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Abstract

Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical
regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this
end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative
phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling
limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative
analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in
specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort
to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this
study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture) technique with interventional
experiments (kinase-dead mutations). The major components of the pipeline include phosphopeptide meta-analysis,
correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional
experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces
cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis
(Pbi2p and Hsp42p were identified by both analyses). All these proteins are involved in stress responses. Nine of them have
direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins,
Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive
growth, providing prospective validation of our approach. This comprehensive pipeline presents a systematic way for
discovering signaling networks using interventional phosphoproteome data and can suggest candidate proteins for further
investigation. We anticipate the methodology to be applicable as well to other interventional studies via different
experimental platforms.
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Introduction

Cells exchange and receive information from the environment

through signaling pathways, which are crucial for cells to maintain

normal functions and properly respond to stress and stimuli.

Dysregulation of these processes is a major factor in the emergence

of many diseases, including cancer, diabetes, and cardiovascular

disease. Reversible phosphorylation is one of the major forms of

signal transduction and can affect protein function and gene

expression [1–7]. Investigations into phosphorylation provide

insight into signaling pathways by providing the target sites of

phosphorylation and the quantitative changes in phosphorylation

level in response to genetic or environmental perturbations.

Effective, sensitive identification of candidate proteins for further

studies remains a challenge in the face of experimental limitations

of current technologies which have a high cost component,

provide incomplete coverage of the phosphoproteome, and have

sampling limitations which affect replicate runs.

Large-scale phosphoproteomics studies on a number of

organisms have been carried out using mass spectrometry (MS)-

based approaches (reviewed in [8–10]). These include two recent

global phosphoproteomic studies of the budding yeast (Saccharo-

myces cerevisiae) [5,6]. In the study carried out by Bodenmiller at al.

[5], protein kinases and phosphatases were systematically

perturbed through gene deletions. The system-wide responses to

the perturbations were measured by label-free MS-based quanti-

fication, and the results evaluated to determine their contributions

to understanding the relationships between these signal transduc-

tion proteins and cell pathways. Another global interaction study

focused on kinase and phosphatase interactions [6] by capturing

protein-protein interactions by affinity capture-immunoblot and

identifying the isolated protein complexes by mass spectrometry.
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These two global studies both adopted label-free, cost-effective

quantitative approaches. However, label-free methods typically

increase variance relative to isotope enrichment methods [11]. For

the purpose of this study, we have used isotope labeled SILAC

(Stable Isotope Labeling with Amino acids in Cell culture) method

[12,13] to increase sensitivity to change.

The general scope of this manuscript encompasses a compre-

hensive pipeline, incorporating statistical and mathematical

methods for investigating and evaluating quantitative phospho-

proteomic data, the elucidation of candidate proteins, and the

identification of processes to be pursued in subsequent molecular

biology and genetic studies. The phosphoproteome data utilized in

this analysis was obtained from interventional experiments of a

subset of yeast kinases involved in filamentous growth. Filamen-

tous growth is a developmental transition observed in S. cerevisiae

where yeast cells form elongated and connected multicellular

filaments; these filaments resemble hyphae but lack the parallel-

sided walls and structure of true hyphal tubes. This pseudohyphal

growth transition is induced in response to several cell stresses,

including nitrogen stress, growth in the presence of short-chain

alcohols, and glucose stress [14–17]. The filamentous growth form

presumably represents a foraging mechanism enabling non-motile

yeast to better survive cell stress [14]. During pseudohyphal

growth, yeast cells elongate due to a delay in the G2/M transition,

exhibit an altered budding pattern, and remain connected after

cytokinesis [18,19]. The resulting pseudohyphal filaments extend

superficially from a colony over an agar substrate and invasively

downward into the solid substrate below the colony. In liquid

culture under inducing conditions, a filamentous strain of yeast

exhibits elongated cells and multicellular filaments encompassing

typically 3–4 cells. It is important to note that most laboratory

strains of S. cerevisiae are non-filamentous and that studies of

filamentous growth are typically performed in the g1278b strain,

which we employ here.

The molecular basis of filamentous growth in S. cerevisiae is

broad in scope. Classic studies have identified key kinase-based

signaling networks that regulate the filamentous growth transi-

tion. In particular, yeast filamentous growth is regulated by

mitogen-activated protein kinase (MAPK) and protein kinase A

(PKA) pathways [15,20,21] as well as being impacted by other

signaling pathways. MAPK pathways are evolutionarily con-

served across phyla and consist of three-kinase cascades serving

central roles in signal transduction in eukaryotic cells [22]; the

yeast filamentous growth MAPK cascade terminates in the

MAPK Kss1p. In S. cerevisiae, PKA consists of the regulatory

subunit Bcy1p and one of three catalytic subunits Tpk1p, Tpk2p,

or Tpk3p; Tpk2p is known to be required for filamentous growth

[23–25]. It should be noted that the Kss1p MAPK pathway is

required for pseudohyphal growth induced by both nitrogen

stress and butanol, while the genes GPR1, MEP2, and GPA2,

acting upstream of PKA, are not required for butanol-induced

filamentous growth [16]. In our experiments, we treated cells

with 1% (vol/vol) butanol to induce filamentous growth [26]. A

graphical illustration of currently recognized budding yeast

filamentous growth pathways, integrating information from

authoritative pathway databases and reviews, is shown in

Figure 1. While these core signaling units are well defined, the

downstream scope of their signaling networks is unclear.

We have generated phosphoproteomic datasets indicating

kinase-dependent phosphorylation events underlying the filamen-

tous growth transition. Specifically, we generated kinase-dead

mutations (also called kinase-inactivating mutations) for a set of

eight kinases that we have identified as components of the yeast

filamentous growth response: Ksp1p, Kss1p, Sks1p, Ste20p,

Snf1p, Tpk2p, Elm1p and Fus3p [20,26–28]. Each of these

kinases exhibits a filamentous growth deletion phenotype, with the

deletion of KSP1, KSS1, SKS1, STE20, SNF1, and TPK2

yielding a loss of filamentous growth and the deletion of ELM1 and

FUS3 yielding enhanced filamentation. The kinase-dead alleles of

these proteins were constructed by site-directed mutagenesis. The

system-wide phosphorylation responses of the mutant strains were

determined using SILAC approach, and we used the Mascot

search engine [29] followed by MaxQuant software [30] to

identify and quantify peptides and proteins. We obtained

phosphorylation level changes from the MaxQuant analysis for

mutants versus wild type control for the comprehensive quanti-

tative analyses.

The broad focus of the filamentous growth kinase networks in

particular has made it difficult to tease out important kinase targets

(direct or indirect). Bioinformatics methods provide a promising

avenue with which local kinase signaling relationships can be

identified. While traditional cluster analyses associated with

functional enrichment analysis are useful tools, their performance

might be affected by the missing value issue. We need to deal with

it in order to obtain reliable clusters and enriched functions.

