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Mycobacterium tuberculosis is the focus of several investigations for design of newer drugs, as tuberculosis remains a
major epidemic despite the availability of several drugs and a vaccine. Mycobacteria owe many of their unique
qualities to mycolic acids, which are known to be important for their growth, survival, and pathogenicity. Mycolic acid
biosynthesis has therefore been the focus of a number of biochemical and genetic studies. It also turns out to be the
pathway inhibited by front-line anti-tubercular drugs such as isoniazid and ethionamide. Recent years have seen the
emergence of systems-based methodologies that can be used to study microbial metabolism. Here, we seek to apply
insights from flux balance analyses of the mycolic acid pathway (MAP) for the identification of anti-tubercular drug
targets. We present a comprehensive model of mycolic acid synthesis in the pathogen M. tuberculosis involving 197
metabolites participating in 219 reactions catalysed by 28 proteins. Flux balance analysis (FBA) has been performed on
the MAP model, which has provided insights into the metabolic capabilities of the pathway. In silico systematic gene
deletions and inhibition of InhA by isoniazid, studied here, provide clues about proteins essential for the pathway and
hence lead to a rational identification of possible drug targets. Feasibility studies using sequence analysis of the M.
tuberculosis H37Rv and human proteomes indicate that, apart from the known InhA, potential targets for anti-
tubercular drug design are AccD3, Fas, FabH, Pks13, DesA1/2, and DesA3. Proteins identified as essential by FBA
correlate well with those previously identified experimentally through transposon site hybridisation mutagenesis. This
study demonstrates the application of FBA for rational identification of potential anti-tubercular drug targets, which
can indeed be a general strategy in drug design. The targets, chosen based on the critical points in the pathway, form a
ready shortlist for experimental testing.
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Introduction

Genomics is rapidly changing the very foundation of
several aspects of drug discovery research, one of them being
a systems biology and bioinformatics approach for rational
identification of drug targets. It is now possible to carry out a
metabolic analysis of a system to gain insights into funda-
mental molecular mechanisms of several processes such as
those that are critical for the survival of the pathogen. Here,
we seek to apply such an approach to identify targets for
designing anti-tubercular drugs. Despite the availability of
several drugs and the Bacillus Calmette-Guérin vaccine,
tuberculosis remains a major health concern worldwide,
warranting identification of new drug targets for the design
of more efficacious drugs.

The mycobacterial cell wall is distinctive and is associated
with the pathogenicity of Mycobacterium tuberculosis [1–4]. The
three polymers in the cell wall, arabinogalactan-mycolate [5]
covalently linked with peptidoglycan and trehalose dimyco-
late, provide a thick layer that protects the tubercle bacillus
from general antibiotics and the host’s immune system [6].
The synthesis of mycolic acids—which are long-chain a-alkyl-
b-hydroxy fatty acids, the major constituents of this protec-
tive layer—has been shown to be critical for the survival of M.
tuberculosis [7]. InhA (EC 1.3.1.9, enoyl-[acyl-carrier-protein]
reductase), involved in mycolic acid synthesis, also turns out
to be the target for front-line anti-tubercular drugs [8], such
as isoniazid [9] and ethionamide [10].

The mycolic acid pathway (MAP) has been of great interest,
and a large amount of biochemical and genetic information is
available in the literature, in addition to the entire genome

sequence of M. tuberculosis. It is possible to exploit these large
volumes of data to construct an in silico model of the
pathway, which can then be simulated and analysed [11].
Constructing such models forms an important step in
understanding the underlying molecular mechanisms of
disease, and facilitates rational approaches to drug design.
Several computational methods have emerged in recent years
to simulate biochemical models, which aid in the systems
approach to understanding pathways, processes, and whole-
cell metabolism [12–18]. Flux balance analysis (FBA), a
stoichiometric analysis technique, has been applied to study
the metabolic capabilities of several systems [19,20], which has
provided useful insights into cellular behaviour, including
response to perturbations such as gene deletions [21,22].
Given the biological importance of mycolic acids, it would
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be useful to understand the behaviour of the pathway as a
whole and of its individual components, both in a normal
mycobacterial cell as well as upon perturbations, such as
when a drug is acting upon it. We have therefore built a
model of the MAP, represented it as a stoichiometric matrix,

and performed FBA of this model, to gain insights into the
critical steps of the pathway. Further, we have used the
knowledge gained from these analyses for rational identi-
fication of putative drug targets and estimated their
appropriateness by sequence analysis.

