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Abstract

Genetic screening is becoming possible on an unprecedented scale. However, its utility remains controversial. Although
most variant genotypes cannot be easily interpreted, many individuals nevertheless attempt to interpret their genetic
information. Initiatives such as the Personal Genome Project (PGP) and Illumina’s Understand Your Genome are sequencing
thousands of adults, collecting phenotypic information and developing computational pipelines to identify the most
important variant genotypes harbored by each individual. These pipelines consider database and allele frequency
annotations and bioinformatics classifications. We propose that the next step will be to integrate these different sources of
information to estimate the probability that a given individual has specific phenotypes of clinical interest. To this end, we
have designed a Bayesian probabilistic model to predict the probability of dichotomous phenotypes. When applied to a
cohort from PGP, predictions of Gilbert syndrome, Graves’ disease, non-Hodgkin lymphoma, and various blood groups were
accurate, as individuals manifesting the phenotype in question exhibited the highest, or among the highest, predicted
probabilities. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC).0.7, and 23 (15.8%)
of these were statistically significant, based on permutation tests. Moreover, in a Critical Assessment of Genome
Interpretation (CAGI) blinded prediction experiment, the models were used to match 77 PGP genomes to phenotypic
profiles, generating the most accurate prediction of 16 submissions, according to an independent assessor. Although the
models are currently insufficiently accurate for diagnostic utility, we expect their performance to improve with growth of
publicly available genomics data and model refinement by domain experts.
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Introduction

A central question in modern human genetics is how inter-

individual variation impacts human phenotypes. Unprecedented

technological advances will soon make whole genome DNA

sequencing services available to a large number of people.

However, interpreting the variant genotypes found in an

individual’s genome remains challenging, and is the focus of

many academic, government, and commercial efforts. Here we

address some limitations of state-of-the-art biomedical informatics

tools to interpret genomic data, and we propose a Bayesian

probabilistic model that begins to address these limitations.

An individual’s whole genome sequence yields 3.2 million

variant genotypes on average [1]. Genome interpretation requires

reducing this very large number to a more tractable list. Current

informatics tools prioritize variant genotypes, using database

annotations, bioinformatics function prediction, and allele fre-

quencies. For example, the PGP’s GET-Evidence pipeline [1]

prioritizes non-synonymous substitution variant calls over other

alterations and ranks variant calls with a heuristic point system

incorporating PolyPhen-2 classifications [2], and variant allele

frequencies, variant and gene annotations in multiple public

databases. The ‘‘Disease Risk of Volunteers Project’’ informatics

pipeline identifies disease-causing mutations (DMs) in the Human

Gene Mutation Database [3], eliminates any variants with minor

allele frequency (MAF).0.01, those predicted to be benign by two

out of three bioinformatics classifiers, and those seen more than

three times in their cohort. In both projects, short lists of putatively

important risk variant genotypes identified by the pipelines are

reviewed by researchers and shared with participants.

However, the purpose of personal genome interpretation is to

understand how variant genotypes impact upon an individual’s

lifetime risk of specific diseases or traits. Annotating single variant

genotypes is just the first step. Most human phenotypes result from

a constellation of variant genotypes and non-genetic contributions.

Here we shift the focus from interpretation of single variant

genotypes to identifying genes and genotypes that impact the

phenotype and estimating their penetrance. To our knowledge,
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the only previous comparable approach to this problem consid-

ered each variant genotype as an independent medical test with an

associated likelihood ratio [4]. A ‘‘pre-test’’ probability of

phenotype, based on age- and gender-based prevalence, was

multiplied by a chain of likelihood ratios for each common variant,

yielding a post-test probability of phenotype. In a pioneering study

of the genome of a single individual, this method was used to

predict the probability of 55 disease phenotypes [5]. The

likelihood ratios were derived from extensive database annotations

and 480 publications of cohort and case-control studies.

We present a formal Bayesian probabilistic model that for the

first time integrates annotations of phenotype prevalence, both

rare and common variant genotypes and disease-associated genes,

and yields a single posterior probability for a phenotype of interest.

We use self-reported phenotypes and medical information shared

by participants in the PGP to quantitatively assess the performance

of the model on a cohort of individuals. Notably, our models do

not use information from the 130 members of the PGP cohort to

fit or optimize parameters. However, eventually the availability of

information from thousands of individuals could enable learning

these parameters directly from individuals’ genomes and reported

phenotypes, enabling significantly better phenotype predictions.

Results

For each phenotype, we used our model to compute the

posterior probability of each individual having that phenotype

(Text S1: Eq 3) and ranked the 130 PGP participants accordingly.

