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Evolutionary Potential of a Duplicated
Repressor-Operator Pair: Simulating Pathways
Using Mutation Data

Frank J. Poelwijke, Daniel J. Kiviete, Sander J. Tans

FOM Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, Netherlands

Ample evidence has accumulated for the evolutionary importance of duplication events. However, little is known
about the ensuing step-by-step divergence process and the selective conditions that allow it to progress. Here we
present a computational study on the divergence of two repressors after duplication. A central feature of our approach
is that intermediate phenotypes can be quantified through the use of in vivo measured repression strengths of
Escherichia coli lac mutants. Evolutionary pathways are constructed by multiple rounds of single base pair substitutions
and selection for tight and independent binding. Our analysis indicates that when a duplicated repressor co-diverges
together with its binding site, the fitness landscape allows funneling to a new regulatory interaction with early
increases in fitness. We find that neutral mutations do not play an essential role, which is important for substantial
divergence probabilities. By varying the selective pressure we can pinpoint the necessary ingredients for the observed
divergence. Our findings underscore the importance of coevolutionary mechanisms in regulatory networks, and should
be relevant for the evolution of protein-DNA as well as protein-protein interactions.
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Introduction

Initially put forward by Stevens in 1951 [1] and later
advocated by Ohno in his seminal work [2], gene duplication
followed by functional divergence is now seen as a general
mechanism for acquiring new functions [3]. Also, regulatory
networks are thought to be shaped significantly by genetic
duplication [4]. For instance, sequence analysis of tran-
scription factor families points to various historical duplica-
tion events [5,6]. However, very little is known about the
subsequent mutational divergence pathways or about the
corresponding stepwise phenotypical changes that are subject
to selection. While these issues have not yet been explored
experimentally, related generic aspects of mutational plasti-
city have been addressed theoretically [7-11]. However, a
central obstacle in studying mutational pathways through
computer simulations remains the unknown relation between
the sequence and binding affinity, for which, in general, a
rather abstract mapping has to be assumed. To describe the
formation of a new regulatory interaction after a duplication
event, which is our current aim, such an abstract approach
would be particularly speculative.

Here we reason that many characteristics of the adaptation
of real protein-DNA contacts are hidden in the extensive
body of mutational data that has been accumulated over
many years (e.g., [12-14] for the Escherichia coli lac system).
These measured repression values can be used as fitness
landscapes, in which pathways can be explored by computing
consecutive rounds of single base pair substitutions and
selection. Here we develop this approach to study the
divergence of duplicate repressors and their binding sites.
More specifically, we focus on the creation of a new and
unique protein-DNA recognition, starting from two identical
repressors and two identical operators. We consider selective
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conditions that favor the evolution toward independent
regulation. Interestingly, such regulatory divergence is
inherently a coevolutionary process, where repressors and
operators must be optimized in a coordinated fashion.

The mere presence of a selective pressure is clearly not a
sufficient condition to achieve a new function. Rather, the
evolutionary potential and limitations can be seen as
governed by the shape of the actual fitness landscape and
the evolutionary search within it. Studying these intrinsic
limitations to divergence represents the overall aim of this
work. Many open questions arise when considering the
formation of a new protein-DNA interaction, which may be
viewed as the construction of a new lock and uniquely
matching key. For instance, how should the protein be
modified step-by-step to recognize a new DNA-binding site
that also does not yet exist, or vice versa? One would expect
that complementary mutations need to occur in the protein
and DNA-binding site. Does this mean that temporary losses
in fitness must be endured when taking single-mutation steps?
And, how many mutations must minimally accumulate before
a noticeable new recognition is obtained on which selection
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can act? The latter is an important point: mutations
conferring a selective advantage spread more readily through
a population [15], resulting in a drastic increase of the
divergence probability. These questions are addressed by
exhaustively searching the landscape for optimal pathways, as
well as by complementary population dynamics simulations.

