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Abstract

Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory,
memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying
the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a
combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons
form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network
model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much
slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a
single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the
network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak
coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model
as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation
time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable
predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons.
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Introduction

Synchronous rhythmic spiking is ubiquitous in networks of the

brain [1]. Extensive experimental evidence suggests such activity is

useful for coordinating spatially disparate locations in sensory [2],

motor [3], attentional [4], and memory tasks [5]. In particular,

network spiking in the gamma band (30–100 Hz) allows for

efficient and flexible routing of neural activity [6]. Groups of

neurons responding to a contiguous visual stimulus can synchro-

nize such fast spiking to within milliseconds [7]. The processing of

other senses like audition [8] and olfaction [9] has also been shown

to employ synchronized gamma rhythms, suggesting this fast

synchronous activity is indispensable in solving perceptual binding

problems [10]. Aside from sensation, gamma band activity has

been implicated in movement preparation in local field potential

recordings of macaque motor cortex [3] and electroencephalo-

gram recordings in humans [11]. Also, there is a boost in power of

the gamma band in both sensory [12] and motor [13] cortices

during an increase in attention to related stimuli, which may serve

as a gain control mechanism for downstream processing [4]. Short

term memory is another task shown to consistently use gamma

rhythms in experiments where humans must recall visual stimuli

[14]. Thus, there are a myriad of studies showing gamma band

synchrony appears in signals of networks performing neural

processing of a variety of tasks and information. This suggests an

understanding of the ways in which such rhythms can be

generated is incredibly important to understanding the link

between single neuron activity and network level cognitive

processing.

Many theoretical studies have used models to generate and

study fast, synchronous, spiking rhythms in large neuronal

networks [15–17]. One common paradigm known to generate

fast rhythms is a large network of inhibitory neurons with strong

global coupling [16]. Periodic, synchronized rhythms are stable

because all cells must wait for global inhibition to fade before they

may spike again. This observation lends itself to the theory that

gamma rhythms can be generated solely by such mutual

inhibition, the idea of interneuron network gamma (ING)

oscillations [18]. Of course, this idea can be extended to large

networks where excitatory neurons strongly drive inhibitory

neurons that in turn feedback upon the excitatory population for

a similar net effect [19,20] (see also Fig. 5 of [21]), known as

pyramidal–interneuron network gamma (PING) oscillations

[18,22]. Even when coupling is sparse and random, it is possible

for large networks with some inhibitory coupling to spontaneously

generate a globally synchronous state [19,23]. The primary role of

inhibitory neurons in gamma rhythms has been corroborated in

vivo by [24], using optogenetic techniques. Light-driven activation

of fast-spiking interneurons serves to boost gamma rhythms,

whereas driving pyramidal neurons only increases the power of

lower frequencies. Depolarization of interneurons by activating

channelrhodopsin-2 channels has also been shown to increase

gamma power in local field potentials [25]. Still, no conclusive

evidence exists to distinguish between PING or ING being more
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likely, and [26] suggests that weak and aperiodic stimulation of

interneurons is the best protocol to make this distinction.

Nonetheless, it is clear that recent experiments have verified

much of the extensive theory developed regarding the mechanism

of gamma rhythms.

One particularly notable experimental observation of the PING

mechanism for gamma rhythms is that constituent excitatory

neurons fire sparsely and irregularly [12,27], while inhibitory

neurons receive enough excitatory input to fire regularly at each

cycle. Due to their possessing slow hyperpolarizing currents,

pyramidal neurons spike more slowly than interneurons [28], so

this partially explains their sparse participation in a fast rhythm set

by the interneurons. Modeling studies have accounted for the wide

distribution of pyramidal neuron interspike intervals by presuming

sparse random coupling in network connections [29] or by

including some additive noise to the input drive of the population

[30]. From this standpoint, the excitatory neurons are passive

participants in the generation of fast rhythms, so their statistics

have no relation cell to cell. The requirement, in these cases, is a

high level of variability in the structure and drive to the network.

However, an alternative explanation of sparse firing might suggest

that excitatory neurons assemble into subpopulations, clusters, that

fire in a more regular pattern for a transient period of time. This

may be accomplished without the need for strong variability

hardwired into a network.

One cellular mechanism that has been largely ignored in

network models of fast synchronous spiking rhythms is spike

frequency adaptation [30,31]. Slowly activated hyperpolarizing

currents known to generate spike frequency adaptation have been

shown in many different populations of regular spiking cells within

cortical areas where gamma rhythms arise. In particular,

pyramidal neurons in visual cortex exhibit slow sodium and

calcium activated afterhyperpolarizing current, proposed to play a

major role in generating contrast adaptation [32]. Regular spiking

cells in rat somatosensory cortex also have adaptive currents.

Furthermore, they exhibit a type 1 threshold, where they can fire

regularly at very low frequencies [33]. Also, recent experiments in

primate dorsolateral prefrontal cortex reveal significant increases

in interspike intervals due to spike frequency adaptation [34].

Synchronous spiking in the gamma range has been observed in

visual [2,12], somatosensory [35,36], and prefrontal [14] cortex,

all areas with neurons manifesting adaptation. Also, adaptation

may promote a low resonant frequency in regular spiking neurons

that participate in gamma rhythms, as revealed by optogenetic

experiments [24]. Therefore, adaptation not only slows the spike

rate of individual regular spiking neurons, but can play a role in

setting the frequency of network level spiking rhythms.

Thus, we propose to study a paradigm for the generation of a

network gamma rhythm in which excitatory neurons form clusters.

This accounts for the key observation that excitatory cells do not

fire on every cycle of the rhythm. The essential ingredients of the

network are spike frequency adaptation and global inhibitory

coupling. Spike frequency adaptation produces the slow firing of

individual cells. The restrictions on the sparsity of coupling and the

level of noise in the network are much looser than [30]. After

identifying these properties of the network, we can extract several

relationships between parameters of our model and attributes of

the resulting clustered state of the network. One result of

considerable interest is the relationship between the time constant

of adaptation and the number of clusters that can arise in the

network. Using two different methods of analysis, we can predict

the cluster number Nc to scale with adaptation time constant ta as

Nc!t2=3
a .

The paper employs both a detailed biophysical model as well as

an idealized model that we study for the formation of cluster states.

Our results begin with a display of numerical simulations of cluster

states in the detailed model. The main point of interest is that

excitatory neurons possess a spike frequency adaptation current

whose timescale appears to influence the number of clusters that

can arise. To begin to understand how this happens, we analyze

the periodic solution of a single adapting neuron, in the limit of

large adaptation time constant, for an idealized model of adapting

neurons. Using singular perturbation theory, we can derive an

approximate formula for the period of a single neuron and thus an

estimate of the number of clusters in a network of neurons. Then,

an exact expression is derived for the periodic solution of an

equivalent quadratic integrate and fire model with adaptation as

well as its phase-resetting curve. Next, we employ a weak coupling

assumption to predict the number of synchronized clusters that

will emerge in the network as the amplitude of additive noise is

decreased. The number of clusters in the predicted state is directly

related to a Fourier decomposition of the phase-resetting curve.

Our main result is that both the singular perturbation theory and

weak coupling analysis predict the same 2=3 power law relating

cluster number to adaptation time constant. Finally, we compare

our predictions made using singular perturbation theory and the

weak coupling approach to numerical simulations of the idealized

model and the detailed biophysical model.