Furthermore, a more integrative and extensive analysis is

necessary to find new components of the pathways, uncover

relationships between the pathway components, and to elaborate

the signaling network structure. Thus we propose this compre-

hensive quantitative analysis pipeline customized for SILAC data,

and partially compensate the missing value issue. The major

building blocks include phosphopeptide meta-analysis, correlation

network analysis, causal relationship discovery, and validation by

literature mining. We have successfully applied the pipeline to

analyze our current yeast data. Candidate proteins predicted to

contribute to the filamentous growth response were selected by

phosphopeptide meta-analysis and correlation network analysis.

Causal relationship discovery was performed on candidate

proteins identified from our analysis and validated proteins from

the literature. The inferred causal relationships, along with the

interactions inferred from phosphorylation changes in response to

individual mutants, have suggested potential proteins that can be

further intervened and studied in the future.

Author Summary

Signal transduction is a ubiquitous and essential mecha-
nism regulating cellular functions, including responses to
environmental stress. Dysfunction of signaling pathways
results in a variety of diseases, including cancer, diabetes,
and cardiovascular disease. Phosphorylation regulates the
activity of signaling and target proteins at different cellular
locations and controls activation and inactivation of signal
pathways. Here, we provide an analysis of phosphopro-
teome datasets from yeast, utilizing kinase mutants versus
wild type strains. In order to provide an objective
approach to identify candidate proteins involved in the
transition to a filamentous growth form, we proposed and
applied a comprehensive pipeline incorporating statistical
and mathematical methods to investigate the phospho-
proteome data from multiple perspectives. This included
phosphorylation variation in response to a single mutant,
phosphorylation variation patterns over multiple mutants,
and the relationships represented by these patterns. We
make an effort to discover the components and targets of
the signaling network, infer the network structure, and to
find the relationships of changes of protein phosphoryla-
tion to cellular functions, specifically in response to stress
in the context of filamentous growth.

Signaling Network Discovery in Phosphoproteomics
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Results

Workflow
An overview of the analytical workflow is shown in Figure 2.

Following peptide identification and quantification, the compre-

hensive post-identification analyses performed consisted of phos-

phopeptide meta-analysis, correlation network analysis, and

literature mining, followed by causal relationship discovery to

infer signaling network characteristics. The inferred protein-

protein relationships involving hub proteins were backed up by

literature, and suggested potential proteins to be intervened in the

future studies of yeast filamentous growth pathways. Details of the

methodologies are described in Materials and Methods.

Table 1 lists several important summary numbers of this dataset

and subsequent analyses.

Similar or reciprocal effects induced by kinase-dead
mutations

The relationships of the eight kinase mutants and their effects

on global phosphorylation patterns were subjected to correlation

analysis (see Overview of the influences inferred from
kinase-dead mutations in Materials and Methods). The

results were visualized in a correlation heatmap (Figure 3). The

negative correlation between kinase mutants of SKS1 and ELM1

are apparent from Figure 3 as are the similarities between some of

the mutants (e.g., SNF1 and TPK2). SKS1 mutants inhibit

filamentous growth and ELM1 promotes it, while SNF1 and

TPK2 have similar phenotypes. The general correlations between

kinases are consistent with their filamentous growth phenotypes

and reinforce the identification of core target proteins.

We need to be cautious when interpreting the correlations for

partially multiplexed data, such as in triplex SILAC experiments.

Because a peptide quantified for one sample is highly likely to be

quantifiable for the other two samples in the same triplex, the

identification and quantification of phosphopeptides in a triplex

experiment tend to be linked. In other words, the overlap within a

triplex run should be near 100% but the overlap between different

triplex runs will be lower due to instrument sampling limitations. A

high number of replicates may help minimize missing data, and

compensate for the possible bias introduced by tied identification

and quantification; but it is rarely performed due to the high cost

of these analyses.

Phosphopeptide clusters based on phosphorylation
changes

A total of 882 phosphopeptides representing 486 proteins were

commonly identified in 4–8 kinase-dead (KD) mutants. After the

missing values were imputed, the tight clustering method [31] was

used to assign those phosphopeptides into groups, and identify the

most informative, tight and stable clusters (see Clustering
phosphopeptides in Materials and Methods). The results

are illustrated in Figure S1 in Text S1. The assignment of proteins

and peptides in the top 8 tight clusters is provided in Table 2 and

Dataset S1. We also surveyed enriched functions in the tight

clusters (Table 2), in terms of functional categories, Gene

Ontology, pathways and proteins Domains [27,32–34]. In

summary, similar phosphorylation change patterns over multiple

mutants (compared to wild type) tends to suggest involvement in

similar biological functions. Enriched functional terms include

nucleotide phosphate-binding domains, ribosome biogenesis,

fructose and mannose metabolism, and glycolysis. Differential

carbohydrate metabolism is consistent with the invasive nutrition

forage observed under environmental stresses leading to filamen-

tous growth.

We observed examples of multiple phosphorylation domains on

the same protein that share similar phosphorylation change patterns

and thus end up in the same cluster. For example,

‘‘_KGS(ph)FTTELSCR_’’ (position of the phosphorylated serine:

520) and ‘‘_RSS(ph)YISDTLINHQMPDAR_’’ (position of the

phosphorylated serine: 238 or 239) on Psp1p in Cluster 3. It is

possible that those phosphorylation sites are co-regulated by the same

biological process. They might be closely located in protein tertiary

structure or share sequence similarities that allow them to be

phosphorylated by the same kinase. Another example where two

phosphorylation sites are in the same domain and thus physically

close in the protein sequence, ‘‘_DQDQSSPKVEVTS(ph)EDEK_’’

(position of the phosphorylated serine: 495) and ‘‘_VEVT(ph)SEDE

KELESAAYDHAEPVQPEDAPQDIANDELK_’’ (position of the

phosphorylated threonine: 494) on Leu1p in Cluster 4. Both of these

phosphorylation sites were identified in a WT/SNF1/TPK2

experiment, where the serine (S) at position 495 in the former has

phosphorylation probability 0.999 (reported by MaxQuant),

while the threonine (T) at position 494 in the latter has

phosphorylation probability 0.96. These two sites might be

alternative phosphorylation sites having similar effects; or the

dominancy of either site might be affected by protein cellular

localization or kinase activity patterns.

On the other hand, we also found examples of the same protein

(e.g., Spt6p) to be clustered in multiple functional groups. Those

different sites do not necessarily change phosphorylation in a

similar pattern, since they might have different functions and be

regulated by different biological processes. All the above observa-

tions are worth further investigation.

Identification of differential phosphorylation in each
mutant

A total of 863 unique phosphopeptides representing 452

proteins were identified to have significant phosphorylation

changes in at least one kinase-dead mutant. We can then infer

the downstream proteins regulated by the kinases and the inferred

regulation might be direct or indirect. A total of 1,299 significant

kinase-phosphopeptide regulation pairs were identified (Dataset

S2). We incorporated the corresponding proteins and generated

an extended pathway map (Figure 4) based on the known map

(Figure 1).

Phosphopeptides with globally significant
phosphorylation changes

A total of 28 phosphopeptides representing 26 proteins from the

entire dataset were found to have globally significant phosphor-

ylation changes (Dataset S3). These candidates were picked out

without using prior knowledge. The Fisher’s probability test [35]

was extended to allow missing values (see Materials and
Methods), and it was used for detecting global significance.

