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Abstract

Motor training with the upper limb affected by stroke partially reverses the loss of cortical representation after lesion and
has been proposed to increase spontaneous arm use. Moreover, repeated attempts to use the affected hand in daily
activities create a form of practice that can potentially lead to further improvement in motor performance. We thus
hypothesized that if motor retraining after stroke increases spontaneous arm use sufficiently, then the patient will enter a
virtuous circle in which spontaneous arm use and motor performance reinforce each other. In contrast, if the dose of
therapy is not sufficient to bring spontaneous use above threshold, then performance will not increase and the patient will
further develop compensatory strategies with the less affected hand. To refine this hypothesis, we developed a
computational model of bilateral hand use in arm reaching to study the interactions between adaptive decision making and
motor relearning after motor cortex lesion. The model contains a left and a right motor cortex, each controlling the opposite
arm, and a single action choice module. The action choice module learns, via reinforcement learning, the value of using
each arm for reaching in specific directions. Each motor cortex uses a neural population code to specify the initial direction
along which the contralateral hand moves towards a target. The motor cortex learns to minimize directional errors and to
maximize neuronal activity for each movement. The derived learning rule accounts for the reversal of the loss of cortical
representation after rehabilitation and the increase of this loss after stroke with insufficient rehabilitation. Further, our
model exhibits nonlinear and bistable behavior: if natural recovery, motor training, or both, brings performance above a
certain threshold, then training can be stopped, as the repeated spontaneous arm use provides a form of motor learning
that further bootstraps performance and spontaneous use. Below this threshold, motor training is ‘‘in vain’’: there is little
spontaneous arm use after training, the model exhibits learned nonuse, and compensatory movements with the less
affected hand are reinforced. By exploring the nonlinear dynamics of stroke recovery using a biologically plausible neural
model that accounts for reversal of the loss of motor cortex representation following rehabilitation or the lack thereof,
respectively, we can explain previously hard to reconcile data on spontaneous arm use in stroke recovery. Further, our
threshold prediction could be tested with an adaptive train–wait–train paradigm: if spontaneous arm use has increased in
the ‘‘wait’’ period, then the threshold has been reached, and rehabilitation can be stopped. If spontaneous arm use is still
low or has decreased, then another bout of rehabilitation is to be provided.
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Introduction

Stroke is the leading cause of disability in the US, and about

65% of stroke survivors experience long-term upper extremity

functional limitations [1]. Although patients may regain some

motor functions in the months following stroke due to spontaneous

recovery, stroke often leaves patients with predominantly unilat-

eral motor impairments. Indeed, recovery of upper extremity

function in more than half of patients after stroke with severe

paresis is achieved solely by compensatory use of the less-affected

limb [2]. Improving use of the more affected arm is important

however, because difficulty to use this arm in daily tasks has been

associated with reduced quality of life [3].

There is now definite evidence however that physical therapy

interventions targeted at the more affected arm can improve

both the amount of spontaneous arm use and arm and hand

function after stroke [4]. Further, even after motor retraining is

terminated, performance can further improve in patients with

less severe strokes in the months following therapy [5,6]. A

possible interpretation of this result is that the repeated attempts

to use the affected arm in daily activities are a form of motor

practice that can lead to further improvements in motor

performance [5].

The neural correlates of motor training after stroke have been

investigated in animals with motor cortex lesions [7,8].

Specifically, a focal infarct within the hand region of the primary

motor cortex causes a loss of hand representations that extends

beyond the infarction. However, several weeks of rehabilitative

training can overcome this loss of representation, and yield an

expansion of the hand area to its prelesion size; the larger area in

turn has been correlated with higher level of performance [9].

Long-term potentiation in pyramidal neuron to pyramidal

neuron synapses has been demonstrated in horizontal lateral

connections [10], and may provide the basis for map formation

and reorganization in the motor cortex [11], and motor skill

learning [10].
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Contrasting with the increase in performance due to spontane-

ous recovery, a concurrent decrease of spontaneous arm use has

been proposed to occur following stroke. This decrease may be

due both to the higher effort and attention required for successful

use of the impaired hand and to the development of learned nonuse

[12], in that the preference for the less affected arm is learned as a

result of unsuccessful repeated attempts in using the affected arm

[13–15]. The constraint-induced therapy (CIT) protocol, which

forces the use of the affected limb by restraining the use of the less

affected limb with a mitt, has been specifically developed to reverse

learned nonuse [16]. Although its ‘‘active ingredients’’ are still not

well understood [17], CIT has been shown to be effective in the

recovery of arm and hand functions after stroke in multisite

randomized clinical trials [4]. Because 50% of the eventual

improvement in use (as measured by the questionnaire-based

‘‘motor activity log’’) is seen at the end of the first day of CIT, it

has been suggested that CIT is effective in reversing learned

nonuse [18]. To our knowledge, however, there are no

longitudinal data tracking the development of learned nonuse just

after stroke and during recovery.

In summary, increase in performance after stroke due to

spontaneous recovery, rehabilitation, or both does not appear to

correlate simply with spontaneous arm use, and a yet-to-be

clarified nonlinear mechanism seems to be at play. Here, we focus

on rehabilitation in the control of reaching poststroke, a

prerequisite for successful manipulation. We developed a biolog-

ically plausible model of bilateral control of reaching movements

to investigate the mechanisms and conditions leading to such

positive or negative changes in spontaneous choice of which arm

to use. Our central hypothesis, based on the above observations, is

the existence of a threshold in spontaneous arm use: if retraining

after brain lesion (or spontaneous recovery) increases spontaneous

arm use above this threshold, performance will keep increasing, as

each attempt to use the affected arm will act as a form of motor

relearning. The patient will then enter a virtuous circle of

improved performance and spontaneous use of the affected arm,

and therapy can be terminated. In contrast, if spontaneous use of

the arm does not reach this threshold after either natural recovery

or rehabilitation, or both, performance will not improve after

stroke, and compensatory strategies with greater reliance on the

less affected arm will either remain or even develop further.

