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Abstract

Array-based comparative genomic hybridization (Array-CGH) is an important technology in molecular biology for the
detection of DNA copy number polymorphisms between closely related genomes. Hidden Markov Models (HMMs) are
popular tools for the analysis of Array-CGH data, but current methods are only based on first-order HMMs having
constrained abilities to model spatial dependencies between measurements of closely adjacent chromosomal regions. Here,
we develop parsimonious higher-order HMMs enabling the interpolation between a mixture model ignoring spatial
dependencies and a higher-order HMM exhaustively modeling spatial dependencies. We apply parsimonious higher-order
HMMs to the analysis of Array-CGH data of the accessions C24 and Col-0 of the model plant Arabidopsis thaliana. We
compare these models against first-order HMMs and other existing methods using a reference of known deletions and
sequence deviations. We find that parsimonious higher-order HMMs clearly improve the identification of these
polymorphisms. Moreover, we perform a functional analysis of identified polymorphisms revealing novel details of
genomic differences between C24 and Col-0. Additional model evaluations are done on widely considered Array-CGH data
of human cell lines indicating that parsimonious HMMs are also well-suited for the analysis of non-plant specific data. All
these results indicate that parsimonious higher-order HMMs are useful for Array-CGH analyses. An implementation of
parsimonious higher-order HMMs is available as part of the open source Java library Jstacs (www.jstacs.de/index.php/
PHHMM).
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Introduction

In recent years, the method of array-based comparative

genomic hybridization (Array-CGH) [1–5] has been widely

applied for the detection of DNA copy number polymorphisms

between closely related genomes. Most Array-CGH studies have

their focus in cancer research for the genome-wide identification of

deletions and amplifications of genomic regions in tumor

compared to healthy tissue [6–10]. With the availability of the

genome sequence of the accession Columbia (Col-0) of the model

plant Arabidopsis thaliana [11], studies comparing the genomes of

different accessions have been performed using the Array-CGH

approach to analyze evolutionary processes and phenotypic

features at a molecular level [12–17]. All these studies require

efficient bioinformatics methods for the precise identification of

copy number polymorphisms from Array-CGH data.

Over the last years, a large number of different methods for the

identification of copy number polymorphisms from Array-CGH

data have been developed including approaches based on

Gaussian mixture models [18], circular binary segmentation

[19–21], genetic local search algorithms [22,23], dynamic

programming [24–26], hierarchical clustering [27], sparse Bayes-

ian learning [28], variational methods [29,30], smoothing

techniques [31–34], regression models [35,36], or wavelets

[37,38]. In-depth contributions to the comparison of different

methods have been made by two studies [39,40]. Selected well-

performing methods have been made publicly available by

webservers [41–44].

Despite these different methods, the identification of copy

number polymorphisms by methods based on Hidden Markov

Models (HMMs) is very popular [45–61] providing a natural way

for modeling genomic spatial dependencies present in Array-CGH

data. Most of these HMM -based methods use three up to six

states with specific Gaussian emission densities for the modeling of

Array-CGH measurements. Greater differences exist in learning

principles used for adapting models to data. The Baum-Welch

algorithm [62–65] has been used in [47,48,56,59,61] for

estimating the parameters of the HMM by maximizing the

likelihood without integrating prior knowledge on the distribution

of Array-CGH measurements. Due to specific model extensions,

numerical estimations of the likelihood have been considered in

[50,51]. Bayesian approaches using Markov Chain Monte Carlo

simulations have been developed in [52–55,58], a numerical

Bayesian estimation has been applied in [57], and a Bayesian

PLoS Computational Biology | www.ploscompbiol.org 1 January 2012 | Volume 8 | Issue 1 | e1002286



Baum-Welch algorithm has been utilized in [60]. All these

Bayesian approaches enable the integration of prior knowledge

on the distribution of Array-CGH measurements for improving

the identification of copy number polymorphisms.

A characteristic of all these HMMs is that they are based on the

mathematical theory of standard first-order HMMs [65,66]. This

leads to a common limitation that all these HMMs can only model

dependencies between Array-CGH measurements of two directly

adjacent chromosomal regions. Yet, no attention has been paid to

higher-order HMMs enabling the modeling of dependencies

between a chromosomal region and its most recent predecessors

that are clearly present in Array-CGH data (e.g. Figure 1).

In contrast to the broad usage of first-order HMMs in applied

sciences [66–68], published applications of higher-order HMMs

are relatively rare, but they have been demonstrated to be

powerful extensions of first-order HMMs for several applications

including speech recognition [69–76], image segmentation [77–

79], robotic [80], handwriting recognition [81], or DNA and

protein sequence analysis [82–85]. Extensions of the mathematical

theory of first-order HMMs to higher-order HMMs are compre-

hensively described in [86–89]. The improved modeling of spatio-

temporal dependencies by higher-order HMMs is realized by a

more complex state-transition process defined on the basis of a

higher-order Markov model reviewed in [90]. A limitation of this

improved modeling is the exponential increase of transition

parameters with increasing model order requiring growing

amounts of data and computational resources for model training

and evaluation. This has generally limited the usage of large model

orders. Consequently, most existing studies have only focused on

second-order HMMs [69–73,78,80,82,84].

To enable the usage of improved modeling characteristics of

greater model orders by simultaneously overcoming the exponen-

tial increase of transition parameters, a fast incremental training

has been developed in the domain of speech recognition [87,91].

This heuristic algorithm iteratively increases the model order by

only including transition parameters that are required for the

representation of the training data. That has led to higher-order

HMMs with reduced model complexities [87,91,92] and to mixed-

order HMMs [93–95] reaching improved results in speech

recognition in comparison to first-order HMMs and standard

higher-order HMMs. In addition, a variable-length HMM has

been developed to improve the modeling of motion capture data

[96,97]. The state-transition process of this model is defined by a

variable memory Markov chain for which the transition

parameters are determined by a minimum entropy criterion

integrated into an extended Baum-Welch training. However, since

implementations of both approaches for reducing the number of

transition parameters are not publicly available and since

algorithmic extensions would be necessary to enable the

integration of prior knowledge, these models cannot directly be

utilized for the analysis of Array-CGH data.

Here, we develop the novel model class of parsimonious higher-

order HMMs enabling the interpolation between a mixture model

ignoring spatial dependencies and a higher-order HMM exhaus-

tively modeling spatial dependencies between measurements of

closely adjacent chromosomal regions. This interpolation is

realized by incorporating a dynamic programming approach

[98,99] into a specifically developed Bayesian Baum-Welch

training algorithm enabling the integration of prior knowledge

and a data-dependent reduction of transition parameters. Based

on that interpolation, a parsimonious higher-order HMM can

effectively model spatial dependencies between measurements of

closely adjacent chromosomal regions.

In an in-depth case study with the model plant Arabidopsis

thaliana, we apply parsimonious higher-order HMMs to compare

the genomes of the accessions C24 and Col-0 based on a publicly

available Array-CGH data set. This enables the identification of

DNA polymorphisms (deletions or sequence deviations, amplifi-

cations) in C24 with respect to the reference genome of Col-0 [11].

We evaluate and compare parsimonious higher-order HMMs

Figure 1. Spatial dependencies of measurements in Array-CGH
profiles of Arabidopsis thaliana. The partial autocorrelation function
characterizes spatial dependencies between measurements of adjacent
chromosomal regions (tiles) in Array-CGH profiles. This function has
been computed for the five chromosome-specific Array-CGH profiles by
[103] comparing the genomes of the Arabidopsis thaliana accessions
C24 and Col-0. The red curve represents the weighted mean partial
autocorrelation function of the original Array-CGH profiles for
increasing chromosomal distance of adjacent tiles in steps of 0.35 kb.
The black curve represents mean values and standard deviations (both
close to zero) of the mean weighted partial autocorrelation function for
randomly permuted measurements in each of the five original Array-
CGH profiles across 100 repeats. The significant presence of spatial
dependencies of measurements in the Array-CGH profiles (red)
compared to permuted profiles (black) motivates the modeling of such
dependencies for the analysis of Array-CGH data.
doi:10.1371/journal.pcbi.1002286.g001

Author Summary

Array-based comparative genomics is a standard approach
for the identification of DNA copy number polymorphisms
between closely related genomes. The huge amounts of
data produced by these experiments require efficient and
accurate bioinformatics tools for the identification of copy
number polymorphisms. Hidden Markov Models (HMMs)
are frequently used for analyzing such data sets, but
current models are based on first-order HMMs only having
limited capabilities to model spatial dependencies be-
tween measurements of closely adjacent chromosomal
regions. We develop parsimonious higher-order HMMs
enabling the interpolation between a mixture model
ignoring spatial dependencies and a higher-order HMM
exhaustively modeling these dependencies to overcome
this limitation. In an in-depth case study with Arabidopsis
thaliana, we find that parsimonious higher-order HMMs
clearly improve the identification of copy number poly-
morphisms in comparison to standard first-order HMMs
and other frequently used methods. Functional analysis of
identified polymorphisms revealed details of genomic
differences between the accessions C24 and Col-0 of
Arabidopsis thaliana. An additional study on human cell
lines further indicates that parsimonious HMMs are well-
suited for the analysis of Array-CGH data.

