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Abstract

Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical
importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as
bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively
mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed
quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match
the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds.
With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid
Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of
the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of
hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related
biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis
routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of
these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had
first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural
products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU
General Public License v3 and supported on MS Windows, Linux and Mac OS X.
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Introduction

After a steady decline at the end of the last millennium, natural

products are back in the centre of attention as leads for drug

discovery [1–4]. The secondary metabolites from which they are

derived can be categorized into various classes, according to their

chemical structures and the different ways in which they are

synthesized enzymatically. Two of the most abundant classes are

the NonRibosomally synthesized Peptides (NRPs) and Riboso-

mally-synthesized and Post-translationally-modified Peptides

(RiPPs). Many NRPs and RiPPs are of great clinical and societal

importance, having applications as antibiotics, immunosuppres-

sants or cytostatics [5].

Unlike RiPPs, NRPs are synthesized not by the ribosome but by

large enzymatic complexes called nonribosomal peptide synthe-

tases (NRPSs). These NRPSs form assembly lines of modules,

which each add one specific amino acid to the growing peptide

chain [6]. Each NRPS module normally consists of at least three

domains: a condensation (C) domain that catalyses the conden-

sation to the next amino acid, the adenylation (A) domain that

selects the amino acid to be incorporated, and the thiolation (T)

domain to which the growing peptide chain is attached. Because

they function independently of the ribosome, NRPSs can

introduce not only proteinogenic but also nonproteinogenic amino

acids into the peptides they produce. After its synthesis by NRPSs,

the core peptide scaffold of an NRP can be further modified by a

wide variety of tailoring enzymes.

For a long time, drug discovery from bioactive peptides

depended on laborious identification and characterization of one
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peptide at a time. Moreover, re-discovery of already known

peptides occurred with increasing frequency, which made the

entire process slow, inefficient and costly [7]. Conversely, the

genomic identification of biosynthetic gene clusters (BGCs) that

could potentially encode the enzymatic machinery to make novel

bioactive peptides is rapidly becoming easier, as thousands of

genomes are being sequenced each year and various algorithms

have been developed to automatically detect the BGCs that

encode NRP and RiPP biosynthesis [8–13].

Recently, a new technology, peptidogenomics, has been

introduced, which uses the potential of high-throughput mass

spectrometry (MS) [14] to dramatically speed up the discovery of

novel bioactive peptides [15]. Using this technology, short amino

acid sequence tags (which represent a part of the complete peptide)

can be reconstructed from the MS peak patterns by looking at the

mass differences between peaks of various peptidic fragments. In

turn, these ‘mass shift sequences’ can be assessed for their potential

to represent novel peptides using dereplication tools such as

iSNAP [16] and matched to BGCs predicted by methods such as

antiSMASH [10,11]. So far, the matching of mass shift sequences

to BGCs has remained a tedious and complicated procedure,

especially for NRPs. In this procedure, possible amino acid

sequences are manually compared to substrate specificity predic-

tions of NRPSs by algorithms such as NRPSPredictor2 [17], after

identification of NRPS gene clusters by antiSMASH. This lack of

automation has severely impeded high-throughput peptidoge-

nomic experimentation, and has precluded the use of peptidoge-

nomics on microbial communities with large metagenome

datasets. Moreover, the effective use of peptidogenomics on

unsequenced strains [18] also depends on the development of

computational approaches, in order to be able to compare

identified sequence tags with dozens or even hundreds of genomes

of related genome-sequenced strains to identify orthologous BGCs.

Here we fill this gap by introducing Pep2Path, a set of algorithms

that facilitate the rapid and automatic identification of candidate

BGCs that correspond to NRP- and RiPP-derived mass shift

sequence tags detected by mass spectrometry. Moreover, we show

how Pep2Path can be used to detect BGCs for previously

characterized NRPs for which the biosynthetic enzymes had not

been identified yet.

Design and Implementation

Matching nonribosomal peptide BGCs to tandem mass
spectra

The Pep2Path suite consists of two algorithms, NRP2Path for

NRPs and RiPP2Path for RiPPs. The NRP2Path algorithm has to

solve by far the more challenging problem. In order to assess how

likely it is that a given MS-derived NRP mass shift sequence

originates from a certain BGC, NRP2Path uses a Bayesian

algorithm to estimate the probability for each amino acid in the

tag to originate from each of the NRPS modules of a BGC that

encodes a certain NRPS assembly-line (Figure 1, see paragraph

below for details). Of course, sequence tags can be aligned to a

BGC-encoded NRPS assembly line in multiple ways, and BGCs

that encode multiple NRPSs may have various possible assembly-

line configurations. Hence, the final score for a match between a

BGC and a sequence tag will be the maximum score obtained for

any of the possible alignments of a sequence tag with each of the

possible assembly line orders of the NRPSs encoded by a BGC. To

help interpret cases in which multiple NRPS BGCs receive

similarly high scores, NRP2Path also calculates a colinearity index,

which measures the proportion of contiguous NRPS module pairs

that are colinear with the order of amino acids in the identified

sequence tag.