Each selected phosphopeptide satisfies the following criteria: the

Figure 1. Graphical illustration of the filamentous growth pathway in budding yeast from previous studies. The ellipses are proteins;
the rectangles are genes; and the triangles are metabolites. The linkage between shapes: sharp-end arrows indicate stimulation, T-end arrows
indicate inhibition, and wavy lines indicate association. The information were extracted from Science Signaling Database of Cell Signaling [20] and
KEGG database [27]. The white ellipses are five of the eight kinases selected to be mutated in our experiments.
doi:10.1371/journal.pcbi.1003077.g001
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combined p-value , 0.05, q-value , 0.05 for controlling false

discovery rate (FDR) [36], and the significance B value , 0.05 in

at least 4 out of 8 kinase-dead mutant (KD) versus wild type (WT)

conditions. The combined p-value is a measure of global

significance, while the significance B value [30] is a measure of

significance in an individual experiment. Five of the globally

Figure 2. Summary flow chart of the analytical workflow.
doi:10.1371/journal.pcbi.1003077.g002
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significant phosphopeptides, Nth1p, Hsp42p, Pbi2p, Rcn2p and

Pdr12p, were identified with complete measurements (Table 3).

We consider them high-confidence candidates. Another adaptively

weighted statistic [37] was applied to all complete measurements

for validation. Adopting the same selection criterion as above,

Nth1p, Pbi2p, Rcn2p and Pdr12 were again identified as globally

significant. Both retrospective and prospective validation was

performed on selected predictions.

Nth1p is a key enzyme in the trehalose pathway which plays a

crucial role in glucose homeostasis and stress responses [38,39]

and is a substrate phosphorylated for both Tpk1p and Tpk2p [40].

The NTH1 gene also has been reported to have genetic

interactions with the TPK1 and TPK2 genes [41]. It has been

reported to physically interact with the kinase Sks1p [1] and with

Bmh1p [42]. The above direct interactors of Nth1p, i.e., Tpk1p,

Tpk2p, Sks1p and Bmh1p, are all known to play roles in

filamentous growth [26,43–47]. The Rcn2p protein was also

reported to physically interact with Bmh1p [42], which associates

with the Ste20p protein involved in filamentous growth [47,48].

Bmh1p may also interact with Tpk1p [49–51]. Thus, Nth1p and

Rcn2p have been closely associated with a number of proteins

known to be involved in filamentous growth. Hsp42p has a

Table 1. Summary of the dataset and subsequent analyses.

Summary Number of phosphopeptides Number of proteins

Identifications in the whole dataset 3,312 1,063

Identifications common among all 8 kinase-dead mutants (KDs) 73 66

Identifications common among 4–8 KDs 882 486

Identifications that are significant in at least 1 KD 863 452

Globally significant differential phosphorylation sites 28
(5 from complete
measurements – high-confidence)

26
(5 from complete measurements – high-confidence; 17
have inner connections supported by STRING [53,54])

High-confidence hub proteins identified from the
stringent correlation network

- 19

Proteins known to be involved in filamentous
growth from literature mining, and detected in our dataset

- 20
(15 of them are significant in at least 1 KD)

doi:10.1371/journal.pcbi.1003077.t001

Figure 3. Correlation heat map of the kinase-dead mutants (log2 ratios adopted). The hierarchical clustering tree using Spearman
correlation as the similarity metric is drawn along the left side of the heatmap.
doi:10.1371/journal.pcbi.1003077.g003
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physical association with Fus3p [42], and its expression is induced

under starvation [52]. The remaining two proteins in Table 3 have

not yet been closely linked to filamentous growth but play roles in

other stress responses and represent new leads.

We also searched the STRING database [53,54] to investigate

the inner connections between the 26 globally significant proteins

(shown in Figure S2 in Text S1). STRING assigns the confidence

of protein-protein interactions integrating high-throughput exper-

iments, genetic context, co-expression and other previous knowl-

edge. In Figure S2 in Text S1, 17 proteins, including Nth1p,

Hsp42p, Rcn2p, Pbi2p, Hsp26p, Bfr1p, YGR250C protein,

Leu1p, Lys20p, Cdc19p, Fol2p, Pil1p, Abp1p, Cdc11p, Shs1p,

YLR413W protein and Pxr1p, have direct or indirect connections.

It presents a closely inter-connected sub-network embodying

Nth1p, Pbi2p, Rcn2p, Hsp42, YGR250C protein and Hsp26p.

Correlation network
All possible pairs among the 73 common phosphopeptides with

complete measurement were tested using the Pearson correlation.

A total of 45 strongly correlated phosphopeptide pairs were

identified, each satisfying the following criteria: the correlation test

p-value , 0.05, and the stringent requirement of |Pearson

correlation coefficient| $ 0.9. Detailed information on the 45

pairs of phosphopeptides is provided in Dataset S4. Twenty-seven

of the pairs have positive correlations, while 18 pairs have negative

correlations. A stringent protein correlation network containing 35

proteins (Figure 5) was generated by connecting the strongly

correlated peptide pairs and then tracing the peptides back to their

parent proteins.

Identifying core-components in the correlation network
In the protein correlation network, proteins with the highest

degrees of connectivity are considered core components in the

network. The 19 proteins having degrees greater than 1 (protein

self-connection ignored) in the stringent protein correlation

network were predicted to be core components of the network.

Detailed descriptions and evidence of the proteins are summarized

in Table S2 in Text S1. Kem1p, Spa2p and Spt6p have been

reported to be directly involved in filamentous growth in previous

literature. Six other proteins, Are2p, Dcp2p, Hsp42p, Ssd1p,

Sum1p, and Ufd1p, have reported evidence in terms of genetic

and/or physical interactions with known components of filamen-

tous growth. The remaining proteins have been implicated in

various stress responses, including the unfolded protein response

(e.g., sensitivity to tunicamycin), osmotic shock, and thermal shock,

but not previously linked to filamentous growth. Pbi2p has not

Table 2. Top 8 tight clusters and functional enrichment.

