missing populations.
The cell hierarchy encodes important domain-specific knowledge
about an experiment, which is preserved in our approach. As an
example, the gatingTemplate for the ICS data set specifies the
PTID:VISITNO experimental variables in the groupBy column of
the template file for each cytokine gate (File S1). These correspond
to the subject and wvisit associated with a specific FCS file, and
instructs OpenCyto to combine these samples when gating cytokine
channels, ensuring samples that need to be directly compared (i.e.,
stimulations and controls within a visit and subject) have a
consistent gating threshold. This type of flexibility to combine and
collapse samples can also be used to increase the density of cell
subsets for very rare cell populations prior to gating, or to combine
samples for Bayesian prior elicitation when using the flowClust
gating method.

QA procedures and OpenCyto. Although OpenCyto does
not have an explicit QA module, the standard QA procedures
mvolving data visualization and exploration can readily be applied
to the OpenCyto workflow. The flowViz package allows for
flexible visualization of gates and cell populations, and R’s
statistical environment enables standard outlier detection methods
to be applied to cell population statistics. A typical QA workflow in
openCyto may involve iterative template development on a subset
of a complete data set, with concomitant exploratory analysis of
the results. Existing QA tools like QUALIFIER [26] are built
around the same flowWorkspace framework and can also be used
with OpenCyto GatingSet objects. Other tools like FCSClean/
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Figure 5. The average frequency of expression across two CyTOF samples for cytokine-producing cell subsets from four T-cell
maturational states. Samples were stimulated with PMA-lonomycin for 3 hours. Rows represent different maturational cell subsets (TN: naive, TCM:
central memory, TEF: effector, TEM: effector memory) and are clustered by Euclidean distance similarity. Columns represent different cytokine-
producing cell subsets. The bottom legend defines the cell subset in a column. The legend is colored by degree of functionality of the cell subsets
(light blue: degree 1, dark blue: degree 2, light green: degree 3, dark green: degree 4, salmon: degree 5, red: degree 6, orange: degree 7). The shading
of individual blocks of the heatmap represents the average proportion of cells in the subset across the two samples, normalized to the total number

of CD8 T-cells. Naive cells have low polyfunctionality compared to effector, effector memory, and central memory cells.

doi:10.1371/journal.pcbi.1003806.g005

FlowClean can be integrated readily via the plugin framework
[39]. The various gating algorithm tuning parameters are
generally selected to provide gate thresholds that are subjectively
appealing to the user, but are defensible on objective grounds (i.c.
one can explain exactly why a given gating algorithm is selecting a
certain cut-point, given the parameters). In the examples shown
here, tuning parameters were selected with the idea in mind that
the resulting gates are not obviously wrong, rather than being

% 075 - Maturational Subset
O \ — TCM

5 050 - -- TEF

5 - TEM

2

S 025 -

Degree of Functionality

Figure 6. The distribution of cells of each maturational state
and their degree of functionality. The majority of naive CD8 T cells
(TN) do not express any cytokines (degree of functionality 0) or are
mono-functional, while effector memory cells (TEM) are the most
polyfunctional of the subsets (peaking at degree 5). Short-lived effector
(TEF) cells have lower polyfunctionality (peaking at degree 4), and
central memory (TCM) populations tend to have a constant level of
polyfunctionality from degreel through degree 7. The area under the
curve for each cell subset integrates to one. The y-axis is transformed by
a hyperbolic-arcsine to facilitate visualization of differences between
subsets at higher degrees of polyfunctionality.
doi:10.1371/journal.pcbi.1003806.9006
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tuned to provide a good fit to manual gating. We would
recommend such a strategy in general.

Availability and Future Directions

While exhaustive documentation of the features of OpenCylo is
beyond the scope of a manuscript, we have aimed to provide
several use cases that demonstrate how the framework can be
applied in practice. Further details, documentation, tutorials, and
use case examples (including all code and data to reproduce the
figures in this paper) are available online (http://www.opencyto.
org), and the software can be downloaded from github (https://
github.com/RGLab/openCyto). and from BioConductor (http://
www.bioconductor.org).

The OpenCyto framework enables easy, automated, data-
driven gating of high-dimensional (e.g., many samples or many
dimensions) FCM data sets, eliminating the time-consuming task
of manual gating. By incorporating expert-elicited and data-driven
prior knowledge, OpenCyto attains accurate gating of cell
populations, including rare populations, in an objective manner
that is directly comparable to careful, expert manual gating. The
ability to construct abstract, data-driven gating templates that
incorporate any gating algorithm makes it a valuable tool for core
facilities that frequently generate and analyze highly standardized
data. The text-based gating template definitions lower the barrier
to adoption of automated FCM data analysis methods by making
the framework easier to use, minimizing the need to write data-set
specific code and promoting reproducible data analysis that is easy
to share. Similarly, built-in support for importing manual gates
from external tools is designed to promote collaboration and
facilitate the comparative analysis of the large quantities of existing
flow data sets. Importantly, the core BioConductor flow packages
already have a large user base and are widely used in a variety of
fields [12,16,40-50]. The significant infrastructure improvements
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made to the core packages in order to support the OpenCyto
framework will also greatly benefit this community. Future work
will include further optimizations of the framework to improve
speed, expansion of the repertoire of gating algorithms to include
more CyTOF-specific methods, and development of a web-based
graphical user-interface to further facilitate defining OpenCyto
gating templates, as well as support for GatingML 2.0 compliant
output (using flowUtils) of openCyto gates for bi-directional
interoperability with FlowJo and better integration with cloud-
based platforms like CytoBank [18].