NRP2Path algorithm
Using Bayes’ Theorem, the probability P(M|A) that an NRPS

module M is responsible for the biosynthesis an observed amino

acid A in a peptide sequence tag T is:

Figure 1. Outline of the NRP2Path matching process. The input for NRP2Path consists of mass shift sequences (or amino acid search tags) on
the one hand, and genome sequences on the other hand. The latter are processed into databases by makedb, using antiSMASH and NRPSPredictor2.
When a database is queried with a mass shift sequence or amino acid search tag, Pep2Path scores all possible matches between search tags and all
possible assembly line configurations of each of the NRPS BGCs in the database.
doi:10.1371/journal.pcbi.1003822.g001

Automated Peptidogenomics with Pep2Path
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P M DAð Þ~ P ADMð Þ:P Mð Þ
P Að Þ &

P ADMð Þ
P Að Þ

For most applications, the prior probability P(M) of a module M to

synthesize any observed amino acid will be the same for all

modules and can be neglected. We do note that there are scenarios

where the value of this prior probability would become relevant.

For example, if one studies peptidic compounds from a microbial

community, the abundance of the various species in the

community would largely determine P(M). In such a case, one

might estimate P(M) using the metagenomic coverage of each of

the observed species from which genome information is available.

The score S for an entire gene cluster C given a sequence tag T
is then the sum of the log likelihoods P(M|A):

S CDTð Þ~
X

A in T

ln P M DAð Þð Þ

To calculate P(M|A), the probability of an amino acid to be part

of an observed peptide P(A) is estimated using the frequencies of

amino acids in known NRPs from the NORINE database. At

those positions in a search tag that represent multiple possible

amino acids, a baseline value of (1/AA alphabet size) is used for

P(A). This is done in order not to introduce an inappropriate bias

towards matches to rare amino acids, which would otherwise lead

to high scores because the possible prior observation of such an

amino acid would erroneously be treated as an actual prior

observation. We use a pseudocount k of 1 to correct for the limited

sample size. The formula to calculate P(A), in which A represents

the NRP ‘alphabet’ considered, is:

P Að Þ~
n Að Þz k

Aj jP
A[A n Að Þzk

P(A|M) is estimated as a function of the baseline probability P(A)

and a variable IA,M, which is determined by the two types of

NRPSPredictor2 substrate specificity predictions for the A domain

in the module. Hence, the IA,M variable is an average value of two I
values: one for the support vector machine matches and one for the

Stachelhaus code matches for an NRPS module M to an amino acid

A. For the Stachelhaus code predictions, the value of I corresponds

to the degree of identity of the Stachelhaus code of an NRPS

module (10 amino acids long) to that of the most closely related

known NRPS module within the NRPSPredictor2 search space. For

the SVM predictions, I will be 1.0 if the amino acid in the sequence

tag matches the single amino acid prediction for the NRPS module,

0.75 if the amino acid matches the small class prediction, 0.5 if the

amino acid matches the large class prediction, 0.25 if the amino acid

matches the three-class prediction, and 0.0 if the amino acid

matches none of these. P(A|M) is calculated with the following

formula, in which c is a confidence factor (default value = 1) that

accounts for how much of the final probability is determined by the

substrate specificity predictions, as compared to the contribution by

the baseline probability P(A), and x is again a pseudo-count variable

to correct for finite sample size, this time considerably smaller than 1

(the default settings of the Pep2Path software use x = 0.01):

P ADMð Þ~ P Að Þzc : IA,Mzx :P Að Þð Þ
1zc :

P
A[A IA,Mð Þzx

� � with x%1

Finally, we can also add an g variable that allows NRPSPre-

dictor2 mismatches to be penalized exponentially as the number of

mismatches increase:

P ADMð Þ~ P Að Þzc : IA,M
gzx :P Að Þð Þ

1zc :
P

A[A IA,M
gð Þzx

� �

The default value in the Pep2Path software is g = 2.