Methods

Traub model of an excitatory-inhibitory network with
adaptation

For our initial numerical simulations, we use a biophysical

model developed by Traub for a network of excitatory and

inhibitory spiking neurons [37]. Parameters not listed here are

given in figure captions. The membrane potentials of each

excitatory neuron and each inhibitory neuron satisfy the dynamics:

C
dVe

j

dt
~{Ie{ion(Ve

j ){Iee
j {Iei

j zIe
j , j~1,:::,N,

C
dVi

j

dt
~{Ii{ion(Vi

j ){I ie
j {I ii

j zI i
j , j~1,:::,M,

with synaptic currents

Author Summary

Fast periodic synchronized neural spiking corresponds to a
variety of functions in many different areas of the brain.
Most theories and experiments suggest inhibitory neurons
carry the regular rhythm while being driven by excitatory
neurons that spike more sparsely in time. We suggest a
simple mechanism for the low firing rate of excitatory cells
– spike frequency adaptation. Combining this mechanism
with strong global inhibition causes excitatory neurons to
group their firing into several clusters and, thus, produce a
high frequency global rhythm. We study this phenomenon
in both a detailed biophysical and an idealized model that
preserves these two basic mechanisms. Using analytical
tools from dynamical systems theory, we examine why
adaptation causes clustering. In fact, we show the number
of clusters relates to a simple function of the adaptation
time scale over a broad range of parameters. This allows us
to develop several predictions regarding the formation of
fast spiking rhythms in the brain.

Cluster States in Adapting Neuronal Networks
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where Gee, Gei, Gie, and Gii are random binary matrices such that

Pr(Gee
jk ~1 mS=cm2)~gee, j,k~1,:::,N,

Pr(Gei
jk~1 mS=cm2)~gei, j~1,:::,N, k~1,:::,M

Pr(Gie
jk~1 mS=cm2)~gie, j~1,:::,M, k~1,:::,N

Pr(Gii
jk~1 mS=cm2)~gii, j,k~1,:::,M,

and the synaptic gating variables are given

dse
j

dt
~aeK(Ve

j )(1{se
j ){bese

j , j~1,:::,N,

dsi
j

dt
~aiK(Vi

j )(1{si
j){bis
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where

K(V )~
1

1z exp ({(V{Vthr)=Vsshp)
:

The ionic currents of each excitatory and each inhibitory neuron

are given

Ie{ion(Ve
j )~gNahe

j (me
j )3(Ve
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j )4)(Ve
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where gating variables evolve as

dqe
j

dt
~aq(Ve

j )(1{qe
j ){bq(Ve

j )qe
j , j~1,:::,N,

dqi
j

dt
~aq(Vi

j )(1{qi
j){bq(Vi

j )qi
j , j~1,:::,M,

where q[ m,n,hf g. The biophysical functions associated with the

gating variables are

am(V )~
0:32(54zV )

1{ exp ({(Vz54)=4)
,

bm(V )~
0:28(Vz27)

exp ((Vz27)=5){1
,

ah(V )~0:128 exp ({(50zV )=18),

bh(V )~
4

1z exp ({(Vz27)=5)
,

an(V)~
0:032(Vz52)

1{ exp ({(Vz52)=5)
,

bn(V )~0:5 exp ({(57zV )=40):

Calcium concentration associated with the hyperpolarizing

current responsible for spike frequency adaptation in excitatory

neurons follows the dynamics

dcj

dt
~{aCa

gCa(Ve
j {VCa)

1z exp ({(V{Vlth)=Vshp)
{

cj

tCa

, j~1,:::,N:

Bias currents to both excitatory and inhibitory neurons have a

mean and fluctuating part

Ie
j ~Ie

0zseje
j , j~1,:::,N,

I i
j ~I i

0zsij
i
j , j~1,:::,M,

where fluctuations are given by a white noise process such that

Sje
j (t)T~0, Sje

j (t)je
j (s)T~d(t{s), j~1,:::,N,

Sji
j(t)T~0, Sji

j(t)j
i
j(s)T~d(t{s), j~1,:::,M:

Finally, the fixed parameters associated with the network model

are

Ve
syn~0 mV, Vi

syn~{80 mV

VK~{100 mV, VNa~50 mV,

VL~{67 mV, VCa~120 mV,

Vshp~2:5 mV, Vlth~{25 mV,

Vsshp~2 mV, Vthr~{10 mV,

gL~0:2 mS=cm2, gK~80 mS=cm2,

gNa~100 mS=cm2, gahp~0:5 mS=cm2,

gCa~1 mS=cm2, aCa~0:005 mC:cm=mol,

ae~2 ms{1, be~0:4,

ai~5 ms{1, bi~1,

C~1 mF=cm2:

Cluster States in Adapting Neuronal Networks
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Random initial conditions are used for the simulations of the

model, and we wait until the system has settled into a steady state

to make calculations of the statistics. We evolve this model

numerically, using the Euler-Maruyama method, with a time step

of dt = 0.0001.

Idealized model network with adaptation
The majority of our analysis uses an idealized spiking neuron

model to study the mechanism of clustering associated with a

network of adapting neurons. The Traub model for a single neuron

exhibits a saddle-node on an invariant circle (SNIC) bifurcation. It is

possible to exploit this fact to reduce the Traub model to a theta

neuron model with adaptation, if the system is close to the

bifurcation and the adaptation is small and slow [38]. In [39], an

alternative conductance based model with an afterhyperpolarizing

(AHP) current was reduced using phase reduction type techniques,

where the AHP gating variable was taken to evolve slowly. In

particular, Fig. 3(c) of [39] shows that the associated phase-resetting

curve has a characteristic skewed shape. We also eliminate the

inhibitory cells from the idealization of this section by slaving their

synaptic output to the total firing of the excitatory cells. To our

knowledge, there is no rigorous network level reduction that would

allow us to reduce the excitatory-inhibitory conductance based

network to the idealized one we present here. We do not provide a

meticulous reduction from the Traub network model to the network

analyzed from here on. We do wish to preserve the essential aspects

of the biophysical model described in the previous section, spike

frequency adaptation and inhibitory feedback.

Therefore, we consider a system of N spiking neurons, each

with an associated adaptation current, globally coupled by a

collective inhibition current

_hhj~1{ cos hjz(1z cos hj)(Izsjj{bzj{cs), ð1aÞ

ta _zzj~{zjztad(p{hj), ð1bÞ

ts _ss~{sz
1

N

XN

j~1

d(p{hj), ð1cÞ

for j~1,:::,N. Equation (1a) describes the evolution of a single

spiking neuron hj with input Izsjj , in the presence of spike

frequency adaptation with strength b and global inhibition with

strength c. Each neuron’s input has the same constant component

I and a unique noisy component with amplitude s where jj

is a white noise process such that Sjj(t)T~0 and

Sjj(t)jj(s)T~d(t{s) for j~1,:::,N. The adaptation current

associated with each neuron j is discretely incremented with each

spike and decays with time constant ta, according to equation (1b).

Global inhibitory synaptic current is incremented by 1=N with

each spike and decays with time constant ts. Notice, in the limit of

pulsatile synapses (ts?0), the equation (1c) for inhibitory synaptic

current becomes

s~
1

N

XN

j~1

d(p{hj):

We will make use of this reduction for some calculations relating

cluster number to model parameters. The membrane time constant

of neurons is usually approximated to be between 1–5 ms,

so even though time t has been nondimensionalized, its units could

be deemed to be between 1–5 ms. In addition, experimental results

suggest that the hyperpolarizing currents that generate spike

frequency adaptation decay with time constants roughly

40–120 ms [40,41], indicating that ta&1. This observation will

be particularly helpful in calculating a number of results.

Note, we consider this model as an idealization of adapting

excitatory spiking neurons coupled to a smaller population of

inhibitory neurons that then collectively connect to the excitatory

population. Our approximation is reasonable, considering inhibitory

neurons evolve on a faster timescale than the adapting excitatory

neurons, as they did in the more detailed biophysical Traub model.

For our numerical simulations of this model, we employ the Euler-

Maruyama method, with a time-step of dt = 0.0001.

Calculating spike statistics of the Traub model
To display the spikes from our simulations of the Traub model

(see Figs. 1 and 2), we employ the following sorting technique.

First, to better illustrate the formation of clusters, we sort the

simulations displayed in Fig. 1 in order of increasing voltage Ve
j at

the end of the simulation using MATLAB’s sort function.