Previously it has been shown that lac repressor mutants
indeed exist that can bind exclusively to mutant lac operators
[14]. Our simulations reveal that a duplicated repressor-
operator pair can readily evolve to achieve such independ-
ence of binding, while monotonously increasing its fitness in
a step-by-step process. Moreover, simply following the fittest
mutants does predominantly guide the system to the desired
global optimum, which indicates funnel-like features in the
fitness landscape. A detailed analysis of the subsequent
network changes indicates a generic sequence of events, of
which we study the underlying mechanisms by varying the
applied selective pressure. Next, we show that the trajectories
we find in the optimal pathway simulations are not rare
exceptions, since similar trajectories are followed using a
probabilistic scheme for accepting a mutation. The results
further suggest the feasibility of studying regulatory diver-
gence in laboratory evolution experiments, and finally we
make a comparison to alternative models for the creation of
new regulatory interactions.

Results

Selective Pressure and Fitness Landscape

We consider an ecological situation where natural selection
would favor independent regulation of two genes X and Y.
Regulation is not independent in the initial symmetric
network with duplicated components (see Figure 1): X and
Y have two identical upstream binding sites (O1 and 0O2),
which bind two identical repressors (R1 and R2) equally
strongly. Such a situation will, for instance, arise upon
duplication of a repressor that regulates two or more genes.
Note that this selective pressure, of course, is not a general
outcome of a repressor duplication. A duplication event may
arise in the context of a different functional pressure, which
could direct the evolution toward a different topological
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motif [16]. Most often, selective pressures for a new function
will be absent, in which case silencing of one of the duplicates
is the most probable outcome [3,17]. However, the rare cases
where a selective pressure is present are crucial to developing
new functions.

We aimed to define a transparent selection pressure for the
divergence of these regulatory interactions. Attributing a
fitness value to a network function is non-trivial: unlike for an
enzymatic function, network fitness cannot be captured in a
single biochemical parameter. Here we propose to assign a
fitness value based on the desired input-output relation of the
network (see Figure 1A and 1C). For simplicity, only two
concentration levels (high and low) of input and output
protein are considered, resulting in four possible input
conditions. For each of these input conditions, it follows
straightforwardly which repressor-operator interactions
should be maximized and which must be minimized. The
interaction strength between operator Oi and repressor
homo-dimer Rj is expressed by repression values (Foig;). This
value represents the expression level of a downstream gene in
the unrepressed condition divided by the repressed condition
and it is obtained directly from measured data (see below and
Materials and Methods). Taking the fitness to scale linearly
with the repression values, the fitness of the complete
network is denoted by the product of all optimization factors:

F F
OIR1 max(Fos) O2R?2 (1)

O1R2 Fogri

Fitness = max(Fo1)

In this expression max(Fo;) denotes the repression value of
the strongest interaction with Oi, either by homodimers of R1
or R2 or the hetero-dimer composed of R1 and R2 (see Figure
1 and Materials and Methods).

The fitness definition comes down to a minimum set of two
demands for regulatory binding: each operator must bind a
repressor tightly (max(Fo;) and max(Fpe) should be large) but
also exclusively (FFo1r1/Fo1re and Fosro/Foer1 should be large).
Prior to divergence the first demand is already met, but the
latter is not. The challenge during divergence is therefore to
improve binding exclusivity, while maintaining tight binding.
Tight and exclusive binding is a core functionality of most
regulatory systems, and most pairs of existing transcription
factors must therefore score well on the employed fitness
definition. Take for instance the Lacl and RafR repressors,
which regulate enzymes required for growth on lactose and
raffinose, respectively. If operator binding would not be tight
in the absence of lactose and raffinose, the wasteful
expression of the downstream metabolic enzymes would lead
to sub-optimal growth speeds [18,19]. If RafR would also bind
to the lac operator (and thus bind non-exclusively), the effect
on growth speed would also be negative since the mere
absence of raffinose would then lead to insufficient f-
galactosidase for high lactose concentrations.

One therefore expects a conservative selective pressure
that minimally includes binding tightness and exclusiveness,
to keep the lac and raf regulation intact. Important here is
that the lac and raf repressors are in fact related: their origin
has been traced to duplication events from a common
ancestor [6]. If a conservative pressure keeps their function
intact now, it seems a good candidate for the initial
divergence pressure as well. Full divergence to the current
lac and raf systems clearly involves many additional develop-
ments after duplication. For instance, the divergence of
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Figure 1. Divergence Process, Fitness Criterion, and Mutational Dataset of Repression Values
(A) Diagram of the studied divergence process: after a duplication event, a new regulatory interaction can be formed by mutating the two operators, O1

and 02, and two repressors, R1 and R2.