Combining the equations, we obtain

P MjAð Þ~

P Að Þzc : IA,M
gzx:P Að Þð Þ

1zc :
P

A[A IA,M
gð Þzx

� �
P Að Þ

~
P Að Þzc : IA,M

gzx:P Að Þð Þ
P Að Þ : 1zc :

P
A[A IA,M

gð Þzx
� �� �

from which the score S(C|T) can be calculated directly:

S CDTð Þ~
X

A in T

ln
P Að Þzc : IA,M

gzx :P Að Þð Þ
P Að Þ : 1zc :

P
A[A IA,M

gð Þzx
� �� �

 !

Of course, sequence tags can be aligned to a BGC-encoded NRPS

assembly line in multiple ways, and BGCs that encode multiple

NRPSs may have various assembly-line configurations. Hence, the

final score for a match between a BGC and a sequence tag will be

the maximum S score obtained for any of the possible alignments

of a sequence tag with each of the possible assembly lines encoded

by a BGC.

Constructing and merging NRP2Path databases
The input of genomic data to which NRP sequence tags can be

matched proceeds through the construction of NRP2Path

databases. For this purpose, two accessory programs, makedb
and mergedb, are provided with Pep2Path. The makedb tool uses

antiSMASH2 [11] to search user-provided input sequences for

BGCs that encode NRPSs and integrates information on these

BGCs into a database. Each entry in this database consists of the

accession number or name of the nucleotide entry from which the

BGC originates, a list of genes that constitute the BGC,

taxonomic information on the species whose genome encodes

it, the modular architecture of the NRPSs within the BGC, and

substrate specificity predictions as given by the two NRPSPre-

dictor2 algorithms [17]. A database with all NRPS-containing

BGCs within the GenBank database is already provided with

Pep2Path. The mergedb tool can be used to merge this database

with custom-made databases created from locally available

sequence data, or to combine multiple custom-made databases

with one another.

Input data for NRP2Path
The input for NRP2Path is either a list of amino acids or a list of

mass shifts. In the latter case, Pep2Path converts the mass shifts

into amino acid sequence tags using the conversion table provided

by Kersten et al. [15]. Because some amino acids or amino acid

derivatives have identical masses, NRP2path will generate a list of

all possible short peptide sequences. Then, NRP2path assesses for

each of the BGCs within the selected NRP database how likely it is

that this BGC encodes the peptide from which the sequence tag

Automated Peptidogenomics with Pep2Path
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derives (Figure 1). Depending on how much is known about the

source of the biological material analyzed by MS, the user can

select a taxonomic range (strain, species, genus, etc.) within which

to search.

RiPP2Path: a simple accompanying tool to match RiPPs
to prepeptide-encoding genes

Besides matching of NRPs to their BGCs, the Pep2Path suite

also offers the ability to match RiPPs to the prepeptide-encoding

Figure 2. Quality of NRP2Path predictions with varying sequence tag lengths and NRPSPredictor2 prediction qualities. The heat map
shows the average number of correct BGC predictions for Pep2Path searches with the stendomycin sequence tag V-V-T(S)-T(S)-A-I(L)-V-G across the
Streptomyces hygroscopicus ATCC 53653 genome (20 NRPS BGCs) or across all Streptomyces nucleotide entries (342 NRPS BGCs). The searches were
done for all possible search subtags of 2–8 amino acids long, and for all combinations of 0–8 simulated mispredictions for the corresponding NRPS
modules. Mispredictions are simulated with zero scores given by Pep2Path for sequence tags matching to these domains.
doi:10.1371/journal.pcbi.1003822.g002

Table 1. Benchmark of Pep2Path on 18 recently discovered NRPS BGCs.

Tag size (AA)
BGC search
space size: 5

BGC search
space size: 10

BGC search
space size: 25

BGC search
space size: 50

BGC search
space size: 100

2 (n = 18) 75% 64% 47% 36% 26%

3 (n = 15) 78% 70% 54% 44% 37%

4 (n = 12) 83% 78% 65% 56% 45%

5 (n = 11) 90% 89% 79% 72% 61%

6 (n = 8) 96% 96% 87% 81% 74%

7 (n = 5) 99% 99% 96% 91% 88%

8 (n = 3) 100% 100% 100% 100% 100%

For each tag size, all possible search tags of that size in the test set of peptides (Table S1) were used as queries. For each BGC search space size, 50 search spaces were
generated from randomly selected BGCs from the same (sub)phylum that the NRP originates from. The resulting percentages represent the average number of cases in
which the correct BGC ended up as the (shared) best hit across all possible sequence tags and across all possible search space permutations. Shared best hits were
included because of the frequent presence of orthologous BGCs encoding the same molecule in related genomes. The n in the left column signifies the number of test
peptides large enough to be included in the analysis for this tag size; from each of these test peptides, all possible subtags were used in cases where the length of the
tag is shorter than the length of the peptide.
doi:10.1371/journal.pcbi.1003822.t001

