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The signaling network underlying eukaryotic chemosensing is a complex combination of receptor-mediated
transmembrane signals, lipid modifications, protein translocations, and differential activation/deactivation of
membrane-bound and cytosolic components. As such, it provides particularly interesting challenges for a combined
computational and experimental analysis. We developed a novel detailed molecular signaling model that, when used
to simulate the response to the attractant cyclic adenosine monophosphate (cAMP), made nontrivial predictions about
Dictyostelium chemosensing. These predictions, including the unexpected existence of spatially asymmetrical,
multiphasic, cyclic adenosine monophosphate–induced PTEN translocation and phosphatidylinositol-(3,4,5)P3

generation, were experimentally verified by quantitative single-cell microscopy leading us to propose significant
modifications to the current standard model for chemoattractant-induced biochemical polarization in this organism.
Key to this successful modeling effort was the use of ‘‘Simmune,’’ a new software package that supports the facile
development and testing of detailed computational representations of cellular behavior. An intuitive interface allows
user definition of complex signaling networks based on the definition of specific molecular binding site interactions
and the subcellular localization of molecules. It automatically translates such inputs into spatially resolved simulations
and dynamic graphical representations of the resulting signaling network that can be explored in a manner that closely
parallels wet lab experimental procedures. These features of Simmune were critical to the model development and
analysis presented here and are likely to be useful in the computational investigation of many aspects of cell biology.
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Introduction

The ability of eukaryotic cells to process nonisotropic
extracellular stimuli lies at the heart of many aspects of
cellular behavior including directed cell growth, movement,
and cell-cell communication [1–4]. When an external stimulus
is localized to a discrete patch of membrane, for example,
during contact-dependent cell-cell communication, the phys-
ical recruitment of signaling components into receptor-
associated multimolecular complexes provides a straightfor-
ward mechanism for establishing the appropriate direction-
ality of intracellular responses. Under these circumstances, it
is readily apparent how the activation of excitatory compo-
nents at response onset and of inhibitory components during
negative regulation (sometimes called adaptation) is con-
strained to a specific region of the cell.

In contrast, during chemotaxis (directed movement along a
chemical gradient) cells display a very strong intracellular
biochemical polarization even though the external stimulus
may surround the entire cell and differ by only a few percent
in concentration at different points along the membrane.
Here, the principle of physical locality invoked in the case of
cell-cell contact does not seem to provide an obvious
mechanism for the translation of small extracellular direc-
tional clues into an almost digital biochemical, cytoskeletal,
and morphological polarization of the responding cell. The
striking capacity of cells to reliably sense and respond to

minute gradients has led to intense experimental analysis at
the cell biological level as well as to development of
quantitative mathematical models of the chemosensing
phenomenon.
Many of the core components of the underlying signaling

network have been elucidated in several cell types, especially
neutrophils and the amoeba of Dictyostelium discoidium [5–7]. A
central role is played by the phospholipid phosphatidylino-
sitol-(3,4,5)P3 (PIP3), the product of the action of the lipid
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kinase phosphoinositide 3-kinase (PI3K) on the relatively
abundant membrane component phosphatidylinositol-(4,5)P2

(PIP2). The local concentration of PIP3 is determined by the
competing actions of PI3K and the phosphatase PTEN
(phosphatase and tensin homolog deleted on Chromosome
10) that dephosphorylates PIP3 at the 39 position to produce
PIP2 [8]. PIP3 functions as a membrane anchor for signaling
proteins with pleckstrin-homology (PH) domains [9]. Such
proteins include several that regulate the polymerization of
actin, which, in turn, is needed for the extension of
pseudopods/lamellipodia that allow cells to crawl [10]. For
this reason, localized PIP3 accumulation is frequently used as
a read-out of polarization in response to chemoattractant
gradients. In spite of this progress in defining the main
molecular players and their interactions, however, we do not
yet fully understand how eukaryotic cells are able to amplify
the primary receptor signals induced by shallow extracellular
gradients of chemoattractants into steep intracellular gra-
dients of signaling molecules like PIP3. Nor is it known
precisely how the chemosensing signaling machinery adapts
to attractant stimulations or what the connection is between
the mechanisms that lead to amplification and those that lead
to adaptation.