Similarly, we sort the neurons in Fig. 2a in decreasing order,

according to their spike time closest to t~10000 ms also using the

Figure 1. Clustering in numerical simulations of a network of 200 excitatory and 40 inhibitory Traub neurons. Plots of excitatory
neuron spike times with neural index sorted according the value of Ve at time t~8000ms. A Three clusters providing a total network rhythm of 50 Hz
for tCa~50ms, se~0:4mA=cm2 , si~0:05mA=cm2 . B Four clusters providing a total network rhythm of 45 Hz for tCa~80ms, se~0:4mA=cm2,
si~0:05mA=cm2 . C Five clusters providing a total network rhythm of 25 Hz for tCa~180ms, se~0:25mA=cm2 , si~0:05mA=cm2 . Connectivity
parameters are gee~0:02, gei~0:8, gie~0:8, gii~0:1 (see Methods for other parameters).
doi:10.1371/journal.pcbi.1002281.g001

Cluster States in Adapting Neuronal Networks
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sort function. We do not resort the neurons between the left and

right panel, which displays the mixing effects of cycle skipping.

We use standard techniques for computing the interspike interval

(ISI) and correlation coefficient (CC) for the population of spike

trains. Calculations of the ISI take spike times of each neuron

t1,t2,t3,::: (i~1,:::,L) and compute their difference ki~tiz1{ti

(i~1,:::,L{1). Interspike intervals of all N excitatory neurons are

then combined into one vector and a histogram is then computed

with MATLAB’s hist function for a bin width of Dt~0:5. We

compute the CC for all possible pairs of excitatory neurons to ensure

the best possible convergence. We first digitize two neurons’ (i and j)

spike trains into bins of Dt~1 and then use MATLAB’s xcorr

function to compute an unnormalized correlation function. This is

then normalized by dividing by the geometric mean
ffiffiffiffiffiffiffi
ninj
p

of both

neuron’s total firing ni and nj over the time interval. For the

calculations displayed in Fig. 2, we use a total run time of

Ti~100000ms.

Least squares fits to cluster number–adaptation time
constant relations

The extensive singular perturbation theory analysis we carry out

on the idealized network suggests that there is a clear cut scaling

Nc!t2=3
a for the relationship between the number of clusters Nc

arising in a network and the adaptation time constant ta (We also

use the following least squares method to fit data relating Nc to tCa

attained from numerical simulations of the Traub model). To

compare this result with the relations between Nc and ta derived

using a weak coupling assumption, we consider the function

N�c (ta) determined by (23). This gives the number of clusters

associated with a particular ta and so must be an integer number.

Since (6) is a continuous function, we wish to remove the stepwise

nature of N�c (ta) to make a comparison. Thus, we first generate

the vector and matrix

Nc~

Nc

Ncz1

..

.

�NNc{1

�NNc

2
66666664

3
77777775

; Ap~

(ta(Nc))p 1

(ta(Ncz1))p 1

..

. ..
.

(ta( �NNc{1))p 1

(ta( �NNc))p 1

2
66666664

3
77777775

,

Figure 2. Neurons switch clusters via cycle skipping in a network of 200 excitatory and 40 inhibitory Traub neurons. A network of 200
excitatory and 40 inhibitory neurons with tCa~80ms supports four clusters here for a population rhythm of about 45 Hz. A Spike times of neurons
where index is sorted according to their spike times soonest after t~10000ms. After 60 s, neurons have become thoroughly mixed with other
clusters. B Histogram showing frequency of interspike interval (ISI) for all excitatory neurons in network. Large peak is just above the calcium time
constant tCa~80ms, but smaller peak occurs at a higher ISI. C By zooming the scale of the frequency into 10{3 , the small peak at larger ISIs is more
visible. This suggests neurons switch clusters by skipping one cycle of the fast rhythm. D Correlation coefficient plotted over the domain of
{4|104ms to 4|104ms ({40s to 40s). Over long time intervals, correlations degrade, due to noise-induced cycle skipping or (rarer) early spiking.
E For a tighter lag domain, {200ms to 200ms ({0:2s to 0:2s), the ringing at discrete lag intervals due to consistent cluster time intervals is apparent.
Same parameters are used here as in Fig. 1.
doi:10.1371/journal.pcbi.1002281.g002

Figure 3. Inner and outer layers of the singular perturbative
approximation to periodic solution of idealized model. Singular
perturbative approximation to (h(t), z(t)), the periodic solution of a
single, idealized, spiking neuron model with adaptation (2). See Text S1
for more details on singular perturbative calculation.
doi:10.1371/journal.pcbi.1002281.g003

Cluster States in Adapting Neuronal Networks
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where Nc and �NNc are the minimum and maximum number of

clusters attained in the given range of N�c (ta). The function ta(Nc)

gives the minimal value of ta such that N�c (ta)~Nc; in other

words

ta(Nc)~ min ta : N�c (ta)~Nc

� �
:

Note that Nc[Zm and Ap[Rm|2. Now, we solve for the coefficients

of the power function fit N�c (ta)~c1tp
azc2 by solving

Apc~Nc

as an overdetermined least squares problem for the coefficient

vector c~½c1,c2�T . We find the points (ta(Nc),Nc) are well fit by

the specific case p~2=3. To generate the inset plot, we simply

compute the L1 residual

R(p)~jjNc{c1(ta(Nc))p{c2jj1

for p[(0,1�. This shows the global minimum is in very close

proximity to p~2=3.

Simulating the idealized model
As a means of comparison with our theory, we perform

simulations of the idealized model by starting the system (1) at

random initial conditions

hj(0)~{pQj , zj(0)~z0 exp ({yj), j~1,:::,N,

where Qj ,yj are uniformly distributed random variables on ½0,1�,
z0 is given in Text S1, and s(0)~0. As suggested by our weak

coupling analysis, we start the system with high amplitude noise

(s~0:2), where clusters are not well defined, and incrementally

decrease s as the system evolves until noise is relatively weak

(s~0:02). For low noise, each cluster is particularly well defined,

especially when there are fewer clusters present.

Minimal adaptation time constant corresponding to
cluster number

We now describe the attainment of the data points correspond-

ing to minimal ta (tCa for our calculations of the Traub model) to

attain Nc clusters for numerical simulations. These are com-

puted by, first, simulating 20 realizations for each value of

ta~0,0:1,0:2,:::: (tCa~0,0:1,0:2,:::ms for the Traub model),

starting with random initial conditions (2) and high noise, reducing

noise and stopping after 20000 time units (20000 ms for the Traub

model), and finally recording the number of clusters in the network

for each realization. The points we then plot correspond to the first

value of ta whose median cluster number is larger than the median

for the previous ta (tCa) value. Increments in Nc between

neighboring ta (tCa) values are always no more than one.

Results

Clustering in a network of spiking neurons
Clustering of spiking activity in a network of neurons is the

phenomenon in which only neurons belonging to the same cluster

spike together, and two or more clusters spike each period of the

population oscillation. The emergence of cluster states has been

studied in globally coupled networks of phase oscillators with

additive noise [42], where clusters can be identified using stability

analysis of an associated continuity equation. Phase oscillator

networks may also develop clustering in the presence of

heterogeneous coupling [43] or time delays [44,45]. Golomb

and Rinzel extended early work in phase oscillators to show cluster

states can arise in biologically-inspired networks of Wang–Rinzel

spiking neurons [46]. They employed a stability analysis of

periodic solutions to their network, using Floquet multipliers to

identify which cluster state could arise for a particular set of

parameters. Networks of leaky integrate-and-fire neurons can also

exhibit clustering if coupled with fast inhibitory synapses [47] or

there is sufficient heterogeneity in each neuron’s intrinsic

frequency [48]. In Hodgkin-Huxley type networks clustering has

been witnessed due to a decrease in the amplitude of a delayed

rectifier current [16] or by simply including a delay in synaptic

coupling [44]. The addition of a voltage dependent potassium

current to an excitatory-inhibitory network has also been shown to

form two cluster states in detailed simulations [49].