The individual with the largest posterior probability was assigned

Rank #1, the second largest Rank #2, and so forth. Then we

assessed the ranking for each phenotype using area under the

ROC curve (AUC) and computed the statistical significance of the

AUC according to nominal p-value and false discovery rate (FDR)

(Methods). Thirty-eight PGP phenotypes (26%) were predicted

with area-under-the-ROC curve (AUC).0.7, and 23 (15.8%) of

these were statistically significant (p-value,0.05 and FDR,0.1)

(Figure 1). Sixty-four phenotypes were predicted as random or

worse (AUC#0.5). Our statistics are based on the assumption that

there is correlation structure among the phenotypes, which

provides a small benefit to the number of significant predictions

and expected FDR. If the phenotypes were truly uncorrelated, 21

predictions would be significant (p-value,0.05 and FDR,0.2)

(Table S12).

The model incorporated both genome sequence and population

phenotype prevalence, and we measured the contributions of each

to prediction performance. First, AUC, p-values and FDR for the

top predicted 38 phenotypes were computed using each

individual’s estimated phenotype prevalence instead of a

posterior probability. Next, we repeated these computations

using the genome sequences and assigning each phenotype the

same baseline prevalence, set to be the average prevalence

across all phenotypes. Comparison of genome-only, prevalence-

only, and combined results showed that 14 phenotypes had

higher genome-only than prevalence-only AUCs (Figure 2).

Thus, these phenotypes likely have a strong genetic component,

and at least some of the underlying genes and variant genotypes

are represented in the annotation databases. Finally, we

explored whether all categories of genomic annotations –

GWAS hits, variant genotypes in disease-associated genes, and

high-penetrance variant genotypes – were useful in predicting

each phenotype, by calculating the prediction performance if

only one of these had been used.

Six of the phenotypes were predicted best by GWAS hits – the

autoimmune disorders Graves’ disease, alopecia areata and

Crohn’s disease; the cardiovascular disorders, deep vein throm-

bosis and aortic aneurism; and chronic obstructive pulmonary

disease (Figure 3). Only one PGP participant (PGP-48) had

Graves’ disease, and she was ranked second out of 130

(AUC = 1.0) (Figure 1). Her genome harbored numerous risk

alleles at the sites of 16 GWAS hits (9 homozygous and 7

heterozygous risk alleles). One PGP participant (PGP-69) had

alopecia areata (autoimmune-related hair loss), and he was ranked

seventh out of 130 (AUC = 0.953). His genome harbored 7 GWAS

hits (4 homozygous and 3 heterozygous risk alleles). A complete list

of PGP participants with these six phenotypes and the underlying

GWAS hits are in Tables S1, S2, S3, S4, S5, S6.

Three phenotypes were predicted best by non-synonymous

coding variants in annotated disease genes and bioinformatics

variant classifications – the common, hereditary liver disease

Gilbert’s syndrome, epilepsy and non-age-related cataracts (Fig-

ure 3). Only one of these predictions was statistically significant

(Gilbert’s syndrome, P = 0.023 and FDR = 0.073) (Figure 1). One

PGP participant (PGP-125) reported having Gilbert’s syndrome,

and he was ranked third out of 130 (AUC = 0.984). He had a rare,

heterozygous missense mutation P229L in the Gilbert’s syndrome-

associated gene UGT1A1. Of note, with only 130 samples, if only

one PGP participant had a particular phenotype, statistical

significance according to our permutation test required that the

model allocate them rank 1–4 within the cohort.

Five phenotypes were predicted best by high penetrance variant

genotypes – von Willebrand disease, hypertrophic cardiomyopa-

thy, and three blood groups (Figure 3). Only the blood groups

were statistically significant (Figure 1). The A, B and O blood

groups were well represented in the 130 PGP participants, and

known variant genotypes [6] ranked individuals with AUC = 0.92

for group A, AUC = 1 for group B, and AUC = 0.917 for group O.

In addition, 27 phenotypes had combined results – genome

sequence plus prevalence – better than or equal to prevalence-only

AUC (Figure 2, Table S7).

With a few exceptions (blood groups and Gilbert’s syndrome),

all of our best-predicted phenotypes were complex and multi-

genic. Common variants, likely involved in transcriptional

regulation, and rare variants causing protein defects, both played

important roles in these predictions. However, for each phenotype,

the best predictions were generated by only a single category of

annotations and were either GWAS hits, high penetrance variants,

low penetrance genes containing rare variants, or high penetrance

genes containing rare variants.

