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Abstract

The prenatal development of neural circuits must provide sufficient configuration to support at least a set of core postnatal
behaviors. Although knowledge of various genetic and cellular aspects of development is accumulating rapidly, there is less
systematic understanding of how these various processes play together in order to construct such functional networks.
Here we make some steps toward such understanding by demonstrating through detailed simulations how a competitive
co-operative (‘winner-take-all’, WTA) network architecture can arise by development from a single precursor cell. This
precursor is granted a simplified gene regulatory network that directs cell mitosis, differentiation, migration, neurite
outgrowth and synaptogenesis. Once initial axonal connection patterns are established, their synaptic weights undergo
homeostatic unsupervised learning that is shaped by wave-like input patterns. We demonstrate how this autonomous
genetically directed developmental sequence can give rise to self-calibrated WTA networks, and compare our simulation
results with biological data.
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Introduction

In this paper we address the question of how progenitor cells of

the neocortical subplate can give rise to large functional neuronal

sub-networks in the developed cortex. We choose winner-take-all

(WTA) [1,2] connectivity as the target of this self-construction and

-configuration process because these sub-networks are consistent

with the observed physiology [3,4] and connectivity [5,6] of

neurons in the superficial layers of neocortex, and because they are

powerful elements of computation [7,8]. WTA networks actively

select the strongest of multiple input signals, while suppressing the

weaker ones. This fundamental characteristic is applicable in

various contexts, and so many studies modeling cortical function

are based on WTA modules [8–15].

The idealized WTA network architecture is shown in Fig. 1A.

Excitatory neurons are recurrently connected to each other and also

with one or more inhibitory neurons, which project back to the

excitatory neurons. This architecture does not in itself guarantee

WTA functionality. The degree of recurrent excitation, excitation of

inhibitory neurons, and inhibition of excitatory neurons need all to

lie within preferred ranges [8] in order for the network to exhibit

effective WTA behavior. The appropriate neural architecture must

be grown, and then the weights of the many synapses must be tuned

to fall within the necessary ranges. Such neuronal growth and

synapse formation are subject to variability (1B,C), for which the

homeostatic learning mechanisms must compensate.

The behavior of a WTA network depends on the ratios of the

effects of its various excitatory and inhibitory connection paths. In

its high excitatory gain regime a WTA network will report only the

strongest of its feed-forward inputs, and suppress the remainder of

the excitatory neurons, which are weakly activated. In a more

relaxed regime (soft-WTA, sWTA) the network will return a

pattern of winners that best conforms to its input. In this sense the

sWTA performs a pattern based signal restoration, which is a

crucial mechanism for resisting degradation of processing in neural

systems across their many computational steps. In this paper we

choose to have the developmental process grow and tune these

sWTA networks.

Our goal is to demonstrate how plausible genetic developmental

mechanisms can combine with homeostatic synaptic tuning to

bring networks of neurons into sWTA functionality (Fig. 1). Our

demonstration is based on simulations of the development and

growth of neural tissue in 3D physical space using Cx3D [16]. The

simulation begins with a single precursor cell. This cell encodes

gene-like instructions that are sequentially and conditionally

expressed through a gene regulatory network (GRN). By

controlling the expression of different genes, this GRN gives rise

to pools of differentiated excitatory and inhibitory neurons. These

neurons, which are placed randomly in 3D space, extend axons

and dendrites and make synapses according to a proximity rule.

This process results in a synaptically connected network that

matches well experimentally obtained connectivity statistics.
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During this neurite outgrowth, the synaptic weights calibrate

themselves homeostatically using experimentally established syn-

aptic scaling [17] and BCM learning rules [18]. This synaptic

learning is conditioned by coarsely patterned neuronal activity

similar to that of retinal waves or cortico-thalamic loops [19–23].

We compare these grown networks with biological data, and

demonstrate WTA functionality. This comparison is done also in

the context of cortical functionality, such as orientation selectivity.

Importantly, the overall behavior stems solely from local processes,

which are instantiated from internally encoded and developmental

primitives [24]. Hence, we provide a model that explains the

developmental self-construction and -configuration of a neocorti-

cal WTA network in a biologically plausible way.

Results

Development of Differentiated Neurons Based on a
Gene-Regulatory-Network

Cell proliferation and differentiation into different cell types is

specified implicitly in the genetic code of a single precursor cell.

This code determines how a given number of excitatory and

inhibitory neurons is produced. During the unfolding process of

this code, each cell contains the same genetic code, but because of

its local environment can follow different developmental trajecto-

ries.

We model the molecular mechanisms that regulate cell

differentiation by a dynamical gene regulatory network (GRN).

This GRN is defined by a set of 5 variables (G0, G1, G2, GE, and

GI ) that represent substance concentrations, where each substance

is the expression of a gene. Importantly, all cells have their own

instantiations of these variables. The secretion, interaction, and

decay of substances, is regulated by the laws of kinetics. The

differential equations specifying these dynamics are shown in

Methods.

During the evolution of the substance concentrations, also cell

growth and division is simulated. The cell cycle time and model

parameters of the differential equations are fixed and independent

of the substance dynamics.

Initially, all concentrations are set to zero. At this stage, only the

‘‘starter’’ substance G0 is produced, which reaches high concen-

tration levels in the first time step, and triggers the production of a

second gene G1. G1 is produced according to a prespecified

intrinsic production constant a. This value determines how many

cell divisions will occur until the concentration of G1 reaches a

value of 0:99. When this threshold is reached, a probabilistic

decision is induced: GE or GI , responsible for activating the

excitatory and inhibitory cell phenotypes, are triggered with

probability pE~0:8 or pI~0:2, respectively.

Such a GRN network configuration would enable us to generate

2n cells, where n is the number of symmetric divisions. However,

the target number of cells might not be an exponential of 2.

Therefore, we have introduced a second gene G2 that is

(probabilistically) activated by high concentrations of G1, and

that leads to a second round of symmetric division. As for G1, G2
activates GE or GI in a probabilistic manner. The probability to

enter into this secondary cell cycle is given by p2, which is

computed based on the target number of cells. The evolution of

the GRN across cell types is depicted in Fig. 2.

By setting the production rate constant a of gene G1 and the

probabilistic activation of G2, we can control the final number of

cells produced. The equations for computing the probabilities for

either differentiating into neurons by G1 induction (p1) or by G2
induction (p2), depending on the target number of cells, are shown

in Methods.

Overall, the GRN is designed so that a desired total number of

cells is reached, and that the distribution of excitatory vs.
inhibitory cells follows the approximate 4:1 ratio observed in

Figure 1. Winner-take-all architecture. (A) Architecture of an
idealised winner-take-all-network. Several excitatory neurons (red)
excite a single shared inhibitory neuron, or a shared population of
inhibitory neurons (blue). Each excitatory neuron receives inhibitory
feedback in proportion to the average activity of the excitatory
population. (B) The WTA architecture is embedded in the field of
recurrent connections between a population of excitatory and
inhibitory neurons. (C) Once the WTA architecture has formed, coarsely
structured synaptic input drives synaptic refinement of the recurrent
connections within the network.
doi:10.1371/journal.pcbi.1003994.g001

Author Summary

Models of learning in artificial neural networks generally
assume that the neurons and approximate network are
given, and then learning tunes the synaptic weights. By
contrast, we address the question of how an entire
functional neuronal network containing many differenti-
ated neurons and connections can develop from only a
single progenitor cell. We chose a winner-take-all network
as the developmental target, because it is a computation-
ally powerful circuit, and a candidate motif of neocortical
networks. The key aspect of this challenge is that the
developmental mechanisms must be locally autonomous
as in Biology: They cannot depend on global knowledge or
supervision. We have explored this developmental process
by simulating in physical detail the fundamental biological
behaviors, such as cell proliferation, neurite growth and
synapse formation that give rise to the structural connec-
tivity observed in the superficial layers of the neocortex.
These differentiated, approximately connected neurons
then adapt their synaptic weights homeostatically to
obtain a uniform electrical signaling activity before going
on to organize themselves according to the fundamental
correlations embedded in a noisy wave-like input signal. In
this way the precursor expands itself through develop-
ment and unsupervised learning into winner-take-all
functionality and orientation selectivity in a biologically
plausible manner.

Simulation of Neuronal Network Development
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cortex [25–27] (S1 Figure). Fig. 3(A-D) shows the evolution of an

initial cell giving rise to a number of cells which eventually grow

out neurites based solely on their genetic encoding.

