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Identification of single nucleotide polymorphisms (SNPs) and mutations is important for the discovery of genetic
predisposition to complex diseases. PCR resequencing is the method of choice for de novo SNP discovery. However,
manual curation of putative SNPs has been a major bottleneck in the application of this method to high-throughput
screening. Therefore it is critical to develop a more sensitive and accurate computational method for automated SNP
detection. We developed a software tool, SNPdetector, for automated identification of SNPs and mutations in
fluorescence-based resequencing reads. SNPdetector was designed to model the process of human visual inspection
and has a very low false positive and false negative rate. We demonstrate the superior performance of SNPdetector in
SNP and mutation analysis by comparing its results with those derived by human inspection, PolyPhred (a popular SNP
detection tool), and independent genotype assays in three large-scale investigations. The first study identified and
validated inter- and intra-subspecies variations in 4,650 traces of 25 inbred mouse strains that belong to either the Mus
musculus species or the M. spretus species. Unexpected heterozgyosity in CAST/Ei strain was observed in two out of
1,167 mouse SNPs. The second study identified 11,241 candidate SNPs in five ENCODE regions of the human genome
covering 2.5 Mb of genomic sequence. Approximately 50% of the candidate SNPs were selected for experimental
genotyping; the validation rate exceeded 95%. The third study detected ENU-induced mutations (at 0.04% allele
frequency) in 64,896 traces of 1,236 zebra fish. Our analysis of three large and diverse test datasets demonstrated that
SNPdetector is an effective tool for genome-scale research and for large-sample clinical studies. SNPdetector runs on
Unix/Linux platform and is available publicly (http://lpg.nci.nih.gov).
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Introduction

Identification of genetic variations and mutations is
important for the discovery of genetic predisposition to
complex diseases. Although a wide variety of methods are
available for de novo single nucleotide polymorphism (SNP)
discovery [1], DNA sequencing is the method of choice for
high-throughput screening studies. DNA sequencing may
follow either a random shotgun strategy [2–5] or a directed
strategy using PCR amplification of specific target regions of
interest [6]. As the high-density haplotype map of the human
genome [7] nears completion, the demand for large-scale SNP
surveys seeking genetic mutations linked to or causative of a
wide variety of human diseases (such as diabetes, heart
disease, and cancer) is expected to greatly increase [8].

Direct sequencing of PCR-amplified genomic fragments
from diploid samples results in mixed sequencing templates.
Therefore, one of the most challenging issues in SNP
discovery by this method is to distinguish bona fide hetero-
zygous allelic variations from sequencing artifacts, which can
give rise to two overlapping fluorescence peaks similar to true
heterozygotes. Currently, PolyPhred [9] is the most widely
used SNP discovery software for such an analysis. It reports a
heterozygous allele only when the site shows a decrease of
about 50% in peak height compared to the average height for
homozygous individuals. However, inspection of the compu-
tational results by human analysts is often required to ensure
a low false positive rate, a labor-intensive process.

To provide a sensitive and accurate method for SNP

detection in fluorescence-based resequencing, we developed
a new software tool, SNPdetector, aiming to ‘‘computerize’’
the manual review process. We report SNPdetector’s appli-
cation in three large-scale genetic variation studies and
compare its results with those obtained by human inspection,
by PolyPhred, and by experimental validation. In the first
study, resequencing was used to validate mouse SNPs
discovered by whole-genome shotgun sequencing. The second
study identifies novel SNPs in the ENCODE regions of the
human genome [10], and the third study aims to discover
mutations induced by ENU in 1,236 zebra fish.

Results

System Design of SNPdetector
SNPdetector processes one PCR amplicon at a time with

the following four main steps (Figure 1). (1) Run the program
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Phred [11] to derive base calls, quality scores, and primary
and secondary peak information for each trace file. (2) Align
sequence reads obtained by resequencing to a reference
sequence using SIM [12], a program that implements the
Smith–Waterman algorithm. This ensures that all PCR reads
are optimally aligned even when there is substantial sequence
variation. The ends of the alignments are trimmed, and the
user can choose to filter low-quality reads and/or high-quality
reads with poor alignments (usually a signal of misassembly).

(3) Identify high-quality sequence variations using neighbor-
hood quality standard (NQS) [3], which requires a variation
site and each base in its flanking window to exceed a user-
defined quality score threshold. NQS was originally devel-
oped for automated SNP identification in haploid samples,
which is similar to finding SNPs in diploid samples that have
homozygous minor alleles. (4) Identify heterozygous geno-
types and evaluate the validity of all SNPs. This last step
determines the genotype for each sample by analyzing trace
files of both forward and reverse orientations. It screens
potential systematic sequencing errors by ‘‘computerizing’’
techniques such as horizontal and vertical scanning employed
by experienced SNP inspectors. The implementation details
are described in Materials and Methods.
During the development of SNPdetector, the mouse

resequencing data and a subset of the zebra fish resequencing
data were used as training data for developing filters for false
positive calls and to determine the lower bound of the signal
thresholds for identifying true positive variation. The human
resequencing data in the ENCODE regions were not included
in training but were used as an independent testing dataset to
evaluate the accuracy of the software after training had taken
place. The results of the three studies presented here were
obtained using the same software configuration.