Results/Discussion

Model Description
The model of the MAP built here (Figure 1), containing

219 reactions and 197 metabolites, mediated through 28
proteins (Table 1), is according to our knowledge more
complete and accurate with annotations from the latest liter-
ature than that from any other publicly available resource.
The model in Systems Biology Markup Language (SBML)
format is available as Dataset S1. The list of reactions has also
been given in a flat file as Dataset S2. The biosynthesis of
mycolic acids can be considered as made up of four sub-
pathways: (A) production of malonyl CoA, (B) fatty acid
synthase-I (FAS-I) pathway, (C) fatty acid synthase-II (FAS-II)
pathway, and (D) condensation of FAS-II and FAS-I products
into a- (D1), methoxy- (D2), and keto-mycolic acids (D3).
FAS-I and FAS-II (B and C sub-pathways) are dependent
upon the production of malonyl CoA (produced in A). The
products of B and C are then converted into different
mycolic acids in D.
The FAS-I system, present predominantly in eukaryotes, is

capable of de novo fatty acid synthesis, whereas the FAS-II
system in mycobacteria, although similar to that in other

Table 1. Table of Proteins and Their Corresponding Genes in MAP and Sources for Inference of Their Reactions

Number Gene Rv Identifier SwissPROT/TrEMBL

Accession Number

Reactions References

1 acpS Rv2523c P0A4W8 1 [51]

2 birA Rv3279c P96884 2 [51]

3 accA3 Rv3285 P96890 3, 196 [40,51]

4 accD3 Rv0904c P63405 4 [51]

5 fas Rv2524c P95029 5:62 [23,24]

6 fabD Rv2243 P63458 63 [58]

7 fabH Rv0533c P0A574 64 [25,26]

8 fabG1 Rv1483 P0A5Y4 65:6:185 [29]

9 fabG2 Rv1350 P66781 66:6:186 [2]

10 fabG4 Rv0242c O53665 67:6:187 [2]

11 UNK1 — — 68:6:188 [2,27]

12 inhA Rv1484 P0A5Y6 69:6:189 [30]

13 kasA Rv2245 P63454 70:6:184 [28,31]

14 kasB Rv2246 P63456 70:6:184 [28,31]

15 desA1 Rv0824c Q50824 190:192 [2,27]

16 desA2 Rv1094 O53442 190:192 [2,27]

17 desA3 Rv3229c Q7D5W1 190:192 [2,27]

18 mmaA2 Rv0644c Q79FX6 193, 200, 212 [36,37]

19 pcaA Rv0470c Q7D9R5 194 [4]

20 fadD32 Rv3801c O53580 195, 202, 208, 213, 218 [40]

21 accD4 Rv3799c O53578 196 [40]

22 accD5 Rv3280 P96885 196 [40]

23 pks13 Rv3800c O53579 197, 203, 209, 214, 219 [59]

24 mmaA4 Rv0642c Q79FX8 198, 205, 201 [3,34,37]

25 mmaA3 Rv0643c P72027 199, 206 [37]

26 cmaA2 Rv0503c P0A5P0 201, 207, 217 [3,33,35]

27 mmaA1 Rv0645c P0A5Q0 204, 215 [6,39]

28 UNK2 — — 211,216 [6]

Reaction cycles have been indicated as, for instance, 65:6:185 (for fabG1), which is to be interpreted as 65, 71, 77, ..., 185.

DOI: 10.1371/journal.pcbi.0010046.t001
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Synopsis

M. tuberculosis, a deadly human pathogen, owes many of its unique
qualities to its thick, waxy coat, containing fatty acids called mycolic
acids. Several front-line drugs used for treating tuberculosis indeed
inhibit mycolic acid synthesis. Understanding the biochemical
pathway that makes these compounds is therefore of great interest.
Availability of the genome sequence and various computational
methods enable us to study pathways as whole functional units,
rather than having to infer from the study of individual proteins.
Here, we present a comprehensive identification of the components
of the mycolic acid pathway and represent it mathematically based
on reaction stoichiometry. Such models are amenable to perturba-
tions and simulations using flux balance analysis, allowing the study
of pathways from a metabolic capacity perspective, and yielding
information about reaction fluxes. The perturbations studied here
are in silico gene knock-outs and drug effects, which led us to
identify genes essential to the pathway and hence for survival of the
pathogen. The results are in good agreement with essentiality
determined through experimental genetics. Such essential genes
can be good targets for drug design, especially when they do not
have homologues in the human proteome. FBA followed by
sequence analyses have resulted in identification of potential anti-
tubercular drug targets.

FBA of Mycolic Acid Pathway



bacteria, elongates the products of FAS-I, resulting in the
production of meromycolates, key precursors of mycolic
acids [2]. The basic reactions in FAS-I and FAS-II are a
repetition of a cycle of four reactions, each cycle culminating
in the extension of the alkyl chain by a two-carbon unit
(Figure 2). The FAS-I enzyme is a single polypeptide with
multiple domains catalysing a cycle of reactions to generate
short-chain acyl CoA esters [23]. FAS-I exhibits a bimodal
product distribution: C16 to C18 and C24 to C26 acyl CoAs [24].
These form the substrates for the FAS-II reaction cycle and
the polyketide synthase enzyme, respectively. b-ketoacyl-

synthase III forms a pivotal link between FAS-I and FAS-II
[25,26]. The FAS-II system is composed of four enzyme
reactions iteratively converting C16-acyl CoA to C58-acyl-ACP
(meromycolate) [27–31].
Except for reactions 190–192, experimental data clearly

indicating the involvement of the appropriate proteins are
available in literature. However, clear identification of the
proteins referred to as UNK1 and UNK2 is not yet available.
Although no explicit experimental evidence is available for
reactions 190–192, the involvement of desA1, desA2, and desA3
has been suggested based on sequence annotations [27] and