(B) Duplication and divergence yields heterodimers, which can all bind to the operator. The (initially symmetric) operators and repressors are based on
the lac sequence, as indicated. Base pairs that are key to altering specificity (colored red and blue) can be mutated to arbitrary sequence.

(C) The selective pressure for independent regulation follows from four input conditions that contribute to the total fitness. When, e.g., R1 is high and
R2 low, this implies that X should be low and Y high. Out of all interaction parameters of the network, in this case only Fo1r; and (Foor;) ™" are relevant
and need to be optimized. When R1 and R2 are high, both X and Y should be low, regardless of which repressor-dimer causes repression. Therefore
max(Fo+) (the strongest interaction with O1 by either homodimers of R1 or R2 or by the heterodimer of R1 and R2) and max(Fo,) need to be be
optimized. When both R1 and R2 are low, no parameters need to be optimized.

(D) Resulting repression value landscape, showing repression values based on actual measurements of mutants.

DOI: 10.1371/journal.pcbi.0020058.g001

ligand-binding properties [20] might have occurred prior to
operator-binding divergence. While these considerations put
additional constraints on the entire divergence process, they
do not alter the particular operator-binding divergence
studied here.

A remaining question still is how the various demands
should be weighed in the total fitness. That choice is clearly
not general: it will strongly depend on the operons in
question and on the changing cell environment. For example,
if active RafR is present more than half of the time, then its
cross-interaction with the lac operator would be compara-
tively more harmful because it lasts longer. In order to give a
uniform presentation we weighed the factors of the four
input states equally, which would correspond to an equal
contribution of these phases to the overall fitness. However,
weighing the factors unequally (e.g., by increasing the power
of the tight operator binding, or the cross- interaction factors
from 1 to 2) did not alter the main conclusions.

Mutation Data and Pathway Simulations

In our simulations, the strength of a mutant repressor-
operator interaction (as expressed by the repression value F),
is assigned using data from mutational analysis [14]. In these
experiments, repression values have been determined in vivo
from the repressed and unrepressed expression levels of a
lacZ gene, controlled by a mutant lac operator and mutant lac
repressor (see Materials and Methods). Obviously not all
possible lac mutants have been constructed. Therefore, a
potentially significant limitation of our simulations is the
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restricted number of base pairs that can be mutated in silico
and linked to experimental data. At the same time however,
while the tightness of DNA binding is the result of the
integral protein architecture, surprisingly few base pairs (ten
in total) have been found to be important for altering binding
specificity [14] (see Figure 1B). Focusing on these key base
pairs is therefore reasonable for the minimal paths that we
are interested in here. Using measurements on 1,286 mutants,
repression values of all variants in these key base pairs could
convincingly be determined [13,14,21]. These variants thus
include all multiple mutants in both the repressor and the
operator. Repression values of heterodimers and asymmetric
operators are calculated using an additive contribution of the
repressor monomers to the dimer-DNA binding [22] (see
Materials and Methods). In total, about 1 X 107 possible
repressor-operator combinations are obtained (see Figure 1D
for the homodimer variants).

Every mutational path starts with the duplicated sequence
of a tight binding repressor-operator combination (repres-
sion value > 100). These possible starting sequences obviously
include wild-type lac, but also e.g., the gal and ebg systems,
which are part of the same family of repressors. Their high
measured repression values are rather remarkable because
the rest of the gal, ebg, and lac sequences have in fact diverged
considerably. These observations further indicate that the key
base pairs play the central role in specific recognition.

The aim of the simulation method (see Materials and
Methods for details) has been to reveal the intrinsic
possibilities for the divergence of repressor-operator binding,
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given the measured data and the constraints of single base pair
substitutions and no fitness decreases. For this purpose, we
search the landscape for optimal paths and study what their
limitations and potential are. To trace these optimal paths, all
mutants with a single base pair substitution with respect to
their parents are evaluated based on the fitness described
above, and the best performers are selected for the next
round. The number of selected mutants L is varied to assess its
effect. We also question whether these optimal paths are not
just rare cases, by comparing them with pathways generated
by a different simulation method, where a random mutation is
accepted with a probability that depends on its associated
fitness increase [23] (see Protocol S1).