Parsimonious Higher-Order HMMs for Array-CGH
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against standard first-order HMMs and other existing methods by

making use of deletions or sequence deviations identified in an

independent array-based resequencing experiment of C24

[100,101]. Moreover, we perform a functional analysis of

identified genomic differences revealing novel details of differences

between C24 and Col-0, and we also consider widely used human

cell lines [102] for additional model comparisons.

Materials and Methods

In the materials part of this section, the Arabidopsis Array-

CGH data set comparing the genomes of C24 and Col-0 is

introduced and candidate regions of deletions or sequence

deviations for model evaluation determined by an independent

public resequencing experiment are considered. The model class

of parsimonious higher-order HMMs is developed in the methods

part of this section.

Materials
In this section, the Arabidopsis Array-CGH data set is

introduced and candidate regions of deletions or sequence

deviations for model evaluation identified in resequencing data

are considered.

Arabidopsis Array-CGH data. An Array-CGH data set by

[103] (GEO accession: GSM611097) comparing the genomes of

the accessions C24 and Col-0 of the model plant A. thaliana is used

to investigate the identification of DNA polymorphisms (deletions

or sequences deviations, amplifications) by different methods. This

data set was measured on a NimbleGen tiling array representing

the five chromosomes of the Col-0 reference genome [11] by

364,339 genomic regions (tiles). The length of each tile is about

60 bp. All tiles on the array are spaced nearly equidistantly along

the chromosomes with a mean distance of about 350 bp between

two adjacent tiles. Lengths of single-stranded DNA segments

hybridized to this array were in the range of 300 bp up to 900 bp.

The tiling array was processed using the NimbleScan software

resulting in normalized measurements.

The measurement of tile t on chromosome k is given by the log-

ratio ot(k) : ~ log2 (C24k,t=Col{0k,t) in dependency of the

corresponding measured accession-specific fluorescent intensities

C24k,t and Col{0k,t. All log-ratios belonging to a chromosome

k[f1, . . . ,K~5g are summarized in an Array-CGH profile

~oo(k)~(o1(k), . . . ,oTk
(k)) with Tk log-ratios represented in in-

creasing order of the chromosomal locations of tiles.

Spatial dependencies between log-ratios on chromosomes are

characterized in Figure 1. Tiles in close chromosomal proximity

are highly correlated indicating that they have very similar

measurements. These spatial dependencies between measurements

of tiles in close chromosomal proximity (less than 5 kb) are most

likely caused due to the lengths of single-stranded DNA fragments

hybridized to the tiling array. Since the spacing between directly

adjacent tiles on a chromosome is about 350 bp and because

typically hybridized DNA fragments are having lengths up to

900 bp, it is expected that tiles in close chromosomal proximity are

having very similar measurements.

The distribution of log-ratios in the Array-CGH data set is

shown in Figure 2a. Most of the tiles have log-ratios close to zero

as expected for unchanged genomic regions between C24 and

Col-0. A smaller proportion of tiles has log-ratios much smaller

than zero as expected for deletions or sequence deviations for

genomic regions in C24 compared to the corresponding regions in

Col-0. Only a very small proportion of tiles has log-ratios much

greater than zero as expected for amplifications of genomic regions

in C24 in comparison to Col-0. The asymmetry of the log-ratio

distribution is caused by the design of the tiling array exclusively

representing genomic regions of the reference genome of Col-0

[11].

Arabidopsis resequencing data. An array-based Affyme-

trix resequencing experiment of C24 was performed in [100] for

identifying single nucleotide polymorphisms and long stretches of

deletions or sequence deviations. This experiment was further

processed in [101] by the developed mPPR algorithm resulting in

candidate regions of deletions or sequence deviations in C24 with

respect to the reference genome sequence of Col-0 [11]. The

identified candidate regions of deletions or sequence deviations

have additionally been evaluated in [101] by comparisons against

available sequence data and known deletions. This clearly

indicated that these candidate regions are also present in other

data sets. Thus, this data set provides a useful resource for the

evaluation of deletions or sequence deviations identified by

different models in the Array-CGH data set.

We used the determined candidate regions of deletions or

sequence deviations from the resequencing experiment to identify

each tile in the Array-CGH data set for which at least 75% of its

nucleotides (§45 bp of 60 bp) are covered by candidate regions.

This results in 11,025 tiles labeled as candidates for deletions or

sequence deviations among the 364,339 tiles in the Array-CGH

data set. As expected for potential deletions or sequence deviations

in C24, most of these labeled tiles have log-ratios much less than

zero in the Arabidopsis Array-CGH data set (Figure 2b). This

indicates that deletions or sequence deviations determined in [101]

are clearly present in the Arabidopsis Array-CGH data set and

suggests that these candidate regions are useful for model

evaluations.

Methods
This section provides the basics of parsimonious higher-order

HMMs. In the following, these models are introduced, a prior

distribution for integrating prior knowledge into the training is

specified, a model-specific Bayesian Baum-Welch training algo-

rithm is developed, and details to the parameter initialization are

given. Finally, a link to related work is given.

Parsimonious higher-order Hidden Markov Models. A

parsimonious higher-order HMM with three states S : ~
f{,~,zg and Gaussian emissions is used for the analysis of

Array-CGH profiles. Under consideration of the distribution of

log-ratios in Array-CGH data (e.g. Figure 2a), the three states are

defined to represent the following DNA polymorphisms. State ‘{’

models deletions or sequence deviations with log-ratios much

smaller than zero, state ‘~’ models unchanged regions with log-

ratios close to zero, and amplifications with log-ratios much

greater than zero are modeled by state ‘z’. In contrast to other

HMM -based methods like [48,50,52,55], the states of the

parsimonious higher-order HMM are not explicitly modeling

specific genomic copy numbers, but the states are covering a broad

range of state-specific log-ratios by making use of flexible Gaussian

emission densities.

Each state i [S is characterized by a Gaussian emission density

bi(ot) : ~1=(
ffiffiffiffiffiffi
2p
p

si)exp({0:5(ot{mi)
2=s2

i ) with state-specific

mean mi [R and standard deviation si [Rz for modeling a log-

ratio ot [R. All emission parameters are summarized in the matrix

B : ~(mi,si)i[S .

The state underlying a chromosomal region t with correspond-

ing log-ratio ot is denoted by qt[S. A state sequence ~qq : ~
(q1, . . . ,qT ) belonging to an Array-CGH profile~oo : ~(o1, . . . ,oT )
is assumed to be modeled by a parsimonious Markov model of

order L [98,99]. This Markov model realizes the state-transition

processes of the parsimonious higher-order HMM. The state-

Parsimonious Higher-Order HMMs for Array-CGH
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transition process is similar to that of a higher-order HMM [89]

additionally enabling a data-dependent sharing of transition

parameters for state-transitions from specific state-contexts.

In more detail, the state-transition process of a parsimonious

HMM of order L§1 is defined by an initial state distribu-

tion ~pp : ~(pi)i[S with initial state probability pi [ (0,1) fulfill-

ing
P

i[S pi~1 and a set of L transition matrices A : ~

fAt1
, . . . ,AtL

g. Each transition matrix Atl
[A is defined on the

basis of a state-context tree tl subdividing the product set of state-

contexts Sl : ~f(s1, . . . ,sl) : s1 [S, . . . ,sl [Sg into disjoint sets of

equivalent state-contexts. A specific set of equivalent state-contexts

of tl is denoted by j. All state-contexts i [ j are assumed to share

the identical transition probability ajj for a transition from each

state-context in j to a next state j[S. Thus, the parsimonious

representation of state-contexts by sets of disjoint equivalent state-

contexts reduces the total number of transition parameters of the

model. Hence, the transition matrix Atl
: ~(ajj)j[tl ,j[S is defined

by corresponding transition probabilities ajj[(0,1) fulfillingP
j[S ajj~1.

Generally, the transition matrix Atl
with l [ f1, . . . ,L{1g is

used for the transition from the current state ql to the next state

qlz1 in dependency of the predecessor states q1, . . . ,ql{1, while

the transition matrix AtL
is used for the transition from qt to qtz1

under consideration of the predecessor states qt{Lz1, . . . ,qt{1 for

all t§L.