Cluster Proteins (traced back from phosphopeptides) Enriched terms

1 YRO2, BUG1, VPS74, HXK1, PIL1, FBP26, PTK2, NPA3,
BIR1, MYO3, UTP14, ARE2, DBP5, RUD3

Nucleotide phosphate-binding region:ATP (P-value = 6.54E-04, Benjamini = 3.4E-
2) **

Nucleotide-binding (P-value = 1.8E-3, Benjamini = 4.2E-2) **

ATP-binding (P-value = 6.0E-3, Benjamini = 9.3E-2) *

2 VMA2, SEC31, GLY1, PEA2, VTC2, KEM1, UFD1, TIF4631,
BCY1, SPA2, MFT1, NEW1, KRE6

-

3 NUP60, SLA1, STU1, YCL020W, VBA4, HOM2, YDR365W-B,
VPS74, PSP1, CHD1, NUP145, SPT6, HSE1, ABF1, MEH1,
CKI1, YLR413W, SPT5, HRB1, LCB4, CAF20, MRL1

Endosome (P-value = 1.6E-3, Benjamini = 6.6E-2) *

RNA polymerase II transcription elongation factor activity (P-value = 1.4E-3,
Benjamini = 9.6E-2) *

Transcription elongation regulator activity (P-value = 2.8E-3, Benjamini = 9.9E-2) *

4 FAP7, ITR1, LSB3, LEU1, FLC3, SPT6, YGR125W, CRP1, KEL1, LCB3, YBT1,
BDF1, YMR031C, DDR48, YMR295C, GPD2, ZEO1, CAF20, SNF2

-

5 PIN4, CYC8, BUD3, LYS20, CDC34, MAK21, BFR2, SUM1, GLY1,
NUP145, PRP43, SPT6, ENP2, YOR1, SSZ1, NUP2, YLR345W,
SUB1, ESC1, BDP1, DCP2, RPC31, SLA2, NOP8, ALE1, MSB1, SNU66

Nucleus (P-value = 1.0E-4, Benjamini = 3.4E-3) ***

Nuclear lumen (P-value = 3.4E-4, Benjamini = 2.7E-2) **

6 SIF2, PPH22, VAC8, HSP12, RTF1, RSC30, TRA1, LCB3, NAP1,
SIC1, RPN13, YMR196W, MRE11, MCK1, LEM3, FPK1, LSP1

-

7 IST2, AIM3, RPC53, YDR186C, ECM32, MIG1, HXK2, VHS2,
RNR2, UTR1, FBA1, EAP1, YLR257W, PFK2, PFK2, ACC1, YOR052C

Fructose and mannose metabolism (P-value = 3.0E-3, Benjamini = 3.9E-2) **

Glycolysis (P-value = 1.6E-3, Benjamini = 4.3E-2) **

Glycolysis/gluconeogenesis (P-value = 9.8E-3, Benjamini = 6.2E-2) *

8 AKL1, IST2, MAK5, FEN1, LHP1, RPC53, SAS10, SHS1, MAK21,
DOP1, GCD6, GUK1, CHO1, PDA1, LEU1, NOP7, SPT6, TFG1,
HXT1, AIM21, URA2, CDC11, MAK11, VPS13, CBF5, VTA1, CRN1,
YMR031C, EFR3, ADE4, NOP12, MAM3, CAF20, PEX25, TIF5

Ribosome biogenesis (P-value = 1.0E-4, Benjamini = 5.0E-3) ***

Functional enrichment P-value and Benjamini-Hochberg corrected p-value (Benjamini) were calculated with DAVID Functional Annotation Tool [33,34]. They are given in
the brackets following corresponding terms.
*Benjamini ,0.1,
**Benjamini ,0.05,
***Benjamini ,0.01.
All the clusters are highly enriched in the term ‘‘phosphoprotein’’ (not listed above).
doi:10.1371/journal.pcbi.1003077.t002
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been reported previously as being involved in filamentous growth;

however, our experimental results indicate that a haploid strain of

S. cerevisiae deleted for PBI2 exhibits decreased invasive growth

relative to wild type (see Experimental validation in Results).

Gpd2p and Lys21p are two self-connected proteins. The self-

connection was built up by two distinct phosphorylation sites on

the protein. Gpd2p has not been related to filamentous growth in

Saccharomyces cerevisiae. Its homolog Gpd2p in Candida albicans, is

involved in core stress responses, and GPD2 is induced upon

pseudohyphal growth in S. cerevisiae [42–49].

Literature mining
In addition to the candidate proteins predicted from our

dataset, we retrieved from the literature and authoritative

databases [20,26–28,55,56] a list of proteins involved in filamen-

tous growth. A total of 69 unique proteins, not all being

phosphoproteins, were extracted (Table S1 in Text S1), and 20

of them have been detected in our phosphoproteome dataset.

Among those, 15 proteins, including Bcy1p, Cdc28p, Cyr1p,

Dig1p, Dig2p, Flo8p, Kem1p, Ras2p, Sfl1p, Snf1p, Spa2p,

Ste20p, Ste50p, Tpk3 and Tpm1p, showed significant phosphor-

ylation changes in at least one kinase-dead mutant, and are

displayed in our extended pathway map (Figure 4).

Causal Bayesian network
The interactions retrieved from the differentially phosphory-

lated proteins in individual kinase-dead mutants (the dashed

edges in Figure 4) did not make use of phosphorylation change

pattern over different kinase-dead mutants, and the protein pairs

must contain a mutated kinase. In contrast, the correlation

network is a network of the common peptides, taking into

account the protein responses in all the kinase-dead mutants, and

the correlated protein pairs do not necessarily contain the

mutated kinases. Note that this network is not directed and more

information may be gleaned from a causal analysis. We

implemented causal relationship discovery to detect the direction

of influences between proteins with the understanding that the

relationships may be direct or indirect. A total of 46 unique

proteins, including the kinases we mutated, the predicted high-

confidence globally significant proteins and hub proteins, and

other literature reported proteins, were selected to construct the

network. All are listed in Table 4.

Bayesian network modeling identified causal influences for 22

protein pairs (44 phosphopeptide pairs) (Table S3 in Text S1),

satisfying the posterior probability of the relationship greater than

0.5. The network comprising all the causal relationships is

presented in Figure 6. Among those, only 6 protein pairs have

Figure 4. Extended filamentous pathway map. The extended filamentous growth pathway map integrating the known knowledge (Figure 1)
and the regulation inferred from significant differential phosphorylation in individual KDs. The inferred regulation might be direct or indirect. The
ellipses are proteins; the rectangles are DNAs; and the triangles are metabolites. The linkage between shapes: sharp-end arrows indicate stimulation,
T-end arrows indicate inhibition, and wavy lines indicate association. Solid lines indicate physical interactions, while dashed lines indicate changes in
phosphorylation.
doi:10.1371/journal.pcbi.1003077.g004
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Table 3. Globally significant phosphopeptides selected from the complete measurements (high-confidence).

ENSEMBL
ID [99]

Standard
name Name descriptiona Modified sequence Stress response

YDR001C NTH1 Neutral trehalase;Alpha,alpha-
trehalase;Alpha,alpha-trehalose
glucohydrolase

_RGS(ph)EDDTYSSSQGNR_ Nth1p is a multiple stress responsive
protein [38,57].

YNL015W PBI2 Protease B inhibitors 2 and 1;
Proteinase inhibitor I(B)2

_HNDVIENVEEDKEVHT(ph)N_ Pbi2 gene deletion leads to decreased
resistance to hyperosmotic stress [58].

YOR220W RCN2 Regulator of calcineurin 2;
Weak suppressor of PAT1 ts
protein 1

_NKPLLSINT(ph)DPGVTGVDSSSLNK_ Rcn2p is Induced in response to DNA-
damaging agent methyl
methanesulphonate [59].

YPL058C PDR12 ATP-dependent
permease PDR12

_HLSNILS(ph)NEEGIER_ Pdr12 is strongly induced by weak acid
stress [60] and is a target of the
transcription factor War1p [61] which
elicits weak organic acid stress adaptation
through active efflux [62,63].