The dominant hypothesis embodied in existing conceptual
and computational models for how cells achieve polarization
in the face of shallow chemoattractant gradients is termed
‘‘local excitation – global inhibition’’ [6]. Meinhardt and
Gierer [11,12] in particular showed that combinations of
localized positive feedback and long-range inhibition could
potentially produce the biochemical inhomogeneity encoun-
tered during chemotactic responses, and variations on this
theme appear in the other models in this class [13,14]. The
main idea is that polarization results from a combination of
local activation processes and one (or more) globally acting,
signal-induced inhibitor(s) tuned to be just strong enough to

suppress the local responses everywhere except in those
regions of the cell where the extracellular concentration of
the stimulus is highest. The globally acting inhibitor, whose
level is determined by the overall occupancy of the chemo-
attractant receptors, indirectly plays the role of a messenger
that provides cell-wide information about the average
extracellular chemoattractant concentration. This average is
the standard used by the cell to determine which side is
experiencing ‘‘high’’ and which side ‘‘low’’ relative chemo-
attractant concentrations. Adaptation, in this context, is the
failure of local signals to significantly rise above the average
and overcome the induced level of global inhibition.
While these modeling efforts have had a major influence on

the way investigators view the molecular basis for chemo-
sensing, the field still lacks a model that reflects to the
greatest extent possible the detailed biochemistry revealed by
bench experiments and whose predictions have been widely
validated by experimental tests at the single cell level. For
example, in Dictyostelium, stimulation with homogeneous fields
of the chemoattractant cyclic adenosine monophosphate
(cAMP) produces a fast rise in PIP3 around the entire cell
circumference, followed by a rapid return to (or below)
prestimulus level [6,15]. PTEN shows the inverse pattern,
leaving the membrane upon exposure to cAMP and then
returning during the adaptation phase [7]. However, the
concentration of membrane-bound PTEN is still considerably
below its prestimulus level at the time when the PIP3

concentration peaks and starts to decay. Given the current
belief that in these cells, PI3K is the only generator of PIP3

and PTEN is the most important enzyme metabolizing PIP3,
the point at which PIP3’s concentration in the membrane
peaks must mark the moment at which the activities of PI3K
and PTEN are temporarily in equilibrium. The cAMP signal
must therefore rapidly activate a component that negatively
regulates PI3K so that its activity is balanced by the lower
than resting level of PTEN present at the membrane at this
point in time. Such a negative regulatory component is not
explicitly included in existing models of Dictyostelium chemo-
sensing.
In part, the absence of such specific components in

previous computational treatments arises from a tendency
to use abstract modules in models of complex biological
signaling networks whenever the details are incompletely
understood. Although such approaches are in part guided by
the principle of parsimony, another, more practical reason
for the introduction of abstract modules is that the literature
mining involved in the creation of complex biological
signaling models and their translation into computational
representations can be quite difficult.
Here we report a two-pronged approach to the develop-

ment of a more complete and explicit model of Dictyostelium
chemosensing. First, at the biochemical level, we started with
a basic chemosensing model containing only the principal
molecular players incorporated into the current paradigm in
the field. We then tried to fill in ‘‘logical’’ blanks (such as the
negative regulator of PI3K discussed above) so as to be able to
reproduce the experimentally reported dynamical behaviors
of PIP3, PTEN, and PI3K upon exposure of a morphologically
unpolarized Dictyostelium cell to chemoattractant exposure
[7,16]. Our specific aim was to construct a model that did not
contain abstract ‘‘black-box’’ modules but instead used
specific molecular components and interactions reported in
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Synopsis

Cells can orient their migration in response to small local differences
in the concentration of extracellular chemicals (chemoattractants).
Understanding this process (chemosensing) requires analyzing the
time and position-dependent behavior of the signaling molecules
within the responding cell, making it an especially interesting
challenge for both experimental and computational investigation.
Here, the authors report the development and testing of a new
detailed molecular model of the chemosensing apparatus of the
amoeba Dictyostelium discoidium reacting to the chemoattractant
cyclic adenosine monophosphate. Computer simulations performed
using this model predicted unexpected and previously unreported
patterns of changes in the concentration and location of two
important intracellular signaling molecules. These predictions were
experimentally verified using microscopy, suggesting the need for
modifications to the current ‘‘standard’’ model of eukaryotic
chemosensing. The high degree of detail in their model was made
possible by a new software suite called ‘‘Simmune,’’ which allows
biologists to enter information about molecular interactions using a
graphical interface. Without requiring the user to write any
equations, the software automatically constructs the overall reaction
network, simulates the model, and provides several ways to view the
biochemistry of simulated cells. This new tool should help biologists
to translate qualitative representations of cell biological processes
into quantitative, predictive models.

Local Regulation in Chemosensing Model



the experimental literature to provide necessary functions
(positive feedback, negative regulation, amplification).

Second, to help achieve this goal of molecular detail, we
utilized a new software approach called Simmune that was
created to facilitate the development and simulation of
realistic, and therefore frequently quite complex, cell-bio-
logical models. Originally developed because of an interest in
simulating immune responses, Simmune has no attributes
that are unique to immunology and it is applicable to the
simulation of any cell-biological system. The software suite
allows molecular reactions to be defined directly at the level
of interactions between molecular binding sites, using simple
graphical representations of molecules and molecular com-
plexes. This permits expert biologists to construct and
simulate complex models without direct involvement in the
underlying mathematics.