Exemplarily, three different types of state-context trees

underlying a transition matrix At2
are illustrated in Figure 3.

The completely fused tree (Figure 3a) assigns all state-contexts to

one leaf node, the complete tree (Figure 3c) represents each state-

context in a separate leaf node, and the parsimonious tree

(Figure 3b) groups selected state-contexts together resulting in less

leaf nodes than in a complete tree.

Completely fused trees are the basis for a mixture model of

Gaussian densities (HMM of order zero) that does not model

spatial dependencies between log-ratios in Array-CGH profiles.

Complete trees are underlying a higher-order HMM exhaustively

modeling spatial dependencies. Parsimonious trees provide the

basis for a parsimonious higher-order HMM interpolating

between a mixture model and a higher-order HMM. This

interpolation poses the problem of selecting optimal state-context

trees for an HMM. For a fixed set of states, the number of different

state-context trees grows super-exponentially for increasing model

order (Figure S1 in Text S1). Thus, each existing state-context tree

cannot be analyzed separately. To overcome this, we compute

optimal state-context trees by an efficient dynamic programming

approach [98,99] that has been incorporated into the Bayesian

Baum-Welch training algorithm of the parsimonious higher-order

HMM.

For identifying DNA polymorphisms in an Array-CGH profile,

an extension of the standard state-posterior decoding algorithm

[65] is used to compute the state-posterior probability

ct(i) : ~P½qt~ij~oo,l� for quantifying the potential of a chromo-

somal region t to be represented by a state i[S. Details to the state-

posterior decoding and the computation of state-posterior

probabilities for a parsimonious HMM are given in [89]. The

state-posterior probabilities are used to rank log-ratios according

to their tendency of being modeled by a specific state of the model

(e.g. state ‘{’ with respect to known deletions or sequence

deviations from independent validation data). Additionally, these

state-posterior probabilities can also be used to perform a decoding

of individual measurements in an Array-CGH profile into the

discrete states of the model by assigning the most likely state to

each chromosomal region in an Array-CGH profile.

In summary, the parameters of the parsimonious higher-order

HMM are denoted by l : ~(~pp,A,B) and the three-state

architecture of this model is illustrated in Figure S2 in Text S1.

Prior distribution. A problem-specific characterization of

the parameters of a parsimonious higher-order HMM l is

achieved by integrating prior knowledge about Array-CGH

profiles into the training. This is realized by specifying a prior

Figure 2. Characteristics of the Arabidopsis thaliana Array-CGH data set. a) Distribution of log-ratios measured for genomic regions in the
Array-CGH data set by [103] comparing the genomes of the Arabidopsis thaliana accessions C24 and Col-0. The log-ratio of a genomic region
characterizes changes in copy numbers (deletions or amplifications) or sequence deviations of this region in C24 in comparison to Col-0. Unchanged
genomic regions between C24 and Col-0 have log-ratios close to zero. Deletions or sequence deviations of genomic regions in C24 have log-ratios
much smaller than zero. Amplifications of genomic regions in C24 have log-ratios much greater than zero. b) Distribution of log-ratios of genomic
regions (tiles) in the Array-CGH data set covered to at least 75% (§45 bp of 60 bp) by candidate regions of deletions or sequence deviations
identified in [101] based on Affymetrix array-based resequencing data [100]. The large proportion of highly negative log-ratios indicates that these
candidate regions are also present in the Array-CGH data set. Tiles covered by such candidate regions provide a useful resource for evaluating the
identification of deletions or sequence deviations in the Array-CGH data set by different methods.
doi:10.1371/journal.pcbi.1002286.g002

Parsimonious Higher-Order HMMs for Array-CGH
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distribution

P½ljH� : ~D1(~ppjH1):D2(AjH2):D3(BjH3) ð1Þ

for the parameters of the HMM l : ~(~pp,A,B) in dependency of

the hyper-parameters H : ~(H1,H2,H3). This prior is defined to

be a product of independent priors for the initial state distribution

~pp, the set of transition matrices A, and the emission parameters B.

A conjugate prior distribution is chosen for each class of model

parameters enabling the analytical parameter estimation during

the training of a parsimonious higher-order HMM.

The prior distribution D1(~ppjH1) of the initial state distribution

is defined to be a transformed Dirichlet distribution [104], and

the prior distribution D3(BjH3) of the state-specific Gaussian

emission densities is defined to be a product of Gaussian-

Inverted-Gamma distributions [105]. These two prior distribu-

tions are the usual ones applied for HMMs (e.g. [66,106]). Details

to the prior of the initial state distribution and to the prior of the

emission parameters are given in the section Prior distribution in

Text S1.

In the following, the central transition prior D2(AjH2) is

specified in detail to provide the basics for computing the optimal

state-context trees and corresponding transition parameters during

the training. Since each transition matrix Atl
[A is defined by an

underlying state-context tree tl that represents different classes of

equivalent state-contexts that share their transition parameters, the

typically used Dirichlet prior for transition parameters of a fixed

state-context must be re-defined to enable the evaluation of

different structures of the underlying state-context tree. This is

realized as follows.

The transition prior for the set of transition matrices A is

defined by

D2(AjH2) : ~ P
L

l~1
Dl

2(Atl
jHl

2):Dl
2(tl jQ)

consisting of a product of transformed Dirichlet distributions

Dl
2(Atl

jHl
2) in combination with a tree structure prior Dl

2(tl jQ) for

each transition matrix Atl
[A. The corresponding hyper-param-

eters H2 : ~(H1
2, . . . ,HL

2 ) are specified with respect to each hyper-

parameter matrix Hl
2 : ~(qij) defining the pseudocounts qij[Rz

for a transition from a state-contexts i [Sl to a next state j [S.

The transformed Dirichlet distributions

Dl
2(Atl

jHl
2) : ~ P

j[tl

Z(Hl
2,j) P

j[S
exp(Lajj

:qjj) ð2Þ

define the prior for the transition parameters of the transition

matrix Atl
in dependency of the corresponding state-context tree

tl . For each class of equivalent state-contexts j of the state-context

tree tl underlying the transition matrix Atl
, a transformed

Dirichlet distribution is specified. Each transition probability ajj

of Atl
is parameterized in the log-space by Lajj

: ~log(ajj). The

corresponding hyper-parameter vector Hl
2,j : ~(qjj)j[S with

qjj : ~
P

i[j qij is defined with respect to Hl
2, and the normali-

zation constant is specified by Z(Hl
2,j) : ~C(

P
j[S qjj)=Pj[S

C(qjj) in dependency of the Gamma function C(x) defined for all

x[Rz.

The tree structure prior

Dl
2(tl jQ)! P

j[tl

Q ð3Þ

is defined for rating the state-context tree tl by its number of

disjoint sets of equivalent state-contexts. During the training of a

parsimonious higher-order HMM, the tree structure hyper-

parameter Q [Rz enables the regulation of the number of leaf

nodes of a state-context tree influencing the tree structure of tl . A

fixed value of Q [ (0,1) leads to a decreased value of the tree

structure prior for an increasing number of leaf nodes, whereas a

fixed value of Qw1 leads to a greater value of the tree structure

prior for an increasing number of leaf nodes.

The choice of hyper-parameter values for the prior distribution

of a parsimonious higher-order HMM should provide the basics

for distinguishing between DNA polymorphisms and unchanged

chromosomal regions in Array-CGH profiles. A histogram of log-

ratios (e.g. Figure 2a) helps to characterize the states of the model.

Different values of the hyper-parameter of the tree structure prior

are chosen to enable the interpolation of the parsimonious higher-

order HMM between a mixture model and a higher-order HMM.

The interval of tree structure hyper-parameter values that has to

be considered for this interpolation is depending on the size of the

Array-CGH data set. Details to the chosen hyper-parameter

values of the prior distribution are given in the section Prior

distribution in Text S1.