Figure 1. Schematic Diagram of the MAP in M. tuberculosis

(A–D) refer to the four sub-pathways (see text). The key metabolites are indicated in larger type. Proteins catalysing each reaction are indicated to the
right of the reaction arrows, while the reaction numbers are indicated to the left. Reaction cycles have been indicated as, for instance, 65:6:185 (for
fabG1), which is to be interpreted as 65, 71, 77, ..., 185. � indicates inhibition of InhA by isoniazid and ethionamide in the pathway. The reaction
numbers in parentheses indicate reactions for the trans forms in (D2) and (D3).
DOI: 10.1371/journal.pcbi.0010046.g001
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indirect experimental evidence [32], thus justifying their
inclusion in this model. The cis-unsaturated meromycolate
chain further undergoes cyclo-propanation, processing for
keto- and methoxy-mycolic acids [3,4,33–39] and Claisen
condensation with the FAS-I product C24-acyl CoA [6,40], to
yield a-, methoxy-, or keto-mycolic acids, as shown in Figure
1D.

Biochemical characterisation of mycolic acids in M. tuber-
culosis H37Rv cell cultures clearly indicate that a-mycolate is
the predominant mycolic acid and it comprises as much as
49% of the mycolates in the cell wall, whereas methoxy- and
keto-mycolates are present in smaller quantities of 27% and
24%, respectively [41]. These data have been considered
during FBA of the MAP model.

FBA
The MAP system outlined here, though involving only 28

proteins, has 197 metabolites participating in 219 reactions
with high interconnectivity, and thus benefits from a system-
atic FBA. The system considered here, though relatively small
in comparison to genome-scale metabolic models previously
studied by FBA [19–22], is still complete in its own right
(analogous to a separate module) and gives profound insights
into mycolic acid metabolism. More importantly, with a single
pathway in question, the objective functions for optimisation
can be better defined and have specific biological relevance
that can be related to experimental data quite readily.

The stoichiometric matrix for this system is of size 197 3

247. The vector v (for details, see Materials and Methods) has
247 fluxes, including 28 exchange fluxes:

v ¼ ½ v1 v2 ::: v219 b1 b2 ::: b28 �T ð1Þ

Objective function: Mycolic acids are known to play a key
role in the structural integrity of the mycobacterial cell wall

and have been shown to be critical both for growth [42–44] of
the bacillus and its pathogenicity [1–4] by several experi-
ments. These data imply that the mycobacterial cell would be
geared toward optimal production of mycolic acids, in terms
of maximal molar yield of the appropriate mycolic acids for a
given genotype.
Given that the cell wall contains different types of

mycolates in varying proportions, the optimal production
of mycolates can be captured in two different ways: (a) only
the most important mycolate is produced, and (b) the known
ratios of different mycolates are fixed. We encode these two
scenarios as two objective functions, c1 and c2, respectively:

, c1 � v. ¼ �0:4926va � 0:2334vcis�methoxy

�0:0327vtrans�methoxy � 0:2117vcis�keto

�0:0297vtrans�keto ð2Þ

and

, c2 � v. ¼ �1:0000vmycolates ð3Þ

where vmycolates represents the flux of a hypothetical reaction:

0.4926 a-mycolate þ 0.2334 cis-methoxy-mycolate
þ0.0327 trans-methoxy-mycolateþ0.2117 cis-keto-mycolate
þ 0.0297 trans-keto-mycolate ! mycolate-biomass.

The coefficients of the fluxes of a-mycolates, cis-methoxy
and trans-methoxy mycolates, as well as cis-keto and trans-keto
mycolates indicated in the above equations are based on the
biochemical data about a-, methoxy-, and keto-mycolates
present in the cell wall in the ratio of 1.0:0.54:0.49, with the cis
forms dominating the trans forms of the methoxy- and keto-
mycolates, in a ratio of 1:0.14 [41]. Production of different

Figure 2. Flux Distributions Obtained from FBA Using the MAP Model and Objective Function c1

(A) in an unperturbed state, (B) upon deletion of inhA, (C) upon deletion of pcaA, and (D) upon inhibition of InhA. Insets in (A) and (C) refer to enlarged
versions of the indicated portions. Note that the scale for (D) is different. It may be noted that the lines joining the various flux points have been drawn
to aid in discerning the flux peaks clearly; the lines as such have no physical significance.
DOI: 10.1371/journal.pcbi.0010046.g002
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mycolates follows much of the same pathway but differs only
in the end stages (Figure 1D), suggesting that they may not all
be made simultaneously.