Of all the best-predicted phenotypes, only glaucoma benefited

from more than one category of annotations – high penetrance

Author Summary

The Personal Genome Project (PGP) is an emerging
community whose goal is to collect and publicly share
genomes, environmental data, medical records, and
clinical traits from tens of thousands of volunteers. This
information may enable computer software to establish
the relationships between patterns of alterations in human
genomes and clinical phenotypic traits. We describe a
novel, Bayesian mathematical model to predict such traits
from genome sequence and population prevalence. The
core of the model is a set of phenotypic penetrance
estimates for aggregated genetic variants, which are
learned without any information about particular individ-
uals in a cohort of interest. We illustrate the model’s utility
in ranking individuals in the PGP cohort, according to their
probability of having 146 phenotypes.
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variants and low penetrance genes. For this phenotype, the two

PGP participants with glaucoma (PGP-15 and PGP-88) were

ranked as 6 and 17 out of 130 (AUC = 0.92) (Figure 1). PGP-15

had a glaucoma-associated high-penetrance variant in the gene

WDR36 (A449T), and PGP-88 had a rare variant (N286T) in the

glaucoma-associated gene PCMTD1.

Figure 1. Prediction results of the model on 38 dichotomous phenotypes. Each row represents a clinical phenotype and consists of 130
cells, each of which represents a Personal Genome Project (PGP) participant. Cells in each row are ranked by the posterior probability that the
participant has the phenotype. Cells are colored by true phenotypic status. Blue cells indicate that a participant has the phenotype, and red cells that
a participant does not have the phenotype. If a cell is colored light grey, the true phenotypic status is unknown. If a cell is colored dark grey, the PGP
participant is not considered in the evaluation because the phenotype is gender-specific. #PGP = number of participants in each row having the true
phenotypic status. AUC = area under the receiver operating characteristic curve, a threshold-free metric of classifier performance. p-value and
FDR = statistical significance of the AUC value, based on permutation testing.
doi:10.1371/journal.pcbi.1003825.g001
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In 2012–13, the Critical Assessment of Genome Interpretation

(CAGI) blinded prediction experiment included a challenge based

on prediction of PGP phenotypes. A total of 291 PGP participants

provided phenotypic profiles, reporting their status with respect to

243 dichotomous clinical traits to the experiment organizers. We

were one of several prediction teams, who were provided both

genomic data for 77 PGP participants and 291 phenotypic

profiles, of which 214 were decoys. The challenge was to identify

Figure 2. Contribution of population prevalence and genome sequence to prediction results in Fig. 1. Each row represents a phenotype
and consists of three cells, representing (a) model predictions based only on phenotype-specific population prevalence (Prevalence Only), (b) model
predictions based on genome sequence (with assumption that every phenotype and every individual has the same prevalence), and (c) model
predictions that combine genome sequence and phenotype-specific population prevalence. Cells are colored by the area under the ROC curve (AUC)
yielded by each model. Contributions vary among phenotypes due to differences in quality of available information with respect to prevalence and
database annotations of variant genotypes.
doi:10.1371/journal.pcbi.1003825.g002
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the 77 PGP participants by matching their genomes and profiles.

We used the posterior probabilities of our phenotypic models to

provide a rank order matching of the PGP participants and their

profiles. Briefly, for each participant, the phenotypic profiles were

ranked from most probable to least probable for that individual.

Prediction teams were evaluated by an independent assessor based

on count of correct top-ranked profiles and also by mean rank of

the correct profiles for all participants.

For 27 of the 77 PGP participants, genotypic data from

23andMe was also available to the prediction teams on the PGP

website, and identification of these participants was considered to

be trivial. Furthermore, the website contained the critical

Figure 3. Contribution of GWAS hits, low penetrance genes, high penetrance genes, and high penetrance variants to prediction
results. Each row represents a phenotype predicted with AUC.0.7 by genome sequence (Figure 2 (b)) and contains five cells. Cells are colored by
the area under the ROC curve (AUC) yielded by a model that contains only 1:GWAS hits, 2:Low penetrance genes, 3:High penetrance genes, 4:High
penetrance variants. The fifth cell shows AUC of the combination model used to assess results in this work that considers all of 1,2,3, and 4. The
combination model generally yields the best performance: however, for most phenotypes, only one or two of 1, 2, 3 or 4 appears to contribute.
doi:10.1371/journal.pcbi.1003825.g003
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information that no blood or saliva samples had been collected for

108 of the profile decoys, thereby making it possible to exclude

these profiles as potential matches. According to the independent

assessor, after elimination of the 27 participants with genotypic

data and the 108 profile decoys, our team correctly predicted the

largest number (six) of top-ranked participants and had the lowest

mean rank for correct profiles (25.4), of the 16 submissions to the

challenge. Based on an empirical null distribution, our prediction

had p-value,1024 (Methods).

