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Abstract

Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate
these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional,
biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social
internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges
in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness.
We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using
linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14
location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these
challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested,
and several pairs of models similar enough to suggest that transferring models from one location to another without re-
training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these
challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and
globally comprehensive than the current state of the art.
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Introduction

Motivation and Overview
Infectious disease remains extremely costly in both human and

economic terms. For example, the majority of global child

mortality is due to conditions such as acute respiratory infection,

measles, diarrhea, malaria, and HIV/AIDS [1]. Even in

developed countries, infectious disease has great impact; for

example, each influenza season costs the United States between

3,000 and 49,000 lives [2] and an average of $87 billion in reduced

economic output [3].

Effective and timely disease surveillance — that is, detecting,

characterizing, and quantifying the incidence of disease — is a

critical component of prevention and mitigation strategies that can

save lives, reduce suffering, and minimize impact. Traditionally,

such monitoring takes the form of patient interviews and/or

laboratory tests followed by a bureaucratic reporting chain; while

generally considered accurate, this process is costly and introduces

a significant lag between observation and reporting.

These problems have motivated new surveillance techniques

based upon internet data sources such as search queries and social

media posts. Essentially, these methods use large-scale data mining

techniques to identify health-related activity traces within the data

streams, extract them, and transform them into some useful

metric. The basic approach is to train a statistical estimation

model against ground truth data, such as ministry of health disease

incidence records, and then apply the model to generate estimates

when the true data are not available, e.g., when forecasting or

when the true data have not yet been published. This has proven

effective and has spawned operational systems such as Google Flu

Trends (http://www.google.org/flutrends/). However, four key

challenges remain before internet-based disease surveillance

models can be reliably integrated into an decision-making toolkit:

C1. Openness. Models should afford review, replication,

improvement, and deployment by third parties. This guarantees a

high-quality scientific basis, continuity of operations, and broad

applicability. These requirements imply that model algorithms —

in the form of source code, not research papers — must be

generally available, and they also imply that complete input data

must be available. The latter is the key obstacle, as terms are

dictated by the data owner rather than the data user; this

motivated our exploration of Wikipedia access logs. To our

knowledge, no models exist that use both open data and open

algorithms.

C2. Breadth. Dozens of diseases in hundreds of countries

have sufficient impact to merit surveillance; however, adapting a
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model from one disease-location context to another can be costly,

and resources are often, if not usually, unavailable to do so. Thus,

models should be cheaply adaptable, ideally by simply entering

new incidence data for training. While most published models

afford this flexibility in principle, few have been expressly tested for

this purpose.

C3. Transferability. Many contexts have insufficient reli-

able incidence data to train a model (for example, the relevant

ministry of health might not track the disease of interest), and in

fact these are the contexts where new approaches are of the

greatest urgency. Thus, trained models should be translatable to

new contexts using alternate, non-incidence data such as a

bilingual dictionary or census demographics. To our knowledge,

no such models exist.

C4. Forecasting. Effective disease response depends not only

on the current state of an outbreak but also its future course. That

is, models should provide not only estimates of the current state of

the world — nowcasts — but also forecasts of its future state.

While recent work in disease forecasting has made significant

strides in accuracy, forecasting the future of an outbreak is still a

complex affair that is sharply limited in contexts with insufficient

data or insufficient understanding of the biological processes and

parameters underpinning the outbreak. In these contexts, a

simpler statistical approach based on leading indicators in internet

data streams may improve forecast availability, quality, and time

horizon. Prior evaluations of such approaches have yielded

conflicting results and to our knowledge have not been performed

at time granularity finer than one week.

In order to address these challenges, we propose a new

approach based on freely available Wikipedia article access logs.

In the current proof of concept, we use language as a proxy for

location, but we hope that access data explicitly aggregated by

geography will become available in the future. (Our implemen-

tation is available as open source software: http://github.com/

reidpr/quac.) To demonstrate the feasibility of techniques built

upon this data stream, we built linear models mapping daily access

counts of encyclopedia articles to case counts for 7 diseases in 9

countries, for a total of 14 contexts. Even a simple article selection

method was successful in 8 of the 14 contexts, yielding models with

r2 up to 0.89 in nowcasting and 0.92 in forecasting, with most of

the successful contexts having forecast value up to the tested limit

of 28 days. Specifically, we argue that approaches based on this

data source can overcome the four challenges as follows:

N C1. Anyone with relatively modest computing resources can

download the complete Wikipedia dataset and keep it up to

date. The data can also be freely shared with others.

N C2. In cases where estimation is practical, our approach can be

adapted to a new context by simply supplying a reliable

incidence time series and selecting input articles. We

demonstrate this by computing effective models for several

different contexts even with a simple article selection

procedure. Future, more powerful article selection procedures

will increase the adaptability of the approach.

N C3. In several instances, our models for the same disease in

different locations are very similar; i.e., correlations between

different language versions of the same article and the

corresponding local disease incidence are similar. This suggests

that simple techniques based on inter-language article

mappings or other readily available data can be used to

translate models from one context to another without re-

training.

N C4. Even our simple models show usefully high r2 when

forecasting a few days or weeks into the future. This suggests

that the general approach can be used to build short-term

forecasts with reasonably tight confidence intervals.

In short, this paper offers two key arguments. First, we evaluate

the potential of an emerging data source, Wikipedia access logs,

for global disease surveillance and forecasting in more detail than

is previously available, and we argue that the openness and other

properties of these data have important scientific and operational

benefits. Second, using simple proof-of-concept experiments, we

demonstrate that statistical techniques effective for estimating

disease incidence using previous internet data are likely to also be

effective using Wikipedia access logs.

We turn next to a more thorough discussion of prior work, both

to set the stage for the current work as well as outline in greater

detail the state of the art’s relationship to the challenges above.

Following that, we cover our methods and data sources, results,

and a discussion of implications and future work.

Related Work
Our paper draws upon prior scholarly and practical work in

three areas: traditional patient- and laboratory-based disease

surveillance, Wikipedia-based measurement of the real world, and

internet-based disease surveillance.

Traditional disease surveillance. Traditional forms of

disease surveillance are based upon direct patient contact or

biological tests taking place in clinics, hospitals, and laboratories.