Neurite Growth and Synapse Formation
Neurite growth and arborization is caused by growth cone

traction and bifurcation. The growth cone is able to sense the

presence and gradient of morphogens and other signal molecules,

and also able to actively explore the local extracellular space.

Importantly, neurite growth is steered via a growth cone model

instantiated at the tip of the axon or dendrite, and so is a local

process.

Diffusable signal molecules are secreted by the cell somata. In

these simulations excitatory and inhibitory neurons secrete two

characteristic signals, that enable excitatory and inhibitory axons to

find inhibitory and excitatory neurons, respectively. The axonal

growth cones initially grow out of the somata in random directions.

However, they retract whenever the concentration they sense falls

below a threshold. The retraction stops and growth recommences

when a second higher threshold is exceeded. In this way the axons

remain close to substance secreting sources. Retraction is an

efficient strategy for establishing connections because axons grow

only into regions containing a potential target, and is commonly

observed in developing neurons [28–31]. A video of a developing

neural network with axonal retraction (simulated in Cx3D) is

included in the Supporting Information (S1 Video) and on Youtube

(http://www.youtube.com/watch?v=il2uc-ZUZQ4).

Axons deploy boutons. Whenever these boutons are sufficiently

close to a potential post-synaptic site on a dendrite a synapse is

created between them. Consequently, the final synaptic network

connectivity depends on the nearly stochastic arrangement of

regions of spatial proximity of the outgrowing axons and dendrites.

We adapted the parameters of the neurite outgrowth (see

Table 1) so that the connectivity of the simulated neuronal growth

matched our experimental observations in layers II/III of cat

visual cortex [5,32] (see Fig. 4A). Overall, we found that

connectivity was robust to reasonable variation of the growth

parameters and the random location of somata. The absolute

numbers of synapses simulated here are smaller than observed in

biology, due to constraints on computational resources. However,

there is no inherent restriction on scalability using our methods,

and so we expect that realistic numbers of cells and synapses could

if necessary be simulated using supercomputers.

Fig. 4B shows the distribution of the percentage of excitatory

input synapses to the neurons, across the whole population. The

average percentage of excitatory inputs to a neuron in this network

is 84%, which is in good agreement with the experimental data.

This result is consistent with observations across species and

cortical areas that some 15% of all the synapses are GABAergic

[5,33–35], irrespective of neuronal densities. Importantly, this

good agreement arises naturally out of the growth model, and did

not require extensive tuning of the model parameters.

Electrophysiology
The self-configuration of electrophysiological processing de-

pends on the tuning of network synaptic weights and neuronal

activity. In order to simulate this aspect of the developing

Figure 2. Gene Regulatory Network. (A) Schematic representation
of the GRN, composed of five interacting genes that give rise to
excitatory and inhibitory neurons. The identity of a neuron is
determined by the genes GE and GI for excitatory or inhibitory neurons,
respectively. Arrows indicate a positive effect on gene expression. (B)
Lineage tree. Nodes indicate cells; boxes indicate gene expression
patterns. G0 triggers the expression of G1, which characterizes the
undifferentiated state of progenitor cells. After a series of symmetric
divisions, G1 reaches a concentration threshold. According to fixed
probabilities, G1 can then activate the differentiation toward excitatory
(red) or inhibitory (blue) neurons. Alternatively, a small proportion of
cells probabilistically undergoes a second round of cell division and
activates gene G2, which again promotes the differentiation toward
excitatory or inhibitory neurons by the expression of GE or GI. The
probabilistic activation of inhibitory or excitatory genes is a simplifica-
tion, but guarantees the production of a homogeneously mixed
population of neurons.
doi:10.1371/journal.pcbi.1003994.g002

Figure 3. Developmental process for building a competitive
network. A single precursor cell (A) contains the genetic code
specifying the entire developmental process. (B) The precursor cell first
undergoes repeated division to increase the pool of neuronal
precursors (black). (C) Precursor neurons then differentiate into
excitatory and inhibitory cell classes. (D) Neurite outgrowth begins to
provide a scaffold for synaptic connections. (E) A network of
differentiated neurons (grey) after neurite outgrowth has finished. For
better visualization, examples of excitatory and inhibitory neurons are
colored in red and blue, respectively. (F) Synapses (black rectangles) can
form at appositions between axons and dendrites.
doi:10.1371/journal.pcbi.1003994.g003

Simulation of Neuronal Network Development
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networks, we must model also the electrical activity of neurons.

However, the time scales of morphological growth and electro-

physiological dynamics are many orders of magnitude different,

and this difference makes for substantial technical problems in

simulation.

For simplicity, and for minimizing computational demands we

have used a rate-based approach to modeling neuronal activity.

We approximate the neuronal activation by a linear-threshold

function [36] that describes the output action potential discharge

rate of the neuron as a function of its input. This type of neuronal

activation function is a good approximation to experimental

observations of the adapted current discharge relation of neurons

[37,38] and has been used in a wide range of modeling works

[8,39–41].

The linear-threshold activation function is:

t
dxi

dt
~{xizmax(sizIiz

X
j

wijxj{T ,0) ð1Þ

where xi denotes the firing rate of a neuron with index i, t is the

neuronal time constant, si is the spontaneous activity, Ii is the feed-

forward input to neuron i, wij is the weight of the connection from

neuron j to neuron i (can be positive or negative, depending on the

presynaptic neuron’s type), and T is the neuron’s threshold. For

simplicity, t and T are set to 1 and 0. Exploratory simulations

where tinh=tex yielded very similar results.

For computational efficiency, the electrophysiology simulator

is implemented as a global process that acts on the total weight

matrix of the neuronal network, rather than performing these

frequent computations locally. We chose this global methodol-

ogy because it leads to a significant speed-up compared with a

local version that had been used initially. The total weight

matrix is obtained by summation of the weights of all synapses

in the Cx3D simulation. Using these connection weights,

neuronal activity is computed as described in Eq. 1. Connection

weight changes resulting from the learning and adaptation

(explained below) are computed based on this summed weight

matrix and the activities of the two respective connected

neurons, which are saved at each electrophysiology time step.

The same connection weights (and neuronal activities) would be

computed if only local processes at the synapses were simulated,

because the synaptic learning and adaptation dynamics (Eq. 2

and 3) are dependent on the (locally available) neuronal

activities, and linearly dependent on the synaptic weight.

Hence, the dynamics of the summed synaptic weights match

the sum of the individual synapse weight changes.

For reasons of biological plausibility, the electrophysiology

simulator incorporates a maximum connection weight. This

maximum weight for the functional connection strength between

two neurons is determined by counting the number of synapses

involved. This number, multiplied by the maximal weight of a

single synapse, is defined as the maximum of the total connection

weight. Hence, neurons that are connected by few synapses can

not establish a strong functional link.

In our model, self-configuration of the weights towards sWTA

functionality occurs during sequential developmental phases.

Sequential phases of electrical adaptation and learning during

development have been observed experimentally [42,43], and

have also been applied in previous models [44,45].

During the first, homeostatic phase neurons adapt the synaptic

weights of their own input in order to maintain a target output

activity. The effect of this phase is to bring the neuronal firing rates

into a balanced regime, and so allow for a reliable synaptic

learning without interference by unresponsive neurons or run-

away excitation. During the second, specification phase the

neurons structure their individual responses by correlation-based

learning on their inputs.

Homeostatic phase. During this first phase of activity-

dependent adaptation, neurite outgrowth, synapse formation and

homeostatic adaptation of neuronal activity occur simultaneously.

Neurons implement the synaptic scaling rule [17,46,47], whereby

they scale their synaptic input weights to achieve a preferred

average output firing rate. Thus, when their average output

activity exceeds a given target, neurons scale their excitatory and

inhibitory inputs down and up respectively. The opposite effect

occurs when the average activity has fallen below the target. Since

there is no correlation-based learning during this phase the

population of neurons can converge towards stable average levels

of activity, but there is no input learning.

Table 1. Parameters for simulating axonal and dendritic growth.