Discussion

We introduce a Bayesian probabilistic model that allows

individuals to estimate their risk of having a dichotomous

phenotype. The models could be useful as an extension to existing

pipelines for genome interpretation, such as those currently used

by PGP (GET-Evidence) [1], DRV [7], UYG, and the Inter-

pretome [8]. These pipelines rely on database annotations of

variant genotypes and genes, allele frequencies and bioinformatics

methods for variant function prediction. The PGP, DRV, and

UYG pipelines yield lists of prioritized variant genotypes and

associated evidence to support the hypothesis as to whether a

single variant genotype is involved in a given disease/trait of

interest. The Interpretome provides prioritized lists for rare

variants and phenotype predictions based on common variants.

Our Bayesian probabilistic model could use any of these

prioritized lists and provide phenotype predictions, which consider

the contributions of both rare and common variants.

Strengths of our model
The model presented here could be used in the setting of an

adult volunteer cohort. Within this setting, it provides interpret-

able results to help individuals understand their risk of a phenotype

of interest. To our knowledge, it is the first such model to use

population-level prevalence as a prior, integrate the contribution

of rare and common variant genotypes harbored by an individual,

and consider the modulating effects of incomplete penetrance,

environmental, and unknown factors. In addition to a final

posterior estimate of an individual’s phenotypic risk, the model

provides information about the separate contributions of popula-

tion-level prevalence and personal genome sequence. Each

individual can also learn their rank probability within the cohort,

a number that may be easier to understand than a raw posterior

probability. We can further inform individuals as to how much

each prediction can be trusted, based on the model’s previous

performance.

The model is flexible, and it can be reasonably applied to

predict any individual’s probability of having any dichotomous

phenotype with a genetic component. The key elements are:

estimating prior probabilities that the individual has the pheno-

type, ideally considering age, gender and ancestry; identifying

annotated genes and variant genotypes associated with the

phenotype; finding the subset of those present in the individual’s

genome sequence and estimating their aggregate penetrance; and

finally computing the posterior probability that the individual has

the phenotype. Genes and variant genotypes are sorted into four

categories: low penetrance variants, low penetrance genes, high

penetrance variants, and high penetrance genes. The aggregate

penetrance of each category is estimated with a mathematical

model (Text S1: Eqs. 10–14). Bioinformatics variant function

predictions are also incorporated. Variant genotypes in all

phenotype-associated genes are scored with VEST [9], a

bioinformatics classifier that estimates a significance level (p-value)

for each variant score. The p-values are aggregated into a

gene-level score using Fisher’s method, then used to estimate the

posterior probability that the gene was affected, with empirical

data (Methods). Any variant function prediction method that

yields p-values and/or any of a number of gene-level variant

aggregation methods can be used.

The advantage of integrating the impact of both rare and

common variants can be quantified by comparing our model with

a model based only on the burden of putatively damaging alleles

(MAF,0.01) in our sets of phenotype-associated genes. When

applied to the same PGP cohort, this simple burden model yielded

only one predicted phenotype that was statistically significant after

multiple testing correction (in contrast to our model’s 23

statistically significant predicted phenotypes) (Figure S1).

Limitations of the current model
Incomplete and inaccurate information about genes, variant

genotypes, and phenotypes in current databases limit the model’s

utility. As an example, for 42 PGP phenotypes, we were unable to

find any associated genes or variants. Furthermore, the association

of a particular gene or variant to a phenotype may not be

quantitative, with respect to effect size. Thus, we make simplifying

quantitative assumptions about their aggregate penetrance, as

follows: 1) GWAS hits and any disease-gene associations lacking

careful curation are assigned low penetrance; 2) curated (DM)

disease variants and genes in HGMD and OMIM are assigned

high penetrance; 3) presence of a highly penetrant variant

dominates the posterior (Text S1: Eq 4); 4) penetrance of a

GWAS hit is estimated by its reported odds ratio, allele frequency

and phenotype prevalence (Text S1: Eqs. 21–25); 5) the effect sizes

of rare non-silent variants are assigned to be greater than the effect

sizes of GWAS hits associated with the same phenotype [10]; 6)

changes in gene product function are computed using only rare

(MAF,0.01) non-silent variants; 7) interactions among genes and

variant genotypes are not considered; 8) low prevalence is assigned

to variants and genes with high penetrance; 9) Only small-scale,

non-silent variants are considered, although some phenotypes may

be better predicted by other genetic or epigenetic alterations.