Figure 3. Examples of state-context trees. Selected state-context trees of height two representing different sets of disjoint sets of equivalent
state-contexts of length two. The fused tree (a)) and the complete tree (c)) define marginal cases of state-context trees underlying a parsimonious
higher-order HMM. Fused trees are underlying the mixture model, while complete trees are the basis of a higher-order HMM. The fused tree has the
most parsimonious structure representing all state-contexts in one set of equivalent state-contexts, while the complete tree represents each state-
context of length two by an individual set. The parsimonious tree (b)) with three disjoint sets of equivalent state-context has a complexity between
the fused and the complete tree. More formally, each path from the root node at the top of a tree to a leaf node at the bottom of a tree represents a
set of state-contexts defined to share common transition probabilities. The nodes directly under the root node of a tree represent possible current
states, and the nodes under these nodes represent the corresponding predecessor states of the current state. Predecessor states have a specific
influence on the state-transition from the current state to the next state depending on the type of the node. Exemplarily, some different types of
nodes are highlighted in color. White nodes represent unfused nodes characterizing important states for a state-transition. Blue and orange nodes
represent partially fused states of equal importance for a state-transition. Grey nodes represent completely fused nodes defining that the
corresponding position in a state-context has no influence on a state-transition.
doi:10.1371/journal.pcbi.1002286.g003
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Bayesian Baum-Welch training. A Bayesian Baum-Welch

algorithm is developed to adapt the initial parameters of a

parsimonious higher-order HMM to Array-CGH profiles. This

algorithm extends the commonly used Baum-Welch algorithm

[62–65] by integrating prior knowledge into the parameter

estimation. The Bayesian Baum-Welch algorithm is an iterative

training procedure belonging to the class of Expectation

Maximization (EM) algorithms [107] for maximizing the log-

posterior density of the parameters of a parsimonious higher-order

HMM for a given data set. This is done by iteratively computing

new parameters of the parsimonious higher-order HMM

l(hz1)~ argmax
l

Q(ljl(h))zlog(P½ljH�)ð Þ

under consideration of its parameters l(h) of the current iteration

step h starting with initial parameters l(1). The parameter

estimation is done based on Baum’s auxiliary function Q(ljl(h)) in

combination with the logarithm of the prior distribution P½ljH�
defined in (1).

Baum’s auxiliary function is specified in [65] for a standard first-

order HMM. Specific modifications are required for a parsimo-

nious higher-order HMM due to the realization of the state-

transition process by a parsimonious higher-order Markov model.

In analogy to [65], Baum’s auxiliary function is defined by

Q(ljl(h)) : ~Q1(~ppjl(h))zQ2(Ajl(h))zQ3(Bjl(h))

consisting of an auxiliary function for each class of model

parameters. No modifications are required for the auxiliary

function Q1(~ppjl(h)) of the initial state distribution ~pp and for the

auxiliary function Q3(Bjl(h)) of the emission parameters B.

Details to these two functions and the corresponding parameter

estimation are given in the section Bayesian Baum-Welch

algorithm in Text S1.

The auxiliary function for the set of transition matrices A is

given by

Q2(Ajl(h)) : ~
XL

l~1

Ql
2(Atl

jl(h))

providing the basis for the computation of each state-context tree

tl representing optimal disjoint sets of equivalent state-contexts of

length l and corresponding transition probabilities of the transition

matrix Atl
[A. This requires the auxiliary function for each

transition matrix Atl
given by

Ql
2(Atl

jl(h)) : ~

P
j[tl

P
j[S

Lajj

PK
k~1

P
i[j

ek
l (i,j) 1ƒlvL

P
j[tL

P
j[S

Lajj

PK
k~1

PTk{1

t~L

P
i[j

ek
t (i,j) l~L

8>>>><
>>>>:

ð4Þ

under consideration of the log-transition probability Lajj
: ~

log(ajj) and the probability ek
t (i,j) : ~P½~qqmax(1,t{Lz1):::t~

i,qtz1~jj~oo(k),l(h)� for a transition from state-context i to next

state j given the Array-CGH profile ~oo(k) and the current

parameters of the parsimonious higher-order HMM. The log-

transition probability Lajj
has to be estimated for the next

parsimonious higher-order HMM l(hz1). Each probability

ek
t (i,j) is computed under the parsimonious higher-order HMM

l(h) using extended versions of the standard Forward-Backward

algorithm [65] as developed in [89]. Details for deriving

Ql
2(Atl

jl(h)) in (4) are provided in the section Bayesian Baum-

Welch algorithm in Text S1.

For estimating the transition probabilities of transition matrix

Atl
, the logarithm of the transition prior Dl

2(Atl
jHl

2) in (2) and the

logarithm of the tree structure prior Dl
2(tl jQ) in (3) are added to

the corresponding auxiliary function Ql
2(Atl

jl(h)) in (4). The

resulting function is then maximized by a dynamic programming

approach [98,99] efficiently evaluating the set of all existing state-

context trees tl . This results in an optimal state-context tree tl and

a corresponding transition matrix Atl
for the next parsimonious

higher-order HMM l(hz1). Details to the transition parameter

estimation are given in the section Bayesian Baum-Welch

algorithm in Text S1.

Generally, the applied dynamic programming approach starts

with an initialization step having a computational complexity of

O (2N{1)L:NLz1:T
� �

in dependency of the number of hidden

states N and the order L of the parsimonious HMM, and the

length T of a processed emission sequence. The term NLz1:T is

standardly occurring for higher-order HMMs specifying the

computational complexity required to compute all weights for

the estimation of transition probabilities, and the term (2N{1)L is

specific for the dynamic programming approach used for the

parsimonious higher-order HMMs.

The initialization step is followed by iteration steps that have a

total computational complexity of O ((2N{1)L{1)=((2N{1){
�

1):(BN
:Nz2N{2)Þ. Here, ((2N{1)L{1)=((2N{1){1) speci-

fies the number of iteration steps, and the Bell number BN defines

the number of partitions existing for N states growing faster than

2N for Nw4. Details to the derivation of the computational

complexities of the initialization and the iteration steps are given in

the section Bayesian Baum-Welch algorithm in Text S1.

The estimation of new parameters l(hz1) is iterated until the

log-posterior density increases less than 10{9 for two successive

iteration steps of the Baysian Baum-Welch algorithm. This

iterative scheme reaches at least a local optimum in dependency

of the initial parameters l(1) [107].

Model initialization. An initial parsimonious higher-order

HMM has to distinguish between deletions or sequence deviations,

unchanged chromosomal regions, and amplifications in an Array-

CGH data set. A histogram of measured log-ratios (e.g. Figure 2a)

assists to choose initial parameters for the state-specific Gaussian

emission densities characterizing the three states of the model in

Figure S2 in Text S1.

For the Array-CGH data set comparing the genomes of C24

and Col-0, the initial means of the state-specific Gaussian emission

densities are set to m{~{3, m~~0, and mz~1:5. The initial

standard deviation of the Gaussian emission density of each state

i [S is set to si~0:67 according to the standard deviation of log-

ratios in the Array-CGH data set.

The initial state distribution ~pp is sampled from the prior

distribution of the initial state distribution. Each initial transition

matrix Atl
is sampled from its corresponding transition prior

distribution by assuming an underlying complete state-context tree

(e.g. Figure 3c) of a higher-order HMM. That means, a

parsimonious higher-order HMM is initially representing a

corresponding higher-order HMM.

Parsimonious HMMs of order one up to five have been

considered for the analysis of the Array-CGH data set. For each

model order, forty different model complexities ranging from the

mixture model up to the corresponding higher-order HMM have

been evaluated by using forty different values of the hyper-

parameter Q of the tree structure prior in Equation (3). Details to

Parsimonious Higher-Order HMMs for Array-CGH
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the chosen hyper-parameter values are given in the section Prior

distribution in Text S1. For each of these forty different hyper-

parameter values, twenty different initial models have been

adapted to the Array-CGH data set using the Bayesian Baum-

Welch training. Thus, in total 800 different models were

computed for each model order. The best performing models

with clearly reduced model complexities in comparison to

higher-order HMMs were obtained for log(Q) in the range of

2100 to 0.

Generally, apart from this in-depth study considering the

Arabidopsis Array-CGH data set, a parsimonious higher-order

HMM can be specified for the analysis of Array-CGH data by

choosing appropriate values for the mean values of the Gaussian

emission densities of the states ‘{’ and ‘z’. The mean value of

the Gaussian emission density of state ‘~’ can be assumed to be

zero, because unchanged chromosomal regions are expected to

have log-ratios of about zero. The standard deviations of the

state-specific Gaussian emission densities can be initially set to

the standard deviations of the considered Array-CGH data set.

Using the pre-defined hyper-parameter values for the prior

distributions (see section Prior distribution in Text S1), good-

performing models have been obtained on Arabidopsis and

human Array-CGH profiles. Especially for model orders greater

than one, good-performing models with a clearly reduced model

complexity in comparison to the corresponding higher-order

HMM have been obtained for choosing the tree structure hyper-

parameter value log(Q) in the range of 2100 to 0. This

initialization concept is realized in the provided software and

further specific hints are given in the corresponding documen-

tation.