Validation and Detection of SNPs in Inbred Mouse Strains
In this investigation we attempted to validate 151 mouse

SNPs on Chromosome 16 that were originally discovered by
shotgun sequencing of seven laboratory inbred strains [13,14].
We designed 93 sets of forward and reverse PCR primers to
assay 40 kb of genomic sequence in 25 inbred strains (details
in Materials and Methods of [13]).
During the development of SNPdetector, this dataset was

used as the primary training data for identifying sequencing
artifacts that are likely to produce false positive SNP calls.
The mouse data were chosen for the following reasons. (1)
Mouse inbred strains are expected to be either completely
homozygous or to have an extremely low rate of hetero-
zygosity as a result of their breeding history. This expectation
has been confirmed experimentally by intra-strain variation
analysis [14]. Therefore, the vast majority of the heterozygous
genotype calls are false positives resulting from sequencing
artifacts. (2) In a previous study we analyzed the high-
resolution haplotype structure as well as the phylogeny of the
mouse strains in the resequenced regions [13]. The knowledge
of inbred mouse genetic architecture thus acquired provides
an additional reference for resolving ambiguities in SNP
validity assessment. (3) The 151 SNPs discovered by genomic
shotgun sequencing provide independent verification for
SNPs discovered by PCR resequencing.
When using the option to include all sequence reads,

SNPdetector identified a total of 1,178 SNPs in all 25 strains.
For each SNP, the assembled trace data were manually
reviewed using the program Consed [15]. Manual inspection
found 11 SNPs to be invalid. SNPdetector found all but two of
the SNPs originally discovered by genomic shotgun sequenc-
ing. Manual inspection revealed that the two missing SNPs
reside in regions where sequences ‘‘stutter,’’ one (dbSNP
rs4171354) caused by a polynucleotide track and the other
(dbSNP rs4139636) by a simple tandem repeat (STR). Thus
these two ‘‘SNPs’’ represent sequence variations resulting
from slipped strand extension of DNA polymerase in PCR

Figure 1. Schematic Diagram of the Principal Steps in the Analysis of

Sequencing Variants Found by SNPdetector

Paralellograms are analytical modules (usually C programs), and
rectangles are input and output data. Programs obtained from the
public domain are displayed in italics while those developed in this work
are shown in bold. SNPdetector requires the following three sets of input
data: (1) a template sequence file, (2) the forward and the reverse
sequencing primers, and (3) the trace files. The output includes a list of
high-quality SNPs and their genotype calls in each subject.
DOI: 10.1371/journal.pcbi.0010053.g001
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Synopsis

Single nucleotide polymorphisms (SNPs) are an abundant and
important class of heritable genetic variations, and many of them
contribute to genetic diseases. Accurate and automated detection
of SNPs as heterozygous alleles in fluorescence-based sequencing
traces from diploid DNA samples is challenging because of the low
signal-to-noise ratio in the data, and because of sequencing artifacts
associated with the various DNA sequencing chemistries.

The authors of this publication have developed a new computer
program, SNPdetector, that improves upon existing software tools.
The main design principle of SNPdetector was to model the process
of human visual inspection of experienced analysts. The new tool is
able to cut down significantly on both false positive and false
negative discovery rates. Good performance can be achieved,
without the need for retraining, in substantially different datasets
such as SNP discovery in human resequencing data, mutation
discovery in zebra fish candidate genes, and discovery of inter- and
intra-subspecies variations in inbred mouse strains. The results
demonstrate that this software tool is suitable for the automation of
SNP discovery in diploid sequencing traces, and permits a
substantial reduction of costly and laborious visual data analysis.

An Automated SNP and Mutation Detection Tool



rather than genetic polymorphisms. Excluding low-quality
reads, SNPdetector found 1,019 SNPs, 1,009 of which are
valid.

We ran the same dataset using the Phred/Phrap/PolyPhred
5.0.2 package and manually reviewed 187 putative SNPs with
score � 30 that were found only by PolyPhred. In the
alignments produced by SIM and Phrap, gap locations can
vary if they reside in polynucleotide repeats or tandem
repeats. As a result, SNPdetector and PolyPhred may produce
slightly different locations for a substitution variation
adjacent to an insertion/deletion (indel) polymorphism.
These discrepancies were manually resolved by comparing
the alignments of Phrap and SIM. There were 34 additional
valid SNPs in the PolyPhred output, which makes a total of
1,201 valid SNPs when combined with the valid SNPs found
by SNPdetector.

Using the 1,201 valid SNPs as a benchmark of the total
number of valid SNPs in the mouse resequencing data, we
analyzed the error rate for SNPdetector and PolyPhred 5.0.2.
The results are summarized in Table 1. SNPdetector, with the
run time option of including all sequence reads, has the
lowest false positive and false negative rates (0.93% and
2.58%, respectively). In the output of PolyPhred, the results
obtained from score � 97 have the lowest false positive rate
(5.31%) and those from score � 30 have the lowest false
negative rate (14.73%).

Discovery of Heterozygous Alleles in the Wild-Derived
Inbred Mouse Strain CAST/Ei

In the mouse sequencing data described above, SNPdetec-
tor identified 11 putative SNPs with heterozygous genotypes
in at least one of the 25 inbred strains. As part of the quality
assurance process, we manually reviewed all of these SNPs.
Six of the putative SNPs were false positives arising from
background noise. However, manual inspection detected no
sequencing artifact in the remaining five markers. The
markers are located at two genomic loci. One of the two loci
encodes the EphA6 gene, and the two wild-derived inbred
strains, MOLF/Ei and SPRET/Ei, are heterozygous at three
putative SNP sites. The other locus encodes Bach1, a heme-

binding transcription factor. CAST/Ei, a wild-derived inbred
strain of the Mus. mus. castaneus subspecies, was heterozygous
at two putative SNP sites located at the 39 UTR of Bach1. None
of the five markers has homozygous minor alleles.
To determine the validity of the unexpected heterozygosity

in the inbred strains, we redesigned sequencing primers to
assay DNA samples of the original animals as well as
additional animals of CAST/Ei (three animals), MOLF/Ei
(one animal), and SPRET/Ei (one animal) strains. The
observed heterozygosity at the EphA6 locus turned out to be
an artifact of genomic duplication coupled with polymor-
phisms of MOLF/Ei and SPRET/Ei strains at the sequencing
primer binding sites. However, no genomic duplication was
found for the Bach1 locus using the current mouse assembly
(March 2005 release of NCBI build 34). Genotypes of the four
CAST/Ei animals are summarized in Table 2. One CAST/Ei
animal was homozygous at the first SNP site while all other
sites were heterozygous (Figure S1). The minor alleles in the
CAST/Ei heterozygote were the same as those represented in
the human orthologous sequence.