The signaling network that we developed through liter-
ature mining and the application of Simmune shares some
properties with the abstract model developed by Meinhardt
[12], but it goes further by providing an explicit molecular
definition of the feedback module and the inhibitory
regulator postulated in this earlier work. Our model also
includes the action of a second, slower inhibitory component
that is reminiscent of Meinhard’s ‘‘poisoning’’ element. This
element was introduced to prevent cells from locking into the
direction of given stimulus and becoming blind to subsequent
changes in direction and strength of the external signal.
However, the present scheme differs in important aspects
from this previous proposal and from the ‘‘local excitation–
global inhibition’’ models suggested by Devreotes and co-
workers [14] because the locally acting feedback mechanism
and the distribution of the inhibitory component (PTEN) are
now coupled.

Simulations performed with our model predicted previ-
ously unrecognized biphasic spatiotemporal changes in PIP3

and PTEN localization and concentration in Dictyostelium cells
responding to cAMP gradients. These predictions were
confirmed across a range of gradient conditions by single-
cell imaging studies, leading us to propose a substantial
modification to the standard ‘‘local excitation–global inhibi-
tion’’ model, with locally acting negative feedback now seen
as playing a key role in controlling the development of
chemoattractant-induced biochemical polarity.

Results

In constructing a new detailed model of Dictyostelium cAMP
chemosensing, we needed to ensure that the major features of
the cellular response to chemoattractant exposure would be
present in the simulated behavior of a cell. First, when
exposed to a uniform concentration of attractant, the model
should show a transient membrane response that rapidly
reverts to the resting state (global adaptation). Second, when
exposed to a shallow gradient of attractant, the simulated cell
should generate a much steeper intracellular biochemical
gradient (amplification). The starting point for the construc-
tion of a model with these features was the well-established
biochemical scheme described in [8] and [17] (Figure 1).
Ligand binding to the cAMP receptor leads to activation of
the associated Gabc, yielding Ga and Gbc. These effectors, in
turn, promote the activation of Ras and the membrane
recruitment and activation of PI3K, along with a G protein–

dependent translocation of PTEN from the membrane to the
cytosol. The combination of PI3K activation and a loss of
membrane-bound PTEN results in a rapid increase of PIP3

upon stimulation of the cells with cAMP (Figure 1).

Development of a Refined Signaling Model of
Chemosensing Based on Quantitative Live Cell Imaging
and Literature Mining
Fusion molecules containing both a PIP3-specific PH

domain and a fluorescent protein domain have been
produced to monitor the dynamics of the distribution of
PIP3 under various modes of Dictyostelium exposure to
chemoattractant [1,18,19]. When stimulated with a homoge-
neous field of cAMP, previously unpolarized cells respond
with a rapid, transient increase of PIP3 around their entire
perimeter [6,20]. In contrast, upon exposure to gradients of
chemoattractant, the plasma membrane concentration of
PIP3 increases throughout the cell initially and then decays
everywhere to below the pre-stimulus level, except for the
side of the cell exposed to the higher chemoattractant
concentration [6,15]. Using a fluorescent fusion of PTEN
(GFP [green fluorescent protein]-PTEN) [7,21], similar imag-
ing studies have been used to show that, following a
homogeneous cAMP stimulus, much of the pool of PTEN
translocates from the membrane to the cytosol within a few
seconds and then slowly returns to the membrane [7].
Activation of membrane-recruited PI3K and translocation

of PTEN to the cytosol are the two ‘‘excitatory’’ mechanisms
that lead to the initial increase in membrane PIP3 revealed by
PH-GFP relocalization (Figure 1) and qualitative diagrams of
chemosensory signaling frequently focus on these excitatory
signaling events [17]. Simulations using a model incorporat-
ing only these mechanisms would, however, show the
concentration of membrane PIP3 to increase upon introduc-
tion of cAMP without being followed by either the experi-
mentally reported rapid decay in the concentration of this
membrane phospholipid or the relocalization of PTEN to the
membrane. Therefore, the cells must contain inhibitory
components that quench PI3K signaling and also reverse
those changes that cause PTEN to dissociate from the
membrane, allowing it to return to its pre-stimulus distribu-
tion (adaptation). As already noted, a comparison of the
dynamic changes in the concentrations of PIP3 and mem-
brane-bound PTEN upon exposure of Dictyostelium cells to a
homogeneous field of cAMP allowed us to conclude that PI3K
activity must be rapidly negatively regulated to account for
the observed post-stimulus changes in membrane PIP3 levels.
In seeking to account for this regulation of PI3K activity, we

took advantage of our previous findings that the a and the bc
subunits of the G proteins remained dissociated as long as
chemoattractant was present, establishing that there was
ongoing signaling through the excitatory pathways [15]. The
inhibitory components thus do not simply shut off receptor
signaling but actively compete with ongoing excitatory
mechanisms. For the PI3K signaling branch, we therefore
included stimulus-induced activation and membrane recruit-
ment of a phosphatase that deactivates PI3K (Figure 2A,
module 1) and of a Ras GAP [22] that suppresses Ras activity
after an initial spike [16] (Figure 2A, module 2). Additionally,
we assumed that the amount of free Gbc contributing to
activation of PI3K is controlled by a blocking element, because
the dynamics of the system did not appear to permit re-
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association with Ga to dampen Gbc effector function quickly
enough (Figure 2A, module 3). Receptor-associated kinase
(RAK) was subsequently reported to function in mammalian
cells in a manner consistent with this assumption [23].