Short Co-Divergence Pathways

The simulations show that paths to independent recog-
nition are readily found. Even when only the best network is
carried to the next round (L = 1), which implies always
following the steepest ascent in fitness, some starting
sequences can evolve to the highest fitness in the sequence
space. In these networks, both repressors bind tightly to one
operator (Foiri = 520 and Foere = 200, respectively), while
not at all to the other (Foire = 1, Foor1 = 1). We considered
paths to be successful when the fitness value is within an
order of magnitude of the highest fitness in the landscape,
which is a strict criterion given the fact that the fitness
parameter is a product of six factors. The diverged fraction
increases for higher L (Figure 2A, solid line), which is
expected since it allows alternative paths to be explored.
More surprising is that successful trajectories can eventually
be found from all starting points, but note that paths that can
only be followed for higher L are increasingly less probable
because they imply more (near) neutral mutations.

Most optimal paths are rather short: 70% require just five
to nine mutations for L = 20 (Figure 2B). The systems almost
exclusively find the nearest diverged state in sequence space
(Figure 3B) and do so without taking any detours (Figure 3A).
Notably, despite the fact that the starting points lie in very
different areas of the sequence space, a generic sequence of
network changes is generally observed (see Figure 4 for an
example). First of all, one repressor-operator combination
remains unchanged, except at the very end, as the other
diverges away. This is an example of asymmetric divergence
due to positive selection, as has also been found in
phylogenetic analysis of duplicate genes in eukaryotes [24].
A striking general feature of the pathways is an early
reduction in the binding strength of the diverging repressor,
brought about by a single base pair substitution (Figure 4B,
red trace). Such a mutation would be unfavorable for a single
repressor-operator pair, but here it can be fitness neutral,
partly because the unchanged duplicate repressor ensures a
continued repression. At this specific point the diverging
repressor is freed from functional constraints and therefore
most vulnerable to degenerative mutations resulting in
silencing of the gene. The probability of silencing is reduced
however, because already at the second mutation and onward,
new and unique protein-DNA recognition can be built up. At
the sequence level, this phase is characterized by transient
asymmetries. The operator must go through non-palindromic
sequences because it can only receive one mutation at a time.
Heterodimers are the best binders in this phase because of
their ability to mirror the non-palindromic operator sequen-
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Figure 2. Divergence Success Ratio and Path Length Distributions

(A) Fraction of starting sequences (numbering 132 in total) that
successfully diverge, as a function of the number of networks carried
to the next round (L). Dashed line, idem, but with the additional
requirement of continued tight binding (F > 100) for both repressors.
(B) Distribution of path lengths until divergence. Red color map, optimal
co-divergence pathways. Blue color map, pathways with the additional
requirement of £ > 100 for both repressors. Note that a vertical
summation of the color maps yields the lines in (A).

DOI: 10.1371/journal.pcbi.0020058.9002

ces. Eventually all successful trajectories recover palindromic
operators, even as the selective pressure does not explicitly
specify this. With all dimer varieties present, a homodimer is
available and now binds most tightly to the palindromic
operator.

In order to obtain a better insight in the essential
ingredients for the observed evolvability, various additional
simulations were performed. For instance, we were triggered
by the recurrent early knockout of one of the repressors,
which is one of the most noticeable features of the mutational
pathways. To test for the importance of this step, both
repressor-operator pairs were required to maintain a
significant repression (Fojry > 100 and Fpore > 100).
Divergence is indeed significantly frustrated by these con-
ditions (Figure 2A, hatched line). The amount of selected
mutants needs to be two orders of magnitude larger (L >
1,000) for half of the starting sequences to diverge. The
saturation of the diverged fraction for very high L, where
prolonged neutral drift is allowed, indicates that for 22% of
the starting sequences no pathways exist. Moreover, in
contrast to the optimal paths, the nearest diverged state in
the landscape is generally not found, and the paths contain
significant detours (Figure 3). The same is seen from the
increased path length: 70% of the paths take 11-21 mutations
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Figure 3. Analysis of Pathway Detours and Local Environment of Fitness Optima

(A) Histogram showing the number of detour mutations of the divergence pathways. The Hamming distance dy of two sequences is defined as the
number of positions at which they have different base pairs. Paths that are longer than dy arrive at an optimum after a detour.