In this section, we show clustering can arise in a detailed

biophysical model network of spiking neurons developed by Traub

(see Methods). The network consists of excitatory and inhibitory

neurons, but only excitatory neurons possess a slow calcium

activated hyperpolarizing current, representative of spike frequen-

cy adaptation. The connectivity structure is dense but random,

where each pair of neurons has a set probability of being

connected to one another, according to their type. Here, we

present the results of numerical simulations of this model, showing

the behavior of cluster states in the network. More specifically, we

are interested in the way that spike frequency adaptation helps to

generate these states. In later sections, we look at cluster states in

an idealized network model in order to analytically study the role

of adaptation in the onset of clustering.

We first present spike times of a model network of 200

excitatory and 40 inhibitory Traub neurons in Fig. 1 for two

different time constants of the calcium-induced hyperpolarizing

current. In particular, we find that, for slower adaptation, there is

an increase in the number of clusters, but the overall frequency of

the network decreases. This relationship persists over a wide range

of model parameters, like network connectivity, synaptic strength,

and input to neurons. To aid in the visualization of the clusters, we

sort the neurons according to their voltage’s value at the end of the

simulation (see Methods).

Although the size of the clusters is fairly invariant over time,

neurons do not remain in the same clusters indefinitely. In fact, by

examining the state of neurons at times significantly before of after

the time we sort them according to spike times (see Methods), we

find that units of clusters begin to mix with one another, shown in

Fig. 2(a). Neurons jump from one cluster to another. The

mechanisms by which this can occur are that either a neuron

fails to fire with its current cluster and fires with the next cluster or

the neuron fires with the previous cluster. This is exemplified by

the additional peaks in the interspike interval distribution shown in

Fig. 2(c). The correlation coefficient is relatively low on short time

scales and decreases significantly over long time scales since

neurons skip cycles or spike early due to fluctuations in drive to the

network (see Fig. 2(d)). As pictured in Fig. 2(e), on short timescales,

excitatory neuron spike times are weakly correlated between

clusters, before cycle hopping takes effect. We have found that

higher amplitude noise leads to more frequent switching of

neurons between clusters. In addition, as the number of clusters

increases, each individual cluster appears to be less stable and

neurons also hop from one cluster to the next more frequently. We

have considered architectures for which the cross correlations

between neurons decay more quickly due to sparser connectivity.

The main goal of our study, though, is to examine clustering as a

complementary mechanism to irregular input and random

Cluster States in Adapting Neuronal Networks
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connectivity for generating sparse firing. This can be contrasted

with the degradation of correlations between excitatory neurons

on fast timescales in [30], due to strong fluctuations and sparse

connectivity in their excitatory-inhibitory network.

Thus, the cluster state that arises in this biophysically based

network of spiking neurons appears to be a stable state that exists

over a large range of parameters. The essential ingredients are a

slow adapting current and inhibitory neurons that only fire when

driven by excitatory neurons.

Analysis of clustering mechanism in an idealized network
The key feature of the detailed biophysical model that makes

excitatory neurons susceptible to grouping into clusters is spike

frequency adaptation. Few studies have examined the effects of

adaptive mechanisms on the dynamics of synchronous states in

spiking networks. In a study of two coupled adapting Hodgkin-

Huxley neurons, their excitatory synapses transitioned from being

desynchronizing to synchronizing as the strength of their spike

frequency adaptation was increased [50]. In a related study, spike

frequency adaptation was shown to shift the peak of an idealized

neuron’s phase-resetting curve, creating a nearly stable synchro-

nous solution [51]. The effects of this on network level dynamics

were not probed, and, in general, studies of the effects of

adaptation on dynamics of large scale neuronal networks are fairly

limited. A large excitatory network with adaptation can exhibit

synchronized bursting, followed by long periods of quiescence set

by the adaptation time constant [52]. Spike adaptation must build

up slowly and be strong enough to keep neurons from spiking at

all. More aperiodic rhythms were studied in populations of

adapting neurons by [53], who showed the population frequency

could be predicted by the preferred frequency of a single adapting

cell. Adaptation has also been posed as a mechanism for disrupting

synchronous rhythms in [54], where increasing the conductance of

slow hyperpolarizing currents transitions a network to an

asynchronous state. There remain many open questions as to

how the strength and timescale of adaptive processes in neurons

contribute to synchronous modes at the network level.

We therefore proceed by studying several characteristics of the

cluster state as influenced by spike frequency adaptation. First, we

study how the period of a single neuron relates to the strength and

time scale of adaptation. Then, we find how these parameters bear

upon the number of clusters arising in the network of adapting

neurons with global inhibition. Approximate relations are derived

analytically and then compared to the results of simulations of (1)

as well as the Traub model.

Approximating the periodic solution and cluster number
with singular perturbation theory

We first present a calculation of the approximate period T of a

single adaptive neuron, uncoupled from the network. The singular

perturbation theory we use relies upon the fact that the periodic

solution is composed of three different regions in time: an initial

inner boundary layer; an intermediate outer layer; and a terminal

inner boundary layer. In this case, the initial and terminal

boundary layers correspond to what would be the back and front

of an action potential in a biophysical model of a spiking neuron,

such as the Traub model. The intermediate layer corresponds to a

refractory period imposed by the strong slow afterhyperpolarizing

current. An asymptotic approximation to the periodic solution is

pictured in Fig. 3, showing the fast evolution of h in boundary

layers and slow evolution in the outer layer. The slow timescale

arises due to the fact that ta&1, so we shall use the small

parameter E~1=ta in our perturbation theory. Key to our analysis

is the fact that the end of the outer layer comes in the vicinity of a

saddle-node bifurcation in the fast subsystem, determined by the h
equation (1a). It then turns out that, as a result, we must rescale

time to be t~O(E1=3) in the terminal boundary solution. Such an

approach has been studied extensively by Guckenheimer in the

Morris-Lecar and Hodgkin-Huxley neurons with adaptation, as

well as general systems that support canards of this type [55,56].

Nonetheless, we proceed by carrying out a similar calculation here

and use it to derive an approximate formula for the period of the

solution. We find that it matches the numerically computed

solution remarkably well. In addition, we can use the expression

for the period to explain why the number of clusters Nc arising in

the network (1), when compared to the adaptation time constant

ta, will scale as Nc!t2=3
a .

To initially approximate the interspike interval for a determin-

istically–driven adaptive neuron, uncoupled from the network

_hh~1{ cos hz(1z cos h)(I{bz),

_zz~{z=tazd(p{h),
ð2Þ

we shall use singular perturbation theory. In particular, we exploit

the fact that the adaptation time constant ta is large in comparison

to the membrane time constant of a spiking neuron. Guckenhei-

mer has carried out several other studies examining relaxation

oscillations and canards in the vicinity of fold singularities [55,56].

The usual approach is to decompose the full system into a fast and

slow part and then use standard methods of bifurcation analysis to

analyze constituent parts [57].