The objective functions used in previous FBA studies (such
as in [21]) have been capturing the optimal production of the
biomass, which implicitly fixes the proportions of the differ-
ent components of the biomass. The objective function c2
captures an analogous scenario, where the total mycolate
content can be considered as the biomass. We feel that c1
reflects the biological situation more closely than c2 for this
analysis for the following reasons: (a) it has been reported [4]
that the mycobacterial cell can survive in the absence of one
of the mycolate components, which cannot be accounted by
c2; (b) the objective function c2 directly precludes the
possibility of the cell surviving in the absence of even a
single mycolic acid; for any genotype, c2 necessitates that the
mycolates be produced in an all-or-none fashion in the
corresponding phenotype. On the other hand, c1 favours the
production of the most important mycolate that can be
produced under the given conditions (i.e., following some
gene deletions); and (c) reported biological data [44] suggest
that the three major mycolates are in fact made at different
phases of cell growth.

However, to make the analysis comprehensive, both
objective functions have been used independently and the
results presented. In the first case, the objective function c1
(Equation 2) accounts for the relative importance of the
mycolates. The coefficients are indicative of the precise
ranking order of the various mycolates, based on cell wall
composition. On the other hand, the objective function in the
second case, c2 (Equation 3), fixes the relative ratios of the
mycolates based on the absolute values of the coefficients.

Once an objective function is fixed, the system translates to
solving a linear programming (LP) problem as in Equation 7
(listed in Materials and Methods). The solution of the LP
problem, using objective functions c1 and c2 yields flux
distributions specifying the fluxes of all the internal reactions
and the exchanges, as shown in Figures 2A and 3A,
respectively. Both figures indicate two major peaks at
reactions 3–4 and 63, apart from intense peaks at reactions
220–247. The peaks at reactions 3–4 and 63 correspond to the
production of metabolites BCCP-biotin, malonyl CoA, and
malonyl acyl carrier protein. The positive and negative peaks
at reactions 220–247 correspond to the exchange fluxes
originating from external metabolites such as ATP, NADP,
NADPH, and CO2, indicating their exit from or entry into the
MAP system, respectively. A repetitive pattern is observed for
reactions 65–172, which is comprehensible in view of the
cyclic nature of the reactions involved in extension of the
carbon chain in FAS-II. Malonyl CoA is an important
metabolite, since it is required not only for the formation
of C4-acyl-ACP, but also for each of the ten steps of chain
elongation by the FAS-I system, where the chain length of the
fatty acid component of mycolic acid grows from four
carbons to 24 carbons (see Figure 1). Besides, it is also
required for the synthesis of malonyl acyl carrier protein,
which in turn is required for chain elongation in each of the
20 chain elongation steps catalysed by the FAS-II system,
where the chain length grows from C16 to C52–C58. The large
fluxes seen for reaction 4, which produces malonyl CoA, and
reaction 3, which produces BCCP-biotin, an immediate
precursor of malonyl CoA, are explained by their high

requirement. The exchange fluxes for external metabolites
such as ATP, ADP, NADP, and NADPH are also under-
standably very high, since they are either utilised or produced
in large quantities in the pathway.
While the flux distributions using either objective function

are largely similar for the reactions belonging to sub-
pathways A, B, and C (see Figure 1), significant differences
are observed for the fluxes of the reactions producing
mycolates and those immediately related to them. With
objective function c1 (Figure 2A), a small peak at reaction 197
corresponding to a-mycolate is seen, as shown in more detail
in the enlarged inset. It should be noted that, in this
unperturbed state, the amounts of methoxy- and keto-
mycolates produced are negligible, compared with that of
a-mycolate. On the other hand, with objective function c2, all
the mycolates are produced in the ratio mentioned earlier
(Figure 3A, enlarged image in inset), as imposed by the
objective function.

Perturbations
Effects of in silico gene deletions, using c1. The perturba-

tions carried out on the MAP model using FBA were (a) in
silico gene deletions and (b) inhibition by known drugs. Each
of the 28 genes and hence its gene product was systematically
deleted from the MAP model, one at a time, and its effect on
the flux distribution was analysed (Table 2). Figures 2B and
2C are examples of flux distributions upon deletion of inhA
and pcaA, respectively. Upon deletion of inhA, which catalyses
every sixth reaction from 69 to 189 (see Figure 1C), the fluxes

Figure 3. Flux Distributions Obtained from FBA Using the MAP Model

and Objective Function c2

(A) in an unperturbed state, (B) upon deletion of pcaA. Inset in A refers to
an enlarged version of the indicated portion. Note that the scale for (B) is
different. It may be noted that the lines joining the various flux points
have been drawn to aid in discerning the flux peaks clearly; the lines as
such have no physical significance.
DOI: 10.1371/journal.pcbi.0010046.g003
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of almost all reactions were seen to be zero, except for
reactions 1–2 and their corresponding external metabolites.
On the other hand, deletion of pcaA, which is involved only in
the production of a-mycolate (Figure 1D1), the flux pattern
remained largely unaltered, except for an increase in the flux
corresponding to cis-methoxy-mycolate (Figure 1D2). A flat
flux distribution profile (of near zero) was observed upon
deletion of 16 of the genes (and hence their gene products) in
the MAP model. In D1, D2, and D3 sub-pathways, genes
common to all three, such as desA1, fall into this category. On
the other hand, genes responsible for the production of one
or the other mycolate, such as pcaA, involved in D1, when
deleted, did not significantly alter the overall flux distribution
and are hence classified as non-essential. This is comprehen-
sible, since in these cases, the system is still capable of
producing the other two mycolates. Although it has been
reported that all three mycolates in appropriate proportions
are required for mycobacterial persistence and virulence,
growth and survival to varying extents have been observed in
the presence of any one component [4,45]. Experimental data
available for pcaA deletion indeed show that the mutant
bacilli can grow and survive for limited periods by producing
a significant excess of keto-mycolate, to compensate for the
absence of a-mycolate. Our results too show a similar
compensatory effect upon deletion of pcaA, consistent with
the experimental results about its non-essentiality [4,46]. In
our results, however, methoxy- rather than keto-mycolate was
produced in excess, because of the incorporation of their

