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Experimental high-throughput studies of protein–protein interactions are beginning to provide enough data for
comprehensive computational studies. Today, about ten large data sets, each with thousands of interacting pairs,
coarsely sample the interactions in fly, human, worm, and yeast. Another about 55,000 pairs of interacting proteins
have been identified by more careful, detailed biochemical experiments. Most interactions are experimentally
observed in prokaryotes and simple eukaryotes; very few interactions are observed in higher eukaryotes such as
mammals. It is commonly assumed that pathways in mammals can be inferred through homology to model organisms,
e.g. the experimental observation that two yeast proteins interact is transferred to infer that the two corresponding
proteins in human also interact. Two pairs for which the interaction is conserved are often described as interologs. The
goal of this investigation was a large-scale comprehensive analysis of such inferences, i.e. of the evolutionary
conservation of interologs. Here, we introduced a novel score for measuring the overlap between protein–protein
interaction data sets. This measure appeared to reflect the overall quality of the data and was the basis for our two
surprising results from our large-scale analysis. Firstly, homology-based inferences of physical protein–protein
interactions appeared far less successful than expected. In fact, such inferences were accurate only for extremely high
levels of sequence similarity. Secondly, and most surprisingly, the identification of interacting partners through
sequence similarity was significantly more reliable for protein pairs within the same organism than for pairs between
species. Our analysis underlined that the discrepancies between different datasets are large, even when using the
same type of experiment on the same organism. This reality considerably constrains the power of homology-based
transfer of interactions. In particular, the experimental probing of interactions in distant model organisms has to be
undertaken with some caution. More comprehensive images of protein–protein networks will require the combination
of many high-throughput methods, including in silico inferences and predictions.http://www.rostlab.org/results/2006/
ppi_homology/
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Introduction

Experiments Peek at Complete Protein–Protein Networks
The faster large-scale sequencing projects determine the

alphabet of life, the higher the pressure to determine some of
the actual processes that make life what it is. The under-
standing of functional relations among all proteins is essential
to understanding how cells work. Recent breakthroughs in
experimental high-throughput techniques have begun to peek
at complete protein–protein interaction networks of entire
organisms (Table S1). One central method is to use yeast two-
hybrid (Y2H) assays [1] that are based on a genially simple idea:
first, separate two domains (activation and DNA-binding) of a
transcription factor that activates a reporter gene, then merge
each of the two domains to a different protein (A andB) [2,3]. If
A and B interact, the two transcription domains will merge,
and thereby activate the reporter gene that will be detected.
The difficulty of using Y2H is in mastering the details of the
experimental setup. Other high-throughputmethods to detect
protein–protein interactions, such as phage-display assays [4],
tandem affinity purifications (TAP) [5,6], co-immunoprecipi-
tation, and affinity chromatography [2,7–9], are also commonly
used. An important advantage of using Y2H over these other
high-throughput techniques is the ability to measure physical
interactions between proteins as opposed to pure functional
associations. Also, Y2H experiments work with physiological

conditions, i.e., conditions that resemble those in eukaryotic
cells [2,3,10,11]. Ito et al. [12] and Uetz et al. [13] first scanned
large fractions of the yeast proteome for protein–protein
interactions. Others added further interactions: Ho et al. [14]
usedmass spectrometry andGavin et al. [15] used TAP. Protein
networks in the fly (Drosophelia melanogaster) have been targeted
through three different Y2H studies [11,16,17], in the worm
(Caenorhabditis elegans) through one [18], and a large subset of
about 1,500 human protein network relations were detected
through TAP [19]. These data bear deeper insights into cellular
processes.
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Today’s Data Are Incomplete and Not Fully Reliable
Y2H systems are not 100% accurate; they, for instance,

identify many putative interactions that cannot be confirmed
by other studies. One reason for false positives (interactions
incorrectly postulated) is that the two proteins A and B may
activate the reporter gene directly without having to interact
[3]. The Margalit group has estimated the false positive rate in
high-throughput Y2H assays to be about 50% [20]; the
Eisenberg group has arrived at the same estimate through
measuring the reliability of interactions in the Database of
Interacting Proteins [21]. Y2H experiments also do not
achieve complete coverage, i.e., they miss many interactions.
Conversely, false negatives (missed interactions) might result
from the particular experimental setup (which may prevent
the interaction between A and B) or from problems in the
assembly of the two transcriptional domains (activation and
DNA-binding) needed for Y2H. These problems do not
prevent Y2H from evolving as one of the major experimental
probes for interactions; they do, however, imply that today’s
data sets are neither complete nor fully accurate [20,22]. One
of the strong arguments in favor of large-scale Y2H experi-
ments is that they are more systematic and much less driven by
happenstance than hypothesis-driven, detailed experiments.

Known Interactions Are Expanded through
Homology-Based Inference

Evolutionary connections help explain the rapid success of
molecular biology: we can study a particular protein in a
simple bacterium and learn about the function of the same
protein in multicellular eukaryotes. This idea enables us to
use model organisms to predict protein structure [23–25],
subcellular localization [26], enzymatic activity [27–29], and
other aspects of protein function [30–34]. The same principle
is frequently applied to the extension of interactions (Figure
1): Assume that two proteins A and B are experimentally
observed to bind in organism o, and that alignment methods
identify related protein pairs in organism o (A9-B9) and in
organism p (A 99-B 99). Can we infer that the pairs A9-B9 and A 99-

B99 also interact with each other? The Vidal group [10] has
investigated how yeast interactions detected by Ito [35] and
Uetz [13] map to interactions in worm. They concluded that
at BLAST E-values ,10�10, only 16%–30% of the yeast
interactions are transferable [36]; similar results were
reported by the Gerstein group [37]. Although homology
inference is common practice, no large-scale study has ever
estimated levels of accuracy and coverage for physical
interactions. A particular aspect of this question relates to
paralogs and orthologs. Two proteins are often considered as
paralogs when they originate from the same organism and
differ in function. Paralogs are assumed to have arisen from
gene duplication followed by the specialization and drifting
away of one of the copies, while the other copy has
maintained its original function. Orthologs, on the other
hand, are described as two proteins with largely identical
function and a common ancestor that reside in different
organisms [37–39]. Applied to homology-based inference of
interactions, a common assumption is that interactions are
more conserved between orthologs than between paralogs
[40–42], i.e., interactions are more conserved between than
within organisms. If true, model organisms would be ideal for
the study of interactions.