We also needed to add to the model a set of specific
biochemical processes regulating PTEN localization within
the cell, in particular a link from activation of the sensing
receptor to the dissociation of PTEN from its resting location
at the plasma membrane and a negative regulatory limb that
reverses this active induction of membrane dislocation. We
hypothesized that the molecular change causing PTEN to
dissociate from the membrane is a phosphorylation event
that in mammalian cells is mediated by a Src-like kinase [24]
(Figure 2B, module 1). Reversal of the process that leads to
release of PTEN from the plasma membrane thus requires
control of the activity of this kinase. We adopted the pathway
reported by Ren et al. [25], according to which Src activity is
negatively controlled by Csk, which is recruited to the plasma
membrane by phosphopaxillin (Figure 2B, module 2). The
phosphorylation of paxillin in turn is controlled by the
tyrosine phosphatase SHP2, which is brought into proximity

of the membrane-bound paxillin through the PIP3-binding
adaptor Gab1 (Figure 2B, module 3). Figure S1 shows the full
network of enzymatic interactions. Figures S2 and S3 focus
on those branches of the network that control PI3K and
PTEN activity, respectively.

Simmune Permits Construction of Detailed, Biology-Based

Models That Avoid ‘‘Black-Box’’ Abstractions

In order to construct the model signaling network outlined
above, with regulatory modules that account for the time-
dependent return of the chemosensing apparatus to baseline
after a stimulus (adaptation) and that could be tested for
whether the model was also adequate to account for intra-
cellular amplification, we incorporated molecules and mech-
anisms that are well-documented in the literature whenever
possible, though in some cases we had to speculate about
components and interactions (see also Text S1). Text S2
provides a detailed analysis of the resultant chemosensing
signaling network in terms of modules with specific function-
alities (‘‘signal transduction module,’’ ‘‘adaptation module,’’

Figure 1. Standard Model of the Extracellular and Intracellular Distribution of Key Components of Dictyostelium Chemotactic Signaling

(A) In an unstimulated cell PTEN is homogeneously distributed at the membrane. The cell membrane contains very little PIP3.
(B) Stimulation of the cell leads to the membrane recruitment and activation of PI3K, as indicated by the arrows (1) leading from inactive, mainly
cytosolic PI3K (yellow) to membrane-proximal, active PI3K (orange). Activated PI3K transforms PIP2 into PIP3. PTEN is deactivated following cAMP
stimulation and leaves the membrane. This process is indicated by arrows (2) connecting active PTEN (dark green) and the mainly cytosolic inactive
PTEN (light green). Regulatory processes lead to reactivation of PTEN (3). Differences in the speed and degree of cAMP receptor ligation between front
and back of the cell lead to preferential accumulation of PTEN at the back of the cell. As a result, the front experiences a higher concentration of PI3K
and a lower concentration of PTEN than the back and accumulates PIP3. Note: To emphasize the changes in PIP3 content, the amount of PIP3 relative to
that of PIP2 has been overstated. Even after cAMP stimulation, the actual amount of PIP2 will be much higher than that of PIP3.
DOI: 10.1371/journal.pcbi.0020082.g001
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and ‘‘gradient amplification module’’) and a discussion of the
behavior of the network upon modifications of these modules.

This approach of incorporating molecular detail in
regulatory pathways that have been incompletely defined in
the experimental literature differs from the more frequently
encountered abstract methods of filling these gaps that

appear in many theoretical treatments of this topic. Often,
limitations in experimental data and also in computational
tools have led modelers to utilize conceptual signaling
modules (‘‘black boxes’’) with the right input-output behav-
ior, to achieve the desired overall behavior of a signaling
network. While this approach reduces the effort needed to

Figure 2. PI3K and PTEN Regulatory Modules

(A) Elements controlling the activity of PI3K and upstream components. In addition to the basic, ‘‘excitatory,’’ signaling elements like the cAMP
receptor, Gbc, and Ras, we introduced further elements controlling the activity of PI3K and upstream components. ‘‘PI3Ktp’’ (module 1) stands for a
tyrosine phosphatase that deactivates PI3K. This phosphatase becomes enzymatically activated and is recruited to the membrane after interaction with
Gbc. ‘‘RasGAP’’ (module 2) translocates to the membrane and deactivates Ras after activation by Gbc. RAK blocks Gbc, Ga, and the receptor, thereby
reducing all signals (module 3).
(B) Elements controlling the activity and localization of PTEN. In our model, PTEN is phosphorylated by a Src-like kinase, here simply called ‘‘Src’’
(module 1). Src is activated by Ga and deactivated by Csk, which in turn is recruited by phosphoPaxillin (‘‘pPaxillin’’) (module 2). SHP2, which is
membrane recruited by pGab1 bound to PIP3, dephosphorylates pPaxillin (module 3), thereby leading to increased activation of PTEN.
DOI: 10.1371/journal.pcbi.0020082.g002
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construct the differential equation equivalent of the signaling
network and may provide insights about general dynamic
properties of the simulated system, it cannot be used to
investigate the behavior of specific molecular mechanisms
and frequently fails to incorporate essential regulatory
dynamics into the resultant model.