We are particularly interested in computing the approximate

form of a periodic solution. The details of this calculation are

carried out in Text S1. Our analysis exploits the fact that the fast

subsystem, defined by the h equation of the system (2), exhibits a

saddle-node on an invariant cycle (SNIC) bifurcation. Thus, we

have an approximate periodic solution that is split into two time

regions, one before the subsystem reaches the SNIC at time

t~TSN and the other after, so

h(t)~2 tan{1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I{bz0

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I{bz0

p
t{

p

2

� �h i
z

p

2

{ cos{1 I{bz0e{t=taz1

bz0e{t=taz1{I

� �
, t[(0,TSN ),

ð3Þ

and

h(t)~
2B

t
1=3
a

ffiffiffi
3
p

Ai0(B(TSN{t)=t1=3
a )zBi0(B(TSN{t)=t1=3

a )ffiffiffi
3
p

Ai(B(TSN{t)=t
1=3
a )zBi(B(TSN{t)=t

1=3
a )

,

t[(TSN ,T),

where the parameters z0 and B are defined in Text S1 while Ai
and Bi are Airy functions of the first and second kind. We plot this

solution along with numerical simulations in Fig. 4. The location

of the saddle-node bifurcation point of the fast subsystem

correlates biophysically to the end of the refractory period

imposed by the afterhyperpolarizing current. Notice that there is

a cusp at the point where the outer and terminal boundary

solution come together. In addition, the perturbative solution’s

phase h arrives at zero before the actual solution’s. This suggests

that there are finer scaled dynamics arising from the phase

variable being small in the vicinity of the saddle-node bifurcation

of the fast subsystem. Such effects could potentially be explored

with higher order asymptotics. For the purposes of this study, it

suffices to truncate the expansion to two terms. The resulting
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formulae can be utilized extensively in the explanation of network

dynamics.

In deriving our approximation to the periodic solution, we were

able to calculate a relatively concise formula relating the period of

the solution to the remainder of the parameters

T&ta ln
b

I
z1

� �
z

bt1=3
a tb

bzI
, ð4Þ

where tb is the minimal solution to

ffiffiffi
3
p

Ai({Btb)~{Bi({Btb), ð5Þ

such that tbw0 (see Text S1). We illustrate the accuracy of this

approximation over a wide range of adaptation time constants ta

in Fig. 5. The approximation is fairly accurate for a substantial

region of parameter space, but improves appreciably as ta and b
are increased.

We conclude our study of the periodic solution to (2) by using

our formula for the period (4) to roughly calculate the number of

clusters admitted by a network of adapting neurons with pulsatile

inhibitory coupling. This also provides us with an estimate of the

population spike frequency. Any inputs delivered to the neuron

during the initial or the outer layer stage of the solution, equation

(3), will have little or no effect on its firing time. During this

interval, the adaptation variable constrains the phase h so that it

simply relaxes back to the same point on the trajectory following a

perturbation. Once the terminal layer begins, the input is above a

threshold such that the phase can increase at an accelerating rate.

However, it is possible to hold the phase back with a negative

perturbation. A neuron that has already begun its terminal phase

when another cell spikes will always be forced to delay its own

spike. As a result, over time, in a network, clusters of neurons

would be forced apart to about the time length of the terminal

layer. Therefore, the number of clusters will be roughly

determined by the length of this terminal layer as compared with

the total length of the period

Nc&
ta ln b

I
z1

h i
z

bt1=3
a tb

bzI

tbt
1=3
a

~ ln
b

I
z1

� �
t2=3

a

tb

z
b

bzI
:

ð6Þ

Therefore, as the adaptation time constant increases, the number

of clusters will scale as Nc!t2=3
a . While our main interest in this

formula is its relationship to the adaptation time constant, there

Figure 4. Singular perturbative theory approximates numerically evolved solution of idealized model reasonably well. Comparison
of the singularly perturbed solution (grey) and the numerically evolved solution (black) of (2) when the adaptation time constant A ta~50 and B
ta~200. Vertical grey line denotes location of cusp, where a saddle-node bifurcation occurs in fast subsystem at time t&TSN (see Text S1). Other
parameters are I~1 and b~1.
doi:10.1371/journal.pcbi.1002281.g004

Figure 5. Period of the solution to the single adaptive theta neuron model. We compare the period as calculated by evolving (2)
numerically (black stars) against the analytically computed formula for period (4), derived using singular perturbation theory (grey line). A Period T
plotted versus adaptation time constant ta . B Length of terminal layer T{TSN plotted versus adaptation time constant ta . Input parameter I~1.
doi:10.1371/journal.pcbi.1002281.g005
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are also nonlinear relationships derived here between cluster

number and other parameters. We shall compare this formula

further with the predictions we calculate using weak coupling and

the phase-resetting curve. Since the perturbative solution ceases its

slow dynamics briefly before the numerical solution (see Fig. 4), we

expect that this asymptotic formula (6) approximating cluster size

may be a slight underestimate.

Nonetheless, it allows us to concisely approximate how the

population frequency depends on the adaptation time constant ta

as well as the cluster number Nc. Since each neuron spikes with a

period T given by equation (4) and there are Nc clusters of such

neurons, the frequency of populations spikes in the network are

given by

fp~
Nc

T
~

1

tbt
1=3
a

: ð7Þ

We plot this function versus ta as well as Nc in Fig. 6. Notice,

networks with neurons whose spike frequency adaptation have a

longer time constant support synchronous spiking rhythms with

lower frequencies, as in the Traub network (see Fig. 1). Also, by

our mechanism, as more clusters are added, the population

frequency decreases. This is due to the period of individual neuron

spiking scaling more steeply with adaptation time constant than

the cluster number.

We have identified general relationships between the adaptation

time constant and two quantities of the idealized spiking network

(1): the period of a single neuron and the cluster number of the

network. These relationships help characterize the behavior of the

cluster state in the adaptive network. In particular, the bifurcation

structure of the fast-slow formulation of the single neuron system

guides the identification of a t1=3
a timescale of the spike phase,

which evidently guides network level dynamics. Singular pertur-

bation theory is indispensable in making this observation.

Phase-resetting curve of an adapting neuron
As a means of studying the susceptibility of a single neuron to

synchronizing to input from the network, we shall derive the

phase-resetting curve of a neuron with adaptation. Biophysically,

the phase-resetting curve corresponds to the amount that brief

inputs to a tonically spiking neuron delay or advance the time of

the next spike. First, we make a change of variables

x~ tan (h=2) to the system (2), so the state of the neuron is

now described by the quadratic integrate and fire (QIF) model

with adaptation [58]

_xx~x2zI{bz,

_zz~{z=tazd(1=x):
ð8Þ

We show in Text S1 that by using a sequence of further changes

of variables, we are able to express the periodic solution to this

system in terms of special functions. As has been shown

previously, the solution to the adjoint equations of a system

that supports a limit cycle is the infinitesimal phase-resetting

curve (PRC) of the periodic orbit [59]. Therefore, with the

function form of x(t) in hand, we can derive the adjoint

equations by first linearizing the system (8) about the limit cycle

solution (x(t)zj(t),z(t)zf(t)) so

_jj~2x(t)j{f,

_ff~{f=ta:
ð9Þ

The adjoint equations, under the inner product

Su,vT~

ð T

0

u�(t)v(t)dt ð10Þ

will be

_pp~{2x(t)p, ð11Þ

_qq~pzq=ta: ð12Þ

Since x(t) is known, it is straightforward to integrate (11), to

solve for the first term of the adjoint

ln p~{2

ð t

0

x(s)ds:

By plugging in x~{ _yy=y (see Text S1), we find we can further

specify

p(t)~y(t)2,

where y(t) is given up to a scaling factor in Text S1.

Figure 6. Population frequency’s dependence upon cluster number. Plots showing the relationship of the population frequency fp given by
equation (7) to A the adaptation time constant ta and B the cluster number Nc for various values of input I . The frequency is given per
nondimensional unit of time.
doi:10.1371/journal.pcbi.1002281.g006
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It is now straightforward to plot the PRC of the QIF model with

adaptation. To our knowledge, this is the first exposition of an

analytic calculation of the PRC of the QIF model with adaptation.

Although, the bifurcation structure of more general QIF models

with adaptation has been analyzed in previous work by [60,61].

The exact period T can be computed using the right boundary

condition given in Text S1, which can then be used to determine

the initial condition for the adaptation variable

z0~
1

1{e{T=ta
:

We then must plot a function which involves a Bessel function of

imaginary order and imaginary argument

p(t)~A Im J2
ffiffi
I
p

i=E
2
ffiffiffi
�bb

p
i

E
e{Et=2

 !( ) !2

: ð13Þ

In Fig. 7, this is shown along with the numerically computed PRC,

where pulsatile inputs are applied at discrete points in a

simulation. Time is also normalized by the period T to yield the

phase variable w~t=T . We find an excellent match between the

two methods.