Methods

Behavioral Setup
To model spontaneous use of one arm or the other, and changes

in motor performance, we simulated horizontal reaching move-

ments towards targets distributed along a circle centered on the

initial (overlapping) positions of the two arms (Figure 1A). Our

computational model of bilateral arm use in arm reaching contains

a left and a right motor cortex, and a single action choice module

(Figure 1B). We first trained the full model (the ‘‘normal subject’’)

to reach with either hand, but with a bias for using the hand closer

to the eventual target. Spontaneous arm use was recorded in a free

choice condition, in which the action choice module can select

either arm to reach targets that are randomly generated anywhere

along the circle. Motor performance was evaluated by the

directional error between the desired movement direction and

the actual hand direction.

To simulate stroke, we partly lesion one hemisphere (i.e.,

remove a set of simulated neurons from the simulation). We first

simulate a spontaneous recovery period in which the action choice

module determines the choice of arm, and the state of motor

cortex determines error in reaching, with consequent changes in

synaptic weights. We then mimic CIT with a forced use condition

in which only the use of the affected arm (i.e., that contralateral to

the lesioned cortex) was allowed. We study in simulations the

conditions that lead to successful recovery, that is, to high levels of

spontaneous use and performance with the affected arm in

appropriate regions of space, and low reliance on compensatory

movements with the less affected arm.

Computational Model
Our model has two distributed interacting and adaptive systems:

the motor cortex for motor execution and the action choice

module for decision-making.

Motor cortex model. We made two assumptions to model

the motor cortex with a left and a right module for control of the

contralateral arm:

(1) The motor cortex contains neurons coding direction of hand

movement [19] with signal dependent noise [20,21]. Although

the issue of correlation versus coding for hand directions is a

subject of intense debate [22–25], computational models have

developed the view that motor cortex neurons linked to arm

muscles exhibit activity strongly correlated with hand

direction in the initial phase of the movement [26,27]. This

assumption allowed us to simplify the model considerably by

not requiring us to model a spinal cord, muscles, and arms

linking the output of the motor cortex to the behavior.

The activation rule of each motor neuron is given by a

truncated cosine function [28] based on the empirical data of [19]

which correlates the firing rate of neuron i with the difference

between the ‘‘preferred direction’’ hp
i (that associated with

maximal firing of this neuron) and the currently chosen hand

direction, hd:

yi~ cos hd{hi
p

� �
zN 0,si

SDN

� �h iz
where x½ �z~

x, if xw0

0, if xƒ0

�
ð1Þ

where yi is the firing rate of the ith neuron. N(0,si
SDN) is normally

distributed signal dependent noise with zero mean and standard

deviation proportional to the mean signal size [20,21,28–30], that

is, si
SDN~k�yyi where ȳi is the noiseless activation

�yyi~ cos hd{hi
p

� �h iz
.

Author Summary

Stroke often leaves patients with predominantly unilateral
functional limitations of the arm and hand. Although
recovery of function after stroke is often achieved by
compensatory use of the less affected limb, improving use
of the more affected limb has been associated with
increased quality of life. Here, we developed a biologically
plausible model of bilateral reaching movements to
investigate the mechanisms and conditions leading to
effective rehabilitation. Our motor cortex model accounts
for the experimental observation that motor training can
reverse the loss of cortical representation due to lesion.
Further, our model predicts that if spontaneous arm use is
above a certain threshold, then training can be stopped, as
the repeated spontaneous use provides a form of motor
learning that further improves performance and sponta-
neous use. Below this threshold, training is ‘‘in vain,’’ and
compensatory movements with the less affected hand are
reinforced. Our model is a first step in the development of
adaptive and cost-effective rehabilitation methods tailored
to individuals poststroke.

Stroke Rehabilitation Reaches a Threshold
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Summation of individual neuron vectors (with each vector

length given by Equation 1, and the vector direction given by the

preferred direction) yields a population vector that has been shown

to be well aligned with the initial actual (executed) hand direction

he [19]. In our model, at each action, one half (left or right) of

motor cortex is chosen to control the next reaching movement (see

below). Thus, we take the actual reaching direction to be that

given by the direction of the population vector of the chosen motor

hemicortex.

(1) The motor system learns to generate reaching movements by

minimizing error bias and by recruiting more neurons for

frequently used movement, in effect minimizing directional

variance [21]. We now specify how neurons’ preferred

directions in the active hemisphere are slowly modified after

each trial. Mathematically, we view a learning rule as an

adjustment of parameters that serves to improve the

performance of the system with respect to some criterion.

As we shall see below, such learning is not always best for

other behavioral criteria. For the motor cortex, we measure

performance with the following cost function, which is a

function of reaching error and total neuronal activity:

E hdð Þ~
1

2
he{hdð Þ2{l

X
i

yi2 ð2Þ

where hd is the desired direction, he is the direction specified

by the population vector of the motor cortex (a function of the

synaptic weights therein), and l is a free parameter. The first

term of the right hand side of Equation 2 measures the

directional error, and the second part the total neural activity,

which is related to the magnitude of the population vector.

The cost can, with some approximation, be decreased by

applying the following motor cortex learning rule (Text S1):

hi
p/hi

pzaSL
: hd{heð Þ:yizaUL

: hd{hi
p

� �
:yi ð3Þ

where aSL and aUL are learning rates. The first term of the

learning rule, a supervised learning term that resembles a standard

supervised learning rule in linear neurons [31], decreases the

global directional error. Support for this term of the rule stems

from monkey experiments, in which adaptation to an external

force field or to visuo-motor rotations induces neuronal reorga-

nization of preferred direction in primary motor cortex neurons

[32,33]. The second term of the learning rule, an unsupervised

learning term that resembles the standard unsupervised compet-

itive learning rule [31], orients the neurons’ preferred directions

towards the desired reaching direction.