relative abundances available in literature [41] into the
objective function. If the proportion of keto-mycolate was
higher than that of methoxy-mycolate, then we would
have observed a higher proportion of keto- rather than
methoxy-mycolate, in our results. However, given the lack of
more experimental details on the composition under differ-
ent conditions, or the exact functional role of each of the
mycolates, this difference does not seem too significant, at
this stage.
Effects of in silico gene deletions, using c2. Systematic in

silico gene deletion studies were carried out using the MAP
model and with c2 as the objective function. Here too, each of
the 28 genes and hence its product was systematically deleted
from the MAP model, one at a time, and its effect on the flux
distribution was analysed, as presented in Table 2. An
example where a significant difference was found with
respect to the perturbations using c1 is illustrated by pcaA
deletion. Upon deletion of pcaA, using c2, almost all of the
reaction fluxes were seen to have dropped to zero, except for
reactions 1–2 and their corresponding external metabolites
(Figure 3B). This is in contrast to the corresponding gene
deletion, using c1, observed in Figure 2C, where the flux
distribution is very similar to that in the unperturbed case.
These results suggest pcaA to be essential if c2 is used, in
contrast to the results obtained using c1 as well as reported
biological data discussed above, indicating c1 to be a better
objective function. Since the objective function c2 demands
the production of all mycolates in the appropriate ratio,

Table 2. Results of In Silico Gene Deletion Studies for the 28 Genes in the MAP Model, Using Objective Functions c1 and c2

Number Gene In Silico Deletion Resulta

Using c1 Using c2

1 acpS Non-essential � Non-essential �
2 birA Non-essential � Non-essential �
3 accA3 Essential � Essential �
4 accD3 Essential 3 Essential 3

5 fas Essential � Essential �
6 fabD Essential NA Essential NA

7 fabH Essential 3 Essential 3

8 fabG1 Non-essential � Non-essential �
9 fabG2 Non-essential 3 Non-essential 3

10 fabG4 Non-essential � Non-essential �
11 UNK1 Essential NA Essential NA

12 inhA Essential 3 Essential 3

13 kasB Essential � Essential �
14 kasA Essential � Essential �
15 desA1 Essential � Essential �
16 desA2 Essential � Essential �
17 desA3 Essential 3 Essential 3

18 mmaA2 Non-essential � Essential 3

19 pcaA Non-essential � Essential 3

20 fadD32 Essential � Essential �
21 accD4 Essential � Essential �
22 accD5 Essential NA Essential NA

23 pks13 Essential � Essential �
24 mmaA4 Non-essential � Essential 3

25 mmaA3 Non-essential � Essential 3

26 cmaA2 Non-essential � Essential 3

27 mmaA1 Non-essential � Essential 3

28 UNK2 Non-essential NA Essential NA

a The symbols ‘‘�’’ and ‘‘3’’ indicate the agreement and disagreement of our results with experimental results reported in [46]. NA, non-availability of experimental data.

DOI: 10.1371/journal.pcbi.0010046.t002
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apart from pcaA, five other genes that were non-essential in
the analysis using c1 were classified as essential.

Minimisation of metabolic adjustment (MOMA), using the
methodology described by Segrè and co-workers [47], was also
carried out for all the gene deletions (using c1 and c2 as
objective functions in separate studies). There were no
significant changes in the flux profiles, and hence in the
interpretations, as compared with those described above.

Experimental data from systematic gene deletion studies
using the transposon site hybridisation mutagenesis techni-
que are available in the literature [46]. Comparison of such
data for these 28 genes with the results obtained from our
FBA study (using both objective functions) is shown in Table
2. With c1, a good correlation was observed for 19 genes, no
experimental data was available for four genes, and disagree-
ment was seen for only five genes. High correlation with
experimentally observed data about the essentiality of
individual genes indicates the usefulness of our MAP model
and its study using FBA. With c2, a good correlation was
observed for 13 genes and disagreement was seen for 11
genes.

On analysing the results of the gene deletion studies
obtained using c1 and c2, it is apparent that the objective
function c1 is able to reflect the biological situation better. c2
requires the production of all mycolates in a definite ratio
under all conditions, which is not very appropriate, consid-
ering the fact that cells can survive even in the absence of one
or more mycolates [4] and that in any state, only a single
mycolate is produced in the cell. Hence, for the rest of the
analyses, we have restricted the discussion to the gene
deletion results obtained using c1.