Parameter Value (Ex. Axon/Inh. Axon/Ex. Dendrite/Inh. Dendrite)

dminimal (minimal diameter) 0.2/0.2/0.3/0.3

rmove (diameter reduction when moving) 0.004/0.012/0.02/0.042

rfork (diameter reduction when bifurcating) 0.12/0.105/0.14/0.12

pbase (baseline probability for bifurcation) 0.05/0.08/0.04/0.05

psubstance (substance dependent probability for bifurcation) 0.005/0.05/0.0/0.0

speed of growth 100/100/100/100

speed of retraction 5/5/(no retraction)/(no retraction)

h1 (concentration threshold triggering retraction) 1e-8/1e-8/(no retraction)/(no retraction)

h2 (concentration threshold stopping retraction) 0.036/0.036/(no retraction)/(no retraction)

wprev (weight of previous growth direction) 0.75/0.75/0.75/0.75

wnoise (weight of random direction) 0.25/0.25/0.25/0.25

smax (neurite discretization size) 7/7/7/7

Growth parameters are dependent on the type of the neurite, as well as the neuron type. In order to qualitatively match biological observations, we modeled axons to
be longer than dendrites and inhibitory (basket) cells to have smaller spatial extent than excitatory neurons [56,132–134]. In our model, axons direct their growth based
on extracellular substance concentrations.
doi:10.1371/journal.pcbi.1003994.t001

Simulation of Neuronal Network Development
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The equations for synaptic scaling are given by [48,49]:

tSS

dwij

dt
~wij(Ai{vxiw) ð2Þ

where wij is the connection strength from neuron j to neuron i,

tSS is the time constant of the learning rule (usually hours or days),

Ai is desired average activity of postsynaptic neuron i, and vxiw

is the actual average activity of neuron i. Fig. 5 shows that this

synaptic scaling permits the simulated network to reach a stable

state with robust excitatory and inhibitory firing rates.

Post-synaptic scaling is not the only mechanism that can be used

for neuronal activity homeostasis. For example, [49] has described

an extended version of synaptic scaling: The presynaptic-

dependent synaptic scaling (PSD) rule. We also implemented that

PSD rule, but obtained results which differed only slightly from

traditional synaptic scaling.

In the later stages of this first phase, input neurons (that are not

part of the growing network) are added to the model (see Fig. 1C).

These input neurons could correspond, for example, to thalamic

or cortical layer IV neurons. They are initially fully connected to

neurons of the grown network, and their projection efficacies are

randomly drawn from a uniform distribution. Importantly, there is

a neighborhood relationship amongst the input neurons: Input

populations can be topologically close to, or distant from one

another. The input neurons provide coarsely patterned input

activity to the grown network. We chose hill-shaped patterns of

activity centered on a given population, and decaying with

topological distance from its center. The centers of these patterns

move periodically in a noisy wave-like fashion (see Methods). This

patterning of the electrical activity in the input layer can be

interpreted as, for example, the retinal waves in early development

Figure 5. Homeostatic adaptation of neuronal firing rates
during establishment of synaptic connectivity. (A) Synaptic
scaling during neurite outgrowth leads to robust average activities of
both excitatory (red) and inhibitory (blue) neurons. The network
consists of 250 neurons that are randomly arranged in 3D space. The
horizontal axis indicates the estimated real-time when taking into
account that the time constant of synaptic scaling is in the order of
several hours [17]. At t~50 (dashed line), the neurite outgrowth begins.
Average firing rates of layer II/III pyramidal neurons have been shown to
be smaller than 1 Hz in-vivo [128,129]. Experimental data indicates that
inhibitory neurons have higher activities Ai (Eq. 2) than excitatory
neurons [68,100,130,131]. In this simulation there are not yet any input
projections, so the activity originates solely from internally generated
and random activity. (B) Total (excitatory and inhibitory) number of
synapses in the network during development. New synapses are
formed also after the neurons reach the target average activities,
without disrupting the homeostatic adaptation process or bringing the
network out of balance. These simulation results demonstrate the
robustness of the synaptic scaling process during network growth.
doi:10.1371/journal.pcbi.1003994.g005

Figure 4. Connectivity after simulated neurite outgrowth. (A)
Comparison of connectivity statistics from Cx3D simulations (blue) with
experimental data (red) from [5]. Indicated on the vertical axis are the
numbers (normalized with respect to the first bar) of synapses onto a
single neuron. The individual bars show the values for the different pre-
and postsynaptic neuron pairs (excitatory or inhibitory synapses onto
an excitatory or inhibitory postsynaptic neuron). The numbers match in
proportion, while the absolute quantities are higher in the biological
data (approximately 155 vs. 3500 excitatory synapses onto a single
excitatory neuron in the simulated and biological connectivity,
respectively). This particular simulation consists of 250 neurons (200
excitatory and 50 inhibitory), which are randomly arranged in 3D space.
(B) Histogram of the percentage of excitatory input synapses across the
simulated network from (A). Each bar indicates the number of neurons
that have a particular percentage of excitatory input synapses (after
neurite growth and synapse formation have ended). The final
distribution has a mean of 84%, which is in line with experimental
assessments [5,33–35].
doi:10.1371/journal.pcbi.1003994.g004

Simulation of Neuronal Network Development
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[19–23], that can induce correlations within the activities of

downstream neural subpopulation.

By the end of this homeostatic phase, neurons and synapses

have reached their final structural configuration. Overall, this

phase prepares the network for the next phase of correlation-based

learning of input stimuli.

Specification phase. In this phase synapses onto excitatory

postsynaptic neurons obey the Bienenstock-Cooper-Munro (BCM)

learning rule [18,50,51], rather than synaptic scaling. The BCM

rule is composed of a Hebbian term, and a homeostatic term

which determines whether the Hebbian synapse grows stronger or

weaker.

The BCM learning rule is:

tBCM

dwij

dt
~xi

:xj
:(xi{hi) ð3Þ

where xi,xj denote the discharge rates of post- and pre-synaptic

neurons i,j; hi is the averaged square of neuron i’s firing rate,

multiplied by a constant (hi~cix
2
i ). The constant ci determines the

average firing rate that the neuron converges towards in the

stationary state; the condition
dwij

dt
~0 is met in the non-trivial

case where xi~hi. Let Aex and Ainh denote the target average

firing rates of excitatory and inhibitory neurons, respectively.

Then in order for the neurons to converge to these firing rates, ci is

set to
1

Aex

if neuron i is excitatory, or
1

Ainh

if it is inhibitory.

All synapses (excitatory and inhibitory) made onto excitatory

neurons follow the BCM learning rule, while those onto inhibitory

neurons follow the synaptic scaling (Eq. 2) rule. While learning is

commonly attributed to excitatory synapses, inhibitory synapses

can also undergo long-term potentiation (LTP) as well as long-

term depression (LTD) [52–55].

The lack of a correlative term for synapses onto inhibitory

postsynaptic neurons is, as shown below, necessary to match

experimental data on orientation selectivity of excitatory and

inhibitory neurons in mouse visual cortex. We therefore hypoth-

esize that basket cells in the superficial layers of cortex

homeostatically adapt their input synapses, in contrast to

pyramidal neurons, which also use correlational information.

We have also explored the case in which the same learning rule

is used by all synapses. This case also yields WTA functionality (see

below). Given that there are many different classes of inhibitory

neurons [56], which differ also in their developmental character-

istics [57], it is possible that different interneuron types follow

different learning rules.

Functional Properties
Self-organization of WTA functionality. As a consequence

of the synaptic learning in the second developmental phase, the

network learns the topology of its inputs. Those neurons which are

excited by a common input, become more strongly connected with

one another. Because of the competition that is inherent to the

BCM learning rule, excitatory neurons become progressively more

connected to only particular input neurons (those which evoke

their strongest response), while decreasing their affinity to the

others. Fig. 6A shows that the final functional connectivity of

excitatory neurons indeed exhibits a strong neighborhood

relationship: The connection weights are stronger around the

diagonal, so that the neurons are close to or distant from one

another in weight space. This connection topology reflects the (1-

dimensional) topology of the input patterns.

The inhibitory neurons do not integrate into this topology

because the synapses onto inhibitory neurons follow the non-

Hebbian synaptic scaling rule, and so their input correlations can

not be learned. Fig. 6B,D show examples of the final soft-WTA

functionality, after the network has learned the input topology.

The excitatory neurons receiving the largest input are predomi-

nantly enhanced due to recurrent excitation with one another.

The inhibitory neurons reflect the overall activity, and reduce the

losing neurons’ activity, more than they are enhanced by

excitatory inputs. From a functional point of view, this active

selection of the winning population improves the signal to noise

ratio, and confirms their sWTA properties.

Unsupervised clustering. WTA networks are able to

perform pattern recognition and classification, i.e. that neurons

cluster functionally and respond to patterns in a discriminative and

classifying manner. We explored whether this property can arise in

a biological setting, as captured by our developmental model. To

do this, the processes of connectivity establishment and synaptic

homeostasis were simulated as described before. However, during

the learning phase input patterns consisting of discrete bars of

different position and orientation (Fig. 7A) were presented to the

network. In this input regime there are no continuous orderings

between individual patterns (which is the case for the retinal-wave

like activation patterns).