Action choice module. In reinforcement learning, actions

that maximize outcomes are selected based on estimates of future

cumulative rewards, or ‘‘values’’ [34]. Reinforcement learning

provides a plausible framework for human adaptive decision-

making with desirable theoretical and biological properties, [35–

37]. There is evidence that values are acquired by cortico-basal

ganglia networks [35,38,39], under the influence of the

dopaminergic system [40,41]. Further, it is likely that basal

ganglia output releases inhibition of the motor cortex for selected

actions [42]. Our action choice module (Figure 1B) thus utilizes

reinforcement learning to learn how to choose which arm to use in

reaching each target based on a comparison of the values of using

one arm or the other. Such ‘‘action’’ values have been recently

shown to be represented in the striatum [35]. The action values

are learned from the reward prediction error d, the difference

between the actual reward, which evaluates the executed action,

and the predicted reward, as estimated by the action value [34].

We now turn to the definition of these quantities.

Here, we use a total (internal) reward rtotal with two

components: First, healthy subjects tend to use the left arm to

reach to the left, and similarly for the right, but with a handedness

preference near the midline [43]. As each subject’s level of comfort

correlates with arm use [43], we model workspace preference of

hand with a reward term that is positive if the right arm is used in

the right hand side workspace (RHS) or the left arm is used in the

left hand side workspace (LHS). Second, we use a performance-

related reward term, which is high when the executed direction he

is close to the given desired direction hd and low if the direction of

the actual movement deviates from the desired direction. The total

reward is thus given by:

rtotal~rdirection hd ,heð Þzr

where rdirection hd ,heð Þ~exp
hd{heð Þ2

s2
reward

 !

r
w0, right arm and hd[RHS, or left arm and hd[LHS

~0

( ð4Þ

Figure 1. Experimental setup and model structure. (A) Experimental setup. (B) Model structure. Solid line: information signal; dashed line:
activation signal; dotted line: reward-based (reinforcement) learning; double dotted line: error-based (supervised) learning.
doi:10.1371/journal.pcbi.1000133.g001

(2)

Stroke Rehabilitation Reaches a Threshold
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where sreward is the broadness of the reward function and r gives

the workspace preference of the hand.

The action choice module selects one of the arms for movement

execution by comparing the action values Q(ai, hd), that is, the

reward expected by selecting arm ai for the desired direction hd,

with aiM[left, right] and hdM[0,360u]. Although a number of

function approximators can be used to learn the action values, our

results are not dependent on the exact choice of approximators.

Here we used two radial basis function (RBF) networks to estimate

the action values, one for each of the two possible actions. RBF is a

form of linear regression with exponential basis functions; the

estimated values are thus computed with:

Q aj ,hd

� �
~
Xn

i~1

w
j
iwi hdð Þ

where wj hj
p

� �
~exp {

hd{hið Þ2

s2
ACM

 ! ð5Þ

where Q is the estimated action value, wi
j are tunable weights for

action a, n is the number of RBFs, hi is the center of the ith RBF,

and sACM is the broadness of each RBF, which is chosen to be

equal to p/n as this allows good generalization [44].

After each movement, the action value of each arm is updated

with the reward prediction error, that is, the difference

d = rtotal2Q(a, hd) between the actual reward and the expected

reward. The weights wi
a are updated to minimize the square of the

reward prediction error d2.

wa
i /wa

i zaACM
:d:Qi hdð Þ ð6Þ

where aACM is a learning rate.

Based on the action values, the module probabilistically selects

which motor cortex will be used to execute a movement according

to the softmax function [34]:

p aijhdð Þ~ 1

1zexp {b: Q ai,hdð Þ{Q aj ,hd

� �� �� � ð7Þ

where the parameter b controls the variability of action choice,

with a large b yielding less variability, aiM[left, right] and

hdM[0,360u].

Simulations
Strokes seem to affect only a certain range of movement

directions. Outside this range, reaching is relatively spared [45].

To model this effect, we removed the neurons with preferred

directions in the first quadrant of the left motor cortex (50% of the

neural population coding for the right hand side workspace, as

shown in Figure 2A.5), which controls the right arm (unless

otherwise noted). The results would be the same had we chosen

the other arm, or any other quadrant. We also tested stroke

models in which neurons were affected probabilistically as a

function of the range angle (with neurons being removed with

100% probability for the central angle of the simulated lesion and

then with lower probability as the angles on each side of the lesion

center increase); simulation results with these stroke models were

qualitatively similar to those with the ‘‘hard boundary’’ model and

thus for simplicity are not presented here. We also tested different

stroke patterns, including a lesion ranging from 45u to 145u, and

lesions with asymmetric bimodal distributions. Simulations (results

not shown) confirmed that such lesions did not produce results

qualitatively different from those presented here.

We used two measures of motor performance:

(1) The absolute value of the directional error between the

intended reach direction and the population vector direction.

(2) The magnitude of the population vector, normalized by the

magnitude of the population vector before stroke.

We chose these two performance measures in our model

because they can be linked to actual patient performance

measures. Initial directional error has been used in characterizing

reaching in stroke patients (e.g., [46]). Although the population

vector is normally not directly observable in patients, it can be

regarded as a measure of force exerted by arm muscles on the

hand [26,47,48], and low force generation is a characteristics of

stroke [49]. Because both use and performance are stochastic, we

report averages of 10 uniformly distributed samples over the

affected range in all graphs (except the pie charts of Figures 2, 8,

and 9).