SNP Discovery in Human
We used SNPdetector for SNP discovery as part of the

HapMap project [7]. In the SNP discovery phase 48 unrelated
individuals from four populations were chosen for rese-
quencing: 16 from the Centre d’Etude du Polymorphisme
Humain collection [16]; 16 from Yoruba individuals from
Ibadan, Nigeria; eight from Japanese individuals from
Tokoyo, Japan; and eight from Han Chinese individuals from
Beijing, China. Cell lines for each are available from the
Coriell Institute for Medical Research (http://locus.umdnj.edu/
nigms/products/hapmap.html).
A total of 11,241 candidate SNPs were found across all

regions, of which approximately half (51.9%) were novel,
compared to data in build 121 of dbSNP. In all, 80% of the
SNPs had a minor allele frequency greater than 0.05.
Nearly 6,000 of the SNPs identified by SNPdetector were

selected for genotyping in expanded assay panels using a
variety of commercial and academic genotyping platforms as
part of the International HapMap Project. The larger panels
consisted of the following samples: 90 from the Centre
d’Etude du Polymorphisme Humain collection; 90 from

Table 1. Comparison of the Results Obtained by SNPdetector
and PolyPhred (Version 5.0.2) in Mouse Resequencing

Program Option/Score Number of SNPs False

Positive

False

Negativea

Total Valid

SNPdetectorb Use low quality reads 1,178 1,167 0.93% 2.58%

Skip low quality reads 1,019 1,009 0.98% 15.99%

PolyPhredc Score � 30 1,177 1,024 13.00% 14.73%

Score � 50 1,060 962 9.24% 19.90%

Score � 70 976 904 7.38% 24.72%

Score � 90 881 832 5.56% 30.72%

Score � 97 809 766 5.31% 36.22%

aThe false negative rate was calculated based on a total of 1,201 valid SNPs verified by visual inspection as well as

SNPs discovered by genomic shotgun sequencing.
bThe details about identification of low-quality sequence reads in SNPdetector are described in Materials and

Methods.
cThe genotype resolution function is activated when running PolyPhred. The details about the run time parameters

of Phrap and PolyPhred 5.0.2 are described in Materials and Methods.

DOI: 10.1371/journal.pcbi.0010053.t001

Table 2. Heterozygosity at the Bach1 Locus in Animals of Wild-
Derived Inbred Strain CAST/Ei

Genotype Category SNP1a SNP2a

CAST/Ei animal Ab C/T G/A

CAST/Ei animal Bb C/C G/A

CAST/Ei animal Cb C/T G/A

CAST/Ei animal Db C/T G/A

Other mouse strainsc C/C G/G

Humand T/? A/?

aDistance of SNP1and SNP2 to the stop codon of Bach1 is 960 bp and 1,002 bp, respectively. The coding region

information is obtained from GenBank sequence NM_007520.
bFigure S1 displays the sequence chromatogram of the four CAST/Ei animals.
cOther mouse strains include 13 laboratory inbred strains and 11 wild-derived inbred strains.
dThe mouse SNP1 and SNP2 are mapped to positions 3,458 bp and 3,494 bp, respectively, of the human

orthologous mRNA (GenBank accession number AB002803.1). Both SNPs reside in a 187-bp reigon where the

human and the mouse orthologs share 70% sequence identity.

DOI: 10.1371/journal.pcbi.0010053.t002
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Yoruba individuals from Ibadan, Nigeria; 45 from Han
Chinese individuals from Beijing, China; and 45 from
Japanese individuals from Tokoyo, Japan; the 16 individuals
used in the SNP discovery phase were a subset of the
genotype panel. Candidate SNPs that turned out to be
monomorphic across all populations were considered to be
false positives. The false positive rate ranged from 2% on
Chromosome 12 to 5.8% on Chromosome 7 (Table 3). The
overall SNP validation rate was 95.5%.

To compare the performance of SNPdetector with the
other SNP detection programs, we reanalyzed a subset of
ENCODE data (61 amplicons on Chromosome 18) using
PolyPhred 5.0.2 and NovoSNP [17] (a new SNP detection
software package). We did not run this analysis on the entire
ENCODE dataset because for computational SNPs that do
not have genotype data, we had to manually review sequence
traces to assess their validity.

A total of 85 valid SNPs were found by at least one of the
three programs, 71 of which were verified by experimental
genotyping, and 14 by manual review alone. The results,
summarized in Table 4, show that the false positive and the
false negative rates of SNPdetector are much lower than
those of the other two programs for this dataset: the
combined false positive and false negative error of SNPde-
tector is approximately half of the lowest error rate in
PolyPhred and one tenth of that in NovoSNP.

Detection of ENU-Induced Mutations in 1,236 Zebra Fish
A total of 26 pairs of forward and reverse primers were

designed to identify ENU-induced mutations in 1,236 zebra
fish in several candidate genes. The fish population is
expected to have common and rare polymorphisms in
addition to mutations. Each mutation is expected to be
present as a heterozygote in only one fish, resulting in minor
allele frequency of 4.0 3 10�4 in the overall population.

To detect mutations at such low frequency requires high
sensitivity of the computational tool. Therefore, a subset of
the zebra fish data was used as the training data for
developing modules that distinguish weak signals from
sequencing artifact.