Learning the discrete input stimuli causes the population to

partition into sub-populations, or assemblies, as shown in Fig. 7C.

We demonstrated the generality of this learning by simulating the

clustering in response to presentation of only 4 input stimuli, using

the same network and simulation parameters as in the case with a

full range of stimuli (S2A Figure). We also examined the scenario

in which all synapses (including those onto inhibitory neurons)

follow the same BCM learning rule. As anticipated, this case

yielded networks in which inhibitory neurons cluster along with

the excitatory populations (compare S2B Figure with Fig. 7C).

The clustered functional connectivity allows the network to

decorrelate its inputs, so that even noisy signals can be reliably

differentiated. We quantified this ability by testing the network

response to a particular pattern U , by comparison with pattern V .

This comparison was measured using the scalar product between

the activities in the network after presentation of the different input

patterns. Let aU and aV be the n-dimensional vectors of the

neuronal activities in a network of n neurons, in response to the

stimuli U and V , respectively. The scalar product s~aU
:aV then

quantifies whether the responses to the two stimuli U and V are

very different (s close to 0) or correlated (s close to 1). To

demonstrate that the results are valid under more biologically

plausible conditions, noisy stimuli were used. A noisy input

stimulus is defined as:

Ik,U~
MzE input population k is active in pattern U,

E otherwise:

�
ð4Þ

where k is the index of the input population and U is the

stimulus identifier. M is the amplitude of the active populations in

the input (which we set to 10 Hz in this case), and E is uniformly

distributed noise in the range ½0,0:3:M�. Fig. 6D, E shows the

correlations of the network’s responses for 8 different input stimuli

before (D) and after (E) learning under noisy vs. not noisy (E~0)

conditions. The off-diagonal elements in the correlation matrix are

much lower after learning than before. These results demonstrate

the decorrelation of the network’s activity, and the robustness to

input noise.
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Competition between states. In addition to the decorrela-

tion of responses, clustering provides competition between inputs.

This property is computationally interesting because it forces the

network to make a decision based on its input (Fig. 8A). We

demonstrated this competition by presenting simultaneously two

competing patterns (after the network had learned 4 different

patterns). The relative proportion of these patterns in the input

was gradually varied between the first and second pattern.

The results show that the stronger stimulus non-linearly

dominates responses in the WTA network, so that the masked

stimulus evokes an activity pattern that resembles that evoked by

the strong stimulus alone. These results are in accord with

experimental studies in visual cortex [58–60] and auditory cortex

[61].

The nature of the competition between the states is dependent

on the functional connectivity. Strong recurrent excitation (i.e. a

high gain) yields strong inhibition, which results in a marked

switching behavior between the different populations. This is

because the competition is strong, and so the switch from one state

to the other is more evident. A high slope of the transition reflects

a functionality similar to a bistable switch. More specifically, the

slope of the transition (middle part of the interpolation in Fig. 8A)

increases with the gain of the WTA network. This gain can be

adjusted via the homeostatic average activities: Higher target

activities lead to more recurrent excitation, which increases the

gain. Such differently graded competition is seen in Fig. 8B.

Bistability is also interesting from a computational point of view,

because discrete states can be represented reliably. This kind of

reliability is useful for performing computation with states based

on analog elements [8,62]. Competition also develops when

synapses onto excitatory as well as inhibitory neurons follow the

BCM learning rule, as shown in S3 Figure.

Correspondence with Orientation Selectivity of Excitatory
and Inhibitory Neurons

We investigated whether our developmental model can account

for experimental findings on orientation selectivity in visual cortex;

for example, differences in tuning between excitatory and

inhibitory neurons. In order to address this question, we assumed

that the hills of activity in the input layer correspond to oriented

stimuli (e.g. bars), which are smoothly and periodically rotating

between 0 and 180 degrees. As anticipated from the previous

Figure 6. Winner-take-all functionality. (A) Weight matrix of 117 excitatory neurons in a WTA network. After learning the network exhibits a 1-
dimensional neighborhood topology, as shown by the predominantly strong weights around the diagonal. This topology mirrors the neighborhood
relationship of the input stimuli, which are continuously and periodically moving hills of activity. Only the excitatory connections are shown here,
because the inhibitory neurons do not integrate into the neighborhood topology (see text). (B) Demonstration of WTA functionality on the network
connectivity shown in (A). Neurons are ordered here such that adjacent neurons connect most strongly. The input to the network (xin ; top row) has a
hill shape, with added noise. The network response (xout ; middle row) is a de-noised version of the input with the bump in the same location. The
neuronal gain (xout

xin
; bottom row) is high for neurons receiving the strongest input, and low (or zero) for neurons distant from the main input to the

network. The dashed horizontal line indicates a gain of 1. (C) Activity of a winning neuron (blue, solid), during presentation of its feedforward input
(blue, dashed) in the same simulation as shown in (B). Recurrent connectivity amplifies the response of the neuron for the duration of the stimulus
(t[½0; 0:5s�). In contrast, a losing neuron (green, solid) receives non-zero feedforward input (green, dashed), but is suppressed due to the WTA
functionality of the network. (D) Response of the same network to a different feedforward input. The recovery of a bump shaped activity can occur
anywhere in the network topology.
doi:10.1371/journal.pcbi.1003994.g006
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results, excitatory neurons become highly orientation selective

(Fig. 9), in contrast to inhibitory neurons. These results are in line

with biological data. For example, [63] have analyzed orientation

selectivity of excitatory and inhibitory neurons in mouse visual

cortex. They report inhibitory neurons to be more broadly tuned

and hence less selective than excitatory, pyramidal neurons.

Similar findings were reported by [64–68].

We also quantified the orientation tuning based on the

orientation selectivity index (OSI), which specifies the degree to

which a neuron is selective for orientation. The value of this index

lies between 0 (non-selective) and 1 (selective to a single, specific

orientation). Fig. 9B shows the distribution of the OSI for

excitatory and inhibitory neurons in a WTA network, demon-

strating the discrepancy of orientation selectivity also on a

population level. We conducted additional simulations, which

demonstrated that when inhibitory neurons follow the same

learning rule as excitatory neurons, they exhibit more narrowly

tuned orientation selectivity (Fig. 9C). Hence, experimental

findings of orientation selective inhibitory neurons in cat visual

cortex [69–72] can also be accounted for by our model.

Inhibition of Excitatory Neurons
We have analyzed the consequences of our model on the nature

of the inhibition of excitatory neurons. As mentioned above,

inhibitory synapses onto excitatory neurons are subject to the

BCM learning rule (Eq. 3).

The competition between excitatory neurons depends on the

common input that they all receive from inhibitory neurons. This

common input must reflect the overall activity of the network, so

that the competition is suitably normalized. However, the

inhibition of the excitatory neurons stems from multiple inhibitory

neurons, which should partition their common inhibitory task

Figure 7. Clustering and decorrelation of representations. (A–C) Discrete input patterns give rise to clusters in the functional connectivity of
the WTA network. (A) Input stimuli used in the learning process. Filled and empty spheres indicate strongly and weakly active populations,
respectively. (B,C) Visualization of the network structure before and after learning. Strongly-coupled neurons are drawn close together; excitatory
synaptic connections are indicated by grey links. Excitatory neurons are coloured according to their preferred input pattern (colours in A); inhibitory
neurons (square) are drawn in yellow. (B) Before learning, no clustering of synaptic connections is present. (C) After learning, neurons with the same
preferred stimulus are strongly interconnected. See S2 Video. (D) Before learning, the response of the network is similar across all stimuli. Shown is
the scalar product between the vectors of neuronal responses to pairs of stimuli vxi,xjznoisew. The noise was added in order to assess the sensitivity
of the network’s activity to a perturbation of the input signal (see text). The high values and uniformity of scalar products in (D) indicates that
network responses poorly distinguish between stimuli. (E) After learning, responses to noisy stimulus presentations are highly similar (high values of
scalar product; black diagonal), whereas responses to different stimuli are decorrelated (low values of scalar product; light shading).
doi:10.1371/journal.pcbi.1003994.g007
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amongst each other in a self-organizing way. We investigated this

partitioning, and how an excitatory neuron is inhibited during

stimulation.