YDR171W HSP42 Heat shock protein 42 _KS(ph)S(ph)SFAHLQAPSP
IPDPLQVSKPETR_

Protein expression is induced by stresses
such as heat shock, salt shock and
starvation [52].

aAnnotated with MaxQuant.
doi:10.1371/journal.pcbi.1003077.t003

Figure 5. Stringent correlation network of phosphoprotein pairs. Red lines indicate positive correlations, while black lines indicate negative
correlations. The larger the node size, the greater the degree of connectivity.
doi:10.1371/journal.pcbi.1003077.g005
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the posterior probability higher than 0.7. The other protein pairs

do not have high probability since the samples available for

training the model is limited due to the missing data issue caused

by instrument limitation. The arrows in Figure 6 only indicate the

existence of causal influence, but do not specify whether the

influence is activation or inhibition. The causal relationship

discovered might be between proteins that are not immediately

adjacent in pathways so the relationship could be quite indirect.

For example, the causal relationship between Rcn2p and Ste20p

might be indirect: Rcn2p and Bmh1p have physical interaction

captured by affinity capture-MS [42], while Bmh1p associates with

Ste20p to influence filamentous growth [47].

Through another inspection of the phosphorylation change

patterns of the peptide pairs detected with relatively strong causal

influences (posterior probability higher than 0.7), we observed

that: Ste20p has opposing phosphorylation changes compared to

Are2p, Pdr12p and Sec21p; two phosphopeptides (the same amino

acid sequence but different phosphorylation sites) on Hsp42p

present opposing phosphorylation changes compared to Ste20p;

and Pbp1p presents consistent phosphorylation change compared

to Ste20p. With caution we predict that the opposing pattern

implicates an inhibitive influence of Are2p, Pdr12p and Sec21p to

Ste20p; and similarly, inhibition of Hsp42p to Ste20p; while

Pbp1p shed activating influence to Ste20p. Again, we emphasize

that the influence might be quite indirect and even be influenced

by multiple pathways.

Experimental validation
Our computational analyses highlight the proteins Nth1p,

Pbi2p, Pdr12p, and Rcn2p as undergoing globally significant

phosphorylation changes. To determine if these proteins do in

fact impact filamentous growth in S. cerevisiae, we constructed

haploid strains singly deleted for each gene and assayed for

filamentation phenotypes. Precise gene deletions were carried

out using a standard PCR-based strategy, and resulting haploid

strains were assayed for invasive growth by standard plate-

washing assays under normal growth conditions [17]. Invasive

growth, characterized by filament penetration into the agar

substrate, was decreased upon deletion of PBI2 relative to wild-

type. In addition, the deletion of NTH1, PDR12, and RCN2

yielded exaggerated invasive growth relative to an otherwise

isogenic wild-type strain. Results are shown in Figure 7. All four

proteins have been previously implicated in various yeast stress

responses, but not specifically with respect to filamentous

growth [38,52,57–63]. Nth1p, i.e. neutral trehalase, is involved

in the trehalose pathway, which is a glucose storage pathway

[64]. Pbi2p is a cytosolic inhibitor of vacuolar proteinase B, and

is involved in the regulation of proteolysis [65–69]. Rcn2p, a

regulator of calcineurin [70], is induced in response to DNA-

damaging agents [59]. Pdr12p is a multidrug transporter

inducible by weak acid, and is required for weak organic acid

resistance [71,72]. These four proteins are not reported to be

signaling molecules themselves, but we demonstrate that they

appear to play roles in filamentous growth and are likely

downstream targets of the filamentous growth pathways.

In summary, all four deletions result in differential invasive

growth compared to the wild type control, providing prospective

validation for our approach to identification of candidate

proteins in this biological system from phosphoproteomics data

alone.

Table 4. Focus proteins used for causal relationship discovery.

Mutated kinases

Globally significant
(high-confidence)

Hub proteins
(high-confidence)

From literature mining and detected in
our dataset

(also see Table 3) (also see Table S2 in Text S1) (also see Table S1 in Text S1)

KSP1 NTH1 SEC21 BCY1

KSS1 PBI2 ABF1 BMH1

SKS1 RCN2 ARE2 BUD2

STE20 PDR12 DCP2 CDC28

SNF1 HSP42 KEM1 CYR1

TPK2 NUP145 DIG1

ELM1 SPA2 DIG2

FUS3 CHO1 FLO8

GLY1 GPR1

HSP42 KEM1

PWP1 NRG1

PUF6 PEA2

SPT6 RAS2

SSD1 SFL1

SUM1 SNF1

NUP2 SPA2

PBI2 STE20

PBP1 STE50

UFD1 TPK3

TPM1

doi:10.1371/journal.pcbi.1003077.t004
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Figure 6. Causal Bayesian network. Each edge indicates a potential causal influence between proteins, which might be a direct or indirect
influence. It does not distinguish activation and inhibition. The thicker the edge, the higher the posterior probability.
doi:10.1371/journal.pcbi.1003077.g006

Figure 7. Phenotypic analysis of genes predicted to contribute to the yeast filamentous response. The genes PBI2, PDR12, RCN2, and
NTH1 were deleted in a haploid strain of the filamentous g1278b genetic background by targeted replacement with the G418-encoding kanMX6
cassette. The resulting strains were grown 3–4 days under normal growth conditions, and invasive growth was assayed in these strains and in a wild-
type strain according to standard protocols using a plate-washing assay. Deletion of PBI2 resulted in decreased invasive growth upon plate washing,
and strains deleted for PDR12, RCN2, and NTH1 yielded hyperactive invasive growth. The increased invasive growth in these strains was most clearly
evident in patched cultures as shown.
doi:10.1371/journal.pcbi.1003077.g007
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Discussion

In this study, we demonstrate that interventional phosphopro-

teome studies can provide new insight into signaling pathways

involved in biological processes such as yeast filamentous growth.

In order to increase sensitivity to smaller changes in phosphory-

lation relative to previous yeast global phosphoproteome studies

[5,6], we used SILAC, an isotope labeling approach. Isotope

labeling approaches are generally more precise relative to label-

free approaches [11], but require greater resources to implement,

resulting in trade-offs between precision and missing data due to

sampling limitations inherent to current instruments. We proposed

and developed a comprehensive computational and statistical

analysis pipeline for the post-identification studies of phosphopro-

teome data. The analyses are aimed at discovering candidate

components of significant pathways involved in filamentous

growth as well as the potential targets of the pathways, and to

provide more information on the signaling network structure by

monitoring changes in phosphorylation in response to mutational

interventions. We applied the pipeline to analyze our interim high

mass accuracy yeast phosphoproteome datasets and a total of 882

unique phosphopeptides representing 486 proteins were identified

as significantly influenced by at least one out of 8 kinase-dead

mutants. Twenty-eight unique phosphopeptides having globally

significant phosphorylation were identified from the whole dataset

among which 5 peptides representing 5 proteins, Nth1p, Pbi2p,

Rcn2p, Pdr12p and Hsp42p, were identified as high-confidence

candidates. Nineteen candidate proteins with relatively high

degrees of connectivity were selected as hub proteins in the

stringent correlation network (Pbi2p and Hsp42p were identified

as hub proteins too). Among the high-confidence candidate

proteins, 3 proteins have been previously reported to be directly

involved in filamentous growth and another 6 proteins were also

supported, in terms of genetic and physical interactions with

known components involved in filamentous growth. The remain-

ing proteins have been implicated in various other stress responses

and may play roles in filamentous growth or may be secondary

stress responders. In particular, we validated four candidate

proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p as impacting invasive

growth. Causal relationship discovery was further performed on

the candidates and validated proteins. The inferred causal

relationships, along with the interactions inferred from phosphor-

ylation changes in response to individual mutants, form phospho-

protein interaction networks, which suggested potential proteins to

be intervened in future studies.