Focus on Transient Physical Interactions (PPIs)
One important difference between Y2H and TAP is that

while Y2H aims at the detection of physically interacting
proteins, TAP identifies large groups of proteins that are

Figure 1. Concept of Homology Inference and Interologs

Interologs are two pairs of protein interactions that fulfill the following
conditions: (A interacts with B)þ (A is similar to A9)þ (B is similar to B9)!
(A9 interacts with B9). All quadruples (A, B, A9, B9) for which this relation is
true are referred to as interologs [37,79]. To illustrate our analysis, we
have to extend this simple relation. Assume that a physical protein–
protein interaction (PPI) between proteins A and B is observed in
organism o. If A and B are both sequence similar (above a certain
threshold) to two other proteins A9 and B9 in the same organism o, we
should be able to infer the physical interaction between A9 and B9. Note
that both pairs, A/A9 as well as B/B9, have to be above the particular
similarity threshold for us to be able to make this inference. Thus, we
neither use an average similarity of both pairs (A/A9 and B/B9) nor a
minimum similarity for just one pair (A/A9 or B/B9). Now let us assume
that we have another pair of proteins A99 and B 99 in another organism p,
and that both are as similar to A and B as are A9 and B9, respectively. One
of our findings was that homology transfers A-B ! A9-B9 were more
reliable than those from A-B ! A99-B99.
DOI: 10.1371/journal.pcbi.0020079.g001
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Synopsis

The IntAct database contains about ten large-scale data sets of
protein–protein interactions. Each set contains thousands of
experimentally observed pair interactions. Most pairs were observed
in yeast (Saccharomyces cerevisiae), fly (Drosophila melanogaster),
and worm (Caenorhabditis elegans). These interactions are often
perceived as model organisms in the sense that one can infer that
two mouse proteins interact if one experimentally observes the two
corresponding proteins in worm to interact. Here, the authors
analyzed in detail how the sequence signals of physical protein–
protein interactions are conserved. It is a common assumption that
protein–protein interactions can easily be inferred through homol-
ogy transfer from one model organism to another organism of
interest. Here, the authors demonstrated that such homology
transfers are only accurate at unexpectedly high levels of sequence
identity. Even more surprisingly, homology transfers of protein–
protein interactions are significantly more reliable for protein pairs
from the same species than for two protein pairs from different
organisms. The observation that interactions were much more
conserved within than across species was valid for all levels of
sequence similarity, i.e. for very similar as well as for more diverged
interologs.

Interlogs Less Conserved across Species



associated, for instance, through a common pathway [43].
Most high-throughput techniques resemble TAP in the sense
that they reveal association rather than physical interaction.
To illustrate this difference, assume we hypothesized that co-
expressed proteins interact physically, and we wanted to use
this hypothesis to predict physical interactions directly from
co-expression data. Assume further that six proteins are
strung together in a linear pathway (1 binds 2, 2 binds 3, etc.),
and that all six are co-expressed. Of the 15 [N*(N � 1)/2]
possible interactions, only 5 (N � 1) are physical, i.e., only
33% of the co-expressed proteins interact. Since most
pathways involve many more than six interactions this
example is likely to significantly underestimate the actual
problem. In other words, even if all physically interacting
proteins were co-expressed, predictions of interactions based
on such association alone would still be more often wrong
than right. This significantly constrains the way in which we
can use association-type data to analyze physical interactions.
In order to emphasize our focus on physical interactions, we
used the abbreviation PPI for transient physical protein–
protein interactions (as opposed to functional associations as
measured by TAP-like data, and as opposed to permanent
physical interactions between, e.g., two different domains or
two different chains of the same protein [44]).

Coping with the Dilemma of Incomplete Data Sets
How can we evaluate accuracy and coverage of homology

transfer (Figure 1) of interactions if the data are incomplete?
An extreme stance is to simply not assess the performance at
all. The rationale is simple: assume a method inferred that A 99

and B 99 in Figure 1 interacted without any experimental
evidence for this interaction. May be the inference was
wrong; it also may just have been a new in silico discovery not
yet identified by experiments. If the set of all interactions
were complete, the absence of an observation would imply
noninteraction. Although there is currently no such complete
set, we challenge that the performance of homology transfer
has to be estimated somehow to render a tool that is

controllable in the context of genome annotation pipelines.
Here, we took the opposite radical stance by treating all
interactions that have not been observed as nonexisting.
While this is obviously wrong, we assume that today’s
incompleteness is not systematic. If true, our results will
simply underestimate the quantities that we measured, but
will correctly capture relative values (such as that homology
transfer is half as accurate at ;40% sequence identity as at
;60%, Figure 2). We also did not merge data sets that
measure functional association (e.g., TAP) with those that
measure physical interaction (e.g., Y2H). Instead, we regarded
only physical interactions as positives.
Here, we presented the analysis of PPI in, to our knowl-

edge, the largest data set investigated thus far. We defined
and measured the overlap between different data sets, and
analyzed the expected levels of accuracy and coverage for
homology-based inference of PPIs depending on the level of
sequence similarity. The most surprising finding originated
from differentiating between intraspecies and interspecies
inferences (o 6¼ p in Figure 1), namely that PPIs are more
conserved within than between organisms.

Results/Discussion

Different Experiments Overlap Very Little
If we want to homology infer PPIs between organisms, we

first have to measure the overlap within organisms and then
between organisms. We introduced such a measure (Equation
2 and Equation 3, see Materials and Methods) and applied it
to assessing the overlap between datasets in IntAct [45]. A
large overlap value implies high agreement between two
experimental sets of interactions. Our definition of overlap
takes into account that two data sets may not have used the
same proteins thereby rendering a score that is, in principle,
independent of the size of common subsets (see Materials and
Methods section). The scores are straightforward when
comparing different datasets within the same organism
(Equation 2) because we only have to identify identical pairs
of proteins. As noted before [22,46–49], the data sets overlap