The phenotypes predicted in our study include those known to

have strong genetic components, such as Gilbert’s syndrome, von

Willebrand disease and epilepsy [11–13] and others lacking

evidence of strong genetic contribution, such as hiatal hernia and

dental cavities [14,15]. Of 146 phenotypes, we identified

associated genes or variant genotypes for 104. If we consider the

raw count of annotated genes, GWAS hits, and high penetrance

variants per phenotype, the range is large, with some phenotypes

having thousands and others fewer than ten annotations

(Figure 4). These differences affected our ability to predict

phenotypes. For example, Gilbert’s syndrome and von Willebrand

disease were among our best-predicted phenotypes. Both have

been studied for many years and causal genes (UGT1A1 for

Gilbert’s syndrome and VWF for von Willebrand disease) are

known [11,12]. By contrast, ulcerative colitis is believed to have a

genetic component but the causal genes are still largely unknown

[16], and no genetic components for dandruff have been identified

[17].

Out of seven cancer phenotypes, only kidney cancer and non-

Hodgkins lymphoma were predicted with AUC.0.7 and high

statistical significance (P-value,0.05, FDR,0.1), and these

predictions were driven by population-based priors (Figure 2).

Because most cancers have strong environmental contributions,

improved predictions would require more information about

carcinogen exposures and resulting patterns of somatic mutations.

Our current models rely on germline variants, which may be

A Probabilistic Model to Predict Clinical Traits from Genome Sequence
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useful for predicting familial cancers, but are less relevant for the

more common sporadic cancers.

Our model predictions for 64 PGP phenotypes were no better

than random (Table S8). For 38 phenotypes, either we were

unable to find evidence of phenotypic association with genes or

variant genotypes, or we found such evidence but were unable to

match it with variants in any PGP genomes. For the remaining 26

phenotypes, we suspect that errors in annotations and in our

model assumptions about penetrance are responsible. For

example, our predictions of hereditary neuropathies in PGP

(including Charcot-Marie-Tooth disease) yielded an AUC of

0.405. We identified 813 mutations in 37 genes associated with

this phenotype in HGMD’s high confidence of disease association

(DM) class. Although six of these were found in the genomes of

nine PGP participants, none of them reported this clinical

phenotype. It appears that in assuming that HGMD DM

mutations had high penetrance, we overestimated the probability

that these nine individuals had a hereditary neuropathy. In

addition, one PGP participant reported the phenotype but did

not have any of the mutations, which could be due to our

omission of the most common causes of hereditary neuropathy –

duplications or deletions of the PMP22 (peripheral myelin

protein) gene [18].

Future work
Improvements in the infrastructure of disease gene annotations

and the growing communities of adult volunteers, such as the

PGP, have the potential to significantly improve the utility of the

model proposed here. We have discussed the many simplifying

assumptions about penetrance parameters that were used in the

current work. However, if a resource that provided the genomes

and phenotypic profiles of a large number of people were

available, we could use it for maximum likelihood estimation of

the penetrance parameters in our model. Such a resource would

also allow us to generate reference panels for adult genetic testing.

We could use our model to compute the posterior probability of

each sequenced individual for each phenotype of interest and

generate ranked lists consisting of thousands of individuals. As the

lists grow larger, they would also grow in utility for individuals who

learn their ranking within the lists. The model could also be

extended to include genomic copy number variations and even

data from microbiomes.

We expect that as a larger number of individuals become

interested in personal genomics, members of communities such as

the PGP will have access to family pedigree information and/or

genotype or sequencing data from family members. The

availability of pedigree information would allow us to estimate a

Figure 4. Distribution of annotated genes, GWAS hits and high penetrance variants for phenotypes analyzed in this study.
Phenotypes are ordered by total counts of annotated genes and variants that we found. Counts are shown on a log scale for easier visualization. For
each phenotype the (log) count of annotated genes is colored red, GWAS hits green, and high penetrance variants blue. Some phenotypes have a
very large number of annotations and others have very few. For 42 phenotypes, we did not find any annotated genes or variants.
doi:10.1371/journal.pcbi.1003825.g004
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personalized phenotype prior for each individual, rather than

estimating these priors only by population prevalence. Numerous

methods have been developed for this purpose [19–21]. Genotype

or sequencing data from family members could be used to improve

both imputation of missing genotypes and phasing [22,23]. While

phasing is not currently considered in our models, knowledge of

whether multiple variants are in the same haplotype or simply on

the same chromosome could be informative with respect to their

phenotypic impact [24–26].