Supporting Information

Figure S1 Three examples using OpenCyto to perform
automated gating using a hierarchical approach, a high-
dimensional automated approach, and a hybrid approach. A)
A hierarchical, pairwise gating scheme for identifying cytokine-
producing T-cells. B) A naive, high-dimensional approach to do
the same as A, C) a hybrid approach combining pairwise
hierarchical gating and high-dimensional gating of specific cell
subpopulations from the hierarchical scheme. Different colored
nodes represent cell populations identified via pairwise gating
(light gray), high-dimensional gating (dark gray), or all events in
the FCS file (white). Panel C) explicitly represents the approach
undertaken by many high-dimensional automated gating
algorithms.

(EPS)

Figure 82 Automated and manual gating hierarchy for HVIN
080. A) Hierarchy of automated gates and B) manual gates for
HVTNO080. Some additional filtering gates (boundary and debris
event removal) were added to the automated gating scheme to
clean up the data. The visualization was created using flowWork-
space.

(EPS)

Figure 83 Automated gating layout for a representative sample
from data set HVIN 080. Data-driven gate thresholds were
derived using openCyto and the gating template defined in File S1.
The visualization was generated using the new functionality in the
SflowViz package.

(EPS)

Figure S4 Manual gates for the HVTN 080 data set imported
from FlowJo. The layout shows the manual gates for a
representative sample of the HVTN 080 data set. The gates were
reproduced in openCyto from the FlowJo workspace using the
flowWorkspace package. The visualization was generated using the
SflowViz package.

(EPS)

Figure S5 Paired difference of post-vaccine minus pre-vaccine
proportions of POL-1-PTEG stimulated, background corrected,
CD8* and CD4+ T-cells expressing any cytokine AND perforin
in HVTNO80. There is a vaccine regiment specific trend for post-
vaccine response in the CD8+ cell subset (one-sided simultaneous
test of linear hypotheses, post-vaccine - pre-vaccine >0 within
each vaccine regimen, based on a linear mixed effects model,
with random subject effect, fit to the proportions). We observe
more evidence for post-vaccine response in the CD8* T-cell
subset than the CD4" subset, as expected. The POL-1-PTEG
stimulation was chosen because it showed the largest response
magnitude. Such an analysis is not possible with the manually
gated data.

(EPS)
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Figure S6 'The hierarchy of automated gates for the negative
control in the CyTOF data set. Thresholds for Perforin and
Granzyme B were based on the spiked-in mouse lymphocytes
expressing CD8.

(EPS)

Figure 87 The hierarchy of automated gates for the CyTOF
data set. The visualization was created using flow Workspace. The
2048 automatically generated Boolean gates are omitted for
clarity. The thresholds for Perforin and Granzyme B were derived
from the spiked-in mouse lymphocytes in the negative control
sample.

(EPS)

Figure 88 Automated gating of an unstimulated sample from
the CyTOF data set. The gating template in File S2 was applied to
the unstimulated CyTOF sample to generate the data-driven gates
shown here. The layout was generated using the new functionality
in the flowViz package.

(EPS)

Figure 89 Automated gating of a stimulated sample from the
CyTOF data set. The 2048 Boolean subsets automatically
generated from the functional markers are not shown. Thresholds
were taken from the gates derived from the non-stimulated
sample, as in the original publication. The threshold for positivity
of perforin and Granzyme B was defined using the spiked-in
negative control mouse cells for CD8+ T-cells, as in the original
publication.

(EPS)

File S1 OpenCyto gating template for the HVTN 080 study.
Each row contains a cell population definition. Columns are
provided for the population name (alias, pop), channels defining
the population (dims), its relationship to other populations (parent),
and the gating algorithm (gating_method) to be used to gate the
population. Additional columns for each population are provided
for algorithm-specific parameters (gating args), and well as the
ability to group (collapseDataForGating, groupBy) samples for
gating and preprocessing based on sample-level metadata in the
“phenoData” slot of the GatingSet object.

(XLSX)

File 82 OpenCyto gating template for gating the negative
control in the CyTOVF data set. The T-cell maturational subsets
are not defined in this template, nor are the Boolean combinations
of cytokine producing cells; only the marginal cytokine subsets are
defined here, and used as reference gates for the stimulated
samples.

(XLSX)

File 83 OpenCyto gating template for gating the stimulated
samples from the CyTOF data set. The template contains
definitions for T-cell effector, effector memory, central memory,
and naive cells as well as their cytokine producing subsets.

(XLS)

Text 81 Description of the statistical model used to identify cell
subsets with antigen-specific changes induced upon vaccination in
the HVTN 080 data set.

DOCX)
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