In order to quantify the impact of a neuron j on another neuron

i for a given stimulus, we calculate a value that we will call the

recursively effective exertion (REE). It is obtained by multiplying

the activity of neuron j (under a given stimulus U ) with the total

connection weight wij from neuron j to i:

REEij(U)~xj,U
:wij ð5Þ

The REE value is therefore stimulus-dependent, and dependent

on the recurrent network connectivity. Fig. 10 shows that

inhibition is distributed non-uniformly: A few inhibitory neurons

dominate the suppression of an excitatory neuron. This domi-

nance is due to the BCM learning by inhibitory synapses: Strongly

and weakly correlated inhibitory connections to excitatory neurons

are strengthened or weakened, respectively. These inhibitory

connection strengths converge because of the homeostatic activity

regulation, which is part of the BCM learning rule.

The nature of inhibition of excitatory neurons is interesting in

the context of the anatomy of inhibitory basket cells. These

neurons predominantly target locations close to the soma or the

proximal dendrites, where they can strongly influence the

excitatory neuron [73]. Therefore, it is plausible that the

recruitment of a small number of inhibitory neurons is sufficient

to inhibit an excitatory neuron. Electrophysiological experiments

could in principle validate this hypothesis by showing that only a

small proportion of the inhibitory neurons projecting to a

pyramidal neuron are predominantly responsible for its suppres-

sion.

Discussion

In this paper we have demonstrated by simulation of physical

development in a 3D space, how an autonomous gene regulatory

network can orchestrate the self-construction and -calibration of a

field of soft-WTA neural networks, able to perform pattern

restoration and classification on their input signals. The impor-

tance of this result is that it demonstrates in a systematic and

principled way how genetic information contained in a single

precursor cell can unfold into a functional network of neurons with

highly organized connections and synaptic weights.

The principles of morphological and functional development

captured in our model are necessarily simplified with respect to the

boundless detail of biology. Nevertheless, these principles are both

strongly supported by experimental data, and sufficiently rich in

their collective expression to explain coherently the complex

process of expansion of a genotype to a functional phenotypic

neuronal circuit. In this way our work offers a significant advance

over previous biological and modeling studies which have focused

either on elements of neuronal development, or on learning in

networks whose initial connectivity is given. Therefore we expect

that methods and results of the kind reported here will be of

interest both to developmental biologists seeking a modeling

approach to exploring system level processes, as well as to

neuronal learning theorists who usually neglect the genetic-

developmental and homeostatic aspects of detailed learning in

favor of an initial network that serves as a basic scaffold for

subsequent learning [74–76].

It is relatively easy to express a well-characterized biological

process through an explicit simulation. That is, one in which the

simulation simply recapitulates the process by expanding some

data through a simple model, without regard for physical and

mechanistic constraints. By contrast, the simulation methods [16]

that we have used here are strictly committed to physical realities

such as 3D space, forces, diffusion, gene-expression networks,

cellular growth mechanisms, etc. Our methods are also committed

to local agency: All active processes are localized to cells, can only

have local actions, and have access to only local signals. There is

no global controller with global knowledge, able simply to paint

the developmental picture into a 3D space. Instead, the ability of a

precursor cell to expand to a functional network is the result of

collective interaction between localized cellular processes. And

overall, the developmental process is the expression of an

organization that is encoded only implicitly, rather than explicity,

in the GRN of the precursor cell. Thus, our GRN encodes

constraints and methods rather than explicit behaviors.

In previous work [77,78] we have shown how this approach can

be used to explain the development of neocortical lamination and

connectivity. In that case we did not consider also the electro-

physiological signaling between cells and so the self-configuration

of their computational roles, as we have done here. However, the

incorporation of electrophysiological signaling into the growth

model brings substantial technical difficulties, such as those arising

out of the large differences in spatio-temporal scales between

cellular developmental and electrophysiological signaling process-

es, as well as the supply and management of sufficient

computational resources. Therefore we have chosen to keep these

problems tractable in this first functional study, by restricting our

question to a sub-domain of cortical development: How could

neuronal precursors expand into functional circuits, at all. Even

then, we must be satisfied for the moment with a rate based model

of neuronal activity, rather than a fully spiking one.

The emphasis of this paper is on the process whereby a

precursor expands to some useful network function. The particular

function is less relevant, and in any case the functional/

computational details of cortical circuits are as yet not fully

understood. We have chosen to induce WTA-like function because

our previous work has been focused on the likely similarity

Figure 8. Stimuli are represented by competing subpopula-
tions. (A) Competition for representation of a mixture of 2 concurrent
stimuli. Shown is the normalized average activity of two sub-
populations, in response to mixtures of the preferred stimuli of the
two populations. For mixtures containing predominately one stimulus
(mixture proportions close to 0 and 1), the populations are strongly in
competition, and the network represents exclusively the stronger of the
two stimuli (responses near 0 and 1). For intermediate mixture
proportions, competition causes a rapid shift between representations
of the two stimuli (deviation from diagonal reference line). (B)

Increasing the gain of the network
xout

xin

(black line: 1.3, blue: 1.5, red:

1.8) increases the stability of representations, and increases the rate of

switching between representations due to stronger competition.
doi:10.1371/journal.pcbi.1003994.g008
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between the WTA motif and the neuronal types and their inter-

connectivity in the superficial layers of cortex [6]. Moreover these

WTA networks are intriguing from both the biological, and

computational perspective [3,6–15,41]. The strong recurrent

excitation available in the superficial layers of cortex, and their

critical dependence on feedback inhibition has been clearly

Figure 9. Excitatory neurons are strongly tuned; inhibitory neurons are poorly tuned. Tuning properties of excitatory and inhibitory
neurons. (A) Representative tuning curves for 3 excitatory (red, 1-3) and 3 inhibitory (blue, 4-6) neurons in a WTA network after the learning process.
Excitatory neurons exhibit strong and narrowly tuned preference for certain inputs, in contrast to inhibitory neurons. (B) Distribution of the
orientation selectivity index (OSI) across all excitatory and inhibitory neurons in a WTA network, demonstrating the discrepancy of tuning on a
population level. (C) Simulation of the same learning rule for synapses onto excitatory as well as inhibitory neurons yields orientation-tuned neurons
in both populations.
doi:10.1371/journal.pcbi.1003994.g009
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demonstrated by intracellular recordings in the presence of

ionophoretic manipulation of GABA agonists and antagonists

[4]. These relationships are crucial for WTA-like processing,

because they offer the network induced gain that is crucial for

providing the signal restoration, signal selection, and process

control that support systematic computation. Recent optogenetic

studies appear to confirm the presence of circuit induced gain, in

the input layers of mouse visual cortex [79,80]. Taken together

these experimental and theoretical results support the hypothesis

that at least some fundamental WTA functionality is embedded in

the processing architecture of superficial neuronal circuits, and so

makes the WTA motif a worth target of the developmental process

that we have described here.

Our model predicts that neurons form specific subgroups, or cell

assemblies [81,82]. There is indeed strong evidence from

biological data for this clustered connectivity [83–85], which (as

in our simulations), appears to be grounded in the similarity of

functional selectivity [86].

We did not allow dynamic rearrangement of synapses in these

first simulations. However, it is plausible that weak synapses are

pruned away, freeing synaptic resource to explore for more

correlated partners.

Peters’ rule [87–89] proposes that connectivity can be estimated

by the product of the random overlap of pre- and postsynaptic

sites. This rule may be true for average connectivity, but specific

functionality obviously calls for more specific low level connectivity

within the average. One opinion is that such specificity is explicitly

genetic, and so accounts for example for the diversity of cortical

interneurons [90,91]. Instead, our result speaks for an implicit

rather than explicit genetic specificity. That is, the apparently

specific wiring of the WTA network arises by neurons collectively

satisfying genetically expressed constraints. This concept is in stark

contrast to the view that network functionality emerges from

individual processes that do not coordinate with potential

interaction partners. In our simulations, a neuron’s morphology

and the functional strengths of its synapses depend on the

collective behavior of the other neurons. Hence, the structure and

function of a neuron grown in isolation is different from a neuron

with the same genetic code, but that interacts and coordinates with

its environment during development.

Our learning rule requires that input projections are ordered in

such a way that their collective input patterns provide at least a

coarsely structured signal against which the presumptive WTA

layer of neurons can successfully deploy a BCM-like learning

mechanism. This ordering is not a stringent requirement. For

example, provided that there is some degree of coherent axonal

mapping of axons from input neurons of the subplate or thalamus

into the target WTA layer, then even metabolically induced

travelling waves of activity across the developing input population

could provide a sufficiently structured signal for learning.

Traditionally, many modeling studies have been based on the

assumption that the limited lateral extent of the neuronal axonal

and dendritic tree naturally leads to a properly configured 2D

neighborhood topology [92–94]. However, it is unclear how more

realistic anatomical properties (anisotropy, variation of neurite

extent, irregular locations of somata etc.) affect these topologies.