The possible reasons for the disagreements (using c1) for
accD3, fabG2, fabH, inhA, and desA3 are discussed below. We
had identified malonyl CoA as an internal metabolite, in the
absence of concrete experimental evidence of its being
produced by other reactions in the cell. However, if indeed
malonyl CoA is produced by the cell through some other
means, then AccD3 would no longer be essential, agreeing
with the experimental results. fabG2 has been reported as
essential, while our analysis identified it as non-essential.
Clearly, in our model, FabG2 can be substituted for by either
FabG1 or FabG4. However, it may be possible that FabG2
could be responsible for catalysing some other critical
reaction outside the MAP, which could contribute to its
essentiality. fabH is a critical gene, whose product catalyses
the important step that links FAS-I to FAS-II. Our sequence
analysis studies also show that FabH has no homologues in
the mycobacterial proteome. It is unclear as to why this is a
non-essential gene in experimental studies. Similarly, inhA,
identified as essential in our analysis but reported as non-
essential in the experimental studies using transposon site
hybridisation mutagenesis, is a well-known target for drugs
such as isoniazid and ethionamide. While that may be the
case for the conditions under which the transposon site
hybridisation mutagenesis experiment was carried out, it is
well-known that inhibition of InhA leads to a significant
reduction in the growth of mycobacteria, making its
inhibitors as front-line drugs. InhA is also known to be
essential for mycolic acid synthesis [48], which in turn is
known to be essential for survival of the pathogen [7]. In
fact, InhA has been shown to be one of the few highly over-
expressed proteins inside an infected macrophage [48]. The

topology of the curated reaction network clearly makes InhA
an essential gene for the system, which is in agreement with
its known role for mycobacterial survival [48]. Another
possibility could be that structural but not sequence
homologues of InhA and FabH, which are not yet well-
characterised (and hence not a part of our model), may
substitute in their absence. desA3 has been reported as non-
essential but was identified as essential from our analysis. It
is possible that our model may not have accounted for its
exact physiological role, due to lack of information in
literature.
Inhibition studies were carried out for isoniazid, since its

inhibition of InhA has been well-characterised in the
literature [9,10]. Inhibition in the context of FBA is in fact
similar to that of deletion studies of the corresponding gene,
except that the latter will lead to total inactivation of that
gene, whereas inhibition by a drug need not necessarily lead
to total inactivation. Just to represent the relative effect upon
partial inactivation, we have considered a scenario where
isoniazid would inhibit InhA to an extent of 90%. The flux
profile shown in Figure 2D indicates much lower fluxes for
each of the reactions. Similar results will be obtained for any
inhibitor of InhA. Thus, the model and the method, besides
being consistent with a requirement of a high percentage of
inhibition for an ideal drug, also show their utility in
analysing drug action when any quantitative data become
available.
This method also has the potential to consider inhibition at

multiple points. For example, isoniazid is thought to act at
two points in the pathway (InhA and KasA), although
conclusive experimental proof is still awaited [49]. The FBA
study here presents a ready framework to analyse the effects
of such drug inhibitions, which would be extremely difficult
to judge by an inspection of the reaction map alone.
While the usefulness of FBA for large systems with high

network connectivities and redundancy is well established, its
application for specific pathways, which can be considered as
simpler systems, has not yet been well explored in the
literature. The study reported here illustrates the usefulness
of FBA even for individual pathways. The effects of the
perturbations to a system even of this size, either at single
points or at multiple points, are beyond unambiguous
comprehension and thus benefit from systematic studies such
as FBA to get meaningful results. Moreover, FBA provides a
handle to systematically identify essential genes in the
pathway, irrespective of the size of the system, in a systematic,
efficient, and much simplified manner. An advantage of
considering specific pathways individually is that the objec-
tive functions for optimisation can be better defined, with
specific biological relevance, to generate hypotheses useful
for designing molecular biology studies quite readily. It must
be noted that at the present time our understanding of
systems, and hence their reconstructions in general, is not
sufficient to generate knowledge that can replace biochemical
or genetic experiments. However, an in silico framework for
predicting gene essentiality, while complementing experi-
mental data where available, has the additional advantage of
enabling studies under various environmental conditions
such as during low nutrition or upon oxidative stress, or even
in the presence of drugs, which are difficult to perform
experimentally.
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Identification of Drug Targets
Those genes that were classified as essential in the above

analysis automatically form a first list of putative targets for
anti-tubercular drugs, since their total inactivation results in
loss of production of mycolic acids and hence the viability or
the pathogenicity of the bacillus. However, it was reasoned
that an ideal target should be essential not only in terms of
the reaction it can catalyse, but also as the only protein coded
by the genome that can perform the same task. Moreover, an
ideal target should also have no recognisable homologue in
the host system, which can in principle compete with the
same drug, leading to unintended/adverse effects in the host
system. Sequence analysis with the M. tuberculosis H37Rv and
human proteomes was therefore carried out for each of the
identified targets and the results are summarised in Table 3.