Figure 2. Sequence Conservation of PPIs

The performance of homology transfer was evaluated with the data sets in Experiment 1 (Table 4). Each panel plots the conservation (accuracy of
homology transfer) using a different measure for sequence similarity: HVAL (Equation 1), PIDE (percentage pairwise sequence identity), and the PSI-
BLAST E-value. It is surprising that even at high similarity thresholds (PIDE . 50; HVAL . 30), accuracy remained low and never reached levels of 20%.
This behavior was partially explained by our overlap analysis: for low overlap (Equations 2 and 3) between datasets, we expect a low accuracy. Numbers
at HVAL¼ 40 (which equals a PIDE of 68 at an alignment length of 100 residues) were marked with red lines. HVAL¼40 is the point, where the overlap-
values (Equation 3) for two identical datasets seem to indicate a zone of . 70% data consistency (see Table 3). Error bars for the three plots were
calculated by bootstrapping over the PPIs in the source datasets (see Methods section).
DOI: 10.1371/journal.pcbi.0020079.g002
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maximally for about 30% of all PPIs in yeast (Saccharomyces
Cerevisiae) and much less for PPIs in fly (Drosophila Melanogast-
er, Table 1). Interspecies comparisons are trickier because we
now have to identify the corresponding homologous pairs in
the other organism. Equation 3 solves this problem by
counting homologous instead of identical pairs of proteins;
it is applicable to intraspecies and interspecies comparisons.
A consequence of counting homologous rather than identical
protein pairs is that the same data set no longer overlaps
100% with itself (Table 2), because the interaction between A
and B may be detected while that between the homologs A9

and B9 may not be. The application of Equation 3 to the
intraspecies comparison for yeast and fly datasets yielded
similar results as the application of Equation 2 to the same
datasets (Table 1). The overlap between different yeast
datasets seems to be generally higher than that between
different fly datasets. Finally, we merged datasets of different
large-scale experiments for each organism and compared
these pseudo-complete PPIs between organisms by using
Equation 3 (Table 3). As expected the overlap between
organisms was increased with increasing thresholds in what
was considered homologous (Table 3; HSSP-value
(HVAL).40 highest, HVAL.0 lowest, Equation 1; note that
the HSSP value (homology derived secondary structure of
proteins) is an empirical measure for sequence similarity that
empirically embeds the simple fact that high levels of
sequence similarity are less meaningful for short than they
are for long alignments). This increase in overlap was
achieved by finding fewer matches (Table 3, empty cells).
Conversely, the overlap was very low at levels of sequence
similarity that mark the twilight zone of sequence-structure
inference [25], i.e., the line above which most pairs of proteins
have largely similar structure (HVAL.0, Table 3). In other
words, overall fold similarity does not suffice to infer
similarity in interactions.

Automatic Homology Transfer of PPIs Is Very Limited
We generated a homology performance plot (see Materials

and Methods section) by comparing an unbiased, nonredun-
dant data set (no two pairs of proteins in the set had
significant sequence similarity (see Materials and Methods
section) against the redundant set with all PPIs (note that we
removed identical pairs even in this set, Table 4, Experiment
1). When using the observed PPI between two proteins (A-B),

we applied the same sequence similarity threshold to identify
both homologs (A/A9, B/B9) to infer the PPI between A9-B9.
Pairs such as A-B9 or A9-B were not counted because those
pairs could only be detected within the same organism and
not across two species. Not surprisingly, the accuracy of
homology transfer was proportional to sequence similarity
(Figure 2). However, accuracy dropped rapidly already at very
high levels of sequence similarity (e.g., at ;80% pairwise
sequence identity, and below position-specific iterative basic
local alignment search tool expectation values [PSI-BLAST E-
values] , 10�150). Closer inspection of the HSSP formula
(Equation 1) reveals that the curves for HSSP values and
percentage sequence identity were very similar to each other.
The problem with E-values largely originated from including
short alignments, i.e., many of the proteins identified at very
significant E-values (E , 10�50) might have been aligned to
only small fractions of the source protein. This is a known
limitation of E-values that cannot easily be normalized away
because PPI interfaces may be rather short (i.e., even
alignments of 20 residues in very long proteins may correctly
reflect binding similarity). Although the small overlap
between experimental data sets (Table 3) suggested that these
estimates for accuracy at a given similarity threshold were
most likely overpessimistic, the overlap scores also showed
that at HVAL . 40, the consistency of the data was above
70% (Table 3). Therefore, our estimates at such high
thresholds might be approximately correct; if so, the accuracy
of homology transfer for high similarity (HVAL . 40,
Percentage sequence IDEntity (PIDE) . 70) were just over
10% (Figure 2). Clearly, our findings suggested that automatic
homology-based inferences of PPIs have to be taken with
extreme caution.

Homology Transfer Is Better within
than between Organisms
Arguably [40–42], homology transfer is expected to be

slightly better between organisms than within organisms.
Instead, we observed the extreme opposite (Figure 3): at all
levels of sequence similarity, and for all organisms with
sufficient data, homology-inference was significantly more
accurate for pairs of homologs from the same organism

Table 1. Identity-Based Overlap (Equation 2) between Original
Experimental Y2H Datasets from Fly and Yeast

Datasets Overlapa

Saccharomyces cerevisiae (yeast) Ito [34] Uetz [13]

Ito [34] 100 27.0

Uetz [13] 27.0 100

Drosophilia melanogaster (fly) Giot [17] Stanyon [16] Formstecher [11]

Giot [17] 100 3.3 5.4

Stanyon [16] 3.3 100 4.3

Formstecher [11] 5.4 4.3 100

a Overlap values are measured between two experimental data sets that have been
filtered to account for the different sets of proteins used (Methods). All values compiled
according to Equation 2 in percentages.
DOI: 10.1371/journal.pcbi.0020079.t001

Table 2. Homology-Based Overlap (Equation 3) between
Original Experimental Y2H Datasets from Fly and Yeast

Datasets Overlapa

Saccharomyces cerevisiae (yeast) Ito [34] Uetz [13]

Ito [34] 70.2 37.7

Uetz [13] 37.7 84.8

Drosophilia melanogaster (fly) Giot [17] Stanyon [16] Formstecher [11]

Giot [17] 53.5 4.3 4.2

Stanyon [16] 4.3 76.6 7.5

Formstecher [11] 4.2 7.5 73.2

a All values compiled according to Equation 3 in percentages; the minimal sequence
similarity required to consider proteins from a different organism to be similar was HVAL
. 20 (Equation 1) corresponding to 49% percentage sequence identity for 100 residue
alignments. Overlap values for equal datasets can be smaller than 100% since homology
rather than direct sequence matching is used (Equation 3). Here, we used a very weak
constraint of HVAL . 20 (corresponding to about 50% sequence identity for alignments
over 100 residues).
DOI: 10.1371/journal.pcbi.0020079.t002
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(intraspecies) than for pairs of homologs between different
organisms (interspecies). In other words, if we experimentally
observed the interaction between A and B in yeast, and if we
found another pair of similar proteins A9 and B9 in yeast (not
A-B9 or A9-B), as well as another pair A 99 and B 99 in fruit fly,
then the interactions between A9 and B9 would be much more
likely than those between A 99 and B 99. Consequently, yeast
would be a rather poor model organism for the interaction
network in fly.

Table 4 and Figures 2 and 3 clearly establish our main
messages that intraspecies homology transfer is more
accurate than interspecies transfer and that homology trans-
fer is accurate only at unexpectedly high levels of sequence
similarity. These results were stable with respect to different
ways of processing the data for the experimental interactions.
Changes that influenced the outcome insignificantly included
the following alternatives.

