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I n 1958, when ecology was a young science and
mathematical models for ecological systems were in their
infancy, Elton [1] wrote of the ‘‘neolithic days of animal

ecology, that is to say about twenty-five years ago.’’
Acknowledging the influence of Lotka and Volterra, he noted,
‘‘Being mathematicians, they did not attempt to contemplate
a whole food-chain with all the complications of five stages.
They took two: a predator and its prey.’’

Today, in the era of computational ecological modeling,
deterministic systems for two variables—and even awhole food
chain—appear like simple idealizations well removed from the
complexity of nature. We now consider predator–prey
interactions as ‘‘consumer–resource’’ interactions embedded
within the large ecological networks that underlie biodiversity
(Figure 1) [2]. Consequently, the scale of the problems we
model has grown to reflect the world as we nowneed to observe
it. For example, the interplay between ecosystemdynamics and
the physical environment that influences global change occurs
over a tremendous range of spatial and organizational scales
(e.g., [3]). Similarly, the population dynamics of the
transmission of infectious diseases often involve spatial or
social networks with large numbers of individuals, but the
interactions of each individual involve only a subset of the
network and can span from local to global distances (e.g., [4–6]).

These examples illustrate the current view of ecological
systems as complex adaptive systems [7,8]. Complex adaptive
systems are distinguished not only by the multiplicity of
components within them, but also by interactions that can be
local or distributed among these components and whose rates
vary as nonlinear functions of the state of the system itself. One
obvious role of computation in the science of complex systems
is simply one of synthesis: to reconstruct the whole from the
parts as we learn more and more about the components and
their interactions. There are obvious limitations to this
approach, evident in the famous image of those imperial
cartographers who produced a map of the empire of the same
size as the empire itself [9]. I argue here that an alternative and
more useful role of computation is to address questions on the
relationship between dynamics at different temporal, spatial,
and organizational scales, that is, to address the importance of
variability at small, local scales to the dynamics of aggregated
quantities measured at large, global scales. If small-scale
‘‘details’’matter, we need to ask howmuch complexity we need
to incorporate into large-scale models if we seek to both
understand and predict the dynamics of global quantities.

Is it possible to incorporate the effect of small-scale
variability without resorting to the ‘‘brute force’’ approach
of using higher and higher resolution? I start with examples
from theoretical ecology that illustrate problems and
approaches related to these scaling questions; I then present
more specific examples related to global change and
ecosystem dynamics, and end with a series of related problems

on the dynamics of large food webs, the ultimate networks of
ecological interactions.

From Individuals to Populations: How Local Effects
Translate into Global Results

Lotka–Volterra equations and their many descendants
assume that individuals are well mixed and interact at mean
population abundances. They are mean-field equations that
use the mass-action law to describe the dynamics of
interacting populations, and ignore both the scale of
individual interactions and their spatial distribution. A key
question therefore is: can the spatial variability generated at
small, individual scales influence the dynamics at larger,
population scales? If so, can the effect of smaller scales be
represented by simply modifying mean-field models?
Stochastic models such as interacting particle systems [10]

can help us examine approaches for scaling up individual-
based dynamics [4,11–14]. One of the most useful lessons
learned from scaling up detailed models is also pertinent to
the related but opposite problem: the formulation of simple
models for global variables that still account for the effects of
local interactions but do not represent them explicitly
(Figure 2). In particular, can we formulate these systems
without having to first simplify detailed models? The problem
with simplification is that it assumes we know about the
components and interactions at ‘‘microscopic’’ levels, but,
unfortunately, this information is not often available. For
example, we may know that the social network underlying the
propagation of an infectious disease is important, but we may
not know all the interactions and the specific contacts that
led to transmission of the disease from one individual to
another. If we were to start with an aggregated model at the
population level (one in which the population is aggregated
into a few variables describing the total number of infected,
susceptible, and immune individuals), how would we
formulate it to incorporate variability at spatial or
organizational levels that are not explicitly represented?
Recent findings on individual-based models for predator–

prey dynamics in a spatial lattice indicate that simpler, low-
dimensional models can still be applied at the population
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level [13,14]. Specifically, the temporal dynamics of global
population abundances, aggregated over the whole lattice,
can be approximated by mean-field-type equations in which
the functional forms specifying the rates of growth and
interaction have been modified as power functions. Similar
results hold for disease dynamics on spatial and social
networks ([15]; M. M. Maule and J. A. N. Filipe, unpublished
data; M. Roy and M. Pascual, unpublished data). The rates of
transmission of the original mean-field equation are
modified to account for deviations from mass action by
incorporating nonlinear mixing terms between susceptible
and infected populations in which global abundances are

raised to a power. Thus, the effect of interactions at local,
individual scales can be represented implicitly by changing
the shape of the functions describing interactions at global,
population levels; that is, the modified framework is
structured as if mass action applied when in fact it does not,
yet the subtleties of nonrandom mixing are captured at the
higher scale. The generality of these findings and the reasons
why power-law functional forms yield successful
approximations remain to be determined. Another approach
based on moment closure techniques has been applied to
simplify detailed models by incorporating the effects of
variances and covariances on the dynamics of mean (global)
quantities [5,11,16–18]; here again, the utility of this
approach when the details at small scales are not known
remains to be examined, as does the development of
statistical methods to fit the models when data are only
available for aggregated ‘‘mean’’ quantities.