We then ran SNPdetector to discover all candidate genetic
variations in the entire dataset. Those that had only one
heterozygote across the entire population were considered to
be putative mutations. These putative mutations were
manually reviewed and subjected to repeated sequencing.
SNPdetector identified all eight verified mutations. A total of
102 SNPs with minor allele frequencies ranging from 0.2% to

50% were also identified. To find all mutations using
PolyPhred 5 requires setting a score threshold of six (the
highest PolyPhred score is 99). At such a low threshold, the
majority of the variations identified are expected to be false
positives.

Sequence Coverage of the Mouse, Human, and Zebra Fish
Datasets
We analyzed the sequence coverage to estimate the overall

false negative rate resulting from rejection of low-quality
bases by SNPdetector. Sequence coverage refers to the
percentage of the total bases that are accepted for SNP
identification by the program. In this analysis, each aligned
base was subjected to the acceptability test employed by
SNPdetector, which evaluates its short-range and long-range
quality score distribution as well as secondary peak profile
(details in Materials and Methods).
We calculated the read-based coverage and the sample-

based coverage; the latter combines the forward and the
reverse reads from the same sample (details in Materials and
Methods). The results are summarized in Table 5. In the read-
based coverage analysis, 89%–91% of the total bases were
accepted; 3%–4% of the total bases were rejected because of
stutter, showing that stutter accounts for 30%–40% of all
rejections. Q20 bases (e.g., bases with Phred quality score �
20) constituted 89%–90% of the total bases, while their
percentage in the accepted bases was higher (in the range
95%–98%), indicating that a good proportion of rejected
bases are of low quality. However, quality score alone does
not determine the status of a base. In the read in Figure 2,
four bases with very low quality scores (in the range of nine to
11) were accepted because they had no secondary peak
background (Figure 2A) while one Q20 base was rejected
because of its background noise (Figure 2B).
When we combined forward and reverse reads from the

same sample to calculate coverage, 94%–95% of the total
bases in the three datasets were accepted. The sample-based
coverage gives a more accurate estimate of false negative rate
resulting from lack of coverage than the read-based coverage
because (1) in all three datasets each sample was sequenced in
both orientations; (2) SNPdetector analyzes both the forward
and reverse reads from the same sample to obtain the
genotype; and (3) sequencing artifacts such as stutter have a
complementary pattern in the forward and the reverse reads,
e.g., stutters in one orientation usually have non-stutter bases
in the opposite orientation.

Table 3. Genotyping of Candidate SNPs Identified by SNPdetector in Human ENCODE Regions

Chromosome Region Detecteda Genotypedb Number of False Positivesc Percent False Positivec

7 ENm010 1,775 1,070 62 5.79

8 ENr321 2,117 1,333 67 5.03

9 ENr232 2,020 1,065 56 5.26

12 ENr123 1,796 1,100 22 2.00

18 ENr213 1,962 1,364 56 4.11

aTotal numbers of SNPs identified across all populations excluding indels.
bCandidate SNPs were selected for genotyping based on criteria specific for each assay platform.
cFalse positives are candidate SNPs that were monomorphic in the genotyping assay.

DOI: 10.1371/journal.pcbi.0010053.t003
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Discussion

We have demonstrated the ability of SNPdetector to
accurately call SNPs in resequencing reads from PCR
templates with very low false negative rates (2%–6%) and
acceptable false positive rates (1%–9%). In the test data
analyzed here, the error rate of SNPdetector is much lower
than that of the two alternative methods: PolyPhred (version
5.0.2) and NovoSNP (see Table 4). InSNP [18] is another
recently developed SNP analysis software package. We did
not reanalyze the test data using this tool because its main
function is to support interactive human inspection rather
than perform automated data analysis. The false positive rate
of InSNP was reported to be in the range of 93% to 95% [18].

SNPdetector is able to find SNPs or mutations of very low
frequency because it does not rely on multiple instances of a
minor allele to evaluate SNP validity. In our experience of
manual SNP review, we have observed that sequencing
artifacts such as stuttering, bubbling, and spilling usually
occur in multiple samples at the same locus (Figure 3). In the
case of stuttering, the sequence artifact can be attributed to
sequence repeat content (i.e., polynucleotides or STRs) or
indel polymorphism. Thus, noise that reduces the accuracy of

SNP detection can be systematic and highly reproducible.
Multiple observations of a genotype are considered con-
firmatory only if they were derived from sequence reads of
the same sample in opposite orientations, because comple-
mentary bases are assayed in the forward and reverse
sequence reactions.
The sensitivity of SNPdetector enabled us to discover

unexpected heterozygosity in the inbred strain CAST/Ei. Of
the 1,167 mouse SNPs, two located at the 39 UTR of Bach1
were heterozygous in CAST/Ei strain while the remaining 24
strains were homozygous. This discovery was confirmed by
repeated sequencing of additional animals of CAST/Ei strain
using a different pair of sequencing primers. All but one of
the genotypes were heterozygous (see Table 2), suggesting
that maintaining heterozygosity at this locus might be critical
to CAST/Ei. Though heterozygosity of noncoding DNA was
previously shown in recombinant inbred strains [19], this is
the first case to our knowledge in which heterozygosity is
observed in the mRNA transcript of a well-established inbred
strain. Maintenance of heterozygosity is expected to be
accompanied by reduced fecundity, and CAST/Ei is known
to have smaller litter size than other inbred strains [20].
The three studies presented here include regions of very

high SNP density. For example, among the regions with the
highest SNP density, one 622-bp zebra fish amplicon contains
11 SNPs and one 854-bp mouse amplicon contains 26 SNPs.
The genetic divergence in these regions can lead to the
generation of multiple contigs if we attempt to assemble all
the sequence reads, and the errors in the alignments of an
assembly can become a major source of SNP detection error.
In the mouse study, one of the strains is SPRET/Ei. It belongs
to M. spretus, not M. musculus; the other 24 strains belong to
the latter species. In the data analyzed here, the variation rate
betweenM. spretus andM. musculus is approximately one every
50 bp, indicating SNPdetector can be useful for identifying
inter-species variations of highly related organisms.
During the development of SNPdetector, we used the

mouse resequencing data as the training dataset because
heterozygotes in inbred mouse strains are almost always false
positive as a result of mouse breeding history. This allowed us
to investigate potential sources of false positive heterozygous
allele calls and develop filters for these sequencing artifacts.
The initial design of SNPdetector had included an option to
allow a user to set the threshold on the quality measurement
of individual genotype. However, with effective filtering, a
low-quality threshold increased the sensitivity but not the