Results Were Stable with Respect to
Details in Filtering Data

(1) Different sampling of intraspecies vs. interspecies: We
allowed transfers of the type A-B to A9-B or A-B to A-B9 (see
Materials and Methods section). The performance became
significantly better for intraspecies PPI transfers, thus further
widening the gap between intraspecies and interspecies
transfers (Figure S2A). (2) Inclusion of transfers within the
same data set: we included homology transfers within the
same experimental dataset (see Materials and Methods
section). The effect was very similar to those observed for
different sampling (see #1), i.e., the gap was widened between
intraspecies and interspecies inferences (Figure S2B). (3) We
used TAP-like data (Table S1) as a constraint for the
negatives. To illustrate this, assume that TAP pulled down a
complex of six proteins. While we cannot infer that all 15
possible interactions are physical, all could be. Therefore, we

ignored a false positive prediction (i.e., we did not count it) if
we could find the interaction in those 15 TAP protein–
protein pairs. The accuracy slightly increased for both yeast
versus yeast (intraspecies) comparisons as well as for nonyeast
versus yeast (interspecies) comparisons (Figure S2C). Note
that yeast is the only organism with available TAP-like data.
(4) We used a redundant dataset (instead of a nonredundant,
bias-reduced set) from organism o (Figure 7) to hunt for
interologs in organism p (Figure 7). The main message
indicated by the results for this latter experiment stays the
same as in our original procedure (see Materials and Methods
section): Intraspecies comparisons are more accurate than
interspecies comparisons. Because there were more samples
in the dataset for organism o (Figure 7) and thus higher
counts, the errors slightly decreased (Figure S2D).

Examples
In the following, we presented a few representative

examples that illustrate these points with more details than
it is possible through averages over large data sets. Both show
how homology transfer fails across species while it succeeds
within an organism (Ao-Bo observed, A9o-B9o observed, A 99m-
B99m not observed).
Example 1: same family, different ancestors, different PPI.

The two peroxins PEX1 and PEX6 are known to functionally
and physically interact in both human [50] and yeast [51–53]
(Figure 4A). A particular mutation in human PEX1 disrupts
the interaction with PEX6, and appears directly linked to the
Zellweger Syndrome, an autosomal, recessive peroxisome
biogenesis disorder, in which the growth of the myelin sheath
(the fatty cover of nerve cells in the brain) is strongly affected.
Patients usually suffer from visual disturbances, high iron and
copper blood levels, and enlarged livers [53]. Both proteins
PEX1 and PEX6 belong to the ATPases associated with
various cellular activities (AAA) family and are involved in the

Table 4. Datasets Used for Homology Performance Plots

Experiment (Figure) Datasets

Organism oa Organism pb

1(2) All All

2(3) All fly All fly

3(3) All nonfly All fly

4(3) All worm All worm

5(3) All nonworm All worm

6(3) All yeast All yeast

7(3) All nonyeast All yeast

Organisms o and p are equal for some experiments. Datasets of o have to be
nonredundant and can be either small-scale or high-throughput Y2H datasets (no TAP-
like data). Datasets of organism p are redundant and have to be Y2H generated in order
to guarantee a complete interaction matrix. TAP-like interactions were not used as true
positives. Every single graph in Figure 3 shows the results of two experiments from Table
4 (grouped into organisms). Note that for all listed experiments, comparisons between
identical datasets were omitted. For example, for experiment 6 in Table 4, this means that
interactions from yeast-Ito-2001 (organism o) will not be compared to any other
interactions from this dataset in organism p (which in this case is equal to organism o).
a Nonredundant; No TAP-like data; PPIs
b Redundant; High-Throughput; TAP, tandem affinity purification; PPI, protein–protein
interaction
DOI: 10.1371/journal.pcbi.0020079.t004

Table 3. Homology-Based Overlap (Equation 3) between
Merged Datasets for Different Similarity Thresholds

Datasets Overlap

Yeast

(Saccharomyces

cerevisiae)

Fly

(Drosophilia

melanogaster)

Worm

(Caenorhabditis

elegans)

HVAL . 0

Yeast 11.3 0.5 0.8

Fly 0.5 1.5 0.8

Worm 0.8 0.8 7.9

HVAL . 20

Yeast 65.5 9.2 13.2

Fly 9.2 44.9 5.1

Worm 13.2 5.1 69.7

HVAL . 40

Yeast 82.6 — —

Fly — 75.5 13.8

Worm — 13.8 88.8

A — in the table means that the overlap cannot be calculated due to the nonexistence of
any shared homologous proteins between the two sets at the given HVAL (Equation 1).
Note that for proteins of ;100 residues HVAL . 40 correspond to about 73% pairwise
sequence identity, HVAL . 20 to . 53%, and HVAL . 0 to . 33%.
DOI: 10.1371/journal.pcbi.0020079.t003
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import of proteins into the peroxisome [52,53]. Thereby, the
complex of PEX1 and PEX6 is associated with the cytoplasmic
side of the peroxisomal membrane [51]. Searching for
proteins that are sequence-similar to PEX1 and PEX6 within
yeast at an HVAL . 20 (Equation 1, see Materials and
Methods) brought up two 26S protease regulatory subunits, 6A
and 6B (proteins A9o and B9o); experts have also classified
both these yeast proteins as AAA ATPases (Figure 4A). The
interaction between these two yeast proteins was surprisingly
found in all Y2H large scale protein–protein interaction
scans [13–15,35]. Using the same threshold (HVAL . 20) the
closest proteins in fly were the 26S protease subunit 4 and the
NEM-sensitive fusion protein 2 (NSF2) (Figure 4A). The latter—
NSF2— is a special form of the NEM-sensitive fusion protein 1
(NSF1) and is fly-specific in the sense that it does not exist in
yeast, worm, or human [54–56]. An interaction between 26S
protease subunit 4 and NSF2 was not found in any of our PPI
drosophila datasets, nor has it been reported in the literature.