The majority of current systems rely on syndromic surveillance

data (i.e., about symptoms) including clinical diagnoses, chief

complaints, school and work absenteeism, illness-related 911 calls,

and emergency room admissions [4].

For example, a well-established measure for influenza surveil-

lance is the fraction of patients with influenza-like illness,
abbreviated simply ILI. A network of outpatient providers report

the total number of patients seen and the number who present

with symptoms consistent with influenza that have no other

identifiable cause [5]. Similarly, other electronic resources have

emerged, such as the Electronic Surveillance System for the Early

Notification of Community Based Epidemics (ESSENCE), based

Author Summary

Even in developed countries, infectious disease has
significant impact; for example, flu seasons in the United
States take between 3,000 and 49,000 lives. Disease
surveillance, traditionally based on patient visits to health
providers and laboratory tests, can reduce these impacts.
Motivated by cost and timeliness, surveillance methods
based on internet data have recently emerged, but are not
yet reliable for several reasons, including weak scientific
peer review, breadth of diseases and countries covered,
and underdeveloped forecasting capabilities. We argue
that these challenges can be overcome by using a freely
available data source: aggregated access logs from the
online encyclopedia Wikipedia. Using simple statistical
techniques, our proof-of-concept experiments suggest
that these data are effective for predicting the present,
as well as forecasting up to the 28-day limit of our tests.
Our results also suggest that these models can be used
even in places with no official data upon which to build
models. In short, this paper establishes the utility of
Wikipedia as a broadly effective data source for disease
information, and we outline a path to a reliable,
scientifically sound, operational, and global disease
surveillance system that overcomes key gaps in existing
traditional and internet-based techniques.
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on real-time data from the Department of Defense Military Health

System [6] and BioSense, based on data from the Department of

Veterans Affairs, the Department of Defense, retail pharmacies,

and Laboratory Corporation of America [7]. These systems are

designed to facilitate early detection of disease outbreaks as well as

response to harmful health effects, exposure to disease, or related

hazardous conditions.

Clinical labs play a critical role in surveillance of infectious

diseases. For example, the Laboratory Response Network (LRN),

consisting of over 120 biological laboratories, provides active

surveillance of a number of disease agents in humans ranging from

mild (e.g., non-pathogenic E. coli and Staphylococcus aureus) to

severe (e.g., Ebola and Marburg), based on clinical or environ-

mental samples [4]. Other systems monitor non-traditional public

health indicators such as school absenteeism rates, over-the-

counter medication sales, 911 calls, veterinary data, and ambu-

lance run data. For example, the Early Aberration Reporting

System (EARS) provides national, state, and local health

departments alternative detection approaches for syndromic

surveillance [8].

The main value of these systems is their accuracy. However,

they have a number of disadvantages, notably cost and timeliness:

for example, each ILI datum requires a practitioner visit, and ILI

data are published only after a delay of 1–2 weeks [5].

Wikipedia. Wikipedia is an online encyclopedia that has,

since its founding in 2001, grown to contain approximately 30

million articles in 287 languages [9]. In recent years, it has

consistently ranked as a top-10 website; as of this writing, it is the

6th most visited website in the world and the most visited site that

is not a search engine or social network [10], serving roughly 850

million article requests per day [11]. For numerous search engine

queries, a Wikipedia article is the top result.

Wikipedia contrasts with traditional encyclopedias on two key

dimensions: it is free of charge to read, and anyone can make

changes that are published immediately — review is performed by

the community after publication. (This is true for the vast majority

of articles. Particularly controversial articles, such as ‘‘George W.

Bush’’ or ‘‘Abortion’’, have varying levels of edit protection.)

While this surprising inversion of the traditional review-publish

cycle would seem to invite all manner of abuse and misinforma-

tion, Wikipedia has developed effective measures to deal with these

problems and is of similar accuracy to traditional encyclopedias

such as Britannica [12].

Wikipedia article access logs have been used for a modest

variety of research. The most common application is detection and

measurement of popular news topics or events [13–17]. The data

have also been used to study the dynamics of Wikipedia itself [18–

20]. Social applications include evaluating toponym importance in

order to make type size decisions for maps [21], measuring the

flow of concepts across the world [22], and estimating the

popularity of politicians and political parties [23]. Finally,

economic applications include attempts to forecast movie ticket

sales [24] and stock prices [25]. The latter two applications are of

particular interest because they include a forecasting component,

as the present work does.

In the context of health information, the most prominent

research direction focuses on assessing the quality of Wikipedia as

a health information source for the public, e.g., with respect to

cancer [26,27], carpal tunnel syndrome [28], drug information

[29], and kidney conditions [30]. To our knowledge, only four

health studies exist that make use of Wikipedia access logs.

Tausczik et al. examined public ‘‘anxiety and information seeking’’

during the 2009 H1N1 pandemic, in part by measuring traffic to

H1N1-related Wikipedia articles [31]. Laurent and Vickers

evaluated Wikipedia article traffic for disease-related seasonality

and in relation to news coverage of health issues, finding

significant effects in both cases [32]. Aitken et al. found a

correlation between drug sales and Wikipedia traffic for a selection

of approximately 5,000 health-related articles [33]. None of these

propose a time-series model mapping article traffic to disease

metrics.

The fourth study is a recent article by McIver & Brownstein,

which uses statistical techniques to estimate the influenza rate in

the United States from Wikipedia access logs [34]. In the next

section, we compare and contrast this article with the present work

in the context of a broader discussion of such techniques.

In summary, use of Wikipedia access logs to measure real-world

quantities is beginning to emerge, as is interest in Wikipedia for

health purposes. However, to our knowledge, use of the

encyclopedia for quantitative disease surveillance remains at the

earliest stages.

Internet-based disease surveillance. Recently, new forms

of surveillance based upon the social internet have emerged; these

data streams are appealing in large part because of their real-time

nature and the low cost of information extraction, properties

complementary to traditional methods. The basic insight is that

people leave traces of their online activity related to health

observations, and these traces can be captured and used to derive

actionable information. Two main classes of trace exist: sharing
such as social media mentions of face mask use [35] and health-
seeking behavior such as web searches for health-related topics

[36]. (In fact, there is evidence that the volume of internet-based

health-seeking behavior dwarfs traditional avenues [37,38].)