Our work addresses this problem by demonstrating how neurons

can self-calibrate in a stimulus-induced way, within a non-uniform

and irregular neuronal setting. Hence, our work provides a better

understanding of how developmental mechanisms can generate a

neighborhood topology, and so is complementary to the classical

approach.

As development of input neurons proceeds, the degree of

structuring is likely to improve also, so that input neurons

projecting to the same targets share similar features (for example,

their ON- and OFF-subfields). This is in line with studies on

thalamo-cortical projections [95], as well as cortico-cortical

projections from layer IV to II/III [96]. However, it should be

noted that this input specificity does not play onto inhibitory

targets, which is in accordance with our work. Since the input to

the neurons shapes the functional connectivity in the network, it

follows from our model that neurons which receive common input

are more likely to connect with each other (assuming that

Figure 10. Inhibition of excitatory neurons. Excitatory neurons are
predominantly inhibited by subsets of the inhibitory neurons that
project to them. (A) Representative examples of the inhibition to
excitatory neurons in a learned WTA network, during presentation of a
stimulus. The vertical axis indicates the percentage of the total
inhibitory REE (see definition of REE in text) that an individual inhibitory
neuron delivers to this particular excitatory neuron. Few (usually 2 or 3)
inhibitory neurons provide the major part of the inhibition. (B)
Histogram of all the REE contributions (in %) from inhibitory neurons,
across all excitatory neurons in the WTA network. The distribution
shows that few inhibitory neurons provide the major part of the
inhibitory REE on an excitatory neuron. This specialization is a result of
the BCM learning rule, which is followed also by inhibitory synapses
onto excitatory neurons.
doi:10.1371/journal.pcbi.1003994.g010
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structural connectivity is adjusting to functional connectivity). The

studies of [96] and [97] provide evidence for this input-dependent

intra-network specificity.

Our results predict that only a few inhibitory neurons provide

the major part of WTA-relevant inhibition, i.e. a relatively small

subset of all the inhibitory basket cells projecting to a single

pyramidal cell is responsible for its WTA suppression. These

results suggest that WTA inhibition might not be very redundant,

so that de-activation of only a few inhibitory neurons could result

in very different electrophysiological behavior of pyramidal cells.

Our networks employ Hebbian-type learning for both excitato-

ry and inhibitory synapses onto excitatory postsynaptic neurons. It

is known that inhibitory synapses can undergo long-term

potentiation (LTP) as well as long-term depression (LTD) [52–

54], and learning by inhibitory synapses has been used in previous

modeling studies [45,98].

Non-Hebbian synaptic scaling of synapses onto inhibitory neurons

results in orientation-nonselective inhibitory neurons. This distinction

with respect to pyramidal neurons has been observed in mouse visual

cortex, where the tuning of inhibitory neurons is broader than that of

excitatory neurons [63–67,99–101]. There is evidence for broadly

tuned thalamo-cortical input to inhibitory neurons [95], as well as

cortico-cortical input to those of layer II/III of mouse cortex [100].

Therefore we propose that at least some types of inhibitory neurons

(e.g. fast-spiking (FS), PV-expressing interneurons) do not selectively

adjust their inputs, but uniformly adapt the electrophysiological

properties of their inputs for homeostasis.

Orientation-selective inhibitory neurons are found in cat visual

cortex [69–72]. Since we do not model orientation maps, our

findings are not directly applicable to the cat. However, we argue

that it is the spatial location in the orientation map that determines

the tuning curve of inhibitory neurons. Most cortical interneurons

have a small horizontal dendritic extent [56], and so they likely

receive inputs from similarly tuned excitatory neurons within an

orientation map. Inhibitory neurons located close to orientation

pinwheels are expected to have relatively broad orientation tuning,

as reported in the above studies. The unbiased pooling of

surrounding activity by inhibitory neurons is also supported by

experimental results across species and sensory modalities

[63,101]. By contrast, we have shown that inhibitory neurons

become orientation-selective when they follow the same (BCM)

learning rule as excitatory neurons.

Our learning model provides a computational explanation for why

most interneurons are smooth, i.e. have very few dendritic spines. It is

believed that spines, by compartmentalizing biochemical signals,

provide the molecular isolation required for independent synaptic

learning [102–104]. The nonspecific and homogeneous adaptation of

inhibitory neurons, which in our model are homogeneously scaling

the input efficacies, is therefore well in line with this suggested

function of dendritic spines. This model also provides an explanation

for the finding that inhibitory, but not excitatory neurons exhibit

structural remodeling of dendrites in the adult rat [105]. Changes in

excitatory morphology at the level of dendritic branches (rather then

spines) could have detrimental effects on already consolidated

memories. Inhibitory neurons may retain their potential for dendritic

restructuring, because their homeostatic adaptation does not interfere

with learning of sensory experience.

We believe our findings to be robust also with respect to models

incorporating spikes, because the main features of the adaptation

and learning behavior have been demonstrated also on this more

detailed level of electrophysiology. Along these lines, the studies of

[106,107] have explored spike-based WTA network functionality.

Spike-dependent plasticity (STDP) is a Hebbian learning rule

[108] and can yield synaptic homeostasis [109]. In particular, the

BCM learning rule has been related to STDP mechanisms [109–

112].

The robust self-organization of the WTA network is remarkable

in that it arises out a single precursor cell, by simple genetically

encoded rules. In future, this genetic developmental approach to

functional circuit construction could be extended to larger networks

composed of multiple WTA networks. For example, it has been

hypothesized that by cooperation of multiple WTA circuits, the

superficial layers of cortex could perform context-dependent

processing [8]. Along these lines, [78] provide a model for the

development of long-range projections connecting multiple col-

umns, arranged on an hexagonal grid, as is observed in the

superficial patch system [113–116]. It also remains to integrate these

computational aspects into the context of a laminated cortical

structure, which has already been simulated in Cx3D [24,77].

Materials and Methods

Simulation
Cx3Dp. The growth simulations were conducted with the

open-source package Cx3Dp, the parallelized version of Cx3D

[16] (available at http://www.ini.uzh.ch/projects/cx3d/). As in

the non-parallel version, neurons in Cx3Dp are decomposed into

discrete spherical or cylindrical physical elements emulating the

physical properties of developing tissues, whereas the biological

properties derive from modules, that is, smaller programs

expressed within specific physical elements. This local instantiation

forces simulations to be based only on local interactions, without

any global control of the developmental processes.

The default parameters for physical objects in Cx3D were

initially chosen so that (1) density of cells/neurites can not be

infinite, (2) objects do have a minimal adhesive property ensuring

tissue integrity and (3) viscosity and not mass opposes to movement

(see [16]). For the present study, we did not have to modify these

default parameters.

Computer specifications. We used a rack computer with

two 12-core AMD Opteron 6168 processors (1.9 GHz, 64 GB of

RAM), running under Ubuntu 12.04 LTS.

Gene Regulatory Network (GRN)
The GRN is defined by a set of variables x that represent genes

and the corresponding substance concentrations. Changes in

substance concentration are described by the rate equation:

_xxi~k1F i½Z(x)�{k2xi ð6Þ

where xi is the concentration of a protein encoded by the gene i
(i.e. G0,G1,G2,GE or GI ), and x the corresponding concentration

vector. The function F i expresses how the synthesis rate of the

protein encoded by gene i depends on the cooperative binding of

all the substances, and k1, k2 represent the production and

degradation rates (k1, k2§0). Z(x)~½Z(x1),Z(x2),:::,Z(xn)� is a

vector of Hill functions, which compute the binding probability of

a substance xi to a regulatory region given the affinity constant h,

cooperativity m and binding bias b:

Z(xi,b,h,m)~
(xizb)m

hmz(xizb)m ð7Þ

Gene substances can regulate gene expression by binding to

specific sites in the genomic cis-regulatory regions. Substances that

Simulation of Neuronal Network Development

PLOS Computational Biology | www.ploscompbiol.org 12 December 2014 | Volume 10 | Issue 12 | e1003994

http://www.ini.uzh.ch/projects/cx3d/


regulate each others’ transcription are called transcription factors.