Related work in other domains: Variable-length Hidden

Markov Models. Related to parsimonious higher-order

HMMs, a variable-length HMM was developed in [96,97] for

the analysis of motion capture data of modern human dance. The

state-transition process of the variable-length HMM is defined by

a variable memory Markov chain. The transition parameters of

this Markov chain are determined by a minimum entropy

criterion based on the Kullback-Leibler divergence integrated

into an extended Baum-Welch training. The minimum entropy

criterion is used for pruning or growing the state-contexts that are

underlying the state-transition process. The Baum-Welch

algorithm developed for the variable-length HMM does not

enable the integration of prior knowledge into the training of

model parameters.

In contrast to this, the parsimonious higher-order HMM is

trained by a Bayesian Baum-Welch algorithm enabling the

integration of prior knowledge. Especially for HMM -based

analysis of DNA microarray data, the modeling of prior knowledge

can have a substantial impact on the quality of analysis results

[106]. Generally, the concept of pruning or growing of state-

contexts developed for the variable-length HMM is related to the

concept of determining sets of equivalent state-contexts forming

the basis of the parsimonious higher-order HMM. The state-

transition process of the parsimonious higher-order HMM is more

flexible enabling shared transition probabilities due to fusions of

nodes in the underlying state-context tree. This allows to model

dependencies between non-directly adjacent states for which the

intermediate states are not or only partially contributing to these

dependencies. That is exemplarily illustrated in Figure 3b in which

the right tree branch contains a partially fused node with non-

completely fused child nodes. Such dependencies cannot be

modeled by a variable-length HMM because pruning or growing

only enables to shorten or extend state-contexts but not to fuse

states.

Results/Discussion

In this section, first the modeling of spatial dependencies

between Arabidopsis Array-CGH measurements is investigated to

choose a range of model orders for parsimonious HMMs. Based

on this, parsimonious HMMs of different model complexity are

compared regarding their ability to identify deletions or sequence

deviations in the Arabidopsis Array-CGH data set. Additionally,

parsimonious HMMs are compared to existing methods utilizing

the Arabidopsis and human cell lines Array-CGH data. Finally, a

detailed functional classification of identified copy number

polymorphisms or sequence deviations is made to investigate

potential functions of genomic regions in which the genomes of

C24 and Col-0 differ.

Choice of Model Order
The modeling of the partial autocorrelation function [108] of

the Arabidopsis Array-CGH profiles by higher-order HMMs was

initially studied to determine a range of model orders for an in-

depth analysis by parsimonious HMMs. The partial autocorrela-

tion function quantifies linear dependencies between measure-

ments of chromosomal regions in close chromosomal proximity for

an increasing distance of regions. As shown in Figure 1, such

dependencies are clearly present in the Arabidopsis Array-CGH

profiles motivating the application of HMMs of different model

orders for modeling of these dependencies.

Initially, HMMs of order zero up to five were trained on the

Arabidopsis Array-CGH profiles using the Bayesian Baum-Welch

algorithm. Next, each HMM was used to sample 100 artificial

profiles with 10,000 log-ratios. These profiles were used to

compute the mean partial autocorrelation function modeled by

each HMM.

As expected from theory, the HMM of order zero (mixture

model) does not model dependencies between log-ratios in any

chromosomal distance. The first-order HMM shows a clear

improvement in comparison to the mixture model, but especially

HMMs of order three up to five reached the best, nearly identical

approximation of the partial autocorrelation function of Array-

CGH profiles. A better modeling of the partial autocorrelation

function by higher-order HMMs is expected from theory because

of their more complex state-transition processes enabling an

improved modeling of spatial dependencies compared to HMMs

with a smaller model order. Still, none of these HMMs was able to

perfectly approximate the partial autocorrelation structure of the

Array-CGH profiles. But, despite of that, this study helped to

determine a range of model orders for further analyses. The results

of this study are summarized in Figure S3 in Text S1.

Based on this initial study with higher-order HMMs, parsimo-

nious HMMs of order one up to five are subsequently investigated

in detailed studies to analyze their abilities to identify DNA

polymorphisms between C24 and Col-0.

Stringent Identification of Deletions or Sequence
Deviations

An Array-CGH data set by [103] comparing the genomes of the

accessions C24 and Col-0 of A. thaliana is used to identify

polymorphic regions between both genomes by parsimonious

higher-order HMMs. These models are evaluated based on

deletions or sequence deviations determined in [101] for the

genome of C24 in comparison to the reference genome of Col-0

using publicly available array-based resequencing data [100]. The

mapping of these polymorphic regions to corresponding chromo-

somal regions in the Array-CGH data set shows an obvious

coupling with potential deletions or sequence deviations present in

Parsimonious Higher-Order HMMs for Array-CGH
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the Array-CGH data set (Figure 2b). These potential deletions or

sequence deviations are used as reference for model comparisons.

Parsimonious higher-order HMMs of different model complex-

ities were adapted to the Array-CGH data using the developed

Bayesian Baum-Welch training. For each model, all chromosomal

regions in the Array-CGH data set were ranked in decreasing

order of their state-posterior probabilities of state ‘{’ modeling

deletions or sequence deviations. Using the knowledge about

potential deletions or sequence deviations in the Array-CGH data

set, the identification of these polymorphic regions was quantified

for each model in terms of the true-positive-rate (TPR) at 1% false-

positive-rate (FPR). The mean TPRs obtained for twenty different

initializations of each model at 1% FPR are shown in Figure 4a

(see Figure S4a in Text S1 for standard deviations of TPRs and see

Figure S5a in Text S1 for FPRs at fixed TPR). The application of

parsimonious higher-order HMMs has clearly improved the

identification of deletions or sequence deviations in comparison

to the standard first-order HMM. Moreover, parsimonious higher-

order HMMs with much smaller model complexities than

corresponding higher-order HMMs can also reach a clearly

improved accuracy for identifying polymorphic regions in

comparison to corresponding higher-order models. The best

parsimonious higher-order HMMs have model complexities in

the range of 3 up to 9 leaves. This range of model complexities

includes parsimonious HMMs of order two up to five that nearly

reach the same performance for identifying deletions or sequence

deviations. State-context trees underlying well-performing parsi-

monious HMMs of order three up to five are clearly reduced

leading to model complexities comparable with that of parsimo-

nious second-order HMMs. Thus, not all higher-order dependen-

cies are required for reaching a good performance at the stringent

level of 1% FPR.

Similar results are shown in Figure S6a in Text S1 using a less

restrictive mapping of the independently determined deletions or

sequence deviations from [101] to the Array-CGH data set for

model comparisons.

Less Stringent Identification of Deletions or Sequence
Deviations

Parsimonious higher-order HMMs have initially been com-

pared against the standard first-order HMM and higher-order

HMMs at a stringent FPR of 1%. Next, these models are

compared at a less stringent FPR of 2.5%. That leads to an

identification of deletions or sequence deviations comparable with

those obtained by applying the state-posterior decoding algorithm

[65,89] that computes for each chromosomal region in the Array-

CGH data set the most likely state under the given model. The

results are shown in Figure 4b (see Figure S4b in Text S1 for

standard deviations of TPRs and see Figure S5b in Text S1 for

FPRs at fixed TPR).

Generally, parsimonious higher-order HMMs reach a higher

accuracy for the identification of deletions or sequence deviations

than the standard first-order HMM. The best parsimonious

higher-order HMMs also reach an accuracy that is comparable or

slightly better than that of corresponding higher-order HMMs.

This accuracy is obtained at much lower model complexities than

for higher-order HMMs. That can become particularly useful for

avoiding overfitting in small data.

In comparison to the results at 1% FPR, the complexity of the

best models is more shifted into the range of 9 to 27 leaves at 2.5%

FPR (Figure 4 and Figure S4 in Text S1). This indicates that the

identification of polymorphic regions is more complicated.

Because at a higher FPR, the Array-CGH measurements of

additionally identified polymorphic regions are more similar to

that of non-polymorphic regions. These difficulties tend to be

managed best by parsimonious higher-order HMMs. The best

models in Figure 4b are among the fourth-order parsimonious

higher-order HMMs.

Figure 4. Identification of deletions and sequence deviations in the Arabidopsis Array-CGH data set by parsimonious HMMs. Curves
of mean true-positive-rates (TPRs) for the identification of candidate regions of deletions or sequence deviations at a fixed false-positive-rate (FPR) of
1% (a)) and of 2.5% (b)) obtained by parsimonious HMMs of order L[f1, . . . ,5g of different model complexities across twenty different initializations.
The rightmost point of each curve of parsimonious HMMs of order L (PHMM(L)) represents the corresponding higher-order HMM of order L with
highest model complexity of 3L leaf nodes in the state-context tree underlying the transition matrix AtL

. The rightmost point of the black curve
represents the standard first-order HMM. Standard deviations of the mean TPRs are shown in Figure S4 in Text S1. At both levels of FPRs,
parsimonious higher-order HMMs are clearly better than parsimonious HMMs of order one including the standard first-order HMM. At the level of 1%
FPR, parsimonious higher-order HMMs with a mean model complexity in the range of 3 up to 9 also identify deletions or sequence deviations better
than higher-order HMMs. At 2.5% FPR, clearly reduced model complexities are sufficient to reach identifications of deletions or sequence deviations
by parsimonious higher-order HMMs comparable or slightly better than corresponding higher-order HMMs.
doi:10.1371/journal.pcbi.1002286.g004
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A tree structure of one of the best models is shown in Figure 5.