In this section, we focus on the surveillance work most closely

related to our efforts, specifically, that which uses existing single-

source internet data feeds to estimate some scalar disease-related

metric. For example, we exclude from detailed analysis work that

provides only alerts [39,40], measures public perception of a

disease [41], includes disease dynamics in its model [42], evaluates

a third-party method [43], uses non-single-source data feeds

[39,44], or crowd-sources health-related data (participatory disease
surveillance) [45,46]. We also focus on work that estimates

biologically-rooted metrics. For example, we exclude metrics

based on seasonality [47,48] and over-the-counter drug sales

volume, itself a proxy [49].

These activity traces are embedded in search queries [36,50–

76], social media messages [77–92], and web server access logs

[34,72,93]. At a basic level, traces are extracted by counting query

strings, words or phrases, or web page URLs that are related to the

metric of interest, forming a time series of occurrences for each

item. A statistical model is then created that maps these input time

series to a time series estimating the metric’s changing value. This

model is trained on time period(s) when both the internet data and

the true metric values are available and then applied to estimate

the metric value over time period(s) when it is not available, i.e.,

forecasting the future, nowcasting the present, and anti-forecasting
the past (the latter two being useful in cases where true metric

availability lags real time).

Typically, this model is linear, e.g.:

M~
XJ

j~1

ajxj ð1Þ

where xj is the count of some item, J is the total number of

possible items (i.e., vocabulary size), M is the estimated metric
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value, and aj are selected by linear regression or similar methods.

When appropriately trained, these methods can be quite accurate;

for example, many of the cited models can produce near real-time

estimates of case counts with correlations upwards of r = 0.95.

The collection of disease surveillance work cited above has

estimated incidence for a wide variety of infectious and non-

infectious conditions: avian influenza [52], cancer [55], chicken

pox [67], cholera [81], dengue [50,53,84], dysentery [76],

gastroenteritis [56,61,67], gonorrhea [64], hand foot and mouth

disease (HFMD) [72], HIV/AIDS [75,76], influenza

[34,36,54,57,59,62,63,65,67,68,71,74,77–80,82,83,85–93], kidney

stones [51], listeriosis [70], malaria [66], methicillin-resistant

Staphylococcus aureus (MRSA) [58], pertussis [90], pneumonia

[68], respiratory syncytial virus (RSV) [52], scarlet fever [76],

stroke [69], suicide [60,73], tuberculosis [76], and West Nile virus

[52].

Closely related to the present work is an independent,

simultaneous effort by McIver & Brownstein to measure influenza

in the United States using Wikipedia access logs [34]. This study

used Poisson models fitted with LASSO regression to estimate ILI

over a 5-year period. The results, Pearson’s r of 0.94 to 0.99

against official data, depending on model variation, compare quite

favorably to prior work that tries to replicate official data. More

generally, this article’s statistical methods are more sophisticated

than those employed in the present study. However, we offer

several key improvements:

N We evaluate 14 location-disease contexts around the globe,

rather than just one. In doing so, we test the use of language as

a location proxy, which was noted briefly as future work in

McIver & Brownstein. (However, as we detail below, we

suspect this is not a reliable geo-location method for the long

term.)

N We test our models for forecasting value, which was again

mentioned briefly as future work in McIver & Brownstein.

N We evaluate models for translatability from one location to

another.

N We present negative results and use these to begin exploring

when internet-based disease surveillance methods might and

might not work.

N We offer a systematic, well-specified, and simple procedure to

select articles for model inclusion.

N We normalize article access counts by actual total language

traffic rather than using a few specific articles as a proxy for

total traffic.

N Our software is open source and has only freely available

dependencies, while the McIver & Brownstein code is not

available and depends on proprietary components (Stata).

Finally, the goals of the two studies differ. McIver & Brownstein

wanted to ‘‘develop a statistical model to provide near-time

estimates of ILI activity in the US using freely available data

gathered from the online encyclopedia Wikipedia’’ [34, p. 2]. Our

goals are to assess the applicability of these data to global disease

surveillance for operational public health purposes and to lay out a

research agenda for achieving this end.

These methods are the basis for at least one deployed, widely

used surveillance system. Based upon search query data, Google

Flu Trends offers near-real-time estimates of influenza activity in

29 countries across the world (15 at the province level); another

facet of the same system, Google Dengue Trends (http://www.

google.org/denguetrends/) estimates dengue activity in 9 countries

(2 at the province level) in Asia and Latin America.

Having laid out the space of quantitative internet disease

surveillance as it exists to the best of our knowledge, we now

consider this prior work in the context of our four challenges:

N C1. Openness. Deep access to search queries from Baidu, a

Chinese-language search engine serving mostly the Chinese

market (http://www.baidu.com) [64,74,76]; Google [36,50–

54,56–60,65–67,69–73,75]; Yahoo [55,68]; and Yandex, a

search engine serving mostly Russia and Slavic countries in

Russian (http://www.yandex.ru), English (http://www.

yandex.com), and Turkish (http://www.yandex.com.tr) [75],

as well as purpose-built health website search queries [61–63]

and access logs [72,93] are available only to those within the

organizations, upon payment of an often-substantial fee, or by

some other special arrangement. While tools such as Baidu

Index (http://index.baidu.com), Google Trends (http://www.

google.com/trends/), Google Correlate (http://www.google.

com/trends/correlate/), and Yandex’s WordStat (http://

wordstat.yandex.com) provide a limited view into specific

search queries and/or time periods, as do occasional lower-

level data dumps offered for research, neither affords the large-

scale, broad data analysis that drives the most effective models.

The situation is only somewhat better for surveillance efforts

based upon Twitter [77–92]. While a small portion of the real-

time message stream (1%, or 10% for certain grandfathered users)

is available outside the company at no cost, terms of use prohibit

sharing historical data needed for calibration between researchers.

Access rules are similar or significantly more restrictive for other

social media platforms such as Facebook and Sina Weibo, the

leading Chinese microblogging site (http://weibo.com). Consistent

with this, we were able to find no research meeting our inclusion

criteria based on either of these extremely popular systems.

We identified only one prior effort making use of open data,

McIver & Brownstein with Wikipedia access logs [34]. Open

algorithms in this field of inquiry are also very limited. Of the

works cited above, again only one, Althouse et al. [50], claims

general availability of their algorithms in the form of open source

code.