(B) Histogram of the Hamming distance between the optimum that is found and the closest optimum. If this measure is zero, a path leads to the closest

optimum.

(C) Median fitness value as a function of the Hamming distance from a global optimum (solid line). Gray levels indicate the spread of the fitness values.

DOI: 10.1371/journal.pcbi.0020058.9g003

(Figure 2B). These paths lack a recurring mutation pattern as
observed for the optimal paths and instead show a large
variation in the sequence of events. Both repressors and
operators are significantly mutated, and the fitness increases
slowly or is neutral over multiple rounds (see Figure S1 for an
example).

Another defining feature of duplicated transcription
factors is the heterodimerization of transcription factor
monomers. It is not a priori evident whether this constraint
on the network topology either promotes or hampers
divergence. To assess its effect, simulations were performed
where heterodimers are not able to form (unpublished data).
The results indicated a surprisingly limited effect on the
divergence. The paths do initially show a slower fitness
increase, but the path length does not appear much affected,
nor the success rate of divergence. The other simulation
variations we conducted (with unequally weighted factors in
the fitness definition), did not qualitatively alter the main
divergence features, such as substantial divergence success
without fitness decreases, short paths, and an early repression
dip, indicating the robustness of our results.

Discussion

Duplication and Coevolutionary Divergence

We obtain a first view on a fitness landscape for regulatory
divergence that is based on actual measured data. We show
that the landscape allows evolutionary paths toward inde-
pendent repressor-operator interactions, exhibiting a step-
by-step increasing fitness, starting as early as the first or
second mutation. Since the possibility of following such paths
critically depends on molecular properties, the use of
empirical data is essential for such claims. One could also
have imagined fitness landscapes where paths to diverged
networks do not exist, or where they are very long, involving
large detours. Our results contrast with the notion that a
number of neutral or even deleterious mutations have to
accumulate before a new function can develop (see for a
discussion e.g., [25]). Having beneficial mutations available
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early on is important, since it greatly enhances divergence
probabilities [15]. A lack of early selection would result in
much higher probabilities of silencing of one of the
duplicates by the accumulation of mutations [3,17].

While the presented systematic search for optimal path-
ways is useful in revealing necessary conditions for diver-
gence, one may wonder whether paths are not very different
in a probability-based fixation process that typifies natural
evolution. However, we found that population genetics
simulations reveal the same pathway characteristics: a
significant fraction of paths are successful with monotonous
fitness increases, one repression dip early on, and few neutral
mutations are present (see Protocol S1 and Figure S2).

The coevolutionary search for a new and independent
recognition, which is relevant for both protein-DNA and
protein—protein interactions, comprises fundamental differ-
ences with often-considered evolution of ligand-binding and
enzymatic activity [26-28]. While in the latter cases the new
evolutionary target is fixed, here it is open-ended: as with
locks and keys, many possible combinations are unique
matches, and each of those is equally suitable. This large
degree of freedom allows the system to choose the solution
that is most accessible. Another difference with fixed-target
evolution lies in the selective pressure. Binding is already
tight to both operators at the start of the coevolutionary
scenario, so the initial pressure to change, in fact comes from
benefits of not binding another operator. This pressure for
unique recognition is characteristic for regulatory interac-
tions but plays much less a role in developing other functions
such as enzymatic activity. These characteristics of a coevolu-
tionary mechanism, together with the remarkable plasticity of
protein-DNA interactions result in a highly evolvable system.

Fitness Landscape Funnels

The diversity of molecular architectures is not only
constrained by their inherent physico-chemical limitations,
but also by the existence of viable evolutionary routes that
shape them. For instance, in a population of bacteria there is
only a small probability that an advantageous function
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Figure 4. Typical Divergence Pathway: Network Changes, Fitness, and Sequence

(A) Evolving interaction network, where line thickness denotes binding strength between repressor monomer and operator-half. Dotted lines denote
negligible repression. Yellow crosses indicate repressor and operator mutations, which are positioned at the top and bottom of the interaction lines

respectively.