Table 4. Comparison of SNPdetector with PolyPhred 5.0.2 and
NovoSNP on a Subset of ENCODE Data

Program Option/Score Number of SNPs False

Positive

False

Negativea

Total Valid

SNPdetectorb Use low quality reads 95 81 14.73% 4.71%

Skip low quality reads 88 80 9.10% 5.88%

PolyPhred

5.0.2c Score � 70 88 73 17.05% 14.12%

Score � 90 77 67 12.99% 21.18%

Score � 97 70 66 5.71% 22.35%

NovoSNPd Score � 15 1,263 67 94.70% 21.18%

Score � 20 254 51 79.92% 40.00%

Score � 25 126 47 62.70% 44.71%

aThe false negative rate is calculated based on a total of 85 valid SNPs verified either by experimental genotyping

(71 SNPs) or visual inspection (14 SNPs).
bThe details about the classification of low-quality reads in SNPdetector are described in Materials and Methods.
cThe genotype resolution function of PolyPhred was activated. The run time parameters of Phrap and PolyPhred

5.0.2 are described in Materials and Methods.
dEach amplicon was manually analyzed using NovoSNP. Reads with no end match are included because results

generated by including these reads have a lower false negative rate (50% lower) than those generated by skipping

them. The false positive rate is approximately the same under these two conditions.

DOI: 10.1371/journal.pcbi.0010053.t004

Table 5. Sequence Coverage Analysis of the Three Datasets

Dataset Read-Based Coverage Sample-Based Coverage

Coveragea Percent of Q20 Bases Coverage Percent of Q20 Bases

Accepted Stutterb All Accepted Accepted All Accepted

Mouse 91.0% 2.9% 89.5% 95.5% 94.1% 93.3% 97.1%

Human 89.1% 4.2% 89.8% 97.6% 94.9% 95.0% 98.7%

Zebra fish 89.1% 2.9% 88.6% 96.9% 94.2% 94.1% 98.2%

aCoverage refers to the percentage of the accepted bases in all aligned bases.
bStutter refers to the percentage of stuttered bases in all aligned bases; the stuttered bases are rejected.

DOI: 10.1371/journal.pcbi.0010053.t005
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false positive rate of SNP detection, making user intervention
unnecessary.

In the human resequencing data, the assessment of SNP
validity was based on experimental genotyping in those cases
where the data were available. We resorted to visual
inspection of trace data only when there were no genotyping
data (see Table 4). However, we noticed that in some cases
genotype data were inconsistent with the result of visual
analysis. For example, in the test data presented in Table 4,
four visually apparent SNPs were scored as monomorphic in
genotyping. These were rare SNPs with one heterozygote in
the resequencing population; each SNP had both forward and
reverse sequence coverage (Figure S2). On the other hand,
two visually rejected SNPs were scored as polymorphic in
genotyping; neither was found by SNPdetector or PolyPhred.
Taking into account the results of visual analysis, the false
positive and false negative rates of SNPdetector would be
4.55% and 3.45%, respectively, much lower values than those
in Table 4. Clearly, the error rates of the genotyping assays,
though not yet available, must be taken into account when
used as a standard for assessing the accuracy of SNP
discovery.

The current version of SNPdetector is able to find indel
polymorphisms when there are homozygous minor alleles.
The stutters caused by heterozygous indels are detected but
not decoded, partly because of the difficulty in distinguishing
the stutters caused by indel polymorphisms from those
caused by polynucleotide runs or STRs. Additionally, the
‘‘.poly’’ files generated by Phred for peak analysis only include
primary and secondary peak information. However, the
secondary peaks may not always represent one of the two

reads downstream of a heterozygous indel if there are
sequencing artifacts in the region. We are currently evaluat-
ing the possibility of revising Phred to export quality scores
of the secondary peaks to facilitate the decoding of
heterozygous indels.
The current version of the program does not implement

sequence assembly because, with the successful completion of
the Human Genome Project and genome projects in other
species, high-quality reference genomic sequences are readily
available for human and other model organisms. An assembly
module could be easily incorporated if SNPdetector were
used to analyze an organism lacking a high-quality reference
sequence.
At this level of accuracy, the success rate of the resequenc-

ing reactions is now the limiting factor in screens for
identifying novel SNPs and mutations. SNPdetector runs on
Unix and Linux and is publicly available by anonymous ftp
(http://lpg.nci.nih.gov).

Materials and Methods

Human ENCODE resequencing. PCR amplicons were designed to
tile five human genome ENCODE [16] regions (ENm110 on 7p15.2,
ENr321 on 8q24.11, ENr232 on 9q34.11, ENr123 12 q12, and ENr213
on 18 q12.1), each 500 kb in length. In total, 4,190 PCR reactions were
carried out on each individual to amplify the 2.5 Mb of genomic
sequence.