Of the 16 proteins classified as essential in Table 2, no close
homologues were observed within the M. tuberculosis H37Rv
proteome for seven proteins: FabH, AccD3, InhA, FabD, Fas,
Pks13, and DesA3. Similarities greater than 50% using the
BLOSUM62 substitution matrix with an e-value of less than
0.1 for a length greater than 70% of the query sequence were
considered as close homologues (in both proteomes). For
identifying more distant/fast-evolving homologues in the
human proteome, homologues were identified with a second
set of criteria, considering similarities greater than 30% using
the BLOSUM62 substitution matrix with an e-value of less
than 10�5 for greater than 70% of the query sequence length.
None of the seven proteins have close homologues in the
human proteome. A distant homologue was identified with
the second set of criteria for FabD. Those proteins, which
have no other homologues either in the mycobacterial
proteome or in the human proteome, are therefore obvious
potential drug targets. Proteins lacking homologues with
multiple cut-offs can be considered targets with greater
confidence. Identification of their presence only in the

bacterial cell helps in the process of validation as useful drug
targets. Front-line anti-tubercular drugs in current clinical
practice, isoniazid and ethionamide, in fact turn out to be
inhibitors of InhA [9,10], preventing mycolic acid synthesis.
Thus, the inhibition of the identified targets, which would all
lead to impairment of mycolic acid synthesis, appears to be a
promising strategy for designing anti-tubercular agents.
Besides the seven targets mentioned above, DesA1, DesA2,

and FadD32 do not have any close homologues in the human
proteome but have homologues in the M. tuberculosis H37Rv
proteome. Of these, DesA1 and DesA2 are homologues of
each other, but it is not clear as yet whether they are required
together or if they can substitute for one another. KasA and
KasB too are homologues of each other and do not share
similarities with any other mycobacterial protein. However,
they share considerable sequence similarities with a hypo-
thetical human protein FLJ20604. FadD32 too exhibits
distant homology with six other proteins in the human
proteome. Such mycobacterial proteins would also be
interesting drug targets, provided such homologies are
considered during drug design.
In conclusion, the work presented here provides a frame-

work to rationally identify targets for use in tuberculosis drug
design and provides a ready shortlist that can be exper-
imentally tested. This also outlines a general strategy for
analysis of microbial metabolism, providing insights into
targets for drug design. Systems approaches are being
increasingly applied for understanding the metabolic capa-
bilities of organisms, which can be exploited for drug design.
A major bottleneck in this process is the accuracy of the
model, which requires expert curation of available literature.
The MAP model presented here should be of value not only in
drug design but also for understanding mycolic acid synthesis
in general. The model can also be adapted to perform
quantitative simulations when kinetic data become available,
and it can be used as a framework for incorporating newer or
alternate components when such information becomes
available.

Materials and Methods

Model building. Initially, the Kyoto Encyclopedia of Genes and
Genomes database was explored to obtain information about various
proteins that comprise the MAP in M. tuberculosis H37Rv. Information
about the FAS-I and FAS-II pathways inM. tuberculosis was available in
the Kyoto Encyclopedia of Genes and Genomes database [50], but
appeared to be based on pre-genomic annotations and was also
incomplete and inconsistent in parts. The BioCyc repository of
pathway models [51], on the other hand, had more recent annotations
and provided a basic framework to build the MAP model. It
contained information about 11 proteins. However, no explicit data
were available about the specific reactions during the fatty acid
elongation steps, catalysed by the FAS-I and FAS-II enzyme systems.
Further, no information was available for the conversion of the FAS-
II products to mycolates. Available literature (detailed in Table 1), as
well as annotations in the TubercuList (http://genolist.pasteur.fr/
TubercuList/) database, were therefore carefully analysed to fill the
missing links and obtain a comprehensive model of the MAP, which
contained information about 28 proteins, catalysing 219 reactions
involving 197 metabolites, thus yielding a detailed pathway landscape.
The model was encoded using SBML Level 2 Version 1 [52].

The set of reactions in the landscape were then mathematically
represented as a stoichiometricmatrix, Sm3n, with everymetabolite being
represented by a row (m metabolites) and every reaction by a column (n
reactions). The entries in each column correspond to the stoichiometric
coefficients of the metabolites (negative for reactants and positive for
products) for each reaction. The ith row of the matrix defines the
participation of a particular metabolite across all metabolic reactions,

Table 3. Homologues Present in M. tuberculosis and Human
Proteomes for Genes Identified As Essential, Based on In Silico
Gene Deletion Studies

Rv

Identifier

Gene Homologues

E , 0.1;

50% Similarity

E , 10�5;