The software suite Simmune was developed to overcome
many of the difficulties associated with the creation of
detailed, biologically realistic, quantitative models suitable
for simulation. It uses the familiar steps of dialog box entry
and menu selection to allow the user to readily define
molecule types as well as to specify the number and
properties of their binding and/or enzymatic sites (Figure
3). This same interface also allows the investigator to define
whether a molecule is membrane bound, in which case its
movement will be limited to intramembranous diffusion, and
to note which part of a transmembrane molecule is in the
extracellular environment and which inside the cell, restrict-
ing the other molecular species with which these topologi-
cally distinct domains can interact during a simulation.
Symbolic graphical representations of the defined molecule
types appear on the screen and interactions between these
entities can be specified in Simmune by simple mouse
clicking and dragging to draw connections between the
potential binding sites of the reaction partners.

By this simple process of defining binary interactions
between the binding sites of reacting species (which closely
follows the way biologists traditionally think about signaling
networks), the user provides Simmune with the information
needed to determine which molecular complexes are possible
in the system, for example, a complex consisting of the cAMP
receptor and an associated Gabc heterotrimer. The program
then automatically constructs the complete network of
complexes from the component definition input, collects
the reactions in which each complex participates, and
calculates the contributions of these reactions to the rate of
change of the concentration of each complex (which depends
on the reaction rates and the—typically changing—concen-
trations of the reaction partners). Given a set of initial
conditions, Simmune can then calculate the time course of

changes in the concentrations of all molecular complexes in
the model after a stimulus is applied. The software also
permits the investigator to both visualize and obtain a
dynamic quantitative readout of the subcellular location
(Figure 4) and binding states of all the molecular complexes
and of the flux through the network during the simulated
signaling process (Figure S1, Video S1).

Simulation Predictions versus Experimental Findings
Computational models are best evaluated by examining

their ability to make correct predictions how a biological
system will behave under conditions for which experimental
data are not yet available and that were not used to establish
the model’s core parameters. In the present case, this meant
using responses to homogeneous chemoattractant fields to
establish parameters that were then used by Simmune to
simulate the response of Dictyostelium not only to other
(untested) homogeneous concentrations of cAMP but, more
important, to gradients of cAMP that were not used for
creating the model.
To measure quantitatively the behavior of PIP3 and PTEN

during the chemosensing response of Dictyostelium, experi-
ments were performed by single-cell microscopy of cells in a
one-well chamber reacting to microinjector-delivered cAMP
stimulation (see [15] for details). We simulated these experi-
ments using Simmune by placing simulated cells with a given
initial composition of signaling molecules into three-dimen-
sional extracellular compartments (representing the culture
well). The model was then run for a period of time to allow
the simulated cells to achieve a biochemical steady-state in
the absence of cAMP stimulation The fluctuations in shape
and PIP3 distribution seen even in the absence of cAMP
exposure using amoeboid cells with actin-based morpholog-
ical prepolarization [26] were avoided in the present study by
using lactrunculin to inhibit actin polymerization, thus
allowing the result of this computational equilibration
process to reflect the biological situation before stimulation
with cAMP. After equilibration the simulated cells were
exposed to in silico cAMP gradients equivalent to the actual
chemoattractant conditions experienced by the real cells
under experimental conditions. Simmune then calculated the
spatiotemporal response of the concentrations of compo-
nents like PIP3, activated PI3K, and membrane-bound or
cytosolic PTEN. The software furthermore allowed us to save
the time-dependent behavior of molecular concentrations
and flows through the signaling pathways of the simulated cell
to data files for visualization using automatically generated
diagrams of the cell’s reaction network (Figure S1, Video S1).
First, we examined in this manner the responses of

simulated cells to varying concentrations of homogeneously
applied cAMP. In these simulations, the time Tmax post-cAMP
exposure at which PIP3 reached its peak decreased with
increasing concentration of the applied chemoattractant.
After having adjusted the model parameters in such a way
that Tmax for one concentration of cAMP (25 nmol) in the
simulation matched the experimentally observed value,
simulations quantitatively predicted the correct concentra-
tion dependence of Tmax for 10-fold higher and 10-fold lower
concentrations of cAMP in latrunculin-treated (morpholog-
ically nonpolarized) Dictyostelium cells expressing the PIP3-
binding chimeric molecule PHcrac-GFP (Figure S4; [1,18,19]).
This established that the model was able to accurately predict