One can also derive a very accurate representation of the PRC

by numerically solving the adjoint equations (11) and (12). This is

also useful because Bessel functions with pure imaginary order and

argument are particularly difficult to approximate as the

magnitude of the order and argument become large. Accurate

asymptotic approximations for this class of special functions are

lacking, although [62] provides some useful formulae along these

lines. Thus, we compute the PRC using numerical solution of the

QIF system (8) and the adjoint equation (11), pictured in Fig. 8 for

several different ta values. Time is normalized here, as in Fig. 7, so

the phase variable w~t=T goes between zero and one. This also

eases comparison for different time constants ta. We find that, as

we would suspect from our singular perturbation theory

calculations, the region in which the neuron is susceptible to

inputs shrinks as ta increases. This skewed shape to the PRC has

been revealed previously in other studies of spiking models, where

adaptation currents were treated in alternative ways [51,63]. We

also compute the PRC for the theta model numerically using the

adjoint equations. To derive them, we linearize the system (2)

about the limit cycle solution (h(t)zh(t),z(t)zf(t)) so

_hh~( sin h(t))(1zbz(t){I)h{b(1z cos h(t))f,

_ff~{f=ta:

The adjoint equations, under the inner product (10) will be

_gg~( sin h(t))(I{1{bz(t))g, ð14Þ

_ww~b cos h(t)gzw=ta: ð15Þ

By solving (2) numerically, we can use the solution to then

numerically integrate (14) to solve for the first term of the adjoint

g, which is the PRC of the theta model. We show this alongside

the numerically calculated PRCs of the QIF model. Notice they

are quite alike, save for the theta model’s PRC being nonzero at

Figure 7. Exact phase resetting curve of quadratic integrate-
and-fire model with adaptation. Phase-resetting curve of the QIF
model calculated exactly by solving (8) for the periodic solution (grey
line) and numerically by applying pulsatile inputs to numerical
simulations of (8). Parameters are I~1, b~1, and ta~50.
doi:10.1371/journal.pcbi.1002281.g007

Figure 8. PRCs calculated numerically using the adjoint equation. PRCs calculated for the A QIF model with adaptation and B theta model
with adaptation as function of phase for various adaptation time constant ta values. For visualization purposes, the PRCs have all been normalized to
integrate to unity. Other parameters are I~1 and b~1.
doi:10.1371/journal.pcbi.1002281.g008
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w~1. In the theta model’s PRC, the change of variables

h~2 tan{1 x creates a discontinuity.

Therefore, as revealed by an analytic formula and numerical

method for computing the PRC, we find that spike frequency

adaptation creates a lengthy time window during which the

neuron is insensitive to inputs. As the time constant of adaptation

ta is increased, this window occupies more of the solution period.

With these formulations of the PRC in hand, we may carry out a

weak coupling analysis of the network to quantitatively study

predictions regarding solutions that emerge from instabilities of the

incoherent state.

Weak coupling theory predicts cluster number
Due to large scale spiking network models usually being

analytically intractable, a weak coupling assumption is commonly

used to study their resulting activity patterns. This allows the

reduction of each cell’s set of equations to a single one for the

phase [38]. Based on the averaging theorem, this reduction is valid

as long as parameters of the model are such that each unit

supports a limit cycle, their firing rates are not too heterogeneous,

and coupling between units is not too strong [15,59]. This also

allows us to place our work in the context of previous studies of

clustering in phase models [42–44].

Presuming the cells receive enough input to spontaneously

oscillate and that they are weakly coupled, we can reduce the

system to a collection of limit cycle oscillators [38]. Each oscillator

will have some constant frequency v~1=T , where we use the

period computed using the exact solution (see Text S1) for a

particular set of parameters. Thus, the network becomes

_hhj~vz
cw

N

XN

k~1

H(hj{hk)zjj ð16Þ

where H(h) is the coupling function attained by convolving the

PRC with the synaptic timecourse

H(h)~{

ð 2p

0

g(w’=2p)s(T(hzw’)=2p)dw’

~{
1

ts

ð 2p

0

g(w’=2p)e{T(hzw’)=2p=ts dw’,

ð17Þ

and j is a white noise process such that SjT~0 and

Sjj(s)jk(t)~2Ddijd(s{t). To analyze the system (16), we

consider the mean field limit N??. Mean field theory has been

used extensively to study (16) when H(h)~ sin h [64–66], but

much less so when H(h)= sin h [67,68]. Following such previous

studies, we can employ a population density approach where

oscillators are distributed in a continuum of phases r(h,t) so that

r(h,t)dh denotes the fraction of oscillators between h and hzdh at

time t. Thus, r is nonnegative, 2p-periodic in h, and normalized

ð 2p

0

r(h,t)dh~1, Vt§0:

Therefore, r evolves according to the Fokker-Planck equation

[64,65]

Lr

Lt
~D

L2r

Lh2
{

L
Lh

(rv), ð18Þ

where the instantaneous velocity v(h,t) of an oscillator is

v(h,t)~vzcw

ð 2p

0

H(h{h’)r(h’,t)dh’,

the continuum limit of vz
cw

N

X
H(hj{hk).

Now, in order to examine the effect that the phase-resetting

curve has upon the solutions to (16), the weak coupling

approximation to (1), we shall study instabilities of the uniform

incoherent state of (18), given by r0:1=(2p). It is straightforward

to check that this is indeed a solution by plugging it into (18). Since

this is always a solution, for all parameters, we can examine the

solutions that emerge when it destabilizes by studying its linear

stability. We will show that for D sufficiently large, the incoherent

state is stable, but as D is reduced, the solution destabilizes, usually

at a unique Fourier eigenmode. We begin by letting

r(h,t)~
1

2p
zEg(h,t),

where E%1. Expanding the continuity equation (18) to first order

in E, we arrive at an equation for the linear stability of the

incoherent state

Lg

Lt
~D

L2g

Lh2
{

L
Lh

1

2p
vzcw

ð 2p

0

H(h{h0)g(h0,t)dh0
	 


zg(vzcw
�HH)

� �
,

ð19Þ

where �HH~
Ð 2p

0
H(h)dh. Expressing g as a Fourier series

g(h,t)~
X?

n~{?

cn(t)einh,

and specifically taking cn(t)~elnt, we can compute the eigenvalue

ln of the nth mode of g using the spectral equation of the linear

system (19), so

(lnzDn2)einh~

{
L
Lh

1

2p
wzcw

ð 2p

0

H(h{h0)einh0dh0z(vzcw
�HH)einh

	 
� �
:

Applying the change of coordinates y~h{h’, we have a general

equation for the nth eigenvalue

lnzDn2~{in
1

2p
vzcw

ð 2p

0

H(y)e{inydy

	 

zvzcw

�HH

� �
:ð20Þ

We can evaluate the integral term by considering the Fourier

series expansion

H(y)~
X?
m~0

am cos (my)z
X?
m~1

bm sin (my) ð21Þ

so that

1

2p

ð 2p

0

H(y)e{inydy~
1

2p

ð 2p

0

an cos2 (ny){bn sin2 (ny)dy

~
1

2
½an{ibn�:
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Upon plugging this into (20), we find the eigenvalue associated

with the nth mode of g is related to the Fourier coefficients am,bm

of H by

ln~{Dn2{
ncwbn

2
zin vz2pcwa0{

cwan

2

� �
: ð22Þ

Thus, as D is reduced towards zero, the first eigenmode to

destabilize will be the one whose eigenvalue crosses from the left to

the right half of the complex plane first. Using equation (22), we

can identify this mode as the first n to have Reln~0 or

2D

cw

~{
bn

n
:

This corresponds to the n� for which {bn=n is maximal. For the

critical D value at which the first eigenvalue has positive real part,

we show plots of ln as a function of n for several different

parameters in Fig. 9. Notice that as the adaptation time constant

ta is increased, and other parameters are held fixed, the critical n
increases. As the synaptic time constant ts is increased and other

parameters are held fixed, the critical n decreases. We contrast this

with the case of excitatory coupling (cv0) in the system (1), where

the PRC is nonnegative. In this case, the critical n is fairly

insensitive to changes in the time constants, virtually always

predicting the n~1 mode becomes unstable first (not shown).