PCR reactions were run in 6-fold multiplex reactions arranged so
that consecutive amplicons were never in the same reaction. To the 59
end of each primer pair were attached specific sequencing primers so

Figure 2. Rejected and Accepted Bases in a Sequence Trace

The Phred quality scores are indicated at the top. The quality scores for
rejected bases are labeled in red. Accepted bases are marked by
rectangular boxes.
(A) A subregion of polyA bubble showing that low-quality bases with no
secondary peaks are accepted by SNPdetector.
(B) A subregion showing that a Q20 base is rejected because of its high
secondary peak even though the majority of neighboring bases have
high-quality scores.
DOI: 10.1371/journal.pcbi.0010053.g002

Figure 3. A PolyA Bubble That Occurs in Multiple Samples

The bubble was recognized as a sequencing artifact by SNPdetector, and
no SNP was called even though the alternative adenine residue (in the
highlighted column) appeared in two samples with an average Phred
quality score of 20. In addition, all three traces in this region have a polyG
spill at the right, with a secondary guanine peak spanning four residues;
and a polyT spill at the left, with a secondary thymine peak spanning
three residues.
DOI: 10.1371/journal.pcbi.0010053.g003
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the reaction mixture could be sequenced directly upon completion of
the amplification. DNA sequences were tested for fidelity to the
intended amplicon sequence by comparison to the human genome
using BLAST. Sequencing reads that failed to make their best match
to the genome between the sequencing primers were rejected from
SNP analysis. In all, 258,909 sequences met this quality criterion and
went on to SNPdetector. SNPdetector aligned the DNA sequences to
the reference (NCBI build 34 of the human genome), and then the
program called SNPs. From this analysis, 11,241 candidate SNPs were
identified, including 1,571 homozygous indels. Approximately one-
third of the candidate SNPs were not eligible for genotyping because
they failed to meet criteria for assay design. These criteria exclude
SNPs lying in palindromes, AT- or GC-rich regions, or repeated DNA
(see http://www.hapmap.org/downloads/assay-design_protocols.
html).

Programming language and system requirements. SNPdetector was
implemented in C and Perl. It currently runs on Unix and Linux
platforms.

Identification of low-quality or misassembled reads. Each subject
sequence is aligned to the reference sequence; the two ends of each
read are trimmed until there is a 20-bp window with 95% or greater
identity to the reference sequence at each end. Sequences that lack
such a window are not included in SNP detection.

The trimmed alignments are then used to evaluate the read quality.
A read is considered poor quality if it does not have a subregion (at
least 30 bp) with high sequence quality (Phred quality score � 30 in
90% of the bases) as well as high sequence identity (95%) to the
reference sequence. We did not require high average quality across
the entire sequence because such measures tend to exclude stuttered
reads (caused by STR, polynucleotide, or indel polymorphism). The
average quality score for a stuttered read is usually low but the bases
upstream of the stutter can be of sufficient quality for SNP analysis. If
a sequence has a high quality (defined previously), highly divergent
(,70% identity to the reference sequence) subregion, then the read is
considered a ‘‘misassembled’’ sequence not suitable for SNP
detection.

The parameters were derived from empirical analysis of genomic
regions with high SNP density. However, they are adjustable in the
pipeline, and the user can opt out of the low-quality/misassembly
check.

Modification of NQS for detecting SNP and indel polymorphisms.
Prior to heterozygote detection, we implemented a modified version
of NQS to identify putative SNP and indel polymorphisms that have
homozygous minor alleles in the resequencing sample. First, the
many-to-one alignments computed by SIM [12] were converted to an
M 3 N multiple alignment by projecting insertions in subject
sequences as deletions in the reference sequence. M corresponds to
the alignment length; N corresponds to the number of subject
sequences. A position in M is considered a putative variation site if it
has more than two qualified alleles across N samples.

A residue is considered a qualified substitution allele if it and each
base in its 4-bp flanking regions has Phred quality score � 15. This
minimum quality score is an adjustable parameter in the program. If
a residue fails this standard NQS check but resides in a 9-bp window
where the quality score of each base exceeds 25, then it is qualified by
this expanded window NQS. The latter criterion ensures that a high-
quality residue is included even if there is sequencing artifact on one
side of the 4-bp flanking region.

A higher-quality threshold is applied to qualify a putative indel
because errors in base calling tend to generate false indel poly-
morphisms. The minimum quality score of NQS is 25 instead of 15. If
a putative indel resides in a polynucleotide repeat, then the entire
repeat as well as the 4-bp flanking region of the repeat is required to
pass the NQS quality check because in a repeat polymorphism the
gap location is arbitrary. The expanded window NQS is not used for
indel allele qualification because alignment artifacts resulting from
base calling errors often produce false indel alleles.

If a sample has forward and reverse reads and its sequence in the
opposite direction is identical in the 10-bp regions flanking either
side of the putative allele, the quality scores from the two reads are
combined for the NQS check. When there is a discrepancy in the
forward and reverse reads of a putative indel allele, the indel allele is
disqualified.

Putative substitutions and indels identified by NQS are subjected
to further evaluation in the process described below. Those that fail
in subsequent test are not listed in the output.

Ratio of primary to secondary peak in heterozygote detection. The
zebra fish resequencing data had more than 1,200 subjects sequenced
in both forward and reverse orientations. The large sample size in this
study allowed us to inspect the distribution of secondary-to-primary-

peak ratio as noise in ‘‘dirty’’ homozygotes (e.g., homozygotes with a
secondary peak background) and as signal in true heterozygotes. We
found that it was not uncommon for a homozygote to have a
secondary peak approximately 20% of the primary peak height. On
the other hand, it was uncommon for a true heterozygote to have a
secondary peak less than 30% of the primary peak. Therefore, in the
default setting we used the 30% threshold as the lower bound for
detecting putative heterozygotes; a secondary peak below 20% of the
primary peak was considered background noise in a dirty homo-
zygote in the initial genotype assessment.