Figure 3. Defining Quantitative Interactions between Molecular Binding

Sites Using Simmune (Screenshot)

The screenshot of Simmune’s modeling interface shows the graphical
representations of PI3K and PIP2 and the binding sites through which
they interact, as well as the sites of membrane attachment. The turquoise
circle around the upper binding site of PI3K identifies it as an
enzymatically active site. The dotted line represents the possibility of a
binding interaction between these two molecules. Selecting the
interaction by clicking on the handle on the dotted line allows entry
of the relevant binding parameters.
DOI: 10.1371/journal.pcbi.0020082.g003
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cellular behavior under conditions not used to establish the
specific parameter values employed for the simulations.

We next examined the model’s performance when used to
simulate a cell’s more complex response following exposure
to extracellular cAMP gradients. The simulated cells showed
the previously reported transient PIP3 elevation along their
entire perimeter [6,20], which then completely decayed
everywhere except for the ‘‘front’’ side of the cell that was
exposed to the highest concentration of cAMP. Also,
simulated PTEN translocated from the cytoplasmic mem-
brane to the cytosol and reassociated with the membrane in
the posterior of the cell as expected [7]. However, the PIP3

response at the ‘‘front’’ side of the cell showed an
unanticipated behavior in these simulations: after an initial
peak, it decayed transiently and then recovered to go through
a second phase of increase, followed by a second, typically
higher, peak. Previous experimental studies had not reported
this type of biphasic behavior of PIP3 at the front of a cell [6],

so we sought to determine whether the results indicated a
flaw in the model or whether the model parameters were
‘‘incorrect’’ and could be adjusted to make the dip in between
the two peaks shallower, yet preserve the cells’ quantitatively
correct behavior upon exposure to homogeneous stimuli.
Although for gradients with low (less than 10% of the Kd for
the binding of cAMP to the receptor) absolute cAMP
concentrations we could find a parameter set yielding a
monotonic response, this was not possible to achieve with any
reasonable parameter set when the concentration of cAMP
was increased.
We then examined in detail the time-dependent changes in

PIP3, active PI3K, and membrane-bound as well as phos-
phorylated cytosolic PTEN in the different regions of the cell
during a simulated gradient response, using a reasonable
parameter set consistent with the accurate simulation of
homogeneous field behavior. This analysis indicated that the
biphasic PIP3 kinetics arose from a difference between the

Figure 4. Comparison of the Simulated Activities of PI3K, Membrane-Bound PTEN, and the Resulting Behavior of PIP3 (Composite Screenshot)

Stimulation of a cell in a 2:1 cAMP gradient (mean concentration 500 nmol) leads to a rapid 3-fold increase in the membrane proximal activity of PI3K
(green) and to a loss of membrane-bound PTEN (blue; tracked as GFP-PTEN in real cells). This results in a rapid accumulation of PIP3 (red; reported by
the location of PH-GFP in real cells). Subsequently, the PI3K activity is strongly quenched by the recruitment of regulatory components to the
membrane and falls below its prestimulus level in less than 20 s. PTEN returns more slowly to the membrane. During the phase of downregulation of
PI3K activity and reattachment of PTEN to the membrane, the concentration of PIP3 decays. In the front of the cell (which experiences a high cAMP
concentration), membrane-associated PTEN only returns to a fraction of its prestimulus level and then enters a second phase of decline. After
approximately 50 s, the low level of membrane-bound PTEN that is reached in the front of the cell allows PIP3 to increase again, even though the
amount of active PI3K in this region is modest. In the back of the cell (low cAMP concentration), membrane-bound PTEN increases beyond its
prestimulus level, resulting in a decrease of PIP3 below its resting state concentration. The circular inset shows a two-dimensional representation of the
dynamics of membrane-bound PTEN and PIP3 in different regions of the three-dimensional simulation of a cell.
DOI: 10.1371/journal.pcbi.0020082.g004
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speed of signal-induced negative regulation of PI3K activity
and that of PTEN membrane reattachment (Figure 4). In
accordance with previously published data [27], the simu-
lation showed PI3K activity to be downregulated very rapidly
(within several seconds) after the onset of stimulation (local
adaptation), while the translocation phase of PTEN took
considerably longer, typically 1 min [7]. Because the level of
PIP3 is determined by the balance between local PI3K activity
and local availability of membrane-bound PTEN, the simu-
lated cell’s front experienced two phases of PIP3 accumu-
lation. During the first phase PI3K is highly activated and
PTEN has just begun its dissociation from the membrane.
This phase ends with the rapid decrease of PI3K activity due
to the operation of the regulatory pathways noted above and
a partial return of PTEN to the membrane. During the second
phase, the imbalance in Ga-induced Src-like kinase activity
between the front and the back of the cell leads to a gradual
loss of membrane-bound PTEN in the front and accumu-
lation of PTEN in the back. With a strongly decreased level of
PTEN at the front of the cell, the residual activity of PI3K now
can induce a second, slower increase of PIP3 at the cell’s
anterior. Figure S5 illustrates this process that translates
(even small) differences in receptor occupancy between front
and back of the cell into steeper intracellular gradients of
PIP3 and PTEN (amplification).