Many genes are controlled by a number of different transcription

factors and different arrangements of binding sites can compute

logic operations on multiple inputs. Here, the function F i takes the

form of a logical combination of interacting substances and is

defined by the elementary operations:

AND(x1,x2)~x1
:x2 ð8Þ

OR(x1,x2)~x1zx2{AND(x1,x2) ð9Þ

NOT(x)~1{x ð10Þ

More information on this description of GRN dynamics can be

found in [117,118]. Although abstract, this formalism can be

directly translated into the corresponding mechanistic, kinetic

differential equations. For our computational model based on 5

genes, we have used the following equations:

G0’½t�~1{G0½t� ð11Þ

G1’½t�~a(THR½G0½t��{G1½t�) ð12Þ

G2’½t�~THR½G1½t��{G2½t� ð13Þ

GE’½t�~OR½AND½THR½G1½t��,

NOT½THR½G2½t����,THR½G2½t���{GE½t�
ð14Þ

GI ’½t�~OR½AND½THR½G1½t��,

NOT½THR½G2½t����,THR½G2½t���{GI ½t�
ð15Þ

with:

THR½x�~(xz0:01)4=((xz0:01)4z1) ð16Þ

The probabilities of either differentiating into neurons by G1
induction (p1) or by G2 induction (p2) are computed as follows:

u~t
log NTarget

log 2
s ð17Þ

v~tNTarget{2us ð18Þ

p1~1{
v

2u
ð19Þ

p2~1{p1 ð20Þ

where u is the number of divisions in the first division cycle, v is

the difference between the target number of neurons (NTarget) and

the number of neurons resulting from the first division cycle, and

ts denotes the floor function for rounding to integers.

The intrinsic production constant a determines the number of

cell divisions until differentiation into excitatory and inhibitory

neurons can occur. The higher it is, the faster the G1 gene reaches

the threshold of 0.99. a was adjusted manually in order for u

divisions to occur in the G1 cycle.

Development of Neuronal Morphology
Initially, neuronal cell bodies are assigned uniformly random

positions in 3D unprepared space. In Cx3D, these cell bodies are

modeled as physical spheres. The neuronal cell density was in

agreement with values derived from experimental data, i.e. in the

range of 40’000 to 86’900 per mm3 [119–121]. We found 250

neurons (200 excitatory and 50 inhibitory) to be appropriate for

the available computer resources. For the establishment of

neuronal connectivity, the somata were placed randomly in a

cube with side length 160 mm. A smaller network of 150 neurons

in a cube with side length 140 mm was used for simulations where

the second developmental phase was simulated, in order to

decrease simulation time. 3 of these 150 neurons did not get

inhibitory inputs after the initial outgrowth and were not included

for the simulation of learning, such that the analyzed network

consisted of 117 excitatory and 30 inhibitory neurons. Standard

Cx3D parameters for the physical properties of the cells (e.g. mass

or adherence) were used [16]. The somatic diameters were set to 8

mm. Variation of these parameters had only minimal effects on the

simulation results.

Axonal and dendritic growth were encoded with the instruction

language G-code [24]. We used the following mechanisms, which

are executed by such G-code ‘‘modules’’ located in the growth

cone, for axonal and dendritic growth, as well as synapse

formation:

Axonal growth. The axon is initially extended from the cell

body in a random direction, and is dependent on the concentra-

tion of an extracellular substance that is secreted by the somata of

the neurons participating in the WTA network. The growth cones

of excitatory and inhibitory neurons sense the substance secreted

by inhibitory and excitatory neurons, respectively. As long as the

concentration of this substance is higher than a given threshold h1,

the axonal growth continues (see below). If the growth cone enters

a zone where the concentration is below the threshold h1, then the

axon retracts until the concentration is above another threshold h2

(with h2wh1), before resuming elongation. During elongation, the

direction at each time step is a weighted sum of the direction from

the previous time step, and of a random perturbation (i.e.

d~wprevdprevzwnoisednoise). At each time step, the axon bifurcates

with probability pbasezpsubstance
:csubstance, where pbase and psubstance

are constants and csubstance is the substance concentration at the

current location of the growth cone. When the axon elongates or

branches, its diameter is reduced by a factor rmove or rfork,

respectively. The outgrowth stops when the axonal diameter falls

below dminimal .

Dendritic growth. Each soma produces three dendrites. As

for the axon, the initial sprouting direction for dendrites is

random. The subsequent elongation direction is also chosen as a

weighted sum of the previous direction and a random perturba-

tion. The major difference is that dendrites are not sensitive to

extracellular cues (and do not retract). Branching and stopping

mechanisms are implemented as in the axonal case. As a result, the

overall dendritic morphology develops isotropically.
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Synapse formation. In Cx3D, synapses are modeled as

connections between excrescences on neurite elements of axons

(boutons) and dendrites (spines). For simplification, spines repre-

sent potential postsynaptic densities in general, such that we do not

model the absence of spines in most classes of inhibitory neurons

[56]. During elongation of the neurite, an excrescence is

instantiated in the middle of the discretized element. Whenever

the excrescence of the tip of a growing axon or dendrite is close to

another excrescence, it can check whether they are of comple-

mentary types. This local process of synapse formation is done by

means of a module that is instantiated in the most distal neurite

element, which corresponds to the growth cone’s location. If this

condition of complementarity is fulfilled and the excrescences are

close enough (i.e. the distance Dxbouton{xspineDƒ 2 mm, where x

denotes the location where the excrescence is attached to the

segment of the axon or dendrite), a synapse is formed. Synapse

formation between neurites belonging to the same neuron (i.e.

autapses) is prohibited, because their number has been reported to

be relatively small [122,123], and their electrophysiological

significance is unclear.

In our Cx3D implementation, synapse formation also implies

the establishment of a physical bond between the two excrescences

on the axon and dendrite. This bond is approximated as a spring

which reacts linearly to the force to which it is subject to.

Therefore, connected neurite segments are kept close to each

other, except when a certain repulsive force is exceeded. Once a

bond is overstretched, it is released and the synapse destroyed.

This ensures that synapses do not over-restrict the neuronal

morphology.

The synaptic weights are assigned at synapse formation:

Excitatory and inhibitory synapses are initialized with weights

0.001 and 0.01 respectively, in qualitative accordance with the

estimate of [124]. The overall behavior of the simulations was not

sensitive to these initial weights, because of the homeostatic

adaptation processes.

Electrophysiology
The computation of the electrical activity was implemented in

Java, to allow a direct interfacing with Cx3D. All the synaptic

weights in the Cx3D simulation are summed up, which yields a

weight matrix. Based on this weight matrix, the input activity and

the spontaneous activity, the firing rate of a neuron is computed

according to Eq. 1. The numerical solution of the differential

equations was computed using the explicit Euler integration

method. The network’s activity is computed with 3000 iterations

and integration step dt~0:01. The maximal firing rate is set to

250 Hz.

Learning. In all the simulations of WTA learning, two

different scenarios of input stimulation were conducted. In one

case, the input neurons were activated in the form of a hill of

activity. This hill was centered around an individual input

population, and decayed with the distance from this center. The

center population of the hill of activity was active with a rate of

1.4 Hz, the immediate neighboring populations at 0.5:1.4 Hz, the

second at 0:52:1.4 Hz, and the third at 0:53:1.4 Hz. If the distance

of the input population to the center population was bigger than 3,

the activity of the input population was chosen to be a random

number between 0 and 0.06. The hill of activity in the input layer

moved in a periodic fashion (i.e. the peak restarts in the first input

population of the input layer after having reached the last). This

first scenario represents retinal waves, or orientation stimuli

between 0 and 180 degrees. In the second case, discrete input

patterns (Fig. 7A) are presented to the network. The stimulated

input populations are active at a rate of 2.1 Hz, while the

unstimulated ones are (as in the first scenario) active with a rate

drawn uniformly from the interval ½0,0:06� Hz. In both scenarios,

the target average activity for excitatory neurons (Aex) was

identical for all excitatory neurons, and chosen between 0.14 Hz

and 0.68 Hz. The inhibitory target activity was set to 1:6:Aex. For

the simulations shown in Fig. 8, target average activities of

excitatory neurons were 0.4, 0.55 and 0.68 for the gains 1.3, 1.5

and 1.8, respectively. During learning, the input populations were

active or not active in an alternating fashion. In the non-active

case, only spontaneous and random activity generated electrical

activity. This non-active input mode was introduced to demon-

strate that correlated, instructive input can be intermittent in time.

The neurons in the network have a random spontaneous activity

that is drawn uniformly from the interval ½0:06,0:12� Hz.

Usually, the simulations took around 1 day to develop networks

that exhibit WTA behaviour. The main computational bottleneck

is the computation of the average activity, which relies on a large

number of samples of neuronal activity. During an entire

simulation, electrical activity in response to the input is computed

around 1’000’000 times, and in the order of 100’000 learning steps

(synaptic scaling and BCM learning) are performed.