The changes in performance and spontaneous arm use of the

affected arm were recorded in four consecutive phases: (i) an

acquisition phase of normal bilateral reaching behavior in 2,000

free choice trials (partially shown), (ii) an acute stroke phase of 500

free choice trials, (iii) a rehabilitation phase in a forced use

condition (variable number of trials), and (iv) a chronic stroke

phase consisting of 3,000 free choice trials. Values of performance

and spontaneous use just after rehabilitation are called ‘‘immedi-

ate;’’ their long-term values at the end of the chronic phase are

called ‘‘follow-up.’’

In all phases, targets were randomly generated at the start of

each trial, distributed uniformly across all possible angles. Unless

otherwise stated, we used the following parameters: Each motor

cortex had 500 neurons, with initial preferred directions hp

uniformly distributed. The coefficient of variation of the signal-

dependent noise ratio k was 0.15. The motor cortex learning rates

were aSL = 0.005 and aUL = 0.002. The action choice module

contained two networks of 20 radial basis function neurons with

sreward = 0.2 (in radians, <11.46u), r = 0.2, sACM = p/10 (in

radians, = 18u), aACM = 0.1, and b = 10.

Results

The first (prelesion) phase provided a normal baseline for

reaching behavior. For each desired direction, learning achieved

zero mean directional error (Figure 2A.1) and a tendency of right

arm use for the right-hand-side workspace, and left arm use for the

left-hand-side workspace (Figure 2B.1).

Just after stroke, however, the population vectors showed

directional errors in and around the affected range (Figure 2A.2).

Sufficient therapy (1,000 forced use trials, Figure 2A.4) resulted in

redistributing the preferred directions within the affected side of

motor cortex, with the population vectors realigned to the desired

directions. Although the realignment was not perfect, and a small

range of preferred directions was still missing, the directional

errors were much reduced. This resulted in increased rewards in

these directions, thus increasing the action value for the affected

arm, preparing the way for increased use of the affected arm once

free choice was allowed. Lack of therapy on the contrary resulted

in a still large missing range of directions (Figure 2A.3).

At the end of the ‘‘acute stroke’’ period, the less affected arm

largely compensated for the more affected arm in the affected

range (Figure 2B.2). If no therapy followed, then this behavioral

compensation remained (Figure 2B.3). Sufficient therapy, howev-

er, led on the resumption of free choice trials to increased

Stroke Rehabilitation Reaches a Threshold
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spontaneous arm use of the more affected arm (right arm) in the

affected range (Figure 2B.4) and almost restored it to its prestroke

levels.

We then studied the time courses of motor performance

measures and spontaneous arm use (Figure 3). In the acute stroke

phase, the free choice condition resulted in some spontaneous

recovery in performance, as the repeated attempts to use the

arm, although generated with poor performance, produced

directional errors that retuned the motor cortex. However, the

poor performance of these initial repeated attempts to use the

affected arm caused a decrease in the action value for this arm in

the affected directions, leading in turn to a reduction in

spontaneous arm use. Thus, a ‘‘learned nonuse’’ phenomenon

occurred despite improving performance. After 500 trials of

natural recovery, a number of rehabilitation trials were given in

the forced use condition. Rehabilitation improved performance

as expected, but its lasting effects on spontaneous arm choice

depended on the intensity of therapy. The increase in

spontaneous arm use returned close to 0% soon after the end

of therapy if only 200 trials of therapy were given. If 400 trials of

therapy were given, spontaneous arm use held steady after

therapy. If more therapy was given, spontaneous arm use was

high after therapy and kept improving for a large number of

trials thereafter.

Figure 2. Neuronal population coding and spontaneous use over the workspace for the affected arm. (A) Neuronal population coding.
(B) spontaneous use (B). For (A) and (B): (1) Before stroke, (2) after stroke, (3) after 3,000 free choice trials, and (4) after 1,000 forced used trials followed
by 2,000 free choice trials. In (A), each population vector figure shows the desired reach directions (thin black arrows), the neuron activation levels
along their preferred directions (thin gray lines), and the resulting population vector (thick black arrows). Note that there are no ‘‘votes’’ for directions
corresponding to the lesioned directions in (A.2) and (A.3) but that in (A.4), many neurons have become retuned to yield votes in the lesioned
directions. In (B), the pie plots show the probability of using the unaffected right arm to reach to targets arrayed on a circle around the central
position. In (B.2) and (B.3), the less affected arm reaches into the lesioned quadrant, but this effect is reversed with therapy (B.4).
doi:10.1371/journal.pcbi.1000133.g002

Stroke Rehabilitation Reaches a Threshold
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The model thus exhibits a threshold for the intensity of

rehabilitation. To precisely quantify the threshold, we computed

the change in spontaneous arm use following rehabilitation by

fitting a simple linear model with trials post stroke as predictor; the

number of trials corresponding to a null slope corresponds to this

threshold. As shown in Figure 4, with the default parameter set,

there was a threshold at 420 trials of forced used trials, above

which spontaneous arm use increased even after therapy was

discontinued. Below this number of forced used trials, spontaneous

arm use decreased to minimal levels after rehabilitation—it was

‘‘in vain.’’ The zero crossing in the slope in Figure 4 implies

bistability of spontaneous arm use: when the number of

rehabilitation trials is larger than the number of trials required

to reach the threshold (420 trials), the spontaneous arm use

improves in the following free choice condition until it saturates;

conversely, when the number of therapy rehabilitation is less than

the number of trials required to reach the threshold, the

spontaneous arm use deteriorates (Figure 5C). Similar bistability

is also shown in the directional error (Figure 5A) and normalized

population vector (Figure 5B).

As expected, the minimal intensity of effective therapy depends on

lesion size (Figure 6A). Compared to smaller lesions, large lesions

require longer rehabilitation sessions to reach the threshold of

spontaneous arm use above which therapy can be terminated. In our

model, although directional error recovered almost perfectly for

lesions sizes smaller than 50% for the right hand side workspace

(follow-up test after 800 rehabilitation trials; results not shown), the

long-term normalized population vector correlates almost linearly to

the lesion size (same simulations conditions, see Figure 6B).