Following the development of new experimental techni-
ques for rapid exposure of Dictyostelium cells to a defined
cAMP gradient [15], we found that the predicted biphasic
PIP3 response at the front of the cell corresponded to the
actual behavior of the gradient sensing system, as did the

concentration dependence of the extent of the decline in
PIP3 levels after the initial peak (Figure 5). Furthermore, the
simulation predicted that the second increase would happen
later and take longer to reach its peak if the absolute
concentration of the chemoattractant was increased while
maintaining the relative concentration difference between
front and back of the cell. We also found this prediction to be
correct (Figure 5). Adjusting the model parameters so that the
dip between the first and second peak of PIP3 corresponded
quantitatively to the experimentally determined time for a
single chemoattractant concentration, the simulation cor-
rectly predicted the altered slope for the second increase and
for the position in time of the second PIP3 peak when using
10-fold higher or lower absolute concentrations of cAMP
(Figure 5). The model was thus able to predict with great
accuracy in both time and space the PIP3 response of
Dictyostelium cells over a several-log range of chemoattractant
concentration.
To test further the predictive power of the model, we used

cells expressing GFP-PTEN to examine whether the simulated
spatiotemporal properties of PTEN relocation corresponded
to those measured experimentally. At the cell’s front, GFP-
PTEN showed the triphasic behavior we expected, involving a
decline, a temporary increase, and then a substantial decay.
The local peak of PTEN occurred at the predicted time point
and the ensuing decay correlated well with the second
increase of PHcrac-GFP at the front of an adjacent cell
exposed to the same gradient. As predicted, with progres-
sively lower concentrations of cAMP, the temporary increase
of PTEN seen with a high-concentration stimulus first turned

Figure 5. Correspondence in Time and Space between the Predicted and Measured Changes in PIP3 at the Front and Back of Cells Exposed cAMP

Gradients

Experimental data from exposure of Dictyostelium to a 2:1 gradient with a mean cAMP concentration of 100 nmol were used to adjust model
parameters. The other two responses are predictions of the model. (A), (B), and (C) are simulated responses. (D), (E), and (F) are experimental
measurements, using PH-GFP to monitor PIP3 levels in single cells exposed to gradients with a mean cAMP concentration of 1 lmol, 100 nmol, and 10
nmol. See Figure S6 for details on the full dataset of experimental replicates.
DOI: 10.1371/journal.pcbi.0020082.g005
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into a shallow plateau and then vanished (Figures 6, S6, and
S7; see also Text S3).

Discussion

Here we describe the construction and evaluation of a new
detailed model of the chemotactic signaling response of
Dictyostelium. We tested the model’s explanatory and predic-
tive capabilities in a close interplay between computer
simulations and laboratory analysis using quantitative sin-
gle-cell microscopy. The simulations correctly predicted the
biochemical behavior of the cells under conditions that had
never before been experimentally investigated in detail and
led us to propose specific substantial changes to the existing
model of chemosensory signaling in this organism, modifica-
tions that are needed to reconcile theory with experimental
observations.

The model and the simulations reported here illustrate
how signal-induced activation and membrane-recruitment of
components controlling the availability and/or activity of
Gbc, Ras, PI3K, and PTEN can induce rapid adaptation of the
level of PIP3 and of the localization of PTEN following
homogeneous stimuli with chemoattractant. Interestingly,
these same mechanisms lead to a polarized distribution of
PIP3 in gradients of cAMP. In contrast to the predominant
view in the field, our studies suggest that the intracellular
amplification of the applied chemotactic gradient is the
consequence of the local, rather than global, feedback-

regulation of excitation and adaptation. Upon stimulation
of the cell, the product (PIP3) of the activation of an
excitatory component (PI3K) reinforces the processes leading
to deactivation of an inhibitory component (PTEN), thereby
allowing for a rapid, pronounced response. Following this
first response, adaptation is achieved through a strong, locally
controlled and signal-dependent suppression of the excita-
tory component which, in turn, decreases the deactivation of
the inhibitory component, i.e., allows for reactivation of the
inhibition. In a gradient, however, the higher concentration
of PIP3 at the side of the cell facing the higher chemo-
attractant concentration (‘‘front’’) supports the activation of
more PTEN-deactivating components than at the opposite
side (‘‘back’’) of the cell. This leads to a net transfer of PTEN
from the front to the back, which in turn decreases the
concentration of PIP3 in the back, accelerating that side’s
transition into the adaptation phase. In our model, polar-
ization of a cell in a chemoattractant gradient is thus caused
by the (diffusive) communication between the sides of the cell
with high or low chemoattractant concentration, respectively,
interfering with the local adaptation processes.
The recruitment of Ras GAP through PIP3 [22] and the

multiple functions of receptor-associated kinase, which in
addition to phosphorylating the receptor binds to Ga and
blocks Gbc from acting on Ras and PI3K [23], are well-
documented negative feedback mechanisms in G protein–
coupled receptor signal transduction. Our model suggests the