We are optimistic that integrated models such as the one

presented here will contribute to increasingly accurate and

interpretable predictions of clinical phenotype from genome

sequence in the near future.

Methods

PGP genomes
We downloaded variant genotypes from 174 genomes se-

quenced by Complete Genomics with the 2.0 Standard pipeline,

from the PGP website (http://my.pgp-hms.org) (as of 02/10/

2014). The PGP genomic data were obtained by sequencing DNA

purified from lymphocyte cell lines [1]. Variant genotypes were

obtained from the GFF format file produced by PGP’s Genome-

Environment-Trait-Evidence (GET-Evidence) pipeline [1]. Only

variant position, reference and alternative allele calls from the

GFF file were employed. 44 genomes were excluded from

consideration due to missing either a trait survey, associated age,

gender or ancestry, or did not have GET-Evidence GFF files,

yielding 130 genomes to be analyzed.

PGP-phenotypes
PGP participants have the option of filling out a ‘‘traits

questionnaire’’, consisting of 239 dichotomous phenotypes. Blood

groups were also provided in ‘‘Personal Health Records’’ of the

participants, yielding a total of 243 phenotypes. Results of the

questionnaire and blood groups were downloaded from the PGP

website and considered to be accurate. Of the 243 phenotypes,

only 153 were reported by at least one PGP participant, and 146

also had available prevalence information.

Phenotype prevalence and heritability
Internet searches for information about the prevalence and

heritability of each trait were performed manually. Wherever

possible, we found the most relevant prevalence for an individual,

considering her/his age, gender, and self-reported ancestry. Data

sources included SEER (NCI), websites for CDC (http://www.

cdc.gov) and HHS (http://www.hhs.gov/), and the published

literature. A complete list of sources and prevalence estimates is to

be found in Table S9. Scripts are available on request from the

authors.

Gene and variant annotations
Variant annotations were collected from NHGRI-GWAS

(https://www.genome.gov/26525384) (downloaded 09/11/

2013), HGMD Professional (HGMD Pro) v.2013,2 [3] (down-

loaded 06/26/2013), and SNPedia [27]. Gene annotations were

collected from OMIM [28] (downloaded 09/09/2013), disease-

gene associations were mined from the literature (http://diseases.

jensenlab.org downloaded 07/25/2013), and HGMD Pro

v.2013.2 [3]. NHGRI GWAS variants were included if they had

an odds-ratio (OR) or beta regression coefficient .1 and , = 20.

HGMD Pro variants were included if and only if they were in the

most confident disease mutation class (DM). SNPedia was used as

to identify SNPs associated with blood groups, known to be high

penetrance (http://snpedia.com/index.php?title=ABO_blood_

group&oldid=560223) [27]. Disease-gene associations mined from

literature were included only if they were rated as high confidence

by the mining algorithm. For associations from Jensen’s database

[29], which computes a Z-score for each disease-gene association,

we required Z-score .4.0 or ranking in the top-5 associated genes

for the disease, according to Z-score. HGMD Pro genes were

considered to be in the DM class if they contained at least one

mutation in the DM class. All HGMD Pro annotations used in the

models are included in Table S10. All GWAS annotations and

their allele frequencies are in Table S11.

Probabilistic model
We designed a Bayesian model to predict whether an individual

had a phenotype of interest, based on genome sequence and

estimated prevalence (Figure 5). Three categories of variable are

included in the model. Categorical variables (0, 1, or 2) in the first

layer represent observed genotypes, limited to those with

phenotype-associated variants and predicted functional variants.

Real-valued variables [0,1] in the second layer represent the

probability that phenotype-associated genes are functionally

altered. To estimate the aggregated penetrance of the genotypes,

functional alterations are grouped into four abstract categories in

the third layer. The probability that each of these categories is

altered depends either on high penetrance variants (Bernoulli

variable SVH); low penetrance variants (Bernoulli variable SVL);

high penetrance genes (Bernoulli variable SGH); or low penetrance

genes (Bernoulli variable SGL). The joint distribution of SVH, SVL,

SGH, SGL is used to infer the state of Bernoulli variable Y, which

represents phenotype status. (All equations and derivations are in

Text S1).