Therefore, our weak coupling calculation approximates the

number of clusters Nc for a given set of parameters using the

coupling function (17) with the Fourier expansion (21) so that

Nc~argmaxn[Zz {
bn

n

	 

: ð23Þ

To compare with our singular perturbation theory results, we

compute the approximate number of clusters using the weak

coupling assumption for pulsatile synapses. In the limit ts?0, the

coupling function becomes H(h)~{g(h=2p). Therefore, the

Fourier coefficients bn are calculated directly from the PRC of the

theta model. In Fig. 10, we plot the number of clusters Nc as a

function of ta, calculated using equation (23) along with the

asymptotic approximation to the number of clusters (see equation

(6)). Notice that the singular perturbation theory slightly

underestimates Nc as compared with weak coupling. This may

be due to the fact that the singular perturbative solution reaches

the saddle-node point slightly before the actual solution does,

underestimating the length of the quiescent phase of the PRC.

Nonetheless, both curves have a characteristic sublinear shape. We

show in Fig. 11 that the weak coupling Nc dependence upon ta

scales as a t2=3
a power law, just as predicted by singular

perturbative theory. Thus, even though our asymptotic approx-

imation (6) is an underestimate, it provides us with the correct

scaling for cluster number dependence upon adaptation time

constant. The same power law scaling is reflected in networks with

exponentially decaying synapses, as shown in Fig. 12. We plot

predictions based on our weak coupling assumption for ts=0. As

the synaptic time constant is increased, the number of clusters is

diminished, since feedback inhibitory inputs relax more slowly.

Therefore, we speculate an improved asymptotic approximation of

Figure 9. Eigenvalues associated with linear stability of incoherent state predict cluster number. Plots show real part of eigenvalues
Reln at the critical noise amplitude D at which the incoherent state destabilizes. A When the adaptation time constant is varied as ta~10,50,100,200,
the corresponding predicted number of clusters, in the weak coupling limit, is Nc~2,4,6,10 respectively given by (23). Synaptic time constant ts~1.
B When the synaptic time constant is varied as ts~0:1,1,10,100, the corresponding predicted number of clusters, in the weak coupling limit, is
Nc~7,6,4,3. Adaptation time constant ta~100. Other parameters are I~1, b~1, and cw~1.
doi:10.1371/journal.pcbi.1002281.g009

Figure 10. Weak coupling and singular perturbation approx-
imations of cluster number. Cluster number Nc approximations
comparison between that given by weak coupling (black stars) –
equation (23) – and that given by singular perturbative approximation
(grey line) – equation (6). For purposes of comparison, we use pulsatile
coupling (ts?0) for weak coupling approximation. Other parameters
are I~1 and b~1.
doi:10.1371/journal.pcbi.1002281.g010
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cluster number that accounts for synaptic timescale might include

an inverse dependence upon ts.

Comparing numerical simulations to theoretical
predictions of clustering

In this section, we present results of numerical simulations of the

idealized network (1) of theta neurons with global inhibition and

adaptation. In addition, we compare the scaling law predicted for

the idealized model to the number of clusters arising in numerical

simulations of the more detailed Traub model. We find that the

qualitative predictions of our singular perturbation theory and

weak coupling approximations are reflected in the dependence of

the state of the network on model parameters. The quantitative

relationship between adaptation time constant and cluster number

is sensitive to the strength of global inhibitory feedback c, holding

for small values only. One would expect this, since approximations

were made considering weak coupling.

In Fig. 13, we show the results of simulations for various

adaptation time constants in the case of pulsatile synapses (ts?0).

As predicted by the formulae of both our singular perturbation

theory approximation (6) and weak coupling assumption (23),

cluster number increases sublinearly with adaptation time

constant. Notice in Fig. 13(c), when there are seven clusters,

neurons of each cluster do not spike in as tight of a formation as

can be found in simulations with four and six clusters. We

conjecture that this is due to fewer neurons participating in each

cluster and so less global inhibition is recruited each time a set of

neurons fires. This smears the boundary between each cluster. In

Fig. 14, we show the results of simulations in the case of

exponentially decaying synapses with time constant ts~1. As

predicted by our weak coupling analysis, the smoothing of the

synaptic signal leads to there being fewer clusters on average for a

particular ta value. Notice in both the pulsatile and exponential

synapse cases, as the number of clusters increases, the interspike

intervals are prolonged, as predicted by our approximation of the

period (4). Therefore, the resulting frequency of population activity

decreases, on average, with ta.

To quantitatively compare our theoretical predictions with

numerical simulations of (1), we plot the minimal ta necessary to

generate the number of clusters Nc for each method. Theoretical

calculations include both the singular perturbation approach (6)

and the weak coupling approximation (23). The points we then

Figure 11. Cluster number computed using weak coupling scales as ta
2=3. Cluster number Nc computed using weak coupling formula (23)

scales as t2=3
a power law for pulsatile coupling (ts?0). Points (ta,Nc) having minimal adaptation time constant ta predicting the given cluster number

Nc (black stars) calculated with equation (23). A power law function c1t2=3
a zc2 (grey line) is fit to these points using a least squares method (see

Methods). (Inset) The L1 residual R(p) of least squares fits of the points (ta,Nc) using the function c1tp
azc2 plotted for p[(0,1� (see Methods). Notice

the minimum of R(p) is very close to p~2=3.
doi:10.1371/journal.pcbi.1002281.g011

Figure 12. Dependence of cluster number on synaptic time
constant. Cluster number Nc computed as a function of ta for various
synaptic time constants ts using (23) the weak coupling formula (black
stars) and fit to formula c1t2=3

a zc2 (grey lines) using least square
method (see Methods).
doi:10.1371/journal.pcbi.1002281.g012
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plot in Fig. 15 correspond to the first value of ta whose median

cluster number is larger than the median for the previous ta value

(see Methods). Remarkably, the theoretical calculation using the

weak coupling approach give a reasonable approximation to the

behavior of the simulations. Comparing the result of pulsatile

versus exponentially decaying synapses, the increase in Nc with ta

is clearly larger for the pulsatile synapse case. This can be

contrasted with the results of van Vreeswijk, who found in

simulations of inhibitory integrate and fire networks that median

cluster number increased with synaptic timescale [47]. One

particular aspect of simulations of the full model (1) that may

escape our theoretical formulae (6) and (23) is the effect of different

synaptic strengths. To produce fairly well resolved clusters, it was

necessary to take c~O(1), not very weak. Additionally, as the

number of clusters increases, the strength of inhibitory impulses

decreases. Both of these facts may bear upon potential cluster

number and account for the nonlinear shape of the numerically

developed relationship between Nc and ta.

Finally, we return to the original detailed biophysical model to

compare the predictions of cluster scaling made in the idealized

model. Exchanging the idealized adaptation time constant ta for

the time constant for calcium dynamics in the Traub model, tCa,

we examine how well the scaling Nc!t
2=3
Ca holds in numerical

simulations of the detailed model. We use the same method as that

employed for the idealized model to identify the minimal tCa at

which a certain number of clusters appears (see Methods). Our

results are summarized in Fig. 16 and show that, in fact, cluster

number does approximately follow the adaptation time constant

scaling predicted from the idealized model. This makes sense,

since one can relate the Traub model to the idealized theta model

using a normal form reduction, so their phase-resetting properties

will be similar to a first approximation [38]. The quiescence

invoked by strong adaptation will lead to sharp narrow peaks in

the PRC for the Traub model (as shown for the idealized model in

Fig. 8(b)). Therefore, our analysis of the theta model leads to an

excellent prediction of the effects of adaptation upon the cluster

state in the network of Traub neurons.