Figure 6. Correspondence in Time and Space between the Predicted and Measured Changes in Membrane-Bound PTEN at the Front and Back of the

Cells Exposed to cAMP Gradients

These dose-dependent dynamics of PTEN were produced by the simulation after the dynamics of PIP3 for one cAMP concentration (100 nM) had been
used to adjust model parameters. (A), (B), and (C) are simulated responses. (D), (E), and (F) are experimental measurements based on GFP-PTEN analysis
in single cells exposed to gradients with a mean cAMP concentration of 1 lmol, 100 nmol, and 10 nmol. See Figure S7 for details on the full dataset of
experimental replicates.
DOI: 10.1371/journal.pcbi.0020082.g006

PLoS Computational Biology | www.ploscompbiol.org July 2006 | Volume 2 | Issue 7 | e820718

Local Regulation in Chemosensing Model



action of two additional regulatory components: a protein
phosphatase that deactivates PI3K and a lipid phosphatase
(SHIP [SH2-containing inositol 59-phosphatase]) that is
recruited to the front of the cell to control the level of PIP3

when the local concentration of active PTEN is low. These
elements act on two different time scales. The phosphatase
that deactivates PI3K is rapidly activated to control PIP3

levels during early adaptation of the network. SHIP is more
slowly recruited to those regions of the membrane that have
lost PTEN. An abstract slow second inhibitory (‘‘poisoning’’)
element had been previously suggested by Meinhardt [12] to
prevent the cells from losing their sensitivity to gradient
changes and we can speculate that this hypothetical element
corresponds to SHIP in our more specific scheme. Biochem-
ical studies are now required to see if the various components
we have incorporated into our extended biochemical model
from mammalian studies have molecular analogs in Dictyo-
stelium with the anticipated functions.

As noted before (and discussed in detail in Text S1), we
think that it is helpful to use modeling to speculate about the
role of the different components in a signaling network not
in terms of abstract modules but in terms of interacting
molecules. Instead of postulating, e.g., a ‘‘PTEN-transloca-
tion-control-module,’’ we asked which molecules have been
observed to play a role in the control of the membrane
attachment of PTEN and how they exert this control.
Simmune in particular allows the facile construction and
simulation of such biochemically specific models because
components represent concrete signaling molecules. This
allows simulated responses to be analyzed in molecular detail
and the predicted behavior of these molecules to be directly
compared to results obtained by traditional laboratory
methods such as immunoprecipitation, immunoblotting, flow
cytometry, and confocal microscopy. As we discuss in Text S2,
previous, more abstract models with PTEN-control modules
neither suggested concrete molecular equivalents of those
modules nor were they able to generate the correct behavior
of PTEN or PIP3 in response to chemoreceptor engagement.

Not all aspects of Dictyostelium chemotactic behavior are
fully captured in even the extended model we have
implemented here. While the simulations arising from the
present model were quite accurate in their spatiotemporal
details under diverse conditions, it is very likely that details of
the regulatory mechanisms included in the present model are
incorrect or that important additional components are
absent. An indication that this is the case comes from
observations made while experimenting with models con-
taining alternative pathway configurations or very different
parameter sets (see Text S2). In certain situations, residual
PI3K inhibitors persisted at the former high-concentration
side of the cell membrane once the stimulating gradient was
removed. In these simulations, the persistence of these
inhibitors then led to a temporarily inverted biochemical
response during secondary exposure to a chemotactic
gradient, a behavior that has recently been observed
experimentally (XX, MMS, and TJ, manuscript in prepara-
tion). The specific model we describe here does not permit a
single parameter set to give a simulation output that
reproduces in detail this inversion behavior, while also being
in full quantitative agreement with the primary polarization
kinetics reported in this paper across a wide range of cAMP
concentrations. These recent findings suggest that additional

elements will need to be added to the circuits controlling
local PIP3 levels to generate a more robust molecular model.
This issue of persistence of inhibitory components at the

leading edge after cAMP removal is closely related to the key
question of what mechanisms keep a cell responsive to
changes in the externally applied gradient. Dictyostelium cells
that have fully differentiated into the chemotactically
competent stage behave like neutrophils and turn their
‘‘body’’ instead of changing the orientation of their internal
biochemical polarization when the extracellular gradient
changes direction. During earlier differentiation stages,
however, Dictyostelium reacts to such changes by reorienting
its internal PIP3-dependent polarity (