Model assessment
Each phenotypic model was assessed by its ability to correctly

rank individuals in the PGP cohort, as area under the ROC curve

(AUC). No cross-validation was performed because neither model

topology nor parameters were estimated or optimized with

information from the PGP cohort. P-values and FDR were

estimated with permutation. We applied two permutation tests. In

the first test, the identities of PGP participants were shuffled, and

in the second test, phenotype labels were shuffled. The first test

preserves correlation structure among phenotypes within each

participant. The second test assumes that phenotypes are

independent and exchangeable. (Mathematical details are in Text

S1).

Predicted functional impact on gene products
We used the Variant Effect Scoring Tool (VEST) [9] to score

the functional impact of variants and combined the VEST p-

values, using Fisher’s method, yielding a gene-level VEST statistic,

denoted as TGENE (Text S1: Eq. 2). We derived the probability

that the gene was functionally altered by all rare variants observed

in the individual, denoted as P(G = 1|TGENE) using Bayes Rule

(Text S1: Eq. 24). All VEST scores and p-values are included in

Table S13.

Rank order matching of PGP participants and phenotypic
profiles in CAGI 2012–13

For each of the 77 PGP participants in the CAGI challenge, we

used their genome sequence as input to models for each of the 243

phenotypes included in the challenge, and the posterior probabil-

ity of each phenotype was computed. The match between each

PGP genome and phenotypic profile was modeled with a Bernoulli
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likelihood, and the probability of each matched pair was

calculated. Profiles were ranked from most to least probable.

(Text S1)

Assessment of phenotype-genotype matching
algorithms in CAGI 2012–13

Prediction accuracy was measured by an independent assessor

with the following criteria. First, the number of correctly top-

ranked phenotypic profiles was computed. To assess the signifi-

cance of that finding, benchmark or null prediction used uniformly

random matches between phenotypic profiles and genomes, i.e.,

for a given genome, each phenotypic profile being equally

possible. The simulation was repeated 104 times and the number

of correctly top-ranked profiles was recorded each time. In this

setting, none of the simulations yielded five or more correctly top-

ranked phenotypic profiles to the corresponding genomes, and

hence the significance level for observing five or more correct

matches is ,1024.

Software to implement all methods is available from authors on

request.

Supporting Information

Figure S1 Prediction results of simple mutation burden
model. Six phenotypes predicted with AUC.0.7 are shown.

Each row represents a clinical phenotype and consists of 130 cells,

each of which represents a Personal Genome Project (PGP)

participant. Cells in each row are ranked by the burden of

putatively damaging alleles (MAF,0.01) in the same sets of

phenotype-associated genes used in Figure 1. Cell coloring has the

same meaning as in Figure 1. #PGP = number of participants in

each row having the true phenotypic status. AUC = area under the

receiver operating characteristic curve, a threshold-free metric of

classifier performance. p-value and FDR = statistical significance

of the AUC value, based on permutation testing.

(PDF)

Table S1 GWAS hits correctly identified that PGP-48
has Graves’ disease. A single PGP participant had Graves’

disease and she was ranked second out of 130, according to the

posterior probability of having this phenotype (AUC = 1.0, P-

value = 0.01, FDR = 0.039). Listed are the rsIDs of 16 GWAS hits,

the risk alleles harbored by PGP-48, and the zygosity of each

GWAS hit.

(XLSX)

Table S2 GWAS hits correctly identified that PGP-69
has alopecia areata. A single PGP participant had alopecia

areata, and he was ranked seventh out of 130, according to

posterior probability (AUC = 0.953, P-value = 0.055,

FDR = 0.143). Listed are the rsIDs of 7 GWAS hits, the risk

alleles harbored by PGP-69, and the zygosity of each GWAS hit.

(XLSX)

Table S3 GWAS hits correctly identified that PGP-39
has Crohn’s disease. A single PGP participant had Crohn’s

disease, and she was ranked ninth out of 130, according to

posterior probability (AUC = 0.937, P-value = 0.072,

FDR = 0.166). Listed are the rsIDs of 97 GWAS hits, the risk

alleles harbored by PGP-39, and the zygosity of each GWAS hit.