The underlying parsimonious fourth-order HMM has still some

specific fourth-order transition probabilities for the states ‘{’

(deletion or sequence deviation) and ‘~’ (non-polymorphic),

whereas those of state ‘z’ (amplification) are completely reduced

to second-order transition probabilities. This unbalanced reduc-

tion of transition parameters tends to be coupled with the

asymmetry of the Array-CGH measurement distribution in

Figure 2a. Most of the chromosomal regions in the Array-CGH

data set are non-polymorphic, a small proportion tends to be

deleted or affected by sequence deviations, whereas only a very

small proportion of regions tends to be amplified. The tree

structure indicates that these tendencies are transferred to the

number of transition parameters per state. This parsimonious

fourth-order HMM is considered in all further studies with the

Arabidopsis Array-CGH data set because of its good performance

at the level of 2.5% FPR comparable with the results obtained by

applying the state-posterior decoding algorithm enabling an in-

depth analyses of genomic differences between C24 and Col-0.

Generally, similar tendencies like shown in Figure 4b are also

present in Figure S6b in Text S1 considering a less restrictive

mapping of the independently determined deletions or sequence

deviations from [101] to the Arabidopsis Array-CGH data set for

model comparisons.

Comparison to Existing Methods
Here, the well-performing parsimonious fourth-order HMM is

compared against other existing methods on the Arabidopsis data

set. Then, another widely considered human cell lines data set by

[102] is used for additional model comparisons. Subsequent to

this, the focus is on comparative genomics of the accessions C24

and Col-0 of A. thaliana.

Comparison on Arabidopsis data. Next, the parsimonious

fourth-order HMM with underlying tree structure shown in

Figure 5 is compared to other existing methods for analyzing

Array-CGH data. The standard method for the analysis of the

Array-CGH data set measured on a NimbleGen tiling array is the

segMNT algorithm [21]. Additionally, all eight methods provided

by the ADaCGH webserver [43] including the best performing

methods of two in-depth comparison studies [39,40] were applied

to the Arabidopsis Array-CGH data set. From these eight

methods, only ACE [33], CBS [20], FHMM [48], and GLAD

[32] were able to manage the huge number of Array-CGH

measurements. Besides FHMM, also three other methods based

on first-order HMMs were considered for the comparison

including wuHMM [56] and two Bayesian methods RJaCGH

[55] and GHMM [52]. All methods were applied to the

Arabidopsis Array-CGH data set using standard settings.

The identification of deletions or sequence deviations by these

methods is compared against the predictions of the parsimonious

fourth-order HMM with respect to the known potential deletions

or sequence deviations characterized in Figure 2b. For this

comparison, a receiver operating characteristic (ROC) curve was

computed for each method. This was done by ranking all

chromosomal regions of the Array-CGH data set according to

their method-specific scores enabling the evaluation of identified

deletions or sequence deviations under consideration of known

potential polymorphic regions.

The ROC curves are shown in Figure 6. The two Bayesian

HMMs RJaCGH and GHMM identify deletions or sequence

deviations with a nearly identical accuracy and better than

wuHMM and all methods provided by the ADaCGH webserver.

This is further improved by the parsimonious fourth-order HMM

identifying chromosomal regions affected by deletions or sequence

deviations with higher accuracy than all other methods. Compa-

rable results were obtained considering a less restrictive mapping

of identified deletions or sequence deviations from [101] to the

Array-CGH data set (Figure S7 in Text S1). The improved

performance of the parsimonious fourth-order HMM for identi-

fying deletions or sequence deviations in comparison to the

standard first-order HMM is highlighted in the direct comparison

shown in Figure S8 in Text S1. Again all these findings indicate

that parsimonious higher-order HMMs are useful for the analysis

of Array-CGH data.

Comparing the different HMM-based methods by the number

of hidden states required for modeling chromosomal aberrations in

the Arabidopsis data set, wuHMM and FHMM both determined

seven states, RJaCGH used six, and GHMM and the parsimo-

nious HMM required only three states for reaching the reported

Figure 5. State-context tree of a parsimonious fourth-order HMM. Parsimonious state-context tree selected among the best parsimonious
HMMs of order four at a fixed FPR of 2.5% in Figure 4b. Each path from the root node at the top of the tree to a leaf node at the bottom of the tree
represents a set of state-contexts defined to share common transition parameters in the transition matrix At4

of the selected model. The three nodes
directly under the root node represent the possible current states of the selected parsimonious fourth-order HMM, and the subtrees under these
three nodes represent the influence of predecessor states on a state-transition from one of these current states to a next state. Fusions of nodes are
highlighted in different colors. White nodes represent unfused nodes characterizing important states for a state-transition. Blue, orange, and green
nodes represent partially fused states of equal importance for a state-transition. Grey nodes represent completely fused nodes defining that the
corresponding position in a state-context has no influence on a state-transition. The states ‘{’ and ‘~’ of the selected model are still representing
some fourth-order transition probabilities, whereas only second-order transition probabilities remain for state ‘z’. The selected parsimonious fourth-
order HMM has a model complexity of 14 leaf nodes leading to 42 different transition parameters in At4. This is much less than for a corresponding
fourth-order HMM with 81 leaf nodes in a complete state-context tree representing 243 transition parameters.
doi:10.1371/journal.pcbi.1002286.g005
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performance. Supported by the best identification of deletions or

sequence deviations, this indicates that the three states of the

parsimonious HMM are flexible enough for modeling complex

Arabidopsis Array-CGH profiles.

The two good-performing Bayesian HMMs RJaCGH and

GHMM had substantially different run-times. RJaCGH required

30 hours and 42 minutes for analyzing the Arabidopsis data set,

while GHMM only required about 24 minutes. An overview of

run-times of all methods is given in Table 1. The training of a

parsimonious first-order HMM on the Arabidopsis data set took

about 2 minutes. This time is increased by a factor of three

(number of hidden states) for increasing model order leading to a

training time of about 54 minutes for the parsimonious fourth-

order HMM. Using such a trained parsimonious HMM, analyses

of data sets with a similar measurement distribution (e.g.

comparisons of other accessions against Col-0) can be obtained

in less than five minutes.

In summary, this study further illustrated that parsimonious

higher-order HMMs can outperform existing methods and are

well-suited for analyzing Arabidopsis Array-CGH data. It should

also be noted that experts of specific methods might be able to

improve the results of individual methods by fine-tuning of specific

parameters. Still, parsimonious higher-order HMMs represent an

important contribution to the field of Array-CGH data analysis

because they combine improved modeling of spatial dependencies

with the integration of prior knowledge and because these models

have reached a good performance on the Arabidopsis Array-CGH

data.

Comparison on human cell lines. Additional model

evaluations were also done on Array-CGH data of human cell

lines [102] frequently considered in other model comparison

studies like e.g. [20,32,48,52,55]. Details to the cell lines and the

study are given in the section Model evaluations on human cell

lines in Text S1. Using standard settings, six methods from the

ADaCGH webserver [43], wuHMM [56], RJaCGH [55], and

GHMM [52] were compared against a parsimonious first-order

HMM to evaluate the identification of known trisomies and

monosomies in the human cell lines. The resulting ROC curves

are shown in Figure S9 in Text S1. The parsimonious first-order

HMM, but also both Bayesian HMMs RJaCGH and GHMM

reach the best, nearly perfect identification of known chromosomal

aberrations in the individual human cell lines.

Considering the run-times on the human data set with about

17.5 times less measurements than in the Arabidopsis data set,

RJaCGH required the longest time with about seventy minutes.

Both, the GHMM and the parsimonious first-order HMM

required only about one minute for analyzing the human cell

lines. A summary of run-times of the ten different tested methods is

given in Table S1 in Text S1. This additional study indicates that

parsimonious HMMs are also useful for the analysis of non-plant-

specific Array-CGH data.

Functional Analysis of Genomic Differences between C24
and Col-0

The genome annotation of the reference genome of Col-0

provides the opportunity to investigate what is functionally behind

chromosomal regions where the genomes of C24 and Col-0 differ.