Finally, we highlight the quite successful Google Flu and

Dengue Trends as a case study in the problems of closed data and

algorithms. First, because their data and algorithms are proprie-

tary, there is little opportunity for the wider community of

expertise to offer peer review or improvements (for example, the

list of search terms used by Dengue Trends has never been

published, even in summary form); the importance of these

opportunities is highlighted by the system’s well-publicized

estimation failures during the 2012–2013 flu season [94] as well

as more comprehensive scholarly criticisms [43]. Second, only

Google can choose the level of resources to spend on Trends, and

no one else, regardless of their available resources, can add new

contexts or take on operational responsibility should Google

choose to discontinue the project.

N C2. Breadth. While in principle these surveillance approach-

es are highly generalizable, nearly all extant efforts address a

small set of diseases in a small set of countries, without testing

specific methods to expand these sets.

The key exception is Paul & Dredze [91], which proposes a

content-based method, ailment topic aspect model (ATAM), to

automatically discover a theoretically unbounded set of medical

conditions mentioned in Twitter messages. This unsupervised

machine learning algorithm, similarly to latent Dirichlet allocation

(LDA) [95], accumulates co-occurring words into probabilistic
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topics. Lists of health-related lay keywords, as well as the text of

health articles written for a lay audience, are used to ensure that

the algorithm builds topics related to medical issues. A test of the

method discovered 15 coherent condition topics including

infectious diseases such as influenza, non-infectious diseases such

as cancer, and non-specific conditions such as aches and pains.

The influenza topic’s time series correlated very well with ILI data

in the United States.

However, we identify three drawbacks of this approach. First,

significant curated text input data in the target language are

required; second, output topics require expert interpretation; and

third, the ATAM algorithm has several parameters that require

expert tuning. That is, in order to adapt the algorithm to a new

location and/or language, expertise in both machine learning as

well as the target language are required.

In summary, to our knowledge, no disease measurement

algorithms have been proposed that are extensible to new

disease-location contexts solely by adding examples of desired

output. We propose a path to such algorithms.

N C3. Transferability. To our knowledge, no prior work

offers trained models that can be translated from one context

to another. We propose using the inter-language article links

provided in Wikipedia to accomplish this translation.

N C4. Forecasting. A substantial minority of the efforts in this

space test some kind of forecasting method. (Note that many

papers use the term predict, and some even misuse forecast, to

indicate nowcasting.) In addition to forecasting models that

incorporate disease dynamics (recall that these are out of scope

for the current paper), two basic classes of forecasting exist: lag
analysis, where the internet data are simply time-shifted in

order to capture leading signals, and statistical forecast models

such as linear regression.

Lag analysis has shown mixed results in prior work. Johnson et

al. [93], Pelat et al. [67], and Jia-xing et al. [64] identified no

reliable leading signals. On the other hand, Polgreen et al. [68]

used lag analysis with a shift granularity of one week to forecast

positive influenza cultures as well as influenza and pneumonia

mortality with a horizon of 5 weeks or more (though these

indicators may trail the onset of symptoms significantly). Similarly,

Xu et al. [72] reported evidence that lag analysis may be able to

forecast HFMD by up to two months, and Yang et al. [73] used

lag analysis with a granularity of one month to identify search

queries that lead suicide incidence by up to two months.

The more complex method of statistical forecast models appears

potentially fruitful as well. Dugas et al. tested several statistical

methods using positive influenza tests and Google Flu Trends to

make 1-week forecasts [57], and Kim et al. used linear regression

to forecast influenza on a horizon of 1 month [86].

In summary, while forecasts based upon models that include

disease dynamics are clearly useful, sometimes this is not possible

because important disease parameters are insufficiently known.

Therefore, it is still important to pursue simple methods. The

simplest is lag analysis; our contribution is to evaluate leading

information more quantitatively than previously attempted.

Specifically, we are unaware of previous analysis with shift

granularity less than one week; in contrast, our analysis tests daily

shifting even if official data are less granular, and each shift is an

independently computed model; thus, our 628-day evaluation

results in 57 separate models for each context.

In summary, significant gaps remain with respect to the

challenges blocking a path to an open, deployable, quantitative

internet-based disease surveillance system. In this paper, we

propose a path to overcoming these challenges and offer evidence

demonstrating that this path is plausible.

Methods

We used two data sources, Wikipedia article access logs and

official disease incidence reports, and built linear models to

analyze approximately 3 years of data for each of 14 disease-

location contexts. This section details the nature, acquisition, and

processing of these data as well as how we computed the

estimation models and evaluated their output.

Wikipedia Article Access Logs
Access logs for all Wikipedia articles are available in summary

form to anyone who wishes to use them. We used the complete

logs available at http://dumps.wikimedia.org/other/pagecounts-

raw/. Web interfaces offering a limited view into the logs, such as

http://stats.grok.se, are also available. These data are referred to

using a variety of terms, including article views, article visits,
pagecount files, page views, pageviews, page view logs, and request
logs.

These summary files contain, for each hour from December 9,

2007 to present and updated in real time, a compressed text file

listing the number of requests for every article in every language,

except that articles with no requests are omitted. (This request

count differs from the true number of human views due to

automated requests, proxies, pre-fetching, people not reading the

article they loaded, and other factors. However, this commonly

used proxy for human views is the best available.) We analyzed

data from March 7, 2010 through February 1, 2014 inclusive, a

total of 1,428 days. This dataset contains roughly 34,000 data files

totaling 2.7TB. 266 hours or 0.8% of the data are missing, with

the largest gap being 85 hours. These missing data were treated as

zero; because they were few, this has minimal effect on our

analyses.

We normalized these request counts by language. This yielded,

for each article, a time series containing the number of requests for

that article during each hour, expressed as a fraction of the hour’s

total requests for articles in the language. This normalization also

compensates for periods of request undercounting, when up to

20% fewer requests were counted than served [96]. Finally, we

transposed the data using Map-Reduce [97] to produce files from

which the request count time series of any article can be retrieved

efficiently.

Disease Incidence Data
Our goal was to evaluate a broad selection of diseases in a

variety of countries across the world, in order to test the global

applicability and disease agnosticism of our proposed technique.