(XLSX)

Table S4 GWAS hits correctly identified that PGP-142
and PGP-72 have deep vein thrombosis. Two PGP

Figure 5. Topology of the model to predict phenotype from an individual’s genome sequence. Red nodes in the first layer of the model
represent the individual’s genotype calls at genomic positions associated with the phenotype of interest. They are sorted into three categories: VH

(HGMD DM variants), VL (NHGRI GWAS hits), and VF (,0.01 MAF in any population reported in ESP6500 (http://evs.gs.washington.edu/EVS/) or 1000
Genomes [30]), found in genes annotated as associated with the phenotype. Green nodes in the second layer represent genes split into high
penetrance GH or low penetrance GL based on database annotations. Blue nodes in the third layer are Bernoulli random variables, abstractly
representing mechanisms that explain the phenotype, sorted into those altered by high penetrance variants SVH, low penetrance variants SVL, high
penetrance genes SGH, or low penetrance genes SGL. The blue node Y is a Bernoulli random variable representing individual phenotypic status.
Directed edges show the dependencies between nodes. A set of model parameters is estimated for each phenotype and each individual.
doi:10.1371/journal.pcbi.1003825.g005
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participants had deep vein thrombosis, and they were ranked tenth

and twentieth out of 130, according to posterior probability

(AUC = 0.893, P-value = 0.027, FDR = 0.08). Listed are the rsIDs

of 9 GWAS hits, the risk alleles harbored by PGP-142 and PGP-

72, and the zygosity of each GWAS hit.

(XLSX)

Table S5 GWAS hits predicted that PGP-158 has aortic
aneurism. One PGP participant had aortic aneurism, and she

was ranked 34 out of 130, according to posterior probability

(AUC = 0.76, P-value = 0.273, FDR = 0.35). Listed are the rsIDs

of 2 GWAS hits, the risk alleles harbored by PGP-158, and the

zygosity of each GWAS hit.

(XLSX)

Table S6 GWAS hits correctly identified that PGP-39
and PGP-38 have chronic obstructive pulmonary disease
(COPD). Two PGP participants had COPD, and they were

ranked fifth and 56th out of 130, according to posterior probability

(AUC = 0.772, P-value = 0.102, FDR = 0.205). Listed are the

rsIDs of 6 GWAS hits, the risk alleles harbored by PGP-39 and

PGP-38, and the zygosity of each GWAS hit.

(XLSX)

Table S7 Phenotype model prediction performance
(AUC) for 130 PGP participants, using genome sequence
only, prevalence only, and both. Phenotypes are sorted by

the difference between AUC of the prevalence only model and the

AUC of the model that uses both genome sequence and

prevalence. Only phenotypes reported in at least one PGP are

listed.

(XLSX)

Table S8 Phenotypes that were predicted no better than
random by our models. Phenotype: the poorly predicted

clinical phenotypes. #PGP: the number of PGP participants who

reported having the phenotype. AUC: the area under the receiver

operating characteristic curve of our model predictions. p-value:

the statistical significance of each AUC. FDR: the false discovery

rate (FDR). None of the predictions are significant.

(XLSX)

Table S9 Prevalences for each phenotype used in this
work, based on age, gender, and ancestry when
available. Phenotypes are listed in column A. Columns B–H

list seven ancestral populations for which we were able to establish

phenotype population prevalence. For each ancestral population,

phenotype prevalence is listed for each combination of gender and

age range. Column I shows the source(s) of the data for the

phenotype.

(XLSX)

Table S10 Annotations of HGMD variants and genes.
Phenotypes are listed in column A. For variants, columns B–H list

genomic location, reference and risk alleles, PubMed identifiers,

and mutation consequence type. For genes, column B lists HUGO

identifier.

(XLSX)

Table S11 Annotations of GWAS hits. Phenotypes are listed

in column A. Columns B–H list genomic location, reference and

risk alleles, allele frequency, and reported effect size (odds ratio).

(XLSX)

Table S12 Phenotypes predicted with significant AUC
using a null model that assumes phenotypes are
independent and exchangeable. If no correlation structure

existed among the phenotypes, statistical significance could be

assessed by shuffling phenotype labels with respect to their

predicted probabilities. In this case, the model’s performance

declines slightly, yielding 21 phenotypes with P-value,0.05 and

FDR,0.2. #PGP = number of participants in each row having

the true phenotypic status. AUC = area under the receiver

operating characteristic curve, a threshold-free metric of classifier

performance. P-value and FDR = statistical significance of the

AUC value, based on permutation test shuffling the phenotype

labels.

(XLSX)

Table S13 Variant Effect Scoring Tool (VEST) scores. All

variants scored by VEST are shown. Columns A–L list genomic

location, strand, reference and alternative alleles, HUGO

identifiers, amino acid substitutions, VEST score, VEST p-value,

and MAF in European-American (EA), African-American (AA)

populations (from Exome Variant Server), and 1000 genomes

database where available.

(XLSX)

Text S1 Supplementary material.
(DOCX)
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