Automated Peptidogenomics with Pep2Path
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genes that encode their primary sequences, similar to the matching

module from the recently launched RiPPquest [19]. This is done

by the RiPP2Path algorithm. Like NRP2Path, RiPP2Path uses a

dedicated translation table to convert an identified mass shift

sequence into all possible amino acid sequences that it could

represent. To match these possible RiPP amino acid sequences to

genomically encoded precursor peptides, it then reads in a set of

(meta)genomic sequences and retrieves their six translation frames.

Finally, it performs a simple matching of each possible RiPP

sequence to the translation frames, using a sliding window with a

word size equal to the tag length. The key difference between the

RiPPquest and RiPP2Path algorithms is that RiPPquest (in its

current version) is specifically aimed at lanthipeptides, while

RiPP2Path can identify prepeptides of any type: hence, RiPPquest

will be better suited to search for lanthipeptides in a large number

of genomes, while RiPP2Path will be the method of choice for

discovering other (and novel) types of RiPPs. Also, unlike

RiPPquest, which uses molecular networking to locate matches

to a database, RiPP2Path directly uses mass shift or amino acid

sequences as input.

Results

Benchmarking shows that NRP2Path is powerful and
robust

As a first assessment of how NRP2Path would confront the

difficult challenge to match NRP-derived mass shift sequences to

BGCs, we tested whether it would be successful in matching the V-

V-T(S)-T(S)-A-I(L)-V-G sequence tag that was used to identify the

BGC of the nonribosomal peptide stendomycin by Kersten et al.

[15]. Pep2Path appeared to do this very effectively: even when the

search space consisted of all 12,470 NRPS BGCs in the GenBank

database, the stendomycin BGC emerged as the top hit. By

varying the sequence tag size between 2 and 8 and introducing 0–

8 simulated mispredicted substrate specificities (by artificially

setting the score for a query amino acid to zero) for the

Table 2. Novel matches of NORINE-derived NRPs to BGCs detected in genome sequences.

Compound Reference Species (accession nr.) Locus tags
NRP search tag from
NORINE

NRPSPredictor2
prediction

Pep2Path
score (rank)

trichotoxin (Irmscher
et al. 1978)

Trichoderma virens
Gv29-8 (ABDF02000085)

TRIVIDRAFT_69940 ala-gly-ala-leu-ala-glu-ala-
ala-ala-ala-ala-ala-pro-leu-
ala-xxx-gln-vol

nrp-nrp-ala-nrp-nrp-
gln-nrp-ala-nrp-ser-
leu-nrp-pro-nrp-ala-
ala-gln-vol

6.25 (1)

ferintoic acid (Williams
et al. 1996)

Microcystis aeruginosa
9701 (CAIQ01000336)

MICAK_4000004-
MICAK_4000007

trp-co-lys-val-hty-ala-phe phe-nrp-lys-val-
nrp-ala

5.24 (1)

plusbacin (Shoji et al. 1992) Pseudomonas putida ND6
(CP003588)

YSA_0461-YSA_0481 asp-pro-ser-asp
-arg-pro-ala-allothr

asp-ser-ser-asp-
nrp-nrp-nrp-thr

4.91 (1)

amphibactin B (Martinez
et al. 2003)

Vibrio tubiashii NCIMB
1337 (AHHF01000067)

VT1337_12727-
VT1337_12732

orn-orn-ser-orn orn-orn-ser-orn 2.73 (1)

tripropeptin A (Hashizume
et al. 2001)

Collimonas fungivorans
Ter33 (NC_015856)
Originally found in
Lysobacter sp.

CFU_2182-CFU_2185 thr-pro-pro-arg-asp-
ser-pro-asp

thr-pro-pro-orn-
asp-ser-pro-asp

8.94 (1)

Candidate BGCs for trichotoxin, ferintoic acid, plusbacin and amphibactin B were discovered by searching within the taxonomic range of the species in which the
molecules were found. The candidate BGC for tripropeptin A was discovered by searching the entire Pep2Path database.
doi:10.1371/journal.pcbi.1003822.t002

Table 3. Matching of mass sequence tags to RiPP gene clusters using RiPP2Path.