Genotype quality classification. The genotype of a sequence read is
classified into one of the following six categories: high, med, low1,
low2, low3, and reject. The quality class is determined by analyzing
the Phred quality score of the variant site and its 4-bp flanking side.
The threshold of each quality class is based on previous empirical
analysis of NQS accuracy [3,4] (e.g., the minimum quality score for
each base in the flanking regions is 15) as well as comparison with the
validated SNPs in the training datasets. The initial assignment of a
genotype quality class may be modified by the subsequent processing
described below under ‘‘Horizontal and Vertical Scan.’’

In Phred, one of the four parameters for discriminating errors
from correct base calls is ‘‘uncalled/called ratio,’’ e.g., the ratio of the
height of the largest uncalled peak to the smallest called peak within a
7-bp window around the current site [11]. In many cases, the uncalled
secondary peak at a heterozygote site is the largest uncalled peak in
this 7-bp window. As a result, the Phred quality scores of a
heterozygote and its flanking bases can be much lower than those
of a homozygote with a similar peak profile. Such an example is
shown in Figure 4. The most dramatic Phred quality score drop is
found at the heterozygote site and its immediate 1-bp neighbors. We
define these three bases as a ‘‘heterozygote Phred quality score drop
unit’’ (HQDU). The flanking region is analyzed under two conditions:
(1) using the 4-bp flanking region around the current site without
taking into account the HQDUs at the site and within its flanking
region, and (2) using only those bases that do not belong to HQDUs at
the site and within its flanking region. If there are fewer than four
such bases within 20 bp of the site, then the flanking region is
considered invalid (score set to zero). The 20-bp constraints ensure
that a region that consists entirely of HQDUs (as in the case of
stutter) is ignored. The maximum of conditions 1 and 2 is used to
represent the flanking region score of the site because condition 1 is
more accurate if the maximum uncalled peak (defined by Phred) in
the 7-bp window is not the secondary peak of a heterozygote but a
sequencing artifact (such as bubble). On the other hand, a score
derived from condition 2 is more accurate if a heterozygote is the
maximum uncalled peak in the region. An example of skipping
HQDUs in the flanking region analysis is shown in Figure 4.

Once the flanking region is defined, the genotype score is
calculated as follows. If each base at the flanking region exceeds a
Phred quality score of 15, 25, or 40, then the flanking region is
assigned a score of one, two, or three, respectively. If the variation site
exceeds a Phred quality score of 15, 25, or 40, then it is assigned a
score of one, two, or three, respectively. If the average quality score of
the flanking region exceeds 25 or 40, then the score is incremented by
one or two, respectively. If the average is below 15 (low), then a
penalty of �1 is imposed. The combined total score is then used to
derive the initial classification group as follows: score , 0 ! reject;
score¼ [0,1]! low3; score¼ 2 ! low2; score¼ [3,4] ! low1; score¼
[5,6]! med; and score � 7! high. Thus, a genotype of class ‘‘reject’’
has Phred quality score below 15 at the site as well as the flanking
region; such a site will not be used for SNP detection.

The initial genotype quality class can be turned into the class reject
in horizontal or vertical scan analysis. In these scans, a putative
heterozygote may also be reclassified as a dirty homozygote or vice
versa. When a genotype changes its status, the quality class is also
recalculated.

Genotype noise assessment. To evaluate noise within the 4-bp
flanking regionof a putative heterozygote or homozygote, the program
checks the secondary peak of each base in the flanking region. As
above, define p¼(secondary_peak_area/primary_peak_area)3100
(i.e., percent of primary peak area occupied by secondary peak). If each
base in the flanking region passes the test of p¼ 0, p � 10, or p � 20,
then the flanking region is considered to have no, little, or limited
noise, respectively. A site with a p . 70 secondary peak in the flanking
region is skipped to avoid penalizing a putative heterozygote in a SNP
cluster (see an example in Figure 4). The same test is applied to
measure the noise level at the site of a homozygote. For a putative
heterozygote, the higher the p-value, the stronger the signal. A
classification of no, little, and limited noise is awarded to putative
heterozygote sites with p � 80, p � 50, and p � 30, respectively.
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Horizontal and vertical scan. Manual SNP inspection usually
involves a horizontal scan of the same trace and a vertical scan
across multiple traces at a putative SNP site. The horizontal scan
assesses whether the signal is distinguishable from local noise, while
the vertical scan determines whether the signal is distinguishable
from the noise in the other samples.

To model the horizontal scan, SNPdetector first identifies short-
range (5 bp) and long-range (.50 bp) features indicative of potential
problems in a sequence read. These are (1) regions with low sequence
similarity, (2) regions with low sequence quality, and (3) regions with a
high secondary peak background. Long-range features, when occur-
ring downstream of a STR (computed with the program Ptrfinder
[21]) or a polynucleotide track (�8 bp), or an indel polymorphism
identified in the NQS analysis, usually indicate stuttering in PCR
amplification [22], and stutters are disqualified (e.g., genotype quality
class set to reject). Short-range features accompanied by specific
types of flanking sequence indicate potential artifacts—e.g., spilling
(i.e., a background of secondary polynucleotide track extended from
a neighboring primary peak; see Figure 3), bubbling (i.e., reads
embedded underneath a polynucleotide blob; Figure 3), or factitious
indels resulting from base-calling errors. Details of the parameters
used for horizontal scan are summarized in Table 6.