NSF2 is, among other things, responsible for exocytose
through vesicle fusion by disassembling the postfusion
SNARE protein complexes [54,57]. Like the other PEX1 and
PEX6 relatives discussed so far, NSF2 is also an ATPase [54]. A
detailed phylogenetic analysis of all proteins in the AAA
family has suggested three major subfamilies, one with NSF
homologs (NSF1 and 2), one with the 26S protease subunits, and
a third with p97/Cdc48p homologs [56]. Most importantly these
three subfamilies apparently did not arise from a common
ancestor but rather, they evolved independently during
speciation [56].
This particular example illustrated how yeast may generally

be a rather poor model organism for more complex species
such as fly, worm or vertebrates. Proteins from these higher
eukaryotes have to perform many different tasks in often
highly specialized cell types (e.g., nerve cells). This might have
lead to an evolutionary pressure to build new protein-
interaction networks from the available protein building

Figure 3. Performance of Homology Transfer

Plots compiled for experiments 2–7 in Table 4. Each of the upper three graphs stands for one particular organism o and shows two plots: (1) Use all
known PPIs (large-scale and small-scale) of organism o to find Y2H large-scale detected PPIs in the same organism (but from different experiment, blue
line). (2) Use all PPIs (large-scale and small-scale) of all other organisms (not o) to find PPIs detected by Y2H in o (red line). Only organisms with available
Y2H datasets in IntAct were chosen in order to be able to create complete interaction matrices for the target datasets (yeast, worm, and fruit fly). All
error bars were calculated through bootstrapping over the source PPIs (100 times, Methods). Some lines end at certain thresholds because the counts
for true positives and false positives were too low (, 30 true or false positives) to calculate accuracy (Equation 4, see Materials and Methods, often also
referred to as specificity or precision). Figure S1 shows the correlation between the size of the error bars and the counts of true positives at each HSSP-
value cutoff. The three bottom plots show ROC-like curves, where accuracy is plotted versus coverage for the exact same data as for the three upper
plots. The figures demonstrate that for all levels of similarity, the accuracy of intraspecies predictions of PPIs is significantly higher than for predictions
across two organisms.
DOI: 10.1371/journal.pcbi.0020079.g003
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blocks (e.g., ATPase function). Thus, by only slightly altering
the existing sequences, new binding properties were added to
these proteins, while others were lost. A similar argument
could be used to explain a likely poor homology transfer
between fly and human or worm and human.

Example 2: same pathway, different functions, different
binding properties. The drosophila Ser/Thr protein phosphatase 4
(Pp4) and the cyclin dependent kinase 4 (Cdk4) were found in our
small-scale dataset for drosophila PPIs. At HVAL.20, we found
two sequence-similar proteins in fly, namely Ser/Thr protein
phosphatase alpha 2 (Pp1) similar to Pp4, and chk2 similar to
Cdk4; both these fly proteins (Pp1 and chk2) have been shown
to interact [16]. Fly chk2 as well as its sequence relatives in

yeast (Mek1p and Rad53p) and human are involved in cell-
cycle checkpoints, which are signal transduction pathways
that control the cell cycle and prevent the cell from further
replication if the DNA double strand breaks, the DNA is
incompletely replicated, or in case of other DNA damages
[58–60]. A checkpoint can halt an ongoing mitosis or meiosis
or even terminate it and induce apoptosis. A phylogenetic
analysis of the chk2 family members found that fly chk2 and its
yeast and human homologs stem from the same ancestor
(Figure 4B). Nevertheless, it is also known that this family of
proteins has a rather strong evolutionary plasticity in terms
of the particular tasks of its members [60,61]. For example in
yeast, Mek1p only controls the meiotic pachytene checkpoint
by making sure that only homologous chromosomes recom-
bine with each other [61], whereas yeast Rad53p controls
mitotic cell replication and does not seem to be required for
meiotic checkpoint control at all [60]. Also, the timing within
the cell cycle is different for yeast Rad53p and its drosophila
ortholog chk2 [60]. This plasticity in the chk2 family might
explain why many yeast proteins homologous to drosophila Pp1
were not found to interact with either Rad53p or Mek1p.

Sequence-Based Homology Transfer Is Limited Although
Binding Sites Are Partially Conserved in
Three-Dimensional (3-D) Structure
Recently, the Sali group analyzed the conservation of

protein–protein binding sites on homologous and structur-
ally aligned protein surfaces. They found that the differences
in the localization of binding sites between homologous
proteins are significantly smaller than the differences
expected at random [62]. On the one hand, this result is
similar to what we found for higher levels of similarity (Figure
3). On the other hand of very little similarity the difference

Figure 4. Interspecies Failure and Intraspecies Success of Homology

Transfer

(A) Same family, different ancestors, different PPI: Two yeast peroxisomal
proteins (PEX1 and PEX2) are closely related through their common
ancestor protein and their function as AAA ATPases to the two yeast 26S
protease regulatory subunits 6A and 6B. In the fruit fly, gene duplication of
a second ancestor protein (the NSF ancestor) led to two distinct NSF
proteins (NSF1 and 2). Since the ancestors for the NSFs (NSF1 and 2) and
for the 26S protease subunits were two different proteins, we conclude
that despite their common biochemical function as ATPases, the
different cellular functions of NSFs and 26S protease subunits also led
to a distinct behavior with respect to protein–protein interactions.
Therefore, neither NSF1 nor NSF2 were observed to bind to the 26S
protease subunit 4.
(B) Same pathway, different functions, different binding: Evolutionary
plasticity in the chk2 family led to a diverse range of functions of these
proteins while staying in the same pathway. For example Rad53p in yeast
is a main player in the cell cycle checkpoint during mitosis, whereas
Mek1p acts in the same position during meiosis. Also, drosophila chk2
and human chk2 act at different times during the cell cycle different from
Mek1p and Rad53p. No drosophila Pp1 homolog in yeast was found to
interact with either Mek1p or Rad53p, even though drosophila Pp1 was
shown to bind to drosophila chk2.
DOI: 10.1371/journal.pcbi.0020079.g004

Figure 5. Creating Sequence-Unique PPI sets

(1) Starting with a dataset of PPIs, we first cluster the data according to
sequence similarity (apply a certain homology threshold) into sequence
similar PPIs (2). Note here that the interactions A9-B9 and A9-C9 do not fall
into the same cluster because B9 and C9 are unrelated. Thus, for two
interactions (e.g., A-B and A9-B9) to be considered similar by our
algorithm, both interacting proteins (A and B) have to be homologous to
the two proteins of the other interaction (A has to be similar to A9 and B
has to be similar to B9). (3) We randomly throw out all redundant
interactions in each cluster so that only one PPI remains as a
representative of each cluster. (4) Those representatives constitute the
final unique dataset of PPIs.
DOI: 10.1371/journal.pcbi.0020079.g005
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between the 3-D–based results and ours lie most likely in the
additional constraints implicitly used by the Sali group,
namely that we know the 3-D structures and that we can focus
in our alignment on all residues in the binding site. Using
only sequence information, we cannot do this because
binding residues close in 3-D may be separated considerably
in sequence, thereby diluting the pattern of conservation
picked up by alignment methods. However, for most PPIs
from IntAct, we can neither label the binding site, nor do we
have 3-D structural information. Therefore, we are limited to
having to measure overall sequence similarity. If we were able
to predict binding sites [63–66], we might improve homology
transfer considerably.