Each of the kinases mutated in this study had previously been

implicated in filamentous growth. Many of these kinases are

known to also affect pathways that are not involved directly in

filamentous growth. However, the proteins which change phos-

phorylation level in response to multiple mutants are reasonable

candidates involved in filamentous growth. The sensitivity of such

detection is constrained by the degree of overlap between

pathways, the coverage of pathways by the mutants, and the

extent of missing data. Upstream components of isolated pathways

may be missed, while downstream core components are more

likely to be identified.

A remaining challenge for quantitative phosphoproteome

analysis arises from the sampling limitations and resolution of

current mass spectrometers [11]. This feature of tandem mass

spectra of complex mixtures results in poor overlap of peptides

identified across samples unless a relatively large number of

replicate experiments are carried out (which is time consuming

and often economically impractical for large-scale projects). For

this reason, a significant number of missing values exist in these

datasets which can obscure potential candidates for further

validation studies. This is likely to be alleviated to some extent

in the future as mass spectrometry technologies continue to

improve, but we have developed methods to partially compensate

for the missing data issue. In the phosphopeptide meta-analysis, an

extension of Fisher’s combined probability test was made to relax

the restrictions of complete measurements. The causal network

modeling component was also developed to allow missing values

without excluding the incomplete measurements. We also

performed cluster analysis of phosphopeptides. Instead of adopting

traditional clustering methods, we directly identified the most

stable clusters using missing value-imputed data. Our approach

was able to pick out significantly enriched functions, and identify a

number of reliable candidate proteins for further validation of

which four were validated.

This analysis pipeline has been developed to study yeast

filamentous growth pathways; however, the methodology is not

limited to yeast or this biological process. It can be applied to other

complex organisms to facilitate investigation into various biolog-

ical processes. We anticipate the methodology to be applicable as

well to other interventional studies via different experiment

platforms.

Materials and Methods

Mass spectrometry data
Tandem mass spectrometry data were generated from a series

of triplex SILAC [12,73,74] experiments of kinase-dead mutant

(KD) strains versus the wild type (WT) haploid filamentous yeast

g1278b strain. Eight yeast kinases, KSP1p, KSS1p, SKS1p,

STE20p, SNF1p, TPK2p, ELM1p and FUS3p, all known to be

involved in filamentous growth [20,26,27], were chosen to

generate kinase-dead mutations (inactivated alleles) individually.

We investigated the yeast phosphoproteome from the eight

mutants vs. wild type. We have obtained 2–3 replicates for 7

(out of 8) kinase-dead mutants. The dataset constitution is listed in

Table S4 in Text S1. Because mass spectrometry experiments are

time-consuming and costly, most recent studies in proteome

research perform two [75,76] or three replicates [77,78] which

contributes to the missing data problem in proteomics.

All strains were auxotrophic for Lys and Arg, and were grown

on defined medium supplemented with the appropriate isotopic

forms of Lys and Arg. The cultures were grown to log phase, and

treated with 1% (vol/vol) butanol to induce filamentous growth

[26]. The treated samples were incubated for another 16 hours to

obtain enough proteins for mass spectrometry analysis. The final

O.D. at 600 nm reached a high value usually between 1.0 and 1.5.

Different Lys and Arg isotope forms were used to label the three

samples in a triplex SILAC experiment: light (Lys0/Arg0) for WT

control sample, medium (Lys4/Arg6) and heavy (Lys8/Arg10) for

two different mutant samples. Cells were harvested by centrifu-

gation and lysed in the presence of protease and phosphatase

inhibitors. In SILAC experiments, samples were pooled at the

harvest stage before protein extraction. Samples pooled at this

early stage can reduce both systematic and random errors that

may occur in later sample preparation [79,80], thus the results

have smaller variance compared to unpooled samples. Small

sample sizes (two or three replicates) is acceptable for the low-

variance SILAC experimental design. We observed in our SILAC

experiments that the majority of the ratio ‘‘variability’’ in the data

was less than 20. (The ‘‘variability’’ is reported by MaxQuant and

is defined as the standard deviation of all log ratios used for

obtaining the reported ratio value multiplied by 100 [30,81].)
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Protein levels were determined by the Bradford protein assay

and the proteins from the triplex labeling were then pooled, and

were digested by trypsin. The digest was separated into fractions

using strong cation-exchange (SCX) fractionation, followed by

selective enrichment of phosphorylated peptides using titanium

dioxide [82,83] and then analyzed by LC-MS/MS using a

Thermo Fisher Orbitrap XL mass spectrometer. Peptides were

identified using MaxQuant software [30] following the Mascot

search engine [29], and filtered requiring peptide identification

FDR,1%. For Mascot searches, enzyme specificity was set to

trypsin. Carbamidomethyl cysteine was set as a fixed modification.

N-terminal carbamyl, oxidized methionine, as well as phosphor-

ylation of serine, threonine, and tyrosine were set as variable

modifications. Some missed cleavage was observed and could

potentially contribute to the variance. The method for calculating

peptide identification FDR based on concatenated databases was

described by Cox J and Mann M [30]. A total of 3,312

phosphopeptides representing 1,063 proteins were identified.

Among those, 73 unique phosphopeptides representing 66

common proteins were commonly identified in all the 8 kinase-

dead mutants; while, 882 phosphopeptides representing 486

proteins were common to at least half of the kinase-dead mutants.

Post-identification analyses
Post-identification analyses. In the meta-analysis, we

contrast and combine the results from different KD-versus-WT

experiments, so that to find the correlations between kinase-dead

mutants, categorize peptide phosphorylation patterns over exper-

iments, and identify differentially phosphorylated peptides.

Overview of the influences inferred from kinase-dead

mutations. The relative phosphorylation level obtained for

each phosphopeptide is represented as a ratio for each of the 8

kinase-dead mutants (KD) versus wild type (WT) under filamen-

tous growth conditions. Two examples of phosphopeptides

identified in all 8 kinase-dead mutants are shown in Table 5.

The ratio lists of all the identified phosphopeptides are aligned to

constitute a ratio matrix. The quantity measuring statistical

significance of each ratio, i.e., the significance B value, was

calculated with MaxQuant [30]. The ratios shown in Table 5 were

extracted before filtering by statistical significance.