Motor performance can be judged according to two different

criteria: accuracy (low bias of error) and precision (low variance of

error). Figure 7 shows the effects of stroke and therapy, or the lack

of it (‘no therapy’), on the accuracy and precision of the reach

directional error over the affected range for the affected arm

(contralateral to the lesion, Figure 7A) and for the nonaffected arm

(ipsilateral to the lesion; Figure 7B). Although, stroke leads to an

Figure 3. Time course of behavioral performance and spontaneous use in the affected range just before stroke, following stroke
(‘‘acute stroke’’), during rehabilitation, and after rehabilitation (‘‘chronic stroke’’). (A) Directional error, (B) normalized population vector
(PV), and (C) spontaneous arm choice. Five different durations of therapy were used (0, 200, 400, 800, or 3,000 trials). The spontaneous arm use is an
average selection probability from 10 uniformly distributed desired directions on the affected range. The threshold of effective rehabilitation for this
stroke size is shown in the horizontal dotted line of (C). If the rehabilitation leads to performance above this threshold, then a virtuous circle between
spontaneous arm use and performance will take place and performances will continue to improve without the need for further rehabilitation.
doi:10.1371/journal.pcbi.1000133.g003

Stroke Rehabilitation Reaches a Threshold
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immediate and large deterioration of accuracy and precision for

reaching movements with the affected arm (Figure 7A, thick solid

line), therapy restores accuracy to near prestroke level (Figures 7A,

dotted line). Because the number of available neurons is reduced

after stroke, however, precision remains low after therapy

compared to prestroke levels (Figure 7A). Lack of therapy (‘no

therapy’ in Figure 7A, thin solid line) results in further

deterioration of accuracy and precision for the affected (right)

arm after stroke. In contrast, while stroke and therapy have almost

no effect on performance of the nonaffected arm in our model

(Figure 7B, dotted line), the increased frequency of compensatory

reaching movements in the no therapy condition results in an

increase of accuracy on these reaching movements (Figure 7B, thin

solid line).

We then studied the organization and reorganization of the

cells’ preferred directions in each hemisphere before lesion, after

lesion, and after therapy. Using pie histograms (Figure 8) which

show the number of neurons whose preferred directions are in a

certain range of directions, we observed a cortical reorganization

pattern similar to that observed in animals that undergo

rehabilitation or not after motor cortex lesions (see Discussion).

Before lesion, more cells coded for the movements that were more

often performed. After lesion, therapy or the lack of it affects the

reorganization of neurons’ preferred directions in both hemi-

spheres.

Therapy
Motor training with the affected arm has a profound effect on

reorganization in the affected hemisphere. After sufficient therapy,

the distribution of the surviving cells’ preferred directions is similar

to the prelesion distribution, with, however, fewer cells coding

each direction, because the total number of cells is reduced

(Figure 8A.4). During therapy, the directional error decreases,

ensuring concordance of the supervised and unsupervised learning

rules; the unsupervised learning rule is ‘‘adaptive’’ as it reinforces

the supervised learning rule (Figure 8A.4). Conversely, motor

training has almost no effect on the cell population of the

nonaffected arm (Figure 8B.4).

No therapy
Two patterns of reorganization are noteworthy in the affected

hemisphere. First, the size of the affected range increased

compared to just after the lesion; second, a large number of cells

now code for movements in the fourth quadrant. If no therapy or

insufficient therapy is provided, the directional error of the

affected arm does not decrease (Figures 3A and 7A). This results in

discordance between the supervised and unsupervised learning

rules, and the unsupervised learning rule, based on desired but not

actual directions, becomes ‘‘maladaptive,’’ further increasing the

lesion size (Figure 8A.3) and largely increasing the representation

of compensatory movements (Figure 8B.3) whose performance

improves (decrease both in directional error bias and in directional

error variability, and increase in normalized population vector). In

the nonaffected hemisphere, a number of cells shift their preferred

directions to the first quadrant, because the nonaffected arm must

now compensate for the movements previously performed by the

affected arm (Figure 8B.3).

Without the unsupervised learning term, reorganization follows

different patterns: Therapy has less of an effect on reorganization,

and lack of therapy does not lead to overrepresentation of

compensatory movements in the affected hemisphere or in the

nonaffected hemisphere (Figure 9).

Figure 4. Changes in spontaneous use following rehabilitation
as a function of the number of rehabilitation trials. We plotted
the average slope of spontaneous arm use in the 1,000 trials following
rehabilitation as a function of the intensity of therapy. Above 420 trials
(with the default parameter set), spontaneous arm use increases after
therapy. Below this number of trials, it decreases.
doi:10.1371/journal.pcbi.1000133.g004

Figure 5. Effect of the number of rehabilitation trials in immediate and follow-up tests. Directional error (A), normalized population vector
(PV) (B), and spontaneous arm use (C) in the immediate and follow-up tests. The directional error performance following few rehabilitation trials
worsens after therapy. On the contrary, the directional error performance after sufficient rehabilitation trials improves even after therapy. Similar
bistable patterns are shown for the normalized population vector and spontaneous use shown in (B) and (C).
doi:10.1371/journal.pcbi.1000133.g005
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To better understand the respective roles of each of the supervised,

unsupervised, and reinforcement learning rates on behavior we then

performed a sensitivity analysis for these three parameters on

directional error for different durations of therapy (200, 400 and 800

therapy trials) followed by 3,000 free choice condition. As shown in

Figure 10A, directional error decreased as the supervised learning

rate increased for any amount of therapy. Figure 10B shows,

however, a more complex pattern for the unsupervised learning rate.