The parsimonious fourth-order HMM with underlying parsimo-

nious tree structure in Figure 5 was applied to identify

polymorphic regions in the Arabidopsis Array-CGH data set.

The state-posterior decoding algorithm [65,89] was used to classify

each chromosomal region in the Array-CGH data set either as a

deletion or sequence deviation, as unchanged, or as an

amplification in C24 with respect to the reference genome of

Col-0. This algorithm assigns the most likely state of the three-state

architecture of the HMM (Figure S2 in Text S1) to each

chromosomal region measured in the Array-CGH data set. The

identification of deletions or sequence deviations by state-posterior

decoding is comparable to that shown in Figure 4b.

In total, about 4.7% (17,306 of 364,339) of all chromosomal

regions of the reference genome of Col-0 were identified as being

affected by deletions or sequence deviations in the genome of C24,

and about 0.2% (855 of 364,339) of all chromosomal regions were

Figure 6. Comparison of a parsimonious fourth-order HMM to
existing methods on the Arabidopsis Array-CGH data set.
Receiver operating characteristic (ROC) curves for comparing the
identification of deletions or sequence deviations in the Array-CGH
data set. ROC curves are shown for FHMM, ACE, CBS, and GLAD of the
ADaCGH webserver [43], segMNT [21], wuHMM [56], GHMM [52],
RJaCGH [55] and the parsimonious fourth-order HMM with underlying
state-context tree in Figure 5. The parsimonious fourth-order HMM
reaches the best identification of deletions and sequence deviations
(black).
doi:10.1371/journal.pcbi.1002286.g006

Table 1. Method run-times on the Arabidopsis Array-CGH
data set.

Shortcut Method Reference
Computing
time

wuHMM First-order HMM [56] 8 min

GHMM Bayesian first-order HMM [52] 24 min

PHMM Parsimonious fourth-order HMM see Methods 54 min

CBS Circular Binary Segmentation [20] 1 h 18 min

ACE Analysis of Copy Errors [33] 4 h 14 min

GLAD Gain and Loss Analysis of DNA [32] 4 h 19 min

FHMM First-order HMM [48] 5 h 04 min

RJaCGH Bayesian first-order HMM [55] 30 h 42 min

Run-times in hours/minutes required for the analysis of the Arabidopsis Array-
CGH data set by the different methods. All methods except GHMM, PHMM,
wuHMM, and RJaCGH were run on the ADaCGH web-server [43] (AMD Opteron
2.2 GHz CPU with 6 GB RAM). The other methods GHMM, PHMM, wuHMM, and
RJaCGH were run on a standard desktop computer with Intel CPU T9500
2.6 GHz and 4 GB RAM.
doi:10.1371/journal.pcbi.1002286.t001
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identified as amplified in C24 (Table S1). This asymmetry in

predictions is expected from the distribution of measurements in

the Array-CGH data set (Figure 2) reflecting the design of the

tiling array that only represents chromosomal regions present in

the reference genome of Col-0 [11]. Of the 17,306 chromosomal

regions identified as being affected by deletions or sequence

deviations, 2,647 are singletons consisting of only one tile and

76.5% of these singletons are containing a micro-deletion or

sequence deviation in C24 compared to Col-0 that is covering at

least 40% of the underlying tile. In all, genomic regions affected by

deletions or sequence deviations represent about 5.59 Mb of the

Col-0 reference genome. This is in good accordance with the

findings in [100,101]. Subsequently, all identified genomic

differences are analyzed in detail.

Genome annotation analysis. Chromosomal regions

identified as being affected by deletions or sequence deviations

and regions identified as being affected by amplifications were

analyzed separately using the Arabidopsis Information Resource

(TAIR8) genome annotation of Col-0 [109]. The results of these

functional categorizations are summarized in Figure 7.

By definition, the TAIR8 categories are not completely disjoint

meaning that each chromosomal region can have annotations in

more than one category (e.g. chromosomal regions within genes).

Comparisons of the identified polymorphic regions in C24 to

randomly chosen control sets revealed that a significant proportion

of chromosomal regions affected by deletions or sequence

deviations and also that regions affected by amplifications are

caused by transposons. Such mobile genomic elements were also

identified to be involved in rearrangements of the genomes of

other accessions of A. thaliana [17,100,110]. Moreover, genic

regions as well as 59 and 39 untranslated regions (UTRs) are

significantly less affected by amplifications and deletions or

sequence variations.

Thus, genomic differences between C24 and Col-0 do not occur

randomly because transposons differ more than other parts of the

genome. These results are also supported by the finding that

transposons change faster than genes [111].

Ontology classification of genes. Ontology classification

was performed for genes affected by amplifications and for genes

affected by deletions or sequence deviations using the MIPS

Functional Catalogue [112] to investigate if specific functional

categories of genes are over-represented.

No prevalence of any functional category was found for the 39

genes affected by amplifications. In contrast to this, among the

1,675 genes affected by deletions or sequence deviations, five

significantly over-represented functional clusters of genes with p-

values less than 5:10{6 were identified. The first cluster comprises

104 genes with functions in ATP-binding, the second cluster

contains 109 genes with functions in cellular communication and

signal transduction, the third cluster represents 127 genes playing

a role in cell rescue, defense and virulence, the fourth cluster

contains 5 genes encoding for N-actetylglucosamine deacetylases,

and the fifth cluster comprises 541 unclassified proteins.

In coincidence with these findings, over-representations of

sequence polymorphisms in defense-related genes or genes

involved in signaling were previously identified in different

accessions of A. thaliana [17,100]. Also the over-representation of

deletions or sequence deviations in genes involved in ATP-

binding, such as genes encoding for transporters or enzymes,

might represent a functional adaptation to specific environmental

conditions [113]. Copy number variations in N-actetylglucosa-

mine deacetylases were recently reported for A. thaliana grown

under different temperature conditions [114].

In summary, the five identified gene clusters with increased rate

of deletions or sequence deviations indicate a rapid evolutionary

change between C24 and Col-0. All genes affected by deletions or

sequence deviations are provided in Table S2, and genes affected

by amplifications are provided in Table S3.

Superfamily analysis of transposons. A superfamily classi-

fication of transposons affected by deletions or sequence deviations

and of transposons affected by amplifications was performed using

the TAIR8 transposon annotation of Col-0 to identify under- or over-

representations of specific transposon superfamilies in C24. This

analysis was done in comparison to randomly sampled control sets of

transposons. The results are summarized in Figure 8.

Retrotransposons (LTR/Copia, LINE/L1) moving by a RNA-

mediated copy-and-paste mechanism and DNA transposons

(DNA, DNA/En-Spm,DNA/Harbinger) moving by a DNA-

mediated cut-and-paste mechanism are significantly over-repre-

sented among the 2,695 transposons identified as being affected by

Figure 7. Functional classification of genomic differences in the Arabidopsis Array-CGH data set. Functional classification of the 17,306
tiles identified to be affected by deletions or sequence deviations (a)) and of the 855 tiles identified to be affected by amplifications (b)) in C24 in
comparison to Col-0 according to the categories of the TAIR8 genome annotation. Colored bars show the counts in each category obtained for the
Array-CGH data set by using the state-posterior decodings of the parsimonious fourth-order HMM with underlying state-context tree structure in
Figure 5. Grey dashed bars represent the mean values of counts in each category obtained by sampling 500 times 17,306 tiles (or 855 tiles) from the
total number of tiles in the Array-CGH data set. All counts in the different categories obtained for the Array-CGH data set, except ‘pseudogene’ for
tiles identified as amplified, differ significantly from the random counts with p-values less than 0.01.
doi:10.1371/journal.pcbi.1002286.g007
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deletions or sequence deviations in C24 with respect to the

reference genome of Col-0. DNA transposons (RC/Helitron,

DNA/Pogo) are significantly under-represented among the 2,695

affected transposons.

For transposons affected by amplifications, retrotransposons

(LTR/Gypsy) and DNA transposons (DNA/En-Spm) are signif-

icantly over-represented among the 114 transposons identified as

being affected by amplifications in C24. DNA transposons (RC/

Helitron, DNA/MuDR, DNA) are significantly under-represented

among these 114 transposons.

Thus, these results indicate that some transposon superfamilies

tend to play a more prevalent role for driving the evolution of

genomic differences between C24 and Col-0. All these transposons

represent fundamental components of A. thaliana genomes

contributing to size, structure, and variation of genomes

[115,116]. Table S4 provides all transposons identified to be

affected by deletions or sequence deviations, and transposons

affected by amplifications are contained in Table S5.