For the purpose of evaluating similar or reciprocal effects on

phosphorylation changes in response to different kinase mutations,

we generated a correlation heatmap of the kinase-dead mutants

(see Figure 3), which is presented as Spearman correlations

between pairs of mutants. In order to avoid the strong correlation

dominated by the majority of peptides whose phosphorylation do

not change significantly, only the peptides having at least 2-fold

changes in both mutants were used for calculation. Positive or

negative correlations can be interpreted as similar or reciprocal

effects on phosphorylation induced by different kinase mutations.

Clustering phosphopeptides. Our goal of this cluster

analysis is to find the groups of phosphopeptides sharing similar

phosphorylation change patterns, which are likely to be involved

in similar functional pathways. The phosphopeptides commonly

identified in 4–8 KD-versus-WT conditions were selected, and the

missing values were imputed (on log2 scale) using 5-nearest

neighbor averaging [84,85]. The imputed dataset was analyzed

using the tight clustering method [31], which sequentially

identified the most informative, tight and stable clusters from the

data, without enforcing all peptides to be clustered.

We also attempted several traditional clustering methods,

including hierarchical clustering methods [86] and PAM (Parti-

tioning Around Medoids) [87]. These methods enforce clustering

for all peptides. However, due to the presence of large numbers of

scattered peptides that do not tightly match to any pattern, it is

difficult to determine the number of clusters and discover stable

functional clusters. In contrast, the tight clustering method is more

suitable for data with scattered peptides. It identifies the tight

clusters in decreasing order of stability, and the number of clusters

is less crucial [31].

Note that the cluster analysis was performed at the peptide level

rather than the protein level, because many proteins contain

multiple phosphorylation domains whose responses may correlate

or not, depending on the function of phosphorylation at those sites

and the physiological conditions examined. Protein identities were

traced back from the peptide identifications while accounting for

protein isoforms.

Functional annotation within each tight cluster. The

functional terms were annotated for the proteins in top tight

clusters to survey functional enrichment. The Functional Anno-

tation Tool on DAVID v6.7 [33,34] was used to facilitate

annotation.

Identification of differential phosphorylation in each
mutant. The phosphopeptides that change phosphorylation

level significantly in each individual KD-versus-WT experiment

were selected by the significance B value , 0.05.

Identification of globally significant differential
phosphorylation. The kinases selected to be dead mutated

are all known to be involved in filamentous growth. The proteins

which have globally significant responses in the mutants versus

WT controls are potential components involved in filamentous

growth or expression products of the gene targets. Detecting

globally differentially phosphorylated peptides combining the

results from all the KD-versus-WT experiments is a multiple

testing problem [88]. Due to the missing data issue common in

proteome data, it is too stringent and impractical to require a

candidate to be completely significant in all the experiments. Thus,

Table 5. Ratio lists for two representative phosphopeptides from the ratio matrix.

Phosphopeptide Phosphorylation fold-changes in following KD-vs-WT conditions

Sks1-KD
vs. WT

Ste20-KD
vs. WT

Snf1-KD
vs. WT

Tpk2-KD
vs. WT

Elm1-KD
vs. WT

Fus3-KD vs.
WT

Kss1-KD
vs. WT

Ksp1-KD
vs. WT

ADDEEDLS(ph)DENIQPELR 0.72 0.71 0.70 0.52 1.0 0.88 0.83 0.86

ADGTGEAQVDNS(ph)PTTESNSR 2.3 3.7 2.1 2.2 0.33 0.58 0.75 0.69

Phosphorylation level of each phosphopeptide is represented in a list of ratios. We used the peptide ratios provided by the MaxQuant output, which have been
normalized for each LC-MS/MS run [30]. The significance B values provided by MaxQuant are not shown here. For the cluster analysis, if a phosphopeptide is detected
multiple times under the same KD-versus-WT condition, the median of all its ratios are taken. S(ph) or T(ph) indicates that the specific amino acid, serine or threonine, is
phosphorylated, respectively.
doi:10.1371/journal.pcbi.1003077.t005
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we relax the requirement, and use less stringent methods which

can still identify the candidates having global significance. We

extended the Fisher’s combined probability test [35] to allow

missing values, and it was applied to solve the multiple testing

problem.

In the framework of Fisher’s method, the two-tailed p-value pi

for an individual significance test in a KD-versus-WT experiment

is calculated as twice the significance B value. In our dataset,

i~1,2, � � � ,8, corresponding to the 8 KD-versus-WT conditions,

and the total number of individual tests, N~8. The test statistic

X 2~{2
PN

i~1 ln(pi) follows a chi-square distribution with 2N

degrees of freedom. Thus, the p-value for the test statistic X 2 can

be determined, which is the combined p-value for all 8 individual

tests. Each identified phosphopeptide has a combined p-value as a

measure of global significance. The extension of Fisher’s method:

for each phosphopeptide, its combined p-value was calculated

from all of its available significance B values. All the non-missing

values were retained for calculating the combined p-value, rather

than excluding the incomplete data from the dataset. The FDR of

multiple testing is controlled using the Benjamini-Hochberg proce-

dure [36].

We also adapted an adaptively weighted statistic-based method

(missing values not allowed) [37], which was initially developed for

detecting differential gene expression, for detecting differential

phosphorylation from our common peptides appearing in all KDs.

The globally significant phosphorylation sites detected by these

two methods were generally consistent.

Correlation network analysis. A correlation network of all

the 73 common phosphopeptides with complete measurements

was generated based on their phosphorylation changes under all 8

KD-versus-WT conditions. The Pearson correlation coefficient

between each pair of distinct phosphopeptides was calculated.

Strong correlations meet the following criterion: p-value of the

Pearson’s correlation test , 0.05, and a stringent requirement of

|Pearson correlation coefficient| $ 0.9. The protein identifica-

tions can be traced back from the phosphopeptides.

The correlation network among proteins is an undirected

network. Degrees of connectivity for each protein in the network

can provide an assessment of importance of the protein. The

higher the degree, the more frequently the protein is involved in

interactivities with other proteins in the network. From this

measurement, we predict core-components in the correlation

network.

Literature mining. In addition to the candidate proteins

predicted by global differential phosphorylation and the core-

components identified from the correlation network, we also

retrieved a list of proteins reported as known or potential

components involved in filamentous growth from literature as

well as authoritative databases, such as SGD [55,56], BIOGRID

[89] and Science Signaling Database of Cell Signaling [20]. Note that

people have usually used different terms to refer to filamentous

growth in haploid cells; ‘‘filamentous growth,’’ ‘‘filamentation’’

might all refer to the same biological process. In SGD database,

we search both key words for Descriptions and GO Biological

Process terms associated with the proteins.

Causal Bayesian network modeling. The correlation

network is intuitive; however, it is not directed, and direction

information for networks is quite useful for interpretation. For this

reason we went beyond correlation analysis to causal Bayesian

network modeling. Because different phosphopeptides from the

same protein do not definitely change phosphorylation level in the

same direction, the network modeling must be performed on

peptide level, and then traced back to their parent proteins.