30% Similarity

M. tuberculosis Human Human

Rv0533c fabH 1 0 0

Rv0824c desA1 2 0 0

Rv0904c accD3 1 0 0

Rv1094 desA2 2 0 0

Rv1484 inhA 1 0 0

Rv2243 fabD 1 0 1

Rv2245 kasA 2 1 1

Rv2246 kasB 2 1 1

Rv2524c fas 1 0 0

Rv3229c desA3 1 0 0

Rv3280 accD5 5 2 2

Rv3285 accA3 3 4 4

Rv3799c accD4 4 1 2

Rv3800c pks13 1 0 0

Rv3801c fadD32 9 0 6

DOI: 10.1371/journal.pcbi.0010046.t003
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and the jth column provides the stoichiometry of all metabolites in that
reaction. Exchange fluxes were considered for metabolites that are
typically exchanged with the environment (e.g., ATP, ADP, NAD[P], and
NAD[P]H) and those that are not produced by the system, or those that
are produced in the system for use in other metabolic pathways. Such
metabolites, referred to as external metabolites, will have corresponding
exchange fluxes in the pathway. The other metabolites were regarded as
internal, which are produced by the system and consumed within the
system itself. The external metabolites in the MAPmodel were identified
manually. A list of external metabolites has also been supplied as part of
Dataset S2.

FBA. FBA [12,53,54] has been shown to be a very useful technique
for analysis of metabolic capabilities of cellular systems [20,21,55,56].
FBA involves carrying out a steady-state analysis, using the
stoichiometric matrix for the system in question. The system is
assumed to be optimised with respect to functions such as max-
imisation of biomass production or minimisation of nutrient
utilisation, following which it is solved to obtain a steady-state flux
distribution. This flux distribution is then used to interpret the
metabolic capabilities of the system. The dynamic mass balance of the
metabolic system is described using the stoichiometric matrix,
relating the flux rates of enzymatic reactions, vn 3 1 to time
derivatives of metabolite concentrations, xm 3 1 as

dx
dt
¼ S v ð4Þ

v ¼ ½ v1 v2 ::: vn b1 b2 ::: bnext �
T ð5Þ

where vi signifies the internal fluxes, bi represents the exchange fluxes
in the system, and next is the number of external metabolites in the
system. At steady-state,

dx
dt
¼ S v ¼ 0 ð6Þ

Therefore, the required flux distribution belongs to the null space
of S. Since m , n, the system is under-determined and may be solved
for v fixing an optimisation criterion, following which, the system
translates into an LP problem:

min
v

cTv s:t: S v ¼ 0 ð7Þ

where c represents the objective function composition, in terms of
the fluxes. Further, we can constrain:

0, vi , ‘ ð8Þ

�‘ , bi , ‘ ð9Þ

which necessitates all internal irreversible reactions to have a flux in
the positive direction and allows exchange fluxes to be in either
direction. Practically, a finite upper bound can be imposed, so that
the problem does not become unbounded. This upper bound may
also be decided based on the knowledge of cellular physiology. In our
analysis, the upper bound was set as unity, which then effectively gives
the relative ratios of the reaction fluxes. MATLAB (http://www.
mathworks.com/) was used for solving the LP problem. The ‘‘linprog’’
routine from the Optimization Toolbox was used, which uses a large-
scale interior point algorithm.

Perturbations. FBA also has the capabilities to address the effect of
gene deletions and other types of perturbations on the system. Gene
deletion studies were performed by constraining the reaction flux(es)

corresponding to the gene(s) (and therefore, of their corresponding
proteins[s]), to zero. Effects of inhibitors of particular proteins were
also studied in a similar way, by constraining the upper bounds of
their fluxes to any defined fraction of the normal flux, corresponding
to the extents of inhibition.

MOMA. MOMA [18,47] is a technique similar to FBA, particular to
the analysis of perturbed systems and has been reported to outper-
form FBA in certain cases. MOMA circumvents the use of an objective
function for optimisation under perturbed conditions and rather
solves for a flux distribution closest to the unperturbed system,
subject to the new constraints imposed, minimising the metabolic
adjustment of the system.

Analysis of the effects of deletion of individual genes on the flux
profiles of the five mycolates provided us a handle to define essential
and non-essential genes. Those deletions that resulted in zero or
near-zero fluxes of all the mycolates were considered as essential, and
the rest were considered as non-essential.

Feasibility analysis of putative targets. Sequence analysis was
carried out using BLAST [57] to adjudge the feasibility of the putative
targets identified through FBA. Homologues were searched for within
the M. tuberculosis H37Rv and human proteomes, using BLOSUM62
substitution matrix. The BLAST outputs were parsed with home-
grown scripts using BioPython modules, to identify homologues that
satisfied various length and similarity criteria.

Supporting Information

Dataset S1. SBML Model of the MAP

An SBML model for the MAP in M. tuberculosis.

Found at DOI: 10.1371/journal.pcbi.0010046.sd001 (124 KB XML).

Dataset S2. Flat File Containing Reactions in the MAP

A flat file containing all the reactions in the MAP, along with the
genes corresponding to proteins that catalyse the reactions. The
external metabolites have also been indicated in the file.

Found at DOI: 10.1371/journal.pcbi.0010046.sd002 (19 KB TXT).

Accession Number

The SwissPROT/TrEMBL (http://www.ebi.ac.uk/trembl/) accession
number for hypothetical human protein FLJ20604 is Q9NWU1. Gene
accession numbers are listed in Table 1.
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