For example, we sought diseases with diverse modes of transmis-

sion (e.g., airborne droplet, vector, sexual, and fecal-oral), biology

(virus, bacteria, protozoa), types of symptoms, length of incubation

period, seasonality, and prevalence. Similarly, we sought locations

in both the developed and developing world in various climates.

Finally, we wanted to test each disease in multiple countries, to

provide an opportunity for comparison.

These comprehensive desiderata were tempered by the realities

of data availability. First, we needed reliable data establishing

incidence ground truth for specific diseases in specific countries

and at high temporal granularity; such official data are frequently

not available for locations and diseases of interest. We used official

epidemiological reports available on websites of government

public health agencies as well as the World Health Organization

(WHO).
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Second, we needed article access counts for specific countries.

This information is not present in the Wikipedia article access logs

(i.e., request counts are global totals). However, a proxy is

sometimes available in that certain languages are mostly limited to

one country of interest; for example, a strong majority of Thai

speakers are in Thailand, and the only English-speaking country

where plague appears is the United States. In contrast, Spanish is

spoken all over the world and thus largely unsuitable for this

purpose.

Third, the language edition needs to have articles related to the

disease of interest that are mature enough to evaluate and generate

sufficient traffic to provide a reasonable signal.

With these constraints in mind, we used our professional

judgement to select diseases and countries. The resulting list of 14

disease-location contexts, which is designed to be informative

rather than comprehensive, is enumerated in Table 1.

These incidence data take two basic forms: (a) tabular files such

as spreadsheets mapping days, weeks, or months to new case

counts or the total number of infected persons or (b) graphs

presenting the same mapping. In the latter case, we used plot

digitizing software (Plot Digitizer, http://plotdigitizer.sourceforge.

net) to extract a tabular form. We then translated these diverse

tabular forms to a consistent spreadsheet format, yielding for each

disease-location context a time series of disease incidence (these

series are available in supplemental data S1).

Article Selection
The goal of our models is to create a linear mapping from the

access counts of some set of Wikipedia articles to a scalar disease

incidence for some disease-location context. To do so, a procedure

for selecting these articles is needed; for the current proof-of-

concept work, we used the following:

1. Examine the English-language Wikipedia article for the disease

and enumerate the linked articles. Select for analysis the disease

article itself along with linked articles on relevant symptoms,

syndromes, pathogens, conditions, treatments, biological pro-

cesses, and epidemiology. For example, the articles selected for

influenza include ‘‘Influenza’’, ‘‘Amantadine’’, and ‘‘Swine

influenza’’, but not ‘‘2009 flu pandemic’’.

2. Identify the corresponding article in each target language by

following the inter-language wiki link; these appear at the lower

left of Wikipedia articles under the heading ‘‘Languages’’. For

example, the Polish articles selected for influenza include

‘‘Grypa’’, ‘‘Amantadyna’’, and ‘‘Świńska grypa’’, but not

‘‘Pandemia grypy A/H1N1 w latach 2009–2010’’, respectively.

3. Translate each article title into the form that appears in the

logs. Specifically, encode the article’s Unicode title using UTF-

8, percent-encode the result, and replace spaces with

underscores. For example, the Polish article ‘‘Choroby

zakaźne’’ becomes Choroby_zaka%C5%Bane. This procedure

is accomplished by simply copying the article’s URL from the

web browser address bar.

This procedure has two potential complications. First, an article

may not exist in the target language; in this case, we simply omit it.

Second, Wikipedia contains null articles called redirects that

merely point to another article, called the target of the redirect.

These are created to catch synonyms or common misspellings of

an article. For example, in English, the article ‘‘Flu’’ is a redirect to

‘‘Influenza’’. When a user visits http://en.wikipedia.org/wiki/Flu,

the content served by Wikipedia is actually that of the ‘‘Influenza’’

article; the server does not issue an HTTP 301 response nor

require the reader to manually click through to the redirect target.

This complicates our analysis because this arrangement causes

the redirect itself (‘‘Flu’’), not the target (‘‘Influenza’’), to appear in

the access log. While in principle we could sum redirect requests

into the target article’s total, reliably mapping redirects to targets is

a non-trivial problem because this mapping changes over time,

and in fact Wikipedia’s history for redirect changes is not complete

[98]. Therefore, we have elected to leave this issue for future work;

this choice is supported by our observation below that when target

and redirect are reversed, traffic to ‘‘Dengue fever’’ in Thai follows

the target.

Table 1. Diseases-location contexts analyzed, with data sources.

Disease Country Language Start End Resolution Sources

Cholera Haiti French 2010-12-05 2013-12-05 daily [99]

Dengue Brazil Portuguese 2010-03-07 2013-03-16 weekly [100]

Thailand Thai 2011-01-01 2014-01-31 monthly [101]

Ebola Uganda/DRC English 2011-01-01 2013-12-31 daily [102–104]

HIV/AIDS China (PRC) Chinese 2011-01-01 2013-12-31 monthly [105]

Japan Japanese 2010-10-09 2013-10-18 weekly [106]

Influenza Japan Japanese 2010-06-26 2013-07-05 weekly [106]

Poland Polish 2010-10-17 2013-10-23 weekly [107]

Thailand Thai 2011-01-23 2014-02-01 weekly [101]

United States English 2011-01-01 2014-01-10 weekly [108]

Plague United States English 2011-01-22 2014-01-31 weekly [109]

Tuberculosis China (PRC) Chinese 2010-12-01 2013-12-31 monthly [105]

Norway Norwegian 2010-12-01 2013-12-31 monthly [110]

Thailand Thai 2010-12-01 2013-12-31 monthly [101]

This table lists the 7 diseases in 9 locations analyzed, for a total of 14 disease-location contexts. For each context, we list the language used as a location proxy, the
inclusive start and end dates of analysis, the resolution of the disease incidence data, and one or more citations for those data.
doi:10.1371/journal.pcbi.1003892.t001
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If we encounter a redirect during the above procedure, we use

the target article. The complete selection of articles is available in

the supplementary data S1.

Building and Evaluating Each Model
Our goal was to understand how well traffic for a simple

selection of articles can nowcast and forecast disease incidence.

Accordingly, we implemented the following procedure in Python

to build and evaluate a model for each disease-location context.