To model the vertical scan of a human inspector, SNPdetector first
identifies high-quality homozygotes with no secondary peak (e.g.,
secondary-to-primary-peak-area ratio is zero) in the 10-bp flanking
region. These ‘‘clean’’ homozygotes are then used to find ‘‘dirty’’
homozygotes. A dirty homozygote is determined to be present if one
of the following conditions is true: (1) there is a discrepancy between
forward and reverse reads of the same sample, e.g., a clean
homozygote is found in sequence read of one orientation while the
read in the opposite orientation has a secondary peak; or (2) a
sequence read has a low secondary peak (secondary-to-primary-peak-
area ratio , 10) and no reduction of its primary peak compared to
that of a clean homozygote derived from the same orientation. To
adjust for baseline differences in peak area measurements in
different traces, we used a relative score, i.e., the ratio of the primary
peak area at the putative site to that of its immediate homozygous
neighbors. The unclassified traces are processed in ascending order
of their secondary-to-primary-peak-area ratio, and each is compared
to reads of clean or dirty homozygotes to determine (1) whether its
secondary peak area is comparable to the secondary-to-primary-
peak-area ratio found in dirty homozygotes, and (2) whether the
reduction of its primary peak is comparable to those observed in
dirty-to-clean homozygotes. A sequence read deemed indistinguish-
able from a classified homozygote is considered to represent a dirty
homozygote and is included in the analysis of the remaining data. A

more stringent threshold is used for reads with short-range features
indicative of sequence artifacts identified during the horizontal scan.
The genotype quality class and noise class are recomputed for
putative heterozygotes reclassified as dirty homozygotes.

The complete list of parameters used for the horizontal and the
vertical scan is listed in Table S1.

Analysis of sequence coverage of the three datasets. Sequence
coverage refers to the percentage of the total bases that are accepted
for SNP detection by the software. Empty trace files, reads with
unacceptable quality (details under ‘‘Identification of Low-Quality or
Misassembled Reads’’), and reads that fail to make their best match to
the reference sequences are considered assay failures. They are not
used as an input for SNPdetector and, as a result, are not included in
the coverage analysis.

The total number of resequenced bases in a read includes every
base that is aligned to the genomic interval spanned by the forward
and the reverse sequence primers. An aligned base is considered
acceptable if it passes ‘‘horizontal scan,’’ described in the previous
section. The numbers of Q20 bases in the total bases and the accepted
bases are recorded. The number of bases rejected due to stuttering is
also recorded.

In all three datasets, each sample was sequenced in both the
forward and the reverse orientations, giving a 23 redundancy in
sequence coverage for each sample.

In addition to the read-based coverage described above, we also
analyzed the sample-based coverage, which combines the reads from
both the forward and the reverse orientations to calculate the total
bases and the accepted bases for each sample. At each position in the
genomic interval spanned by the forward and the reverse primers,
bases from all reads of the same sample are evaluated. An accepted
base in one read always overwrites a rejected base in another. For
bases with the same status, the higher quality is recorded for the Q20
analysis.

Run time parameter of Phrap and PolyPhred 5.0.2. We ran Phred/
Phrap/PolyPhred using the template genomic sequences and traces
derived from resequencing. Each template sequence was converted
into a reference trace using the program SudoPhred. Each base of the
reference template sequence was assigned a Phred quality score of 59.
Using the default parameters of Phrap, an amplicon with a high SNP
rate can be split into multiple contigs. For example, in the mouse
resequencing data, 95% of the amplicons were assembled into
multiple contigs even after excluding the traces derived from the
strain SPRET/Ei (which belongs to the species M. spretus). Using the
parameters ‘‘–repeat_stringency 0.55 –forcelevel 2,’’ we were able to
obtain a single contig in 95% of the amplicons. Therefore, we used
this setting in all datasets.

Figure 4. Sequence Traces of a SNP Cluster with Three Consecutive SNPs

The top is a homozygous sample and the bottom a heterozygous one. The Phred quality score is labeled on top of each base. In the heterozygous
sample, the three HQDPs around the three heterozygotes are labeled with red lines at the bottom. The flanking bases used for calculating genotype
quality class of the highlighted heterozygote in the middle are marked by rectangular boxes, which do not include any HQDPs. The flanking bases used
to assess background noise in the flanking region are labeled with brackets at the bottom.
DOI: 10.1371/journal.pcbi.0010053.g004
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We activated options in PolyPhred to use the template genomic
sequence as the reference sequence and to combine forward and
reverse reads from the same individual for genotype calls (the ‘‘–
source’’ option).

In the results generated by PolyPhred 5.0.2, approximately 50% of
the high-quality SNPs (score ¼ 99) were monomorphic in their
genotype calls (i.e., PolyPhred’s own assessment was monomorphic
even though it called a SNP). We visually analyzed 30 such cases, and
were able to confirm that they were all monomorphic sites. We
developed a filter to remove these monomorphic ‘‘SNPs’’ from the
PolyPhred output.

Analysis of false positive and false negative rates. We calculated
false positive rate to measure the specificity of the three programs
tested in this study using the following formula: the number of false
positive SNPs divided by the number of SNPs discovered. This
formula is referred to as the false discovery rate [23]. We calculated
false negative rate to measure sensitivity using the following formula:
the number of known missed SNPs divided by the number of all true
SNPs.

Supporting Information

Figure S1. Trace Chromatogram of Four CAST/Ei Animals at Bach1
Locus (SNP1 in Table 2)

All but the second animal (animal B in Table 2) are heterozygous.

Found at DOI: 10.1371/journal.pcbi.0010053.sg001 (88 KB PDF).

Figure S2. An Example of Discrepancy between Visual Analysis and
Genotyping Result

The second and the third traces are the reverse and the forward reads
from an individual identified as a heterozygote by visual analysis. The
minor allele T was only found in this individual. The top is a sequence

of a homozgygote control. Both SNPdetector and PolyPhred found
this SNP (PolyPhred score ¼ 99). However, the genotype result is
monomorphic at this site.

Found at DOI: 10.1371/journal.pcbi.0010053.sg002 (104 KB PDF).

Table S1. SNPdetector Parameters Used to Make Genotype and SNP
Calls

Found at DOI: 10.1371/journal.pcbi.0010053.st001 (113 KB PDF).
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