Data preprocessing. If a phosphopeptide was detected more

than once in a specific mutant, the median of the fold-changes was

taken as a representative of the response in this mutant. The

phosphorylation fold-changes of peptides were discretized into

three states based on the 2-fold change criterion [90]: if the ratio is

smaller than 0.5, the state is categorized into under-phosphorylation; if

the ratio is greater than 2, the state is categorized into over-

phosphorylation; otherwise, the state is categorized into baseline.
Causal relationship discovery. A causal Bayesian network

is a Bayesian network in which a directed edge is interpreted as a

causal influence from the parent node to the child node [91,92]. In

our study, each protein (represented by unique phosphopeptides) is

considered as one node in the network, and a directed edge

starting from the node of protein X pointing to the node of protein

Y represents a causal influence of protein X on Y. Disregarding

confounding influences, there are three simple model structures

between two proteins X and Y: (1) X has causal influence on Y; (2)

the opposite; (3) no causal relationship between X and Y. Note

that the directed edge only indicates the direction of causal

influence, but do not tell whether the influence is activation or

inhibition.

Non-informative prior distribution of the model structures is

used. For given data, D, and prior knowledge, K , we want to find

the model structure, S, that has the highest posterior probability,

P(SDD,K). According to Bayes’ theorem, P(SDD,K) / P(DDS,K).
While all the nodes have been discretized in Data preprocessing,

assuming the causal mechanisms are local and independent, and the

prior distribution of the parameters associated with each node is

Dirichlet, the marginal likelihood P(DDS,K) can be obtained by the

Bayesian Dirichlet equivalent (BDe) metric [91,93–95]. For the

mixture of observational and interventional data, only the passively

observed cases are counted in the BDe metric calculation [91,95].

The model structure with the highest posterior probability is

assigned to the corresponding pair of proteins.

The analyses were implemented in R v2.15.1 and MATLAB

R2012a. The causal Bayesian network structure learning was

performed in MATLAB using BNT (Bayes Net Toolbox for

MATLAB) v1.0.7 [96]. Cytoscape v2.8.3 [97,98] was used for

network visualization.
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47. Roberts RL, Mösch HU, Fink GR (1997) 14-3-3 proteins are essential for RAS/

MAPK cascade signaling during pseudohyphal development in S. cerevisiae.
Cell 89: 1055–1065.

Signaling Network Discovery in Phosphoproteomics

PLOS Computational Biology | www.ploscompbiol.org 15 June 2013 | Volume 9 | Issue 6 | e1003077



48. Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces

cerevisiae. FEMS microbiology reviews 25: 107–123.
49. Bertram PG, Zeng C, Thorson J, Shaw AS, Zheng XF (1998) The 14-3-3

proteins positively regulate rapamycin-sensitive signaling. Current biology: CB

8: 1259–1267.
50. Irie K, Gotoh Y, Yashar BM, Errede B, Nishida E, et al. (1994) Stimulatory

effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase.
Science (New York, NY) 265: 1716–1719.

51. Gelperin D, Weigle J, Nelson K, Roseboom P, Irie K, et al. (1995) 14-3-3

proteins: potential roles in vesicular transport and Ras signaling in Saccharo-
myces cerevisiae. Proceedings of the National Academy of Sciences of the

United States of America 92: 11539–11543.
52. Wotton D, Freeman K, Shore D (1996) Multimerization of Hsp42p, a novel heat

shock protein of Saccharomyces cerevisiae, is dependent on a conserved
carboxyl-terminal sequence. The Journal of biological chemistry 271: 2717–

2723.

53. Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, et al. (2003) STRING:
a database of predicted functional associations between proteins. Nucleic Acids

Research 31: 258–261.
54. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The

STRING database in 2011: functional interaction networks of proteins, globally

integrated and scored. Nucleic Acids Research 39: D561–8. doi:10.1093/nar/
gkq973.

55. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, et al. (2011)
Saccharomyces Genome Database: the genomics resource of budding yeast.

Nucleic acids research. doi:10.1093/nar/gkr1029.
56. SGD project (2012) Saccharomyces Genome Database. Available: http://www.

yeastgenome.org/. Accessed 16 August 2012.

57. Nwaka S, Holzer H (1998) Molecular biology of trehalose and the trehalases in
the yeast Saccharomyces cerevisiae. Progress in nucleic acid research and

molecular biology 58: 197–237.
58. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, et al. (2009)

Comprehensive phenotypic analysis for identification of genes affecting growth

under ethanol stress in Saccharomyces cerevisiae. FEMS yeast research 9: 32–
44. doi:10.1111/j.1567-1364.2008.00456.x.

59. Lee M-W, Kim B-J, Choi H-K, Ryu M-J, Kim S-B, et al. (2007) Global protein
expression profiling of budding yeast in response to DNA damage. Yeast

(Chichester, England) 24: 145–154. doi:10.1002/yea.1446.
60. Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, et al. (2003)

Moderately lipophilic carboxylate compounds are the selective inducers of the

Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast
(Chichester, England) 20: 575–585. doi:10.1002/yea.981.

61. Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, et al. (2004)
Global phenotypic analysis and transcriptional profiling defines the weak acid

stress response regulon in Saccharomyces cerevisiae. Molecular biology of the

cell 15: 706–720. doi:10.1091/mbc.E03-05-0322.
62. Kren A, Mamnun YM, Bauer BE, Schüller C, Wolfger H, et al. (2003) War1p, a

novel transcription factor controlling weak acid stress response in yeast.
Molecular and cellular biology 23: 1775–1785.

63. Holyoak CD, Thompson S, Ortiz Calderon C, Hatzixanthis K, Bauer B, et al.
(2000) Loss of Cmk1 Ca(2+)-calmodulin-dependent protein kinase in yeast

results in constitutive weak organic acid resistance, associated with a post-

transcriptional activation of the Pdr12 ATP-binding cassette transporter.
Molecular microbiology 37: 595–605.

64. Kopp M, Müller H, Holzer H (1993) Molecular analysis of the neutral trehalase
gene from Saccharomyces cerevisiae. The Journal of biological chemistry 268:

4766–4774.

65. Slusarewicz P, Xu Z, Seefeld K, Haas A, Wickner WT (1997) I2B is a small
cytosolic protein that participates in vacuole fusion. Proceedings of the National

Academy of Sciences of the United States of America 94: 5582–5587.
66. Xu Z, Mayer A, Muller E, Wickner W (1997) A heterodimer of thioredoxin and

I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. The

Journal of cell biology 136: 299–306.
67. Elazar Z, Scherz-Shouval R, Shorer H (2003) Involvement of LMA1 and

GATE-16 family members in intracellular membrane dynamics. Biochimica et
biophysica acta 1641: 145–156.

68. Betz H (1975) Levels and turnover of the proteinase B inhibitors in yeast.
Biochimica et biophysica acta 404: 142–151.

69. Schu P, Suarez Rendueles P, Wolf DH (1991) The proteinase yscB inhibitor

(PB12) gene of yeast and studies on the function of its protein product. European
journal of biochemistry/FEBS 197: 1–7.

70. Mehta S, Li H, Hogan PG, Cunningham KW (2009) Domain architecture of the
regulators of calcineurin (RCANs) and identification of a divergent RCAN in

yeast. Molecular and cellular biology 29: 2777–2793. doi:10.1128/MCB.01197-

08.
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