For a number of rehabilitation trials sufficient to reach threshold in

the default parameter set (420 therapy trials on the threshold with

0.002 for the unsupervised learning rate), there is an optimal

unsupervised learning rate for which long-term performance (after

3,000 free choice trials) is enhanced compared to either zero

unsupervised learning or too large unsupervised learning. Thus, for

appropriate learning rates, unsupervised learning is ‘‘adaptive,’’ as it

enhances performance. No unsupervised learning or too large

unsupervised learning rates are detrimental to performance

however. A similar pattern is shown for the reinforcement learning

rate, although the interpretation is more arduous as very little

spontaneous use occurs with a reinforcement learning rate set at 0 (to

perform the sensitivity analysis for the reinforcement learning rate,

we used the default parameter set until the end of the acute-stroke

phase, then the different reinforcement learning rates were tested

starting with therapy condition).

We further studied the conditions under which the threshold

appears by setting each of the three rates to 0 and keeping the

other two to the default values. With such learning rate settings, we

plotted the directional error, normalized population vector, and

spontaneous hand use (Figure S1, Figure S2, and Figure S3) just

after therapy and 3,000 trials after therapy as a function of the

number of rehabilitation trials, as in Figure 5. Unlike for the full

default parameter set (Figure 5), if one of the learning rates is set to

Figure 6. Effect of stroke size. (A) Number of rehabilitation trials required to reach the effective rehabilitation threshold, as a function of lesion
sizes. (B) Normalized population vector (PV) as a function of lesion size in the follow-up test after 800 rehabilitation trials.
doi:10.1371/journal.pcbi.1000133.g006

Figure 7. Changes in reach precision (standard deviation of directional error) in relation to changes in accuracy (mean of
directional error). (A) Contralateral (affected) arm and (B) ipsilateral (nonaffected) arm. In each panel, the thick solid line corresponds to the
changes occurring from just before stroke to the 500th free choice trials following stroke onset. The thin solid line represents additional changes in a
no therapy condition (3,000 free choice trials). The dotted line represents additional changes in a therapy condition (1,000 therapy trials followed by
2,000 free choice trials). After stroke, accuracy and variability of the contralateral arm worsened. Following therapy, accuracy improved but with little
change in variability. With no therapy, behavioral compensation with the nonaffected arm further developed, resulting in improved accuracy for this
arm (B).
doi:10.1371/journal.pcbi.1000133.g007
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zero, the bistable behavior disappears, as shown by the noncross-

ing of the curves for 0 (immediate test) and 3,000 free choice trials

(follow-up test). In other words, the threshold observed in the

complete model is an emergent property of the three types of

learning. If supervised learning or reinforcement learning is not

present, directional error worsens after 3,000 free choice trials

compared to just after rehabilitation, for any number of

rehabilitation trials. If unsupervised learning is not present,

however, directional error improves after 3,000 free choice trials

for any amount of rehabilitation trials.

Discussion

We proposed a novel model of bilateral reaching that links

different levels of analysis, as it combines a simplified but biologically

plausible neural model of the motor cortex, a biologically plausible

(but nonneural) model of reward-based decision-making, and

physical therapy intervention at the behavioral level. Because our

model is based on sound theoretical principles and neural

mechanisms, it allows us to explore the nonlinear interactions

between performance and spontaneous use in stroke recovery.

Cortical Reorganization after Stroke and Therapy
Our motor cortex model, by learning to minimize both

directional errors and variability, accounts for the reversal of the

loss of cortical representation after rehabilitation, and the increase

of this loss together with the increase of the representation of

neighboring areas without rehabilitation [7,50].

In the lesioned cortex, during therapy, the supervised learning

rule ensures that underrepresented directions are ‘‘repopulated,’’

Figure 8. Cortical reorganization following stroke. Reorganization of the affected (left) hemisphere (A) and nonaffected (right) hemisphere (B)
after stroke followed by therapy or no therapy. In each panel, histograms of the cells’ preferred directions are shown (1) before stroke, (2) after stroke
with 500 free choice trials, and (3) after 3,000 free choice trials or (4) after 1,000 forced used training trials and subsequent 2,000 free choice trials. The
gray area in (A.2) shows the lesion site. Before the lesion, the left hemisphere contains more neurons with preferred directions in the right workspace,
and the right hemisphere contains more neurons for the left workspace because of the bias for workspace preference. Just after lesion, the left
hemisphere is affected. If no therapy follows, the size of the affected range increases, and the number of neurons for the fourth quadrant increases in
the affected hemisphere (maladaptation) and in the first quadrant in the nonaffected hemispheres (A.3). On the contrary, the number of neurons for
the first quadrant in the right hemisphere increases due to compensation. After therapy (1,000 forced use trials followed by 2,000 free choice trials),
however, the distributions of directions are similar to the prelesion distribution in both hemispheres.
doi:10.1371/journal.pcbi.1000133.g008
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Figure 9. Cortical reorganization without unsupervised learning. Reorganization of the affected (left) hemisphere (A) and nonaffected (right)
hemisphere (B) after stroke followed by therapy or no therapy. In each panel, histograms of the cells’ preferred directions are shown (1) before stroke,
(2) after stroke with 500 free choice trials, and (3) after 3,000 free choice trials or (4) after 1,000 forced used training trials and subsequent 2,000 free
choice trials. The gray area in (A.2) shows the lesion site.
doi:10.1371/journal.pcbi.1000133.g009

Figure 10. Learning rates sensitivity analysis. Effect of the supervised learning rate (A), the unsupervised learning rate (B), and the
reinforcement learning rate (C) on directional error after different durations of therapy (200, 400, and 800 therapy trials) followed by 3,000 free choice
condition. The default parameters used in simulations are shown with the gray vertical lines.
doi:10.1371/journal.pcbi.1000133.g010
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decreasing average reaching errors. However, because there are

fewer surviving neurons overall after stroke, stroke leads to a

decrease in population vector magnitude (Figure 3B) and increased

movement variability (Figure 7A)—as previously shown in [21].