Conclusions

As demonstrated again by our overlap measure, today’s
datasets of PPIs are still rather inconsistent (Tables 1–3). The
discrepancies were significantly smaller between yeast than
between fly datasets (Tables 1 and 2). This finding also
explains the much higher accuracy for intrayeast as opposed
to intrafly or intraworm transfer. Why datasets of yeast
appear more consistent than those of fly datasets remains
speculation. One reason might be that measurements of
protein–protein interactions are performed within yeast

(Y2H) and are thus more precise for yeast proteins than for
other species9 proteins, since those might behave differently
in the unfamiliar yeast cell. Although incomplete and not
fully consistent, PPI datasets are finally large enough to
validate quantitative analyses. In particular, this enables a
large-scale assessment of the performance of automated
homology transfer for PPIs. Assuming that today’s errors are
largely nonsystematic, estimates for the performance of
homology transfer will provide correct qualitative pictures,
albeit the actual numbers will be overpessimistic. In the
extreme regimen of comparing very similar pairs of proteins,
we could establish that data sets appeared very consistent
(Figure 2). Consequently, our estimates for the performance
of homology transfer were likely to be relatively reliable in
this regimen. Nevertheless, even for very high similarity,
automated homology transfer was often mistaken; it ap-
proached random when approaching the sequence-structure
twilight zone, i.e. the region in which sequence similarity no
longer implies 3-D similarity (Figure 3). Although many
interactions observed in one organism were not observed in
another, similar interactions in the same organism (at similar
levels of sequence similarity) were often observed (Figure 3).
Consequently, our results challenge that using homology to
transfer a protein–protein interaction from one organism to
another is more difficult and less accurate than a transfer

Figure 6. Ways of Calculating the Overlap between Two Y2H Datasets

(A) Identity-based overlap between Datasets 1 and 2 according to Equation 2. Note that we can only calculate this score if both datasets are from the
same organism. Starting with the observed interaction C-E in Dataset 1, we are trying to find the exact same interaction in Dataset 2. The following
situations might occur: (a) C and E are also observed to interact in Dataset 2. (b) C and E are not observed to interact in Dataset 2. (c) It is impossible for
C and E to be interacting in Dataset 2 due to either of these two reasons: (i) Either C or E are not part of Dataset 2 or (ii) C and E are either both used as
preys or both used as baits in Dataset 2. Repeating the above procedure for all other observed interactions in Datasets 1 and 2, we finally calculate the
identity-based overlap by dividing the number of common interactions found in Datasets 1 and 2 by the total number of expected interactions
(observed and not-observed).
(B) The same procedure as described above is applied to the two Datasets 1 and 3, which are now allowed to be from different organisms. The only
difference to Equation 2 (A) is the usage of homology for comparing two PPIs instead of a binary decision scheme (PPIs identical or not-identical). Thus,
starting with the interaction D-E from Dataset 1, we try to find possible homologous interactions (not only the identical PPI) in Dataset 3. The only two
options in this example are D-E and D9-E (Dataset 3), which in our example are both observed in Dataset 3. Iterating through all observed interactions of
Datasets 1 and 3 and summing up the expected interactions and the overlapping homologous interactions, we can then calculate the homology-based
overlap (Equation 3). Note that any results from Equation 2 are not comparable to any results from Equation 3.
DOI: 10.1371/journal.pcbi.0020079.g006
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within the same species. This implies that distant model
organisms have a limited value to unravel protein networks.
We showed that these results are stable even when making
major changes to the ways in which we analyzed the
experimental data. Whether we used high- or low-confidence
data, whether we allowed for same-set PPI transfers or not,
whether we reduced bias or not, whether or not we filtered
the negatives by TAP-like data about putative physical
interactions, whether or not we restricted our analysis to
limited inferences per family, we always observed the same:
PPIs are more conserved within than across species. This
discrepancy between intraspecies and interspecies conserva-
tion of interologs was valid for all levels of sequence
similarity. Finally, we tested the ability of homology transfers
to predict another functional annotation and then compared
the performances of interspecies versus intraspecies compar-
isons thereof. We chose subcellular localization as an easily
extractable and available protein feature. By using a list of
proteins annotated for subcellular localizations from UniProt
[67], we could show that there is no significant difference in
performances for interspecies versus intraspecies homology
transfers for this particular feature.

Materials and Methods

Data sets. Several publicly available databases such as GRID [68],
BIND [69], MINT [70], and DIP [71,72] gather information about
interacting proteins in different organisms. For our analysis, we used
the IntAct database [45], a protein–protein interaction resource
maintained at the European Bioinformaics Institute (EBI) in Cam-
bridge (http://ebi.ac.uk/intact/). IntAct uses the PSI format (extended
markup language (XML)-tagged) to store data [73], fly [12–15], fly
[11,16,17], worm [18] and human [19] as well as about 30 so called
small-scale datasets, which are collections of results from many

detailed experiments for different organisms. The largest small-scale
dataset is that of human with about 38,000 interactions. Concerning
the high-throughput datasets, IntAct carries detailed information
about which proteins were used as baits and which proteins were used
as preys, so that a complete interaction matrix can easily be
reconstructed from these sets. Table S1 contains all protein–protein
interaction datasets deposited in IntAct at the moment along with
links to these datasets (small-scale and large-scale). The Giot [17], Ito
[35], and Li [18] datasets contain some information about the level of
confidence that was assigned to each interaction. For these three sets,
we excluded everything from our analysis that either had a
confidence-value of less than 0.4 (Giot: values range from 0 to 1) or
those that were not in a so called ‘‘core’’ dataset of trusted
interactions (Ito and Li divide their sets into core and full or core
and noncore subsets, where core means a higher confidence in the
measured interaction). Note that for the initial submission of this
manuscript we had compiled all results for unfiltered data sets, i.e., we
had included all experimental interactions; the results were qual-
itatively identical to those given here (data not shown).

True positives and false negatives: focus on Physical Interactions¼
PPIs. Technically, we realized our goal of exclusively focusing on PPIs
through the particular way of labeling positives and negatives. We
labeled as positives (true PPIs) only those pairs that were identified by
experiments that target the detection of physical interactions (only
Y2H experiments).

We then also assumed that these data for each organism was
complete, i.e., we labeled all pairs as negatives that were not detected
by Y2H.