(B) Fitness trajectory (black) and corresponding repression of each repressor on its operator (red and blue). Fitness is normalized to the maximum value

(~1x10").
(C) Sequences for each round. Mutated positions are colored white.
DOI: 10.1371/journal.pcbi.0020058.9004

emerges if a temporary fitness decrease is required first. Put
differently, the shape of the fitness landscape is critical, and
one can readily imagine fitness landscapes where the optima
are very difficult to reach. Upon first inspection, the
measured landscape we consider indeed contains many
potential frustration sources: over 99% of all optima in the
landscape are in fact below our divergence criterion. Such
local optima represent traps in which the system gets
permanently stuck once it encounters one. However, the
results show that the system is still guided in the right
direction to (near) global optima, which indicates that the
fitness landscape contains funnel-like features. Moreover, the
optimal paths contain negligible detours (Figure 3A) and lead
to the nearest optimum (Figure 3B), showing that the
funneling is efficient and not constrained by ruggedness. A
funnel-like organization of the landscape is also supported by
the monotonous fitness increases of the probabilistic path-
ways (Figure S2C), as well as by the smooth fitness decrease
when stepping away from a global optimum (Figure 3C).

The underlying causes for funnels in the fitness landscape
may be found at two levels. The first level is that of a single
repressor-operator interaction. The surface smoothness that
is needed for the funnels may be partly understood from the
reported additive contributions of the lac amino acids to the
binding energy. In mathematical models, additive interac-
tions have been shown to yield smoother fitness surfaces
because they can be optimized independently [7].

At ahigher level, features of the network topology shape the
landscape surface and divergence potential. We found that the
tightly interconnected topology, as present after the duplica-
tion, does not frustrate divergence but instead promotes it. In
contrast to an isolated repressor-operator pair, where a drop
in the binding strength decreases the fitness, the same
mutation can be neutral in the interconnected topology.
Compensation for the decrease in binding strength can be
attributed to two features of the topology. First, there is the
characteristic pressure to not bind the rival operator: when a
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mutation decreases an interaction that should be maximized,
this negative effect on the fitness is partly balanced by the
decrease of an unwanted cross-interaction. A second mech-
anism is a coevolutionary twist on Ohno’s original idea, in
which one repressor-operator pair can search for a new
recognition, while the other repressor maintains repression
on both operators in the very early stages. As we have observed
that a drop in the binding strength is necessary for efficient
divergence, the ability to compensate for its negative
contribution to the fitness is crucial for funneling.

The evolutionary fate of redundant genes has previously
been studied primarily using sequence analysis [3,29]. By
using a different dataset and approach, our simulations
strengthen recent evidence for a more rapid fixation of
mutations in redundant genes [29] (termed “accelerated
evolution”). Our analysis enables a next step in our under-
standing of this important process: It provides a mechanistic
rationale for why such a rapid divergence can indeed occur,
in terms of minimal selective conditions bacteria must
experience, in combination with independently measured
plasticity of protein-DNA interactions. Furthermore it yields
a quantitative prediction for the minimum number of
essential mutations to achieve divergence.

Suggested Experiments

Our results show divergence to be possible with monotonic
increasing fitness, which hints at the feasibility of monitoring
similar processes in experiments. It has recently been shown
that the serial dilution assay, as pioneered by Lenski and
coworkers [30], can be employed to adapt bacterial strains to
a new condition within weeks [19,31]. Similarly, one could
attempt to evolve a duplicate lac repressor/operator copy
towards the independent regulation of a second operon.
However, this more complex assay does require key mod-
ifications: (1) growth and selection of the mutants should
occur in alternating media, in analogy to our discussion of
multiple input conditions, and (2) a starting network must be
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engineered that satisfies the conditions for DNA-binding
divergence: a duplicate repressor/operator and a selective
pressure for tight and independent binding.