1. Align the hourly article access counts with the daily, weekly, or

monthly disease incidence data by summing the hourly counts

for each day, week, or month in the incidence time series. This

yields article and disease time series with the same frequency,

making them comparable. (We ignore time zone in this

procedure. Because Wikipedia data are in UTC and incidence

data are in unspecified, likely local time zones, this leads to a

temporal offset error of up to 23 hours, a relatively small error

at the scale of our analysis. Therefore, we ignore this issue for

simplicity.)

2. For each candidate article in the target language, compute

Pearson’s correlation r against the disease incidence time series

for the target country.

3. Order the candidates by decreasing DrD and select the best 10

articles.

4. Use ordinary least squares to build a linear multiple regression

model mapping accesses to these 10 articles to the disease time

series. No other variables were incorporated into the model.

Below, we report r2 for the multi-article models as well as a

qualitative evaluation of success or failure. We also report r for

individual articles in the supplementary data S1.

In order to test forecasting potential, we repeat the above with

the article time series time-shifted from 28 days forward to 28 days

backward in 1-day increments. For example, to build a 4-day

forecasting model — that is, a model that estimates disease

incidence 4 days in the future — we would shift the article time

series later by 4 days so that article request counts for a given day

are matched against disease incidence 4 days in the future. The

choice of 628 days for lag analysis is based upon our a priori
hypothesis that these statistical models are likely effective for a few

weeks of forecasting.

We refer to models that estimate current (i.e., same-day) disease

incidence as nowcasting models and those that estimate past

disease incidence as anti-forecasting models; for example, a model

that estimates disease incidence 7 days ago is a 7-day anti-

forecasting model. (While useless at first glance, effective anti-

forecasting models that give results sooner than official data can

still reduce the lead time for action. Also, it is valuable for

understanding the mechanism of internet-based models to know

the temporal location of predictive information.) We report r2 for

each time-shifted multi-article model.

Finally, to evaluate whether translating models from one

location to another is feasible, we compute a metric rt for each

pair of locations tested on the same disease. This meta-correlation

is simply the Pearson’s r computed between the correlation scores

r of each article found in both languages; the intent is to give a

gross notion of similarity between models computed for the same

disease in two different languages. A value of 1 means that the two

models are identical, 0 means they have no relationship, and -1

means they are opposite. We ignore articles found in only one

language because the goal is to obtain a sense of feasibility: given

favorable conditions, could one train a model in one location and

apply it to another? Table 2 illustrates an example.

Results

Among the 14 disease-location contexts we analyzed, we found

three broad classes of results. In 8 cases, the model succeeded, i.e.,

there was a usefully close match between the model’s estimate and

the official data. In 3 cases, the model failed, apparently because

patterns in the official data were too subtle to capture, and in a

further 3, the model failed apparently because the signal-to-noise

ratio (SNR) in the Wikipedia data was too subtle to capture. Recall

that this success/failure classification is based on subjective

judgement; that is, in our exploration, we discovered that r2 is

insufficient to completely evaluate a model’s goodness of fit, and a

complementary qualitative evaluation was necessary.

Below, we discuss the successful and failed nowcasting models,

followed by a summary and evaluation of transferability. (No

models failed at nowcasting but succeeded at forecasting, so we

omit a detailed forecasting discussion for brevity.)

Successful Nowcasting
Model and official data time series for selected successful

contexts are illustrated in Figure 1. The method’s good perfor-

mance on dengue and influenza is consistent with voluminous

prior work on these diseases; this offers evidence for the feasibility

of Wikipedia access as a data source.

Success in the United States is somewhat surprising. Given the

widespread use of English across the globe, we expected that

language would be a poor location proxy for the United States. We

speculate that the good influenza model performance is due to the

high levels of internet use in United States, perhaps coupled with

similar flu seasons in other Northern Hemisphere countries.

Similarly, in addition to Brazil, Portuguese is spoken in Portugal

and several other former colonies, yet problems again failed to

arise. In this case, we suspect a different explanation: the simple

absence of dengue from other Portuguese-speaking countries.

The case of dengue in Brazil is further interesting because it

highlights the noise inherent in this social data source, a property

shared by many other internet data sources. That is, noise in the

input articles is carried forward into the model’s estimate. We

speculate that this problem could be mitigated by building a model

on a larger, more carefully selected set of articles rather than just

10.

Finally, we highlight tuberculosis in China as an example of a

marginally successful model. Despite the apparently low r2 of 0.66,

we judged this model successful because it captured the high

baseline disease level excellently and the three modest peaks well.

However, it is not clear that the model provides useful information

at the time scale analyzed. This result suggests that additional

quantitative evaluation metrics may be needed, such as root mean

squared error (RMSE) or a more complex analysis considering

peaks, valleys, slope changes, and related properties.

Forecasting and anti-forecasting performance of the four

selected contexts is illustrated in Figure 2. In the case of dengue

and influenza, the models contain significant forecast value

through the limit of our 28-day analysis, often with the maximally

effective lag comprising a forecast. We offer three possible reasons

for this. First, both diseases are seasonal, so readers may simply be

interested in the syndrome for this reason; however, the fact that

models were able to correctly estimate seasons of widely varying

severity provides counterevidence for this theory. Second, readers

may be interested due to indirect reasons such as news coverage.

Prior work disagrees on the impact of such influences; for example,

Dukic et al. found that adding news coverage to their methicillin-

resistant Staphylococcus aureus (MRSA) model had a limited effect

[58], but recent Google Flu Trends failures appear to be caused in
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part by media activity [94]. Finally, both diseases have a relatively

short incubation period (influenza at 1–4 days and dengue at 3–

14); soon-to-be-ill readers may be observing the illness of their

infectors or those who are a small number of degrees removed. It is

the third hypothesis that is most interesting for forecasting

purposes, and evidence to distinguish among them might be

obtained from studies using simulated media and internet data, as

suggested by Culotta [82].

Tuberculosis in China is another story. In this case, the model’s

effectiveness is poorer as the forecast interval increases; we

speculate that this is because seasonality is absent and the

incubation period of 2–12 weeks is longer, diluting the effect of

the above two mechanisms.