Conclusions
The development of parsimonious higher-order HMMs for the

analysis of Array-CGH data has been motivated by the observation of

strong spatial dependencies between measurements in close chromo-

somal proximity. A parsimonious higher-order HMM represents an

interpolation between a mixture model ignoring spatial dependencies

and a higher-order HMM exhaustively modeling spatial dependen-

cies. To enable this interpolation, the mathematical theory of widely

used first-order HMMs has been extended. A central point is the

extension of the Bayesian Baum-Welch training by incorporating a

dynamic programming approach [98,99] enabling a data-dependent

modeling of spatial dependencies.

In a detailed study based on Array-CGH data for comparing

the genomes of the Arabidopsis thaliana accessions C24 and Col-0,

parsimonious higher-order HMMs clearly improved the identifi-

cation of deletions or sequence deviations in comparison to

typically used first-order HMMs and other existing methods.

Especially, parsimonious HMMs of order three up to five with

clearly reduced model complexities in comparison to correspond-

ing higher-order HMMs reached the best results.

In-depth functional analyses of identified DNA polymorphisms

revealed that most of these genomic differences between C24 and

Col-0 are caused by transposons. Genic regions as well as 59 and

39 untranslated regions are less affected, but still genes with

functions in ATP-binding, cellular signaling, or cell pathogen

defense have been found to be specifically affected by deletions or

sequence deviations in C24 in comparison to the reference

genome of Col-0. These findings are in accordance with other

studies [17,100] and might indicate specific environmental

adaptations of both accessions. Additionally, a superfamily

classification of transposons has revealed that specific retro-

transposon and DNA transposon superfamilies tend to be more

involved than others in driving the evolution of C24 and Col-0.

Additional model evaluations performed on widely considered

human cell lines showed that parsimonious HMMs are also

well-suited for the analysis of non-plant-specific Array-CGH data

sets.

All these results indicate that parsimonious higher-order HMMs

are useful tools for the analysis of Array-CGH data. Potential

future applications could include other domains in which standard

first-order HMMs are frequently used. This might include the

HMM -based analysis of ChIP-chip data [117–120] or the analysis

of next-generation sequencing data [121–125].

Supporting Information

Table S1 Arabidopsis Array-CGH data set including detected

DNA polymorphisms identified by the parsimonious fourth-order

HMM using the state-posterior decoding algorithm.

(TXT)

Table S2 Genes affected by deletions or sequence deviations in

C24.

(TXT)

Table S3 Genes affected by amplifications in C24.

(TXT)

Table S4 Transposons affected by deletions or sequence

deviations in C24.

(TXT)

Figure 8. Superfamily classification of transposons in the Arabidopsis Array-CGH data set. Superfamily classification of the 2,695
transposons identified to be affected by deletions or sequence deviations (a)) and of the 114 transposons identified to be affected by amplifications
(b)) under consideration of the TAIR8 transposon annotation. Colored bars show the numbers of affected transposons in each superfamily identified
using the state-posterior decoding of the parsimonious fourth-order HMM with underlying state-context tree structure in Figure 5. Grey dashed bars
represent the mean number of transposons assigned to these superfamilies for sampling 500 times 2,695 transposons (or 114 transposons) from the
total number of transposons of the TAIR8 annotation. Superfamilies highlighted by an asterisk ‘*’ are significantly different (over- or under-
represented) with p-values less than 0.01 in comparison to random sampling.
doi:10.1371/journal.pcbi.1002286.g008
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Table S5 Transposons affected by amplifications in C24.

(TXT)

Text S1 Mathematical basics of prior distributions for initial

state and emission parameters and details to chosen prior

parameters are given in the section ‘Prior distribution’. A detailed

derivation of the Bayesian Baum-Welch algorithm for a parsimo-

nious higher-order HMM is given in the section ‘Bayesian Baum-

Welch algorithm’. Details to the case study on human cell lines are

given in the section ‘Model evaluations on human cell lines’. The

supporting Figures S1, S2, S3, S4, S5, S6, S7, S8, S9 are provided

in the section ‘Supporting Figures’.

(PDF)
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99. Gohr A (2006) The Idea of Parsimony in Tree Based Statistical Models -

Parsimonious Markov Models and Parsimonious Bayesian Networks with

Parsimonious Higher-Order HMMs for Array-CGH

PLoS Computational Biology | www.ploscompbiol.org 14 January 2012 | Volume 8 | Issue 1 | e1002286



Applications to Classification of DNA Functional Sites. Diploma Thesis.

Martin Luther University Halle-Wittenberg.
100. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, et al. (2007)

Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis

thaliana. Science 317: 338–342.
101. Zeller G, Clark RM, Schneeberger K, Bohlen A, Weigel D, et al. (2008)

Detecting polymorphic regions in Arabidopsis thaliana with resequencing
microarrays. Genome Res 18: 918–929.

102. Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, et al. (2001)

Assembly of microarrays for genome-wide measurement of DNA copy number.
Nat Genet 29: 263–264.

103. Banaei AM, Roudier F, Seifert M, Bérard C, Martin Magniette ML, et al.
(2011) Additive inheritance of histone modifications in Arabidopsis thaliana

intraspecific hybrids. Plant J 67: 691–700.
104. MacKay DJC (1998) Choice of Basis for Laplace Approximation. Mach Learn

33: 77–86.

105. Evans M, Hastings N, Peacock B (2000) Statistical Distributions. 3rd edition.
Wiley Series in Probability and Statistics John Wiley & Sons, Inc.

106. Seifert M, Strickert M, Schliep A, Grosse I (2011) Eploiting prior knowledge
and gene distances in the analysis of tumor expression profiles by extended

Hidden Markov Models. Bioinformatics 27: 1645–1652.

107. Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from
Incomplete Data via the EM Algorithm. J Royal Stat Soc B 39: 1–38.

108. Gottman JM (1981) Time-Series Analysis Cambridge University Press.
109. Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, et al. (2003) The

Arabidopsis Information Resource (TAIR): a model organism database
providing a centralized, curated gateway to Arabidopsis biology, research

materials and community. Nucleic Acids Res 31: 224–228.

110. Feschotte C, Pritham EJ (2007) DNA Transposons and the Evolution of
Eukaryotic Genomes. Annu Rev Genet 41: 331–368.

111. Kazazian HH (2004) Mobile elements: Drivers of genome evolution. Science
303: 1626–1632.

112. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, et al. (2004) The FunCat,

a functional annotation scheme for systematic classification of proteins from
whole genomes. Nucleic Acids Res 32: 5539–5545.

113. Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-Binding Cassete

Transporters: Structure, Function, and Gene Family Comparison between

Rice and Arabidopsis. Plant Physiol 131: 1169–1177.

114. de Bolt S (2010) Copy Number Variation Shapes Genome Diversity in

Arabidopsis Over Immediate Family Generational Scales. Genome Biol Evol 2:

441–453.

115. Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis

thaliana. Proc Natl Acad Sci U S A 97: 7376–7381.

116. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where

genetic meets genomics. Nat Rev Genet 3: 329–341.

117. Li W, Meyer CA, Liu XS (2005) A hidden Markov model for analyzing ChIP-

chip experiments on genome tiling arrays and its application to p53 binding

sequences. Bioinformatics 21: i274–i282.

118. Ji H, Wong WH (2005) TileMap: create chromosomal map of tiling array

hybridizations. Bioinformatics 21: 3629–3636.

119. Humburg P, Bulger D, Stone G (2008) Parameter estimation for robust HMM

analysis of ChIPchip data. BMC Bioinformatics 9: 343.

120. Seifert M, Keilwagen J, Strickert M, Grosse I (2009) Utilizing gene pair

orientations for HMMbased analysis of ChIP-chip data. Bioinformatics 25:

2118–2125.

121. Simpson JT, McIntyre RE, Adams DJ, Durbin R (2010) Copy number variant

detection in inbred strains from short read sequence data. Bioinformatics 26:

565–567.

122. Ivakhno S, Royce T, Cox AJ, Evers DJ, Cheetham RK, et al. (2010) CNAseg -

a novel framework for identification of copy number changes in cancer from

second-generation sequenencing data. Bioinformatics 26: 3051–3058.

123. Song Q, Smith AD (2011) Identifiying dispersed epigenomic domains from

ChIP-Seq data. Bioinformatics 27: 870–871.

124. Shen Y, Gu Y, Pe’er I (2011) A Hidden Markov Model for Copy Number

Variant prediction from whole genome resequencing data. BMC Bioinfor-

matics 12(Suppl 6): S4.

125. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for

systematic annotation of the human genome. Nat Biotechnol 28: 817–825.

Parsimonious Higher-Order HMMs for Array-CGH

PLoS Computational Biology | www.ploscompbiol.org 15 January 2012 | Volume 8 | Issue 1 | e1002286