From Physiology to Ecosystem Dynamics: Global
Change Ecology

The problem of incorporating sub-grid-scale processes into
large-scale models is found in many other scientific fields in
which nonlinearity allows variability to interact across spatial
or organizational scales. It also applies to other ecological
contexts, in particular to global change ecology and to the
spatiotemporal ecosystem models used to represent
feedbacks between the biota and the physical environment.
At large spatial and temporal scales, the question of essential
biological detail quickly becomes computationally
intractable. In a recent review on ecosystem–atmosphere
interactions, Moorcroft [3] emphasized the problem of
scaling from the level of plant physiology to ecosystem-level

DOI: 10.1371/journal.pcbi.0010018.g002

Figure 2. Bridging Dynamics across Organizational Scales

On the left is a detailed model in which individual interactions in a
network are described explicitly. On the right, typical ‘‘mean field’’
models aggregate the population into compartments (here for the
three subpopulations of susceptible, infected, and recovered individuals
in the dynamics of an infectious disease with permanent immunity).
Computational approaches can help us understand the relationship
between dynamics at these two different scales, from the individual to
the population level. We can start with a stochastic individual-based
model and develop approximations that simplify it (A). From this process,
we can learn about the opposite direction of formulating simple models
directly without sufficient knowledge to first specify the detailed
interactions and components (B). These simple models represent
implicitly the effect of smaller scale variability.

DOI: 10.1371/journal.pcbi.0010018.g001

Figure 1. The Network of Trophic Interactions for Little Rock Lake, Wisconsin

Figure shows 997 feedings links (lines) among 92 taxa (nodes) [2]. The node color indicates the trophic level of the taxon, including (from bottom
to top) algae, zooplankton, insects, and fishes; the link color corresponds to the type of feeding link, including herbivory and primary and secondary
carnivory. This image was produced using FoodWeb3D software written by R. J. Williams and provided by the Pacific Ecoinformatics and Computational
Ecology Lab (www.foodwebs.org).
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dynamics to address global climate change questions. One
limitation of existing approaches is that within the typical
grid cell of existing models, different types of plants compete
for resources that are highly homogeneous or averaged over
space, generating a tendency for monocultures in the
simulated biology [3]. This means that the fine-scale
heterogeneity present in real plant communities, which is
important for buffering the systems against perturbations, is
lost [3,19,20]. Such heterogeneity is generated by small-scale
ecological interactions among individuals and their interplay
with stochastic physical disturbances, such as fire and gap
formation from fallen adult trees. While models that simulate
patterns of species community composition from individual
plant interactions have been created, their application to
ecosystem–atmosphere interactions is computationally
prohibitive. To circumvent this problem, approximations to
these individual-based models have been formulated in the
form of size- and age-structured partial differential equations
[21], which are close in spirit to the ideas discussed in the
previous section (see also [22]).

Similar connections are being addressed in aquatic
environments for phytoplankton, the unicellular primary
producers of lakes and oceans estimated to contribute 45% of
global net primary production (i.e., the amount of carbon
fixed by plants per unit area over time via photosynthesis;
E. A. Litchman, C. A. Klausmeier, J. R. Miller, O. Schofield,
P. G. Falkowski, unpublished data). The amount of net
primary production depends on biological heterogeneity in
the form of a taxonomically diverse group of species [23]. A
recently developed ecosystem model incorporates different
phytoplankton functional groups and their competition for
light and multiple nutrients (E. A. Litchman, C. A. Klausmeier,

J. R. Miller, O. Schofield, P. G. Falkowski, unpublished data).
Simulations of the model at specific sites to explore future
scenarios suggest that global environmental change,
including global-warming-induced changes, will alter
phytoplankton community structure and hence alter global
biogeochemical cycles (A. Litchman, C. A. Klausmeier,
J. R. Miller, O. Schofield, P. G. Falkowski, unpublished data).
The coupling of this type of ecosystem model to global
climate models raises again a series of open questions on
model complexity and relevant spatial scales of resolution.
In fact, similar questions arise not just in the context of
climate change but for the general coupling of ecosystem
models to large-scale physical models of ocean circulation
(e.g., [24]; Figure 3).
In short, the computational and conceptual challenge is to

bridge not only highly disparate temporal and spatial scales,
but also organizational ones, from individual physiology to
ecosystem biogeochemistry, via community structure and
functional diversity (Figure 3). An understanding of how the
structure of ecological communities, composed of a diverse
array of species, responds to perturbations is a critical
intermediate step, which brings me to the next section.