Failed Nowcasting
Figure 3 illustrates the three contexts where the model was not

effective because, we suspect, it was not able to discern meaningful

patterns in the official data. These suggest a few patterns that

models might have difficulty with:

1.Noise. True patterns in data may be obscured by noise. For

example, in the case of HIV/AIDS in China, the official data

vary by a factor of 2 or more throughout the graph, and the

model captures this fairly well, but the pattern seems

epidemiologically strange and thus we suspect it may be

merely noise. The other two contexts appear to also contain

significant noise.

(Note that we distinguish noisy official data from an unfavorable

signal-to-noise ratio, which is discussed below.)

2.Too slow. Disease incidence may be changing too slowly to be

evident in the chosen analysis period. In all three contexts

shown in Figure 3, the trend of the official data is essentially

flat, with HIV/AIDS in Japan especially so. The models have

captured this flat trend fairly well, but even doing so excellently

provides little actionable value over traditional surveillance.

Both HIV/AIDS and tuberculosis infections progress quite

slowly. A period of analysis longer than three years might reveal

meaningful patterns that could be captured by this class of models.

However, the social internet is young and turbulent; for example,

even 3 years consumes most of the active life of some languages of

Wikipedia. This complicates longitudinal analyses.

3.Too fast. Finally, incidence may be changing too quickly for

the model to capture. We did not identify this case in the

contexts we tested; however, it is clearly plausible. For example,

quarterly influenza data would be hard to model meaningfully

using these techniques.

In all three patterns, improvements such as non-linear models

or better regression techniques could lead to better results,

suggesting that this is a useful direction for future work. In

particular, noise suppression techniques as well as models tuned

for the expected variation in a particular disease may prove

fruitful.

Figure 4 illustrates the three contexts where we suspect the

model failed due to a signal-to-noise ratio (SNR) in the Wikipedia

data that was too low. That is, the number of Wikipedia accesses

due to actual observations of infection is drowned out by accesses

due to other causes.

In the case of Ebola, there are relatively few direct observations

(a major outbreak has tens of cases), and the path to these

observations becoming internet traces is hampered by poor

connectivity in the sub-Saharan countries where the disease is

active. On the other hand, the disease is one of general ongoing

interest; in fact, one can observe on the graph a pattern of weekly

variation (higher in midweek, lower on the weekend), which is

common in online activity. In combination, these yield a

completely useless model.

The United States has good internet connectivity, but plague

has even lower incidence (the peak on the graph is three cases) and

this disease is also popularly interesting, resulting in essentially the

same effect. The cholera outbreak in Haiti differs in that the

number of cases is quite large (the peak of the graph is 4,200 cases

in one day). However, internet connectivity in Haiti was already

poor even before the earthquake, and the outbreak was a major

world news story, increasing noise, so the signal was again lost.

Performance Summary
Table 3 summarizes the performance of our models in the 14

disease-location contexts tested. Of these, we classified 8 as

successful, producing useful estimates for both nowcasting and

forecasting, and 6 as unsuccessful. Performance roughly broke

down along disease lines: all influenza and dengue models were

successful, while two of the three tuberculosis models were, and

cholera, ebola, HIV/AIDS, and plague proved unsuccessful.

Given the relatively simple model building technique used, this

suggests that our Wikipedia-based approach is sufficiently prom-

ising to explore in more detail. (Another hypothesis is that model

performance is related to popularity of the corresponding

Wikipedia language edition. However, we found no relationship

between r2 and either a language’s total number of articles or total

traffic.)

Table 2. Transferability rt example.

Article Japanese Thai

Fever 0:23 0:21

Chills 0:59

Headache {0:10 0:15

Influenza 0:85 0:77

This table shows simplified models for influenza in two locations: Japan, where Japanese is spoken, and Thailand, where Thai is spoken. The Japanese model yielded correlations
for Japanese versions of the articles ‘‘Fever’’, ‘‘Chills’’, ‘‘Headache’’, and ‘‘Influenza’’ of 0.23, 0.59, 20.10, and 0.85, respectively. The Thai model yielded correlations of 0.21, 0.15,
and 0.77 for ‘‘Fever’’, ‘‘Headache’’, and ‘‘Influenza’’, respectively. Note that the article ‘‘Chills’’ is not currently present in the Thai Wikipedia. Therefore, the correlation vectors are
f0:23,{0:10,0:85g and f0:21,0:15,0:77g for the two languages. The meta-correlation, rt, for these two vectors, which provides a gross estimate of how similar the models are, is
0.97. Extending this computation to the full models yields rt = 0.81, as noted below in Table 4.
doi:10.1371/journal.pcbi.1003892.t002
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At a higher level, we posit that a successful estimation model

based on Wikipedia access logs or other social internet data

requires two key elements. First, it must be sensitive enough to

capture the true variation in disease incidence data. Second, it

must be sensitive enough to distinguish between activity traces due

to health-related observations and those due to other causes. In

both cases, further research on modeling techniques is likely to

yield sensitivity improvements. In particular, a broader article

selection procedure — for example, using big data methods to test

all non-trivial article time series for correlation, as Ginsberg et al.

Figure 1. Selected successful model nowcasts. These graphs show official epidemiological data and nowcast model estimate (left Y axis) with
traffic to the five most-correlated Wikipedia articles (right Y axis) over the 3 year study periods. The Wikipedia time series are individually self-
normalized. Graphs for the four remaining successful contexts (dengue in Thailand, influenza in Japan, influenza in Thailand, and tuberculosis in
Thailand) are included in the supplemental data file S1.
doi:10.1371/journal.pcbi.1003892.g001
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did for search queries [36] — is likely to prove fruitful, as might a

non-linear statistical mapping.

Transferability
Table 4 lists the transferability scores rt for each pair of

countries tested on the same disease. Because this paper is

concerned with establishing feasibility, we focus on the highest

scores. These are encouraging: in the case of influenza, both

Japan/Thailand and Thailand/United States are promising. That

is, it seems plausible that careful source model selection and

training techniques may yield useful models in contexts where no

training data are available (e.g., official data are unavailable or

unreliable). These early results suggest that research to quantita-

tively test methods for translating models from one disease-

location context to another should be pursued.

Discussion

Human activity on the internet leaves voluminous traces that

contain real and useful evidence of disease dynamics. Above, we

pose four challenges currently preventing these traces from

informing operational disease surveillance activities, and we argue

that Wikipedia data are one of the few social internet data sources

that can meet all four challenges. Specifically:

N C1. Openness. Open data and algorithms are required, in

order to offer reliable science as well as a flexible and robust

operational capability. Wikipedia access logs are freely

available to anyone.