Measuring sequence similarity/homology. The term homology
usually implies an evolutionary relation in the sense of having a
common ancestor. Strictly speaking, we cannot measure homology.
Instead, alignment methods measure sequence similarity in some way
or other. In our work the ranges of similarity were so high that the
pairs of proteins were most likely homologous. We used BLAST and
PSI-BLAST [74] to align all protein sequences in IntAct against each
other (standard procedure [75]: 3 iterations at E,10-10 against
filtered database of all proteins to build clean profiles, then one run
with frozen profile against unfiltered database at E , 10�3, freeze
profile again and run against all IntAct proteins). Then we extracted
the PSI-BLAST E-values for each alignment, as well as the percentage
of sequence identity (PIDE) and the distance to the HSSP curve, i.e.

Figure 7. Evaluating Homology Inference of PPIs

Starting with the entirety of observed interactions in any organism o (Y2H plus small scale experiments), we first reduce the sequence redundancy from
this dataset as described in Figure 3. Then we try to find homologs in the organism p for each of the unique PPIs of organism o. Since we want to be
able to conclude that every nondetected interaction in organism p does actually not exist in real life, we need to have a complete interaction matrix
(baits 3 preys) for organism p. Thus, we are forced to exclude all small-scale data from the organism p dataset and remain with a merger of all
(redundant) Y2H interactions for this organism. For each interaction A-B from organism o, we can face any of the following situations: (a) A homologous
interaction A9-B9 can be found in organism p, (b) no homologous interaction can be found in p, or (c) It is impossible to detect an interaction of type A9-
B9 in p because of one of the following two reasons: (i) either A9 or B9 are missing in the dataset for p or (ii) Both A9 and B9 are either preys or both are
baits in the dataset for organism p. The latter case (c.ii) is illustrated by the interaction E-F in organism o, which cannot be detected in organism p only
because E9 and F9 are both used as preys in the experiment. No counts for false positives are made for those cases. Adding the numbers of true
positives (expected and observed PPIs), false positives (expected but not observed) and false negatives (observed interaction only in organism p) allows
us to calculate accuracy and coverage for each homology threshold used to infer interactions (Equation 4). It is important to note that in the case where
o¼ p, comparisons between two identical experimental PPI-sets are ignored (e.g. A-B in o9s set ‘‘yeast-Ito-2001’’ is not used to predict A9-B9 in p9s set
‘‘yeast-Ito-2001’’; o¼ p ¼ yeast).
DOI: 10.1371/journal.pcbi.0020079.g007
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the HSSP-value [25,76,77] (HVAL). The HVAL is defined as:

HVALðPIDE;LÞ ¼ PIDE �
100 for L � 11
480 � L�0:32�f1þexpð�L=1000Þg for L � 450
19:5 for L . 450

8<
: ð1Þ

where L was the number of residues aligned between two proteins,
and PIDE the percentage of pairwise identical residues. HSSP values
consider both pairwise sequence identity and alignment length: the
higher the value the more similar two proteins. Values around 0
typically imply that two proteins have similar 3-D structures and
correspond to about 22% pairwise sequence identity at alignment
lengths above 250 residues.

Nonredundant data sets.We removed bias from PPI datasets by the
following procedure (Figure 5). (1) Move down a list L of PPIs starting
with pair A-B. (2) Group all interactions in this list into clusters of
similar PPIs. Consider two distinct PPIs as similar only if both
partners of the first interaction are homologs to the respective
protein in the second interaction. For instance, let A9 be a homolog
of A, and B9 be a homolog of B. Then all interactions A9-B, A9-B9, and
A-B9 will fall into the same group as the interaction A-B. Note that
this also means that any interaction A-C will not end up in this group
if C is not a homolog of B. Here, we used a very conservative criterion
for homolog, namely HVAL . 0 (Equation 1). This threshold is
conservative in the sense that it will also remove nonredundant pairs,
i.e., many proteins that are actually not homologs. (3) Reduce each
group formed in step 2 to one single representative PPI. (4) Continue
working with the final unique (nonredundant) dataset.

Identity- and homology-based overlap between datasets. We
defined two procedures resembling the Jaccard correlation to
measure the overlap between two different datasets of PPIs in IntAct.
Equation 2 defines the first measure; for clarity we refer to this
measure as the identity-based overlap. This measure can only be
applied to two PPI sets from the same organism.

overlapðM;NÞ ¼ PPIðMandNÞ
PPIðMandNÞ þ PPIðMxorNÞ ð2Þ

where PPI(MandN) is the number of PPIs that were detected in both
sets (common PPIs) and PPI(MxorN) is the number of PPIs that were
only detected in one of the two datasets (exclusive or). Figure 6A
describes this procedure. Note that only those interactions con-
tributed to the count of PPI(MxorN) that could possibly have been
detected in both datasets. For example, if the PPI A-B is detected in
dataset 1, but not in dataset 2, we only increase PPI(MxorN) by one, if
A and B were both included in dataset 2. In other words, we
completely ignored interactions A-B in one dataset, if either A, or B
(or both) were not present in the other dataset. Given this definition
(Equation 2), an overlap value of 0.5 means that every second PPI of
dataset 1 is not present in dataset 2. Inversely, every second PPI from
dataset 2 cannot be found in dataset 1. Furthermore, applying
Equation 2 to calculate the overlap of one dataset with itself always
results in 1 (100% overlap).

The second measure capturing an overlap between two interaction
datasets was applicable to any two datasets, even if they were from
different organisms. We referred to this measure as the homology-
based overlap. It was defined as follows (Figure 6B):

overlapðM;N; hÞ ¼ PPIðMandNÞðhÞ

PPIðMandNÞðhÞ þ PPIðMxorNÞðhÞ
ð3Þ

where PPI(MandN)(h) is the number of homologous PPIs reported in
both datasets considering a homology threshold of HVAL . h.
Assume again that A is homolog of A9 and B of B9. If the interaction
A-B is in dataset 1 and the interaction A9-B9 is in dataset 2, the count
for PPI(MandN)(h) will increase by one. The quantities PPI(MandN)(h)

and PPI(MxorN)(h) are similar to those in Equation 2 with the simple
caveat that we substituted identical pairs with homologous pairs,
because there are no identical pairs between two different organisms.
Unlike for Equation 2, when using Equation 3 to measure the overlap
between a dataset and itself, the result usually happens to be , 1 (,
100%). For an explanation consider the following example. Assume
that our dataset contains the interaction A(bait)-B(prey) along with
another protein A9 (bait, homologous to A) that is not found to
interact with B. The absence of A9-B will increase the count of
PPI(MxorN)(h) by one, thereby yielding a self overlap ,1. On the one
hand, for very high levels of similarity (say A and A9 have 99%
pairwise sequence identity), the reduction from 1 can be interpreted
as a reflection of the limitation of experimental accuracy. On the
other hand, for low levels of similarity, the reduction is related to the

fact that PPIs are simply not conserved between distant relatives.
Note that we also investigated overlap when replacing HVAL
(Equation 1) by PSI-BLAST E-values as a measure for sequence
similarity. While the resulting numbers differed slightly, the trends
that we reported remained the same (data not shown).