Discussion

In this paper, we have studied the formation of cluster states in

spiking network models with adaptation. We theorize clustering

may be an alternative, or at least contributing, mechanism for the

sparse firing of pyramidal cells during gamma rhythms [12].

Sparse gamma rhythms may, therefore, not rely solely upon the

effects of input and connectivity heterogeneities [30]. Besides spike

frequency adaptation, the other essential property for the

formation of clusters in the network is feedback inhibition.

Empirically, we observe the number of clusters increases with

the time constant of adaptation in a detailed biophysical spiking

network and a more idealized model. We can carry out a number

of analytical calculations on the idealized model that help uncover

the mechanisms of clustering. Results of a singular perturbative

approximation of a single neuron’s periodic spiking solution

Figure 13. Numerical simulations of idealized network with pulsatile coupling reveal clustering. Cluster states in idealized network (1)
with pulsatile coupling (ts?0). The number of clusters increases sublinearly with adaptation time constant: A ta~30, four clusters; B ta~60, six
clusters, C ta~90, seven clusters. Other parameters are I~1, b~1, c~1, s~0:02.
doi:10.1371/journal.pcbi.1002281.g013

Figure 14. Numerical simulations of idealized network with exponentially decaying synapses reveal clustering. Cluster states in
idealized network (1) with exponentially decaying synapses with time constant ts~1. Increasing ta leads to fewer clusters than in the pulsatile
synapse case: A ta~30, three clusters; B ta~90, six clusters; C ta~150, nine clusters. Other parameters are I~1, b~1, c~1, s~0:02.
doi:10.1371/journal.pcbi.1002281.g014
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confirm that adaptation with longer timescales will shorten the

relative length of time a neuron is susceptible to inputs. This is

revealed in a compact expression (4) relating the period of the

neuron to parameters. In particular, we can estimate the number

of clusters Nc generated in the network for a particular value of

adaptation time constant ta and find they will scale as Nc!t2=3
a .

We then compare this result to a formula that can be derived in

the context of a phase model, where, incidentally, the phase-

resetting curve can be computed exactly. In the weak coupling

limit, the number of clusters is related to the Fourier modes of the

phase-resetting curve. In fact, we can fit the number of clusters to a

t2=3
a power law. These results are confirmed in simulations of the

full idealized model (1) and are well matched to simulations of the

detailed biophysical model.

Our results suggest a number of experimentally testable

predictions. We have suggested that clustered states may be an

organized synchronous state capable of generating sparse gamma

rhythms [1]. Rather than a rhythm generated by a balanced

network containing neurons with driven by high amplitude noise

[30], gamma may be a rhythm generated by slow excitatory

neurons that cluster into related groups temporarily but dissociate

from one another after some length of time. This could be probed

using multiunit recordings to look for clustering of pyramidal

neurons on short timescales. Large networks that exhibit clustering

may do so through this combination of adaptation and inhibition.

This suggests that it may be possible to identify in vitro or in vivo

clustering that depends upon spike frequency adaptation by

examining the effects of curtailing calcium dependent potassium

currents using cadmium, for example [69]. Our model suggests

weakening spike frequency adaptation should lead to a decrease in

cluster number. In addition, there are a growing number of ways

to experimentally measure the PRC of single neurons [63,70].

Since pyramidal cells are known to often possess adaptation

currents, it may be possible to study the ways in which modulation

of those currents’ effects bears on a neuron’s associated PRC. Our

analysis indicates that stronger and slower spike frequency

adaptation leads to PRCs with a steep peak at the end. Thus,

different aspects of the cluster state shown here may be studied

experimentally in several ways.

Clustering through intrinsic mechanisms may in fact be a way

for networks to generate cell assemblies spontaneously [71]. If

clustering is involved in the processing of inputs, shifting neurons

from one cluster to another might disrupt the conveyance of

some memory or sensation [10,14]. In more specific networks,

underlying heterogeneous network architecture may provide an

additional bias for certain neurons to fire together. Alternatively,

cell assemblies may be formed due to bias in the input strength to a

Figure 15. Comparison of cluster number relationship to adaptation time constant in theory and numerical simulations in idealized
model. Minimal ta value at which Nc clusters appear in network, a comparison of theory and numerical simulations. Solid grey lines denote theory
predicted by weak coupling analysis (fit using least squares approach in Methods). A Pulsatile synapses, as predicted by singular perturbation theory
(dashed grey) and weak coupling (solid grey); compared with numerical simulations (black stars). B Exponential synapses with ts~1. Other
parameters are I~1, c~1, b~1.
doi:10.1371/journal.pcbi.1002281.g015

Figure 16. Comparison of cluster number relationship to
calcium time constant in theory and numerical simulations in
Traub model. Minimal tCa value at which Nc clusters appear in the
Traub network. We fit data gathered from numerical simulations (black
stars) to two different power functions using a least square method (see
Methods). Notice, the least squares fit to c1t

2=3
Ca zc2 (grey solid) is much

better than the fit to a linear function c1tCazc2 (dashed black).
Predictions of cluster scaling (Nc!t2=3

a ) derived for our idealized model
(1) carry over with impressive accuracy to simulations of a detailed
biophysical model. Connectivity parameters are gee~0:02, gei~0:8,
gie~0:8, gii~0:1 (see Methods for other parameters).
doi:10.1371/journal.pcbi.1002281.g016
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recurrent excitatory-inhibitory network, as shown in [49]. They

found that the inclusion of hyperpolarizing current could generate

slow rhythms in the excitatory neurons with increased input. Our

model does rely on a hyperpolarizing current but does not require

a heterogeneity in the input. Also, each assembly possesses its own

beta rhythm whereas the entire network possesses a gamma

rhythm.

In the future, it would be interesting to pursue a variety of the

theoretical directions suggested by our results. The singular

perturbation calculation follows along the lines of a few previous

studies of canards in the vicinity of fold singularities [55–57,72].

Carrying out an even more detailed study of the bifurcation

structure of the fast-slow system of the single neuron (2) may allow

for a more exact calculation of how the period relates to the

parameters. In particular, we may be able to compute the

dynamics of relaxation time in the vicinity of the bottleneck near

the saddle-node bifurcation of the fast system (see Fig. 3). We could

also extend this calculation to other idealized spiking models with

adaptation such as Morris-Lecar [55] or the quartic integrate and

fire model [60]. In addition, we have considered examining the

types of dynamics that may result in inhibitory leaky integrate and

fire networks with adaptation. Excitatory integrate and fire

networks have previously been shown to support synchronized

bursting when possessing strong and slow enough adaptation [52].

It has also been shown that inhibitory integrate and fire networks

without adaptation support clustering in the case of alpha function

synapses [47]. In preliminary calculations, we find that a single

integrate and fire neuron with strong and slow adaptation does not

have the same steep peaked PRC as the theta model, due to there

being no spike signature in the model. Therefore, it may not

support clustered states through the same mechanism as the

system we have studied. We have also mentioned that clustering

arises in the network (1) through the application of a homogenous

deterministic current with some additive noise. Therefore,

applying an input with more temporal structure, for example at

the frequency of the network or individual neurons, may lead to

interesting variations of the clustered state. Finally, we seek to

study other potential negative feedback mechanisms for generating

clusters. In a large competitive spiking network, it may be possible

for a subset of neurons to suppress the rest until synaptic

depression exhausts inhibition. Multistable states supported with

such mechanisms have been shown in small spiking networks

[73,74], but theory has yet to be extended to large scale

synchronous states like clustering.

Supporting Information

Text S1 Singular perturbation theory and exact calculation of

periodic solution to idealized spiking model with adaptation.

(PDF)
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