The average activities used for the BCM learning (Eq. 3) are

computed as the arithmetic mean of the neuronal activities from

the last N inputs. N is set to 2|Linp, with Linp being the number of

input populations. The factor 2 comes from the fact that the inputs

are alternating between two different modi: active and non-active

input neurons (as described before). In order for the WTA neurons

to keep track of their activities, N has to be long enough to allow

averaging the activities evoked by all possible inputs. Analogously,

for the learning of the clustering based on discrete input patterns

(second scenario), N was set to 2|Lstim, with Lstim being the

number of different input stimuli presented to the network. The

time constant of the average activity is long compared to the time

constant of the instantaneous firing rate, and assumed to be in the

range of several hours to days. Based on this assumption, we

assessed the real time of learning, and so some figures in this work

indicate the estimated real-time of the learning process.

As a standard, we chose 20 input populations (or neurons) in the

case of learning continuous input patterns, and the input strengths

were initialized randomly and uniformly distributed between 0
and 0:15. In the case of discrete input stimuli, we used 3 | 3 input

populations. The initial connection strengths (from each of these

input populations to each of the neurons in the grown network)

were distributed in the range of [0,0:25]. We found little change of

behavior when varying these numbers. During unsupervised

learning, retinal-wave like activity or discrete input patterns are

presented to the network in a periodic fashion. After every period,

the new values of average activities are obtained and learning is

simulated. The same synaptic learning time constants are used for

input, excitatory and inhibitory lateral synapses. In the case of

retinal waves, learning is simulated only after the hill of activity has

passed every input population. In the case of learning discrete

input patterns, learning is simulated each time a pattern is

presented. The time duration for synaptic scaling after a retinal

wave was chosen equal to the duration of learning one pass of all

input patterns. Because of the 8 input patterns, tSS was set 8 times

larger in the scenario of discrete patterns (tSS~250 for retinal

waves and tSS~2000 for discrete input patterns). The same time

constants for the BCM learning rule were chosen, but exploratory

simulations showed that this is not a necessary condition. In order

to demonstrate that the WTA learning is not sensitive to changes

in these time constants, simulations of WTA networks learning 4

stimuli were conducted with the same time constants as with 8

stimuli (S2A Figure). The weight change per learning step is
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constrained to maximally 3 % of the current value, in order to

prevent large or destabilizing disruptions at the initial stages of

development. The weight of an individual synapse between two

neurons is approximated by dividing the total connection weight

by the number of synapses involved in this particular connection.

This absolute synaptic weight is constrained to a maximal value of

0.1 [125]. Overall, variation of the learning parameters do not

have a strong effect on our results.

Network Analysis and Visualization
Analyses of the simulated networks were performed with

MATLAB (Mathworks Inc.). In order to assess WTA functionality,

electrical activity was computed in the same way as in the Java

implementation of the Cx3Dp simulation, namely using the rate-

based model (Eq. 1) and the explicit Euler method. The

integration step was decreased to dt~0:001 for minimizing

integration errors.

The ordering of neurons for visualization, such as for Fig. 6A,

was done using the genetic algorithm ‘‘ga.m’’ from the Global

Optimization Toolbox of MATLAB. The energy to be minimized

was defined as the sum of weighted topological distances between

neurons, i.e. E~
P
i,j

d(i,j):(wijzwji), where wij are the summed

synaptic weights from neuron j to neuron i. The topological

distances d(i,j) are inferred from a discrete 1-dimensional position

vector of the neurons, which is initialized randomly and optimized.

The ordering for the matrix visualization is then given by the

locations of the neurons in this vector (i.e. neighbors in this vector

are also neighbors in the matrix ordering). Note that the

topological position is unrelated to the physical position of the

neurons, and is only used for the optimization process. The

visualization of the clustering was done with CytoScape [126], an

open-source framework that is downloadable from http://www.

cytoscape.org/. We used the ‘‘dynnetwork’’ plugin implemented

by Sabina Pfister, which clusters weighted networks based on the

Kamada-Kawai algorithm [127].

Neurite Outgrowth Parameters
The neurite outgrowth has several parameters, which depend

on the neuronal type (excitatory/inhibitory) and also on the

neurite type (axon or dendrite). Table 1 lists all these parameters.

The 2 substances which are secreted by the cell bodies and used by

the axons as guidance cues both have a diffusion coefficient of 50

and a degradation constant of 5.

Supporting Information

Figure S1 Histograms of resulting numbers of neurons
after simulation of the GRN. The intrinsic instructions of the

precursor cell in an unprepared environment lead to multiple

neurons of two types (excitatory and inhibitory, other types like for

example glia cells could facultatively be added). We conducted 100

trials of a GRN, that was set to give rise to 100 neurons, of which

80 are excitatory and 20 inhibitory. These results demonstrate that

the (probabilistic) GRN produces approximately the desired

number and proportion of neurons.

(TIFF)

Figure S2 Visualization of network connectivity in
weight space, after learning 4 input patterns. (A) The

locations of the neurons are determined using a clustering

algorithm, such that strongly connected neurons are close to each

other. Different colors indicate different preferred patterns of the

neurons. The preferred pattern of a neuron was assessed by

determining the pattern that evokes the largest electrical response.

Inhibitory neurons are colored yellow and rectangular-shaped.

The same network as in Fig. 7B and 7C is simulated, but after

learning 4 input stimuli (horizontal, vertical and both diagonally

oriented bars) instead of 8. The 4 clusters defined by the spatially

proximal assemblies of neurons are visible. Importantly, the same

parameters (time constants of synaptic scaling and BCM learning)

were used, demonstrating the robustness of the learning scheme.

(B) Network connectivity after using the same BCM learning rule

both for excitatory and inhibitory neurons. As in (A), the locations

of the neurons are determined using a clustering algorithm, such

that strongly connected neurons are close to each other. Different

colors indicate different selectivities of the neurons. In contrast to

the simulations where synapses onto inhibitory neurons were

following the synaptic scaling rule, here we used exactly the same

learning dynamics for both types of neurons. This influences the

clustering, such that also the inhibitory neurons become selective

for the learning input stimuli.

(TIFF)

Figure S3 WTA competition between two populations
after correlation-based BCM learning of excitatory and
inhibitory neurons. WTA populations compete for represen-

tation of a mixture of 2 concurrent stimuli. In contrast to the

simulations for Fig. 8, synapses onto excitatory as well as

inhibitory neurons followed the BCM rule during learning. Also

in this case, the populations with different preferred stimuli

compete and mutually suppress each other. The blue crosses

indicate samples of the relative activity of a WTA population

selective for one of the two concurrent stimuli. The continuous

blue line is the interpolation of these samples. The dashed blue line

indicates the relative activity of the competing population. The

green line is the angle bisector given by x~y. The horizontal and

vertical axes show the relative contribution of two concurrent

stimuli (two orthogonal orientations) and the corresponding

populations (see legend of Fig. 8 for a detailed description). If

there was no competition between the populations, simulation

samples would lie on the green line, because then the network

simply mirrors its input.

(TIFF)

Video S1 Neurite outgrowth in the 2-dimensional plane,
with concentration-dependent axonal retraction. Excit-

atory and inhibitory neurons (colored red and purple, respectively)

are initially randomly positioned on a 2-dimensional unprepared

environment. The somata of both types secrete different

substances, which are sensed by the growth cones at the tip of

the axons. Whenever the sensed concentration falls below a

predefined threshold, axons retract until they reach a high enough

concentration (this retraction is indicated in green). This behavior

is iteratively instantiated, allowing the network to project more

efficiently, because axons do not grow into regions where no

potential targets are located.

(WMV)

Video S2 Clustering of functional connectivity in a WTA
network. The presence of functional connections among

excitatory and inhibitory neurons (red and blue respectively) are

indicated with arrows. For clearer visualization, the strength is not

shown. A clustering algorithm was applied to move the nodes such

that strong connections are more probable to be close to each

other. Therefore, the video does not show any physical movement,

but only the arrangements performed by the clustering algorithm

in weight space. 4 input stimuli referring to horizontal, vertical and

both diagonal orientations are presented to the network. In the

first part of the video (until 0:07 min), all neurons do synaptic

scaling. Subsequently, synapses onto excitatory neurons become
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subject to the BCM learning rule, which has impact on the

clustering of the functional connectivity: 4 clusters emerge for

excitatory neurons, in contrast to the inhibitory neurons. This

discrepancy is because of the different learning rule simulated after

the first part, which is BCM learning for synapses onto excitatory

and synaptic scaling for synapses onto inhibitory postsynaptic

neurons.

(MOV)
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