Homology performance curves. For given levels of sequence
similarity, we monitored and plotted the accuracy of inferring PPIs
through homology from one dataset to another. The procedure is
described in Figure 7.

The resulting curves can be interpreted as the degree to which PPIs
are evolutionarily conserved. In a more technical sense, the curves
reflect the performance of homology transfer of PPIs (Figure 1). The
HVAL (Equation 1) determined the minimal similarity between A and
A9, as well as between B and B9. Other ways of considering two pairs
of interacting proteins as related, for instance the arithmetic or
geometric average of both HVALs (A/A9 and B/B9), led to a slightly
worse performance of our homology inferences, i.e. the curves were
similar albeit lower overall (data not shown). Note that each large-
scale Y2H data set (Table S1) should, by experimental design, contain
a complete interaction matrix (preys3baits) that is, ideally, both fully
correct and comprehensive for all the proteins tested in that
experiment. Consider an interaction A-B from any dataset (small-
scale or large-scale) of an organism o; if we find the homologs A9 and
B9 in a large-scale dataset of another organism p, we can transfer the
interaction property from A-B to A9-B9. In other words, by looking at
the PPI between A and B (A-B), we simply predict that A9 and B9 also
interact. Because of the complete interaction matrix that we are
looking at for organism p, we can now also say whether this
prediction was actually right or wrong. In particular, the prediction is
correct, if we find the interaction A9-B9 in p and wrong if we do not
find it in p plus A9 and B9 are on different axes of the interaction
matrix (A9 ¼ prey, B9 ¼ bait or vice versa). In order to compare the
performance of homology transfers across two organisms (o 6¼ p) to
the one for intraorganism transfers (o¼ p), we have to allow p and o
to be the same. Therefore, in order to be able to compare results
from both types of experiments (intraspecies versus interspecies), we
have to apply the following restrictions to comparisons within the
same species (o ¼ p): Transfers from an interaction A-B to another
PPI of the type A-B9 or A9-B (one protein identical, the other
homologous) are not allowed since these cases are only observable in
intraspecies predictions but not in interspecies transfers. Addition-
ally for intraspecies predictions, we required that A-B and the
predicted interaction (A9-B9) stem from different datasets (different
Y2H experiments) in order to ignore possible homology-based
assumptions about two PPIs within the same dataset. The problem
here is that in case a research group found an interaction (e.g., A-B)
through a Y2H scan, would they work harder to also find an
interaction A9-B9 (A9 ¼ homolog to A, B9 ¼ homolog to B) or A9-B
rather than an unrelated interaction (e.g., M-N).

Accuracy and coverage. We measured the accuracy (Acc) and
coverage (Cov) for the inference (prediction) of interacting protein
pairs by the standard formulas:

Acc ¼ TP
TPþ FP

; Cov ¼ TP
TPþ FN

ð4Þ

where TP are the true positives (i.e., physical interactions that are
experimentally observed [e.g., by Y2H, note TAP-like relations are
not included here] and that are also correctly inferred by homology).
FP are the false positives (i.e., the pairs inferred through homology
but not observed by Y2H experiments). Finally, FN are the false
negatives (i.e., the physical interactions that have been observed but
were not identified). We monitored levels of accuracy and coverage as
a function of the sequence similarity between the proteins of known
and those of unknown annotations. There is a trade-off between these
two: the more restrictive the sequence similarity threshold, the more
interactions will be inferred (higher coverage) at the expense of
reduced accuracy; and the higher the threshold, the more will be right
(high accuracy) at the expense of few inferences (low coverage).

Error estimate. The error in the estimates of accuracy and
coverage were determined by bootstrapping [78] over the protein–
protein interactions in the source datasets. In particular, we picked n
interactions at random from the non-redundant source dataset and
compiled the averages over a larger set with possibly many replicas of
the same incidence. The levels of accuracy/coverage for different
thresholds in sequence similarity were then calculated according to
the procedure described above (Figure 7). For the bootstrapping,
these two steps had been repeated 100 times before the standard
deviation (sigma) for all levels of accuracy were calculated.
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Supporting Information

Table S1. Large-Scale Protein–Protein Interaction Datasets from
IntAct

Found at DOI: 10.1371/journal.pcbi.0020079.st001 (74 KB DOC).

Figure S1. Number of true positive counts versus HVAL

Each curve shows the accuracy (red) as shown in Figure 3 and the
number of true positives counted at a certain HSSP-value cutoff
(green)

Found at DOI: 10.1371/journal.pcbi.0020079.sg001 (72 KB PDF).

Figure S2. Results Are Stable with Respect to Variations in the
Experimental Setup

(A) Different sampling of intra- versus inter-species: we allowed
transfers of the type A-B to A’-B or A-B to A-B’ (see Materials and
Methods section). The performance became significantly better for
intra-species PPI-transfers, thus further widening the gap between
intra- and inter-species transfers.
(B) Inclusion of transfers within the same data set: we included
homology transfers within the same experimental dataset (see
Materials and Methods section). The effect was very similar to those
observed for different sampling (#1), i.e. widening the gap between
intra- and inter-species inferences.
(C) Using TAP-like data (Table S1) as a constraint for the negatives.
To illustrate this, assume that TAP pulled down a complex of six
proteins. While we cannot infer that all 15 possible interactions are
physical, all could be. Therefore, we ignored a false positive
prediction (did not count it) if we could find the interaction in
those 15 TAP protein-protein pairs. The accuracy slightly increased
for both yeast versus yeast (intra-species) comparisons as well as for
non-yeast versus yeast (inter-species) comparisons. Note that yeast is
the only organism with available TAP-like data.

(D) We used a redundant dataset (instead of a non-redundant, bias-
reduced set) from organism o (Figure 7) to hunt for interologs in
organism p (Figure 7). The main message indicated by the results for
this latter experiment (#4) stays the same as in our original procedure
(see Materials and Methods section): intra species comparisons are
more accurate than inter-species comparisons. Due to more samples
in the dataset for organism o (Figure 7) and thus higher counts, the
errors slightly decreased.

Found at DOI: 10.1371/journal.pcbi.0020079.sg002 (153 KB PDF).
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