The supervised learning component of our rule is consistent with

monkey data showing that learning new skills, but not repetitive

use, leads to motor cortical reorganization [51]. Supervised

learning-like plasticity has not been reported in the cerebral

cortex however, but it is thought to occur in the cerebellum [52]. A

possibility is that the reduction of error due to rehabilitation, and

the associated cortical reorganization, is driven by important

cerebellar projections to the motor cortex. Lesion of the error

signal driving cerebellar learning, presumably carried by the

inferior olive [53], could be performed in animal models of stroke

to test this possibility.

During therapy, the unsupervised learning rule is ‘‘adaptive’’ as

its effect reinforces that of the supervised learning rule (compare

Figures 8A.4 and 9A.4). By recruiting a greater number of neurons

for often-performed actions it can counter neuronal noise and

decrease directional error [21]; it is thus an adaptive process in the

normal brain. After stroke, however, such unsupervised plasticity

may become maladaptive. A comparison of Figures 8A.3 and 9A.3

shows that unsupervised learning further augments the effect of

stroke if no therapy is given. As compensatory movements, or

movements unaffected by the stroke, compete for the surviving

neurons, fewer neurons code for directions around the affected

area (Figure 8A.3), leading to further deterioration of performance

(Figures 3A, 3B, and 7A). The representation of compensatory

movements is increased and performance of these movements

improves (Figure 7, decreased directional error bias). Without the

unsupervised learning term, reorganization follows different

patterns: Therapy has less of an effect on reorganization, and

lack of therapy does not lead to overrepresentation of compen-

satory movements in the affected hemisphere or in the nonaffected

hemisphere (Figure 8).

Strengths and Limitations of the Model
To our knowledge, the present computational neural model is

the first developed to make specific behavioral and neuronal

predictions on the efficacy of physical therapy interventions. Two

previous models have been developed to account for behavior

after stroke [21,54], but these models do not address plastic

changes. The model by Goodall et al. [50] predicts that focal

lesions result in a two-phase map reorganization process in the

intact peri-lesion cortical region, but this model does not account

for the development of compensatory movements and reorgani-

zation of choice after training.

Our model is in accord with the most recent understanding and

comprehensive view of the basal ganglia function in adaptive

selection of alternative actions [40,55,56] via release of inhibition of

motor cortex activity [42]. A different decision making mechanisms

was however recently proposed by Cisek [57], who analyzed the time

course of cortical activation before and after decision to reach one of

two targets with a single arm. Unlike in our model, target choice was

resolved in a distributed manner, by competition between neurons

within cortical layers. Further experiments are needed to study how

targets are selected when both limbs can be used, and how this

selection is reorganized after lesion and therapy.

In a recent motor cortex model [58], as in our model,

reorganization of preferred directions is due to a learning rule

containing two terms: a supervised error correcting term, and a

(unsupervised) weight decay term. Because our unsupervised

learning rule is based on the activation of neighboring neurons

however, it explains maladaptation and increase of lesion size in

the no-therapy condition (Figure 8A.3). Furthermore, the

sensitivity analysis of the three learning rates (supervised,

unsupervised and reinforcement learning, Figure 10) showed that

the bistability of performance and spontaneous arm use (Figures 4

and 5) requires the combination of all three types of learning

(Figures S1B, S2B, and S3B)

Because of its simplicity, our model provides clear insights into a

range of factors affecting recovery of arm use after stroke.

However, our model does suffer from a number of limitations:

(1) The simplistic coding of the reach movements by the motor

cortex neurons does not account for how activity of motor

cortex neurons also correlates with joint torque and muscle

activity [47,59,60]. The current motor cortex model was

based on the directional coding of hand movement [19]. Even

though a possible mechanism behind execution of directional

coding on the motor cortex was set forth [61] and

computational models have suggested correlation between

directional coding of a neuron and a linear component the

direction of force which the neuron exerted [26,27], there is

little evidence, except [45], of stroke lesions impairing specific

hand directions. The key point is not the actual coding

(important though directional coding undoubtedly is) but

rather to see how a lesion affects a range of movements, and

how learning may be maladaptive or adaptive by returning

some control of that range to the unaffected or affected hand,

respectively. Our assumption, how a lesion affects the

distribution of neurons in the motor cortex, may be valid,

only when neurons on the motor cortex form topography of

directional coding. Our unpublished computational model of

the motor cortex showed there exists topography of direction

of population vector and this direction of force would be

correlated with directional coding. Nevertheless, in the

present model, as a results of such simplistic coding,

directional error is highly correlated with lesion size; this

may not be highly realistic as directional error after mild or

moderate stroke in humans is not much affected [46].

(2) A related limitation is the lack of proximal and distal

representation in our motor cortex model. In the biological

motor cortex, individual joints are controlled by somewhat

overlapping neural groupings forming somatotopically orga-

nized and plastic motor cortical maps. Empirical results of map

reorganization after lesion have focused on remapping of the

hand region [7,8]. It is to be noted however, that although our

model focuses on redistribution of the representation of reaching

directions within the area of cortex, our results accord well with

the type of reorganization shown in these empirical results.

(3) A third limitation is our simplistic model of stroke, akin to that

used in animal models of stroke. These ignore the motor

impairments due to diffuse lesions to a number of brain areas

and tracts, and not just to the motor cortex. In particular, our

model cannot study the differential effect of cortical,

subcortical and combined cortical–subcortical strokes and

thus cannot account for differential response to rehabilitation

for different stroke locations (e.g., [62]).