N C2. Breadth. Thousands of disease-location contexts, not

dozens, are needed to fully understand the global disease

threat. We tested simple disease estimation models on 14

contexts around the world; in 8 of these, the models were

successful with r2 up to 0.92, suggesting that Wikipedia data

are useful in this regard.

N C3. Transferability. The greatest promise of novel disease

surveillance methods is the possibility of use in contexts where

traditional surveillance is poor or nonexistent. Our analysis

uncovered pairs of same-disease, different-location models with

similarity up to 0.81, suggesting that translation of trained

models using Wikipedia’s mappings of one language to another

may be possible.

N C4. Forecasting. Effective response to disease depends on

knowing not only what is happening now but also what will

happen in the future. Traditional mechanistic forecasting

models often cannot be applied due to missing parameters,

motivating the use of simpler statistical models. We show that

such statistical models based on Wikipedia data have

forecasting value through our maximum tested horizon of 28

days.

This preliminary study has several important limitations. These

comprise an agenda for future research work:

Figure 2. Forecasting effectiveness for selected successful models. This figure shows model r2 compared to temporal offset in days: positive
offsets are forecasting, zero is nowcasting (marked with a dotted line), and negative offsets are anti-forecasting. As above, figures for the four
successful contexts not included here are in the supplemental data S1.
doi:10.1371/journal.pcbi.1003892.g002
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1. The methods need to be tested in many more contexts in order

to draw lessons about when and why this class of methods is

likely to work.

2. A better article selection procedure is needed. In the current

paper, we tried a simple manual process yielding at most a few

dozen candidate articles in order to establish feasibility.

However, real techniques should use a comprehensive process

that evaluates thousands, millions, or all plausible articles for

inclusion in the model. This will also facilitate content analysis

studies that evaluate which types of articles are predictive of

disease incidence.

3. Better geo-location is needed. While language as a location

proxy works well in some cases, as we have demonstrated, it is

inherently weak. In particular, it is implausible for use at a finer

scale than country-level. What is needed is a hierarchical

geographic aggregation of article traffic. The Wikimedia

Foundation, operators of Wikipedia and several related

projects, could do this using IP addresses to infer location

before the aggregated data are released to the public. For most

epidemiologically-useful granularities, this will still preserve

reader privacy.

4. Statistical estimation maps from article traffic to disease

incidence should be more sophisticated. Here, we tried simple

linear models mapping a single interval’s Wikipedia traffic to a

single interval’s disease incidence. Future directions include

testing non-linear and multi-interval models.

5. Wikipedia data have a variety of instabilities that need to be

understood and compensated for. For example, Wikipedia

shares many of the problems of other internet data, such as

highly variable interest-driven traffic caused by news reporting

and other sources.

Wikipedia has its own data peculiarities that can also cause

difficulty. For example, during preliminary exploration for this

paper in early July 2013, we used the inter-language link on the

English article ‘‘Dengue fever’’ to locate the Thai version,

‘‘ ’’ (roughly, ‘‘dengue hemorrhagic fever’’);

article access logs indicated several hundred accesses per day for

Figure 3. Nowcast attempts where the model was unable to capture a meaningful pattern in official data.
doi:10.1371/journal.pcbi.1003892.g003
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this article in the month of June 2013. When we repeated the same

process in March 2014, the inter-language link led to a page with

the same content, but a different title, ‘‘ ’’ (roughly, ‘‘dengue

fever’’). As none of the authors are Thai speakers, and Google

Translate renders both versions as ‘‘dengue fever’’, we did not

notice that the title of the Thai article had changed and were

alarmed to discover that the article’s traffic in June 2013 was

essentially zero.

The explanation is that before July 23, 2013, ‘‘ ’’ was a

redirect to ‘‘ ’’; on that day, the direction of the

redirect was reversed, and almost all accesses moved over to the

new redirect target over a period of a few days. That is, the article

was the same all along, but the URL under which its accesses were

recorded changed.

Possible techniques for compensation include article selection

procedures that exclude such articles or maintaining a time-aware

redirect graph so that different aliases of the same article can be

merged. Indeed, when we tried the latter approach by manually

summing the two URLs’ time series, it improved nowcast r2 from

0.55 to 0.65. However, the first technique is likely to discard useful

information, and the second may not be reliable because complete

history for this type of article transformation is not available [98].

In general, ongoing, time-aware re-training of models will likely

be helpful, and limitations of the compensation techniques can be

evaluated with simulation studies that inject data problems.

6. We have not explored the full richness of the Wikipedia data.

For example, complete histories of each language edition are

available, which include editing metadata (timestamps, editor

identity, and comments), the text of each version, and

conversations about the articles; these would facilitate analysis

of edit activity as well as the articles’ changing text. Also,

health-related articles are often mapped to existing ontologies

such as the International Statistical Classification of Diseases

and Related Health Problems (ICD-9 or ICD-10).

7. Transferability of models should be tested using more realistic

techniques, such as simply building a model in one context and

testing its performance in another.

Finally, it is important to recognize the biases inherent in

Wikipedia and other social internet data sources. Most importantly,

Figure 4. Nowcast attempts with poor performance due to unfavorable signal-to-noise ratio.
doi:10.1371/journal.pcbi.1003892.g004
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the data strongly over-represent people and places with good

internet access and technology skills; demographic biases such as

age, gender, and education also play a role. These biases are

sometimes quantified (e.g., with survey results) and sometimes

completely unknown. Again, simulation studies using synthetic

internet data can quantify the impact and limitations of these biases.

Despite these limitations, we have established the utility of

Wikipedia access logs for global disease monitoring and forecast-

ing, and we have outlined a plausible path to a reliable,

scientifically sound, operational disease surveillance system. We

look forward to collaborating with the scientific and technical

community to make this vision a reality.

Supporting Information

Dataset S1 Input data, raw results, and additional
figures. This archive file contains: (a) inter-language article

mappings, (b) figures for the 4 successful contexts not included

above, (c) official epidemiological data used as input, (d) complete

correlation scores r, (e) wiki input data, and (f) a text file explaining

the archive content and file formats.
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