Peptide Search tag Genome Matches in genome

SSV-2083 I(L)GA(C)GTA(C)WI(L)A(C)V Streptomyces sviceus ATCC 20983 1

SGR-1832 AVAQ(K)FVI(L)Q(K)GSTI(L) Streptomyces griseus IFO 13350 1

SCO-2138 VHFVGWI(L) Streptomyces coelicolor A3(2) 1

SLI-2138 GI(L)VHFVGWI(L) Streptomyces lividans TK24 1

SWA-2138 I(L)AGI(L)VHFI(L)GWI(L) Streptomyces sp. E14 (WASP) 1

SRO15-2005 YWSRRI(L)I(L) Streptomyces roseosporus NRRL 15998 1

SRO15-2212 VVI(L)S(C)T Streptomyces roseosporus NRRL 15998 47

SRO15-3108 AS(C)ATVTI(L) Streptomyces roseosporus NRRL 15998 1

SAL-2242 VTI(L)S(C)T Streptomyces albus J1074 39

Seven out of the nine search tags resulted in unique matches in their corresponding Streptomyces genomes.
doi:10.1371/journal.pcbi.1003822.t003

Automated Peptidogenomics with Pep2Path
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corresponding stendomycin NRPS modules, we show that also

BGCs with less accurate NRPSPredictor2 predictions (i.e., with up

to one or two completely wrong predictions) can be identified

robustly within a genome or species, even with relatively small

sequence tags (Figure 2).

NRP2Path benchmarking on 18 NRPs of known structure
To investigate how well NRP2Path would work in practice on

novel compounds, we mined 18 NRPs from the recent scientific

literature, together with their corresponding NRPS BGCs (Table
S1). None of these had yet been incorporated into the

NRPSPredictor2 training sets. In order to assess how well

Pep2Path would be able to match tags from these NRPs to the

correct BGCs under varying conditions, we varied the sequence

tag size from 2 to 8 and tested all possible search tags of these sizes

on databases with sizes ranging from 5 NRPS BGCs to 100 NRPS

BGCs (an average bacterial genome contains ,5 NRPS BGCs).

For each database size, 50 randomly permuted BGC databases

were created from BGCs originating from genomes within the

same (sub)phylum, and the results were averaged across all of these

permutations. The results (Table 1) confirm that the minimum

sequence tag size to confidently match an NRP to a BGC is

around 2–4 when the genome sequence is known. When the

search space is larger, a situation that represents the mining of

unsequenced strains for NRPs and attempting to match them to

orthologous BGCs within the same genus [18], larger sequence

tags (e.g., 5–8 amino acids long) are often still sufficient to identify

the correct BGC.

New gene clusters for old molecules: an application
Finally, we used NRP2Path in an effort to find BGCs for NRPs

within the NORINE database [20] for which no BGC had been

discovered so far. Intriguingly, we discovered novel candidate

BGCs for four molecules by searching all NRPS BGCs from the

species from which the compound had originally been isolated

(Table 2). When we expanded the search space to screen the

entire database, we discovered another very good match, for

tripropeptin A (Table 2). Surprisingly, although this eight-amino-

acids-long peptide was originally discovered in the gamma-

proteobacterium Lysobacter sp. [21], we found a match with a

BGC in the genome of the beta-proteobacterium Collimonas
fungivorans Ter33 (Figure S1). The tripropeptins are highly

important molecules from a pharmaceutical point of view, as

tripropeptin B and C display potent antibacterial activity against

methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-

resistant enterococci (VRE), and penicillin-resistant Streptococcus
pneumoniae [22,23]. All in all, the results of the NORINE searches

show how even in the absence of new peptidogenomic data

Pep2Path can identify putative genomic loci that encode the

biosynthesis of important molecules, opening up new possibilities

to further engineer these pathways and/or produce the com-

pounds in high titers through metabolic engineering or heterol-

ogous expression.

RiPP2Path is able to specifically detect RiPP prepeptides
in the majority of cases

When testing RiPP2Path on the nine Streptomyces RiPPs

identified by Kersten et al. [15], seven of these produced unique

matches of their search tags to the corresponding genome

sequences (Table 3). The remaining two search tags could still

be manually matched to gene clusters based on the antiSMASH-

based identification of RiPP BGCs containing RiPP2Path

matches.