To resolve the limitations, in the future we will expand our model

by adding arm and muscle models controlled by neurons grouped in

adaptive motor cortical maps. We plan to investigate the tradeoff

between proximal and distal regions, with cortical motor maps that

change during training on tasks that require more skilled use of the

hand itself. Moreover, the notion that the action choice model may

correspond to the basal ganglia opens up promising lines of

investigation.
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In summary, despite our considerable simplifications of

movement representation in the motor cortex and of the simulated

lesions, our results show that our proposed mechanism of motor

learning and plasticity, and the ensuing results (recovery,

threshold, and neural reorganization) are general and not

particular to the specifics of our model.

Specific and Testable Predictions Derived from the Model
Our model makes the following testable behavioral and neural

predictions.
Prediction 1. If spontaneous use of the affected arm is above

a threshold level after therapy, repeated spontaneous attempts to

use the affected arm leads to further improvements in motor

performance, which in turn increase the ‘‘value’’ of using the arm

(Figure 3).
Prediction 2. If spontaneous arm use is below this threshold

after therapy, compensatory movements are reinforced.

Consequently, spontaneous use and motor performance of the

affected limb decrease (Figure 3).
Prediction 3. The dose of task practice necessary to reach the

threshold depends on stroke severity, and no amount of

rehabilitation will be sufficient to reach this threshold for most

strokes that are classified as severe (Figures 4 and 6).
Prediction 4. Unless the stroke impairment is too severe, the

dose o f rehabilitation can be adjusted for each patient such that

spontaneous arm use reaches this critical threshold after

rehabilitation. If the stroke is too severe however, motor

retraining is ‘‘in vain’’ (Figures 4 and 6). Of course, the dose of

task practice also depends on parameters within the model, and

these may represent intersubject variability of stroke patients that

complements the effects of lesion size.
Prediction 5. After effective motor retraining, movement

accuracy can return close to its prestroke levels, but movement

variability will be higher than prestroke (Figure 7)
Prediction 6. After noneffective retraining, compensatory

movements, either with the same limb or the other limb or both,

will become less variable (Figure 7).
Prediction 7. The hemisphere contralateral to the lesion

undergoes reorganization of preferred reach directions along with

the development of compensatory reach movements in the

affected range (Figure 8).
Prediction 8. Both supervised learning-like (error driven) and

unsupervised learning-like (use driven) plastic phenomena drive

reorganization in the motor cortex during skill learning in the

normal brain and after stroke (Figures 8 and 9).

Implication for Rehabilitation
In our model, neural reorganization generates bistability at the

behavioral level: after therapy, spontaneous arm use will stabilize at

either a low or a high value, depending on the amount of therapy.

Specifically, therapy is effective and could be stopped if spontaneous

arm use reaches a certain threshold, as the repeated spontaneous

arm use following therapy provides a form of motor learning that

further ‘‘bootstraps’’ performance. Below this threshold, however,

motor retraining is ‘‘in vain’’—there is no or little long-term

spontaneous arm use after training, and the model exhibit ‘‘learned

nonuse,’’ as has been proposed in patients with brain lesions [13].

We thus predict that a measure of spontaneous arm use may be

a good indicator to determine optimal duration of the therapy. In

current rehabilitation practice, all rehabilitation is concentrated in

the weeks following stroke. Our model suggests that rehabilitation

protocols adopt instead a spaced and adaptive train–Test A–wait–

test B–train paradigm: short bouts of training (train) are followed

by a spontaneous arm use test (Test A), no training for several

weeks (wait), and another spontaneous arm use tests (Test B). If

spontaneous arm use measured on Test B has increased since that

on test Test A, the threshold is reached, and rehabilitation can be

terminated. If spontaneous arm use is still low or has decreased

since Test A, another bout of rehabilitation is called for. This

pattern is repeated until the threshold is reached. Note that such a

training paradigm will have the additional benefit of making use of

the ‘‘spacing effect,’’ in which spaced training lead to superior

retention of learned skills [63]. We plan to put this hypothesis to

empirical test using a novel laboratory-based objective test of

bilateral limb use.

Supporting Information

Text S1 Supplemental materials: Learning rule derivation.

Found at: doi:10.1371/journal.pcbi.1000133.s001 (0.40 MB

DOC)

Figure S1 Effect of supervised learning. (A) Directional error, (B)

normalized population vector (PV), (C) and spontaneous arm use

after different durations of therapy followed by 0 free choice trial

(immediate) and 3000 free choice trials (follow-up) without

supervised learning. Unlike in the full model (see Figure 5), the

bistable behavior is not present, as shown by the non-crossing of

the curves in the immediate and follow-up condition.

Found at: doi:10.1371/journal.pcbi.1000133.s002 (0.17 MB TIF)

Figure S2 Effect of unsupervised learning. (A) Directional error,

(B) normalized population vector (PV), and (C) spontaneous arm

use after different durations of therapy followed by 0 free choice

trial (immediate) and 3000 free choice trials (follow-up) without

unsupervised learning. Unlike in the full model (see Figure 5), the

bistable behavior is not present, as shown by the non-crossing of

the curves in the immediate and follow-up condition.

Found at: doi:10.1371/journal.pcbi.1000133.s003 (0.18 MB TIF)

Figure S3 Effect of reinforcement learning. (A) Directional

error, (B) normalized population vector (PV), and (C) spontaneous

arm use after different durations of therapy followed by 0 free

choice trial (immediate) and 3000 free choice trials (follow-up)

without reinforcement learning. Unlike in the full model (see

Figure 5), the bistable behavior is not present, as shown by the

non-crossing of the curves in the immediate and follow-up

condition. In these simulations, we first used a positive

reinforcement learning rate (0.01) during acute stroke phase (500

free choice trials after lesion), before ‘‘turning off’’ reinforcement

learning in the following trials. Due to supervised learning and

unsupervised learning, performance improved over time but

spontaneous arm use stayed low.

Found at: doi:10.1371/journal.pcbi.1000133.s004 (0.17 MB TIF)
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