In practice, one could place the lac operator upstream of
the raffinose utilization operon, and construct a lacl duplicate
that is sensitive to raffinose. This initial situation is now
similar to our simulations: two lac repressors bind to the two
lac operators. The employed fitness definition is also suitable:
(1) in media where the two metabolites are both low
(supplemented e.g., by another carbon source), the metabolic
enzymes should not be expressed. The resulting optimal
growth is well represented by positive contributions to the
overall fitness by high values for tight binding. (2) When just
one metabolite is present, one screens for exclusive binding.
In a medium without lactose the lactose-sensitive repressor
shuts both operons down if binding is still non-exclusive.
Upon mutations that allow this repressor to bind exclusively
to the operator of the lactose operon, raffinose metabolic
enzymes would be expressed. The resulting faster growth due
to raffinose utilization thus correlates well with higher values
for exclusive binding. The pressure for a correct behavior
under multiple conditions prevents the fixation of trivial
solutions that would just work under one condition.

Other Network Growth Scenarios

For biological regulatory networks to grow, not only new
components are required, but also new and independent
interactions. Next to the coevolutionary duplication-diver-
gence scenario for network growth, alternative models for the
creation of new regulatory interactions have been proposed.
In the first alternative, a new operator must emerge upstream
of the regulated gene in an effectively random DNA sequence
[32]. This scenario has mainly been considered for eukaryotes
with large upstream regulatory regions and short binding
sites. For longer operators in prokaryotes, this scenario
requires many neutral mutations before improvements can
be selected for (see Protocol S2), which represents a major
evolutionary obstacle.

Another possible source for new regulatory interactions is
lateral gene transfer, which is thought to be the source of
many paralogs found in prokaryotes [33]. In this scenario
divergence would occur while two genes each reside in
different organismal lineages (essentially being orthologs at
that stage) and each experiencing different selective con-
straints. Lateral gene transfer unites the diverged genes,
resulting in immediate contributions to fitness by both
homologous genes. Although examples of this scenario have
been found for enzymes [34], transcription factor-operator
interactions are a special case, as there is no obvious internal
or external selection pressure for their interaction to diverge
by itself. Our results illustrate the feasibility of coevolutionary
divergence of two transcription factors within a single
organismal lineage. These findings are supported by the lack
of evidence for horizontal transfer of the lac system in E. coli
[35]. However, this is not to say that lateral gene transfer and
duplication-divergence are mutually exclusive. Summarizing,
the coevolutionary divergence studied here differs from
alternative models of network growth by providing both a
high probability of selective advantageous point mutations
and a rationale for a divergence pressure.

Finally, it is of interest to consider different selective
pressures within the same duplication scenario. While the
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pressure for independent regulation seems to be a dominant
one, as evidenced by the many independent transcription
factors that are paralogs, duplications also have yielded other
network motifs. An interesting example is the UxuR/ExuR
pair of repressors. Like the case studied in this paper, they
have originated by duplication and share two operators (see
Protocol S3). However, they seem to have diverged under a
different selective pressure, since their cross interaction was
not eliminated, but instead has been retained, forming a so-
called bi-fan motif [16].

This work describes how regulatory network connections
can be formed and broken after a duplication event. Our
quantitative approach takes the selective conditions and
molecular adaptability explicitly into account, and opens up a
new angle on the duplication-divergence question that is
complementary to existing approaches. Evolution of network
connections is treated more abstractly in numerical studies of
biological network growth, which have recently received
much attention [10,36,37]. The use of experimental data will
help to perform such studies on a more realistic footing.
Finally, the promising new field of experimental network
engineering [38-40] and evolution (see e.g., [41]) will also
benefit from the quantification of network adaptability.

Materials and Methods

Mutational dataset. In this paper we used an extensive dataset of
binding affinities of lac repressor and operator mutants, obtained by
B. Muller-Hill and coworkers. In these experiments, repression values
Foirj have been determined in vivo as the ratio of the unrepressed
and repressed expression levels of a B-galactosidase (lacZ) reporter
gene, controlled by a mutant lac operator O; and mutant lac repressor
R;. This was done using the standard assay by Miller [42]. Since the B-
galactosidase synthesis is proportional to the fraction of free
operator (see e.g., [43]), we find for the repression value Foirj = 1 +
[Rj]/Kp, where Kp, is the equilibrium dissociation constant and [Ri] is
the concentration of active repressor R;. The dataset contains
repression values of base pair substitutions leading to changes in
amino acid residues 1 and 2 of the recognition helix of the lac
repressor (Y17 and Q18) and base pairs 4 and 5 of the symmetric lac
operator [44]. These residues and base pairs were found to be most
important for altering repressor operator-binding affinities [14]. The
dataset covers a considerable fraction of all possible substitutions
involving a homodimeric repressor and a symmetric operator (1,286
out of a total of 6,400). Part of this raw data is published in Lehming
et al. [14]; the full dataset is found in [21]. The contributions of the
two repressor amino acids to the repression value were found to be
additive. With this knowledge, repression values could convincingly
be assigned to all mutants, including those that were not measured
[14]. In the present study we use these assigned repression values, all
of which are given in [14]. Moreover, we extend the dataset to include
heterodimeric repressors and non-palindromic operators (see below),
to obtain the complete mapping between sequence and repression
values for all possible mutants (1 X 10°) in the key repressor residues
and operator base pairs.