Availability and Future Directions

Pep2Path is freely available from http://pep2path.

sourceforge.net/, implemented in Python, licensed under the

GNU General Public License v3 and supported on MS

Windows, Linux and Mac OS X. To maximize the convenience

for the majority of experimental scientists in using a new

computational method, it is often helpful to provide a user-

friendly web-server with accompanying step-by-step protocols

for standard analytical scenarios. Providing these for the

Pep2Path tools is one of the remaining challenges for future

development of the software.

All in all, the automated peptidogenomics technology offered

by Pep2Path constitutes a radical departure from the one-

molecule-per-study approach to drug discovery from natural

products that has dominated the field for long. The combination

of the rapid sampling of chemical space by tandem mass

spectrometry with effective computational matching of the

chemistry to BGCs will allow quick identification and dereplica-

tion of large numbers of novel peptides. While detailed structural

characterization of the hits for now remains a bottleneck, new

methods are appearing that will accelerate this process as well

[24]. For now, identified peptides can be prioritized for further

detailed characterization based on the biosynthetic novelty

inferred from the BGC architecture, combined with phenotypic

assays.

With nanoDESI mass-spectrometry [25], automated peptido-

genomics also allows genome mining directly from environmental

samples, without strain isolation or genome sequencing: the

identified peptides can be matched directly to gene clusters in the

rapidly growing database of already sequenced genomes [18].

When combined with large-scale metagenomics, automated

peptidogenomics will also make it possible to sample NRPs in

environmental samples at large scales, by integrating mass spectral

molecular networks [26,27] from MS data with BGC similarity

networks [28], and cross-linking these two network types with a

third type of networks that represent Pep2Path matching scores

between molecule families and gene cluster families.

The key limitation of Pep2Path is that the quality of its results

depends on the accuracy of the substrate specificity predictions by

NRPSPredictor2. For some organisms, particularly fungi, the

training data for these predictions is currently still limited, which

leads to a decrease in predictive power. Hence, we will strive to

continuously update the dataset of experimentally verified NRPS

adenylation domain substrate specificities according to rigorous

data standards, in order to keep improving the power of

approaches such as Pep2Path as knowledge progresses.

The approach described here can potentially be extended to

other compound classes, such as saccharides [29], once an

automated system for the detection of sugar biosynthesis genes

and prediction of glycosyltransferase substrate specificities has

been set up. Hence, Pep2Path paves the way for the high-

throughput characterization of the vast universe of BGCs

discovered in genomic data of organisms throughout the tree of

life.

Supporting Information

Code S1 Source code and test data. Full source code of

Pep2Path version 1.1.0 and associated test data that allow users to

test the functionality of the software. Updated versions of the

Pep2Path code will be made available on http://pep2path.

sourceforge.net in the future.

(GZ)
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Figure S1 Gene cluster and predicted possible biosyn-
thetic scheme for the production of tripropeptin-like
molecules by Collimonas fungivorans Ter331. The gene

cluster was identified by Pep2Path based on the raw amino acid

sequence of compounds originally purified from Lysobacter sp.

BMK333-48F3. The outline of the gene cluster and its encoded

NRPS assembly-line above shows that the architecture of the gene

cluster is consistent with the chemical structure of molecules highly

similar to the tripropeptins that have been identified in Lysobacter.

This BGC has eight NRPS modules, of which seven gave

NRPSPredictor2 predictions exactly matching the tripropeptin A

sequence in the right order, while the eighth prediction was only a

near miss (ornithine predicted instead of arginine). This indicates

that such a gene cluster might have undergone horizontal gene

transfer at least once, from one subphylum to another. The

peptides actually produced by Collimonas might have small

differences in chemistry, compared to the Lysobacter tripropeptins,

due to slight variations and/or promiscuity in the tailoring

reactions and substrate acceptance.

(PDF)

Table S1 NRP2Path benchmarking dataset. The table

displays 18 recently experimentally characterized NRPs and their

biosynthetic gene clusters used for benchmarking NRP2Path. Rare

amino acids that are not covered by the Pep2Path translation table

are marked as ‘Xxx’.

(PDF)

Text S1 Pep2Path documentation. Full documentation for

the Pep2Path software, including installation instructions, infor-

mation on general use, instructions on command-line usage and

the software license.

(PDF)

Text S2 Pep2Path test data documentation. Description of

the comprehensive set of test data that showcases the Pep2Path

software. This includes instructions for testing NRP2Path using the

stendomycin sequence tag and the set of 18 recently discovered

NRPs mentioned in the manuscript text, as well as instructions for

testing RiPP2Path using the set of nine recently discovered RiPPs.

(PDF)
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