From Structure to Dynamics in Large Ecological
Networks

The nonlinear dynamics of large networks is a major
challenge in computational biology and complex systems in
general [25]. In ecology, the study of networks of species
interactions, particularly food webs composed of trophic
links, has a long history at the interface of theory and
empirical patterns [26–30]. Food webs are the subject of

DOI: 10.1371/journal.pcbi.0010018.g003

Figure 3. Phytoplankton Biomass Generated with a Coupled Biological–Physical Model Developed to Examine the Impact of Nitrogen Fixation in the

Atlantic Ocean

In this large simulation [24], the ecosystem model consists of six variables and includes two different functional groups within the phytoplankton, for
nitrogen and non-nitrogen fixers. The physical model includes 19 vertical layers but only a coarse horizontal resolution (28328). In particular, it does not
resolve the mesoscale variability of the flows, at characteristic scales of 1 to 100 km, known as the ‘‘weather’’ of the ocean. The lower left panel
illustrates the variability of phytoplankton at these smaller turbulent scales, with a simulation of a coupled ecosystem–eddy model (K. Boushaba,
G. Flierl, and M. Pascual, unpublished data). We can ask how the effects of these smaller scales can be incorporated in models with a coarser resolution
for larger oceanic regions. Even more fundamentally, what are the relevant spatial scales of coupling?
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renewed attention today, with improved datasets and the
explosion of research on network structure across science (see
[31] for a review in ecology). However, the relationship
between structure and dynamics in systems that are not just
nonlinear and high-dimensional, but also adaptive, remains
poorly understood. Food web structure includes the diversity
of species, the patterns of connections among them, and the
distribution of interaction strengths on these patterns;
dynamics encompasses different measures of stability that
describe the response of the system to perturbations such as
robustness and resilience, which impact the persistence of
species [32,33]. This is not a new area but many open questions
remain [34]. For example, do rare species and those that
interact weakly with others matter to overall species
persistence in ecosystems? Simple models with only a few
players suggest that rare or weakly interacting species can be
important [35]; however, whether these findings still hold true
in the bigger, more complex networks we observe in nature is
not yet clear. Recent findings suggest a more complex picture
in which not just the intensity of interactions, but also their
location in the network, matters to (linear) stability and to the
invasibility of the community by other species [36,37].
Another recent development is the consideration of other
kinds of interactions such as mutualism and parasitism, which
can play an important role in ecosystem persistence and
bioenergetics [38,39]. The adaptive character of interactions
via phenotypic plasticity and evolutionary change challenges
traditional dynamical models and our view of structure itself.
Adaptive change in the interactions between species
influences dynamics and species’ persistence, but again, this
has been shown primarily in small networks with only a few
players [40,41] (but see [42,43]). The spatial dimension has
been largely ignored in the dynamics of large ecological
networks, although it is clearly a key component of habitat loss
and habitat fragmentation (but see [44] for a static treatment).

Stochastic assembly models are perhaps the best candidates
to develop a general dynamical theory not only to address
open questions on the relationship between structure and
dynamics, but also to generate the macroscopic community
patterns that ecologists observe in nature and characterize
diversity (such as species–area curves and species-rank
abundance curves). In these models, macroscopic patterns in
diversity arise from the dynamic tension between extinction
(as the result of ecological interactions and environmental
perturbations) and innovation (as the result of evolution and
the immigration of new species from outside the system) (e.g.,
[45]). Instability at one level of organization can provide the
basis for robustness to change at higher levels. For example,
in the species assembly model of Solé et al. [45], macroscopic
quantities, such as the number of species, reach a stationary
state, while at the microscopic level instability is rampant,
with recurrent species extinctions and unpredictable
population fluctuations. Computational developments are
needed to tackle the large parameter space of this type of
model and to study the model’s behavior using methods that
interface mathematical analysis and numerical simulation.
Similar issues arise in complementary approaches to link
structure and dynamics in food webs, including those that
map nonlinear dynamical equations upon a static structure of
links between species [46,47]. One promising direction to
help us constrain parameter space and build more realistic
models involves another fundamental area of ecology, the

study of allometric scalings (e.g., [48]). Allometric scalings
describe how biological rates vary as a function of size and
can be used in the formulation of dynamical models for
ecological interactions [49,50]. Ultimately, a better
understanding of the critical properties of ecological
networks that sustain diverse ecosystems and their functions
is of fundamental importance, particularly at this time of
rapid environmental change, when perturbations of structure
and loss of biological diversity are unavoidable.
The topics described here only begin to illustrate some of

the many rich areas for research in computational ecology.
We have moved beyond learning more details about the
components of complex systems in order to reconstruct their
dynamics. Instead, a more fundamental role for computation
is found in exploring the relationship between dynamics
across scales, in the constant dialogue between simplicity and
complexity. Perhaps this is best expressed by what a famous
mathematician had to say about a famous macroscopic law of
physics: ‘‘If our means of investigation became more and
more incisive, we would discover the simple under the
complex, then the complex under the simple, then again the
simple under the complex, and so on, without being able to
predict which state would ultimately prevail’’ [51]. &
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