Repression values of heterodimers and non-palindromic operators.
We consider the repressors to act as dimers. After their duplication,
once the repressors genes are mutated, this leads to heterodimeriza-
tion of distinct monomers. While heterodimer binding strengths (F,,)
have not been directly measured, they can be derived from the two
corresponding homodimer repression values (Fy,; and Fy,»), meas-
ured on a palindromic operator. The heterodimer binding energy
AGyy, is the sum of the monomer-monomer and the dimer-operator
binding energy. Simple equilibrium considerations lead to the
following expression, where [R] in this case is the total concentration
of repressor subunits:

Fue = 14 [R]?e 2/M =1 4 \/(Fuo1 — 1) (Frzoz — 1) (2)

With this equation, repression values involving non-palindromic
operators are also automatically taken into account: each dimer-
operator interaction is built up additively [22] from two interactions
between a monomer and an operator-half. In this derivation the
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dimerization free energy was assumed to be fixed, since it does not
directly affect the specificity by which the repressors recognize their
operators. The heterodimer repression value then becomes inde-
pendent of the dimerization energy.

Optimal pathway simulations. Each repressor monomer is repre-
sented by six base pairs (two amino acid residues), and each operator
by four base pairs, which are key to specific binding. The complete
network with duplicates is thus represented by 20 base pairs. Each
simulation run starts with the duplication of a tight binding
repressor-operator pair, having a repression value of 100 or higher.
Out of all possible repressor-operator combinations (homodimers
and palindromic operators), there are 132 fulfilling this condition.
Changing this threshold did not significantly alter the outcome of the
simulations. In order to avoid any bias due to codon usage of the
starting repressor, separate simulations were run starting from each
of its synonymous codon versions. These simulations were averaged
to produce the presented results.

In order to determine the optimal mutational pathways in the
fitness landscape, an evolutionary algorithm was employed. Begin-
ning with one of the starting sequences, each round we generated all
mutants that differ by one base pair (60 in total). Of each mutant
network, the strength of all eight possible interactions was deter-
mined (see Figure 1B where four possible interactions are schemati-
cally shown between the repressor dimers and one of the two
operators). Interactions between repressor homodimers and palin-
dromic operators were directly assigned from the published
repression values [14]. Other interactions were calculated from the
measured data as described above. Next, we selected the best L
networks to the next round based on a fitness parameter that is
directly calculated from the interaction strengths (see equation 1).
The next round started by again generating all single base pair
mutants of the L selected networks. The effect of L was assessed by
varying it between 1 and 10°. Decreasing fitness steps were not
allowed, and in case of equal fitness, parents were ranked above their
offspring. These rules make divergence harder because they constrain
the space that can be explored. The evolutionary cycle was repeated
until the fitness could not be further improved. Pathways were
considered to be successful when the fitness came within a factor 10
of the highest fitness in the landscape.

Supporting Information

Figure S1. Typical Divergence Pathway, with the Additional Require-
ment of Continued Tight Binding of Both Repressors (I > 100)

(A) Evolving interaction network, where line thickness denotes
binding strength between repressor monomer and operator-half.
Dotted lines denote negligible repression. Yellow crosses indicate
repressor and operator mutations, which are positioned at the top
and bottom of the interaction lines respectively.

(B) Fitness trajectory (black) and corresponding repression of each
repressor on its operator (red and blue). Fitness is normalized to the
maximum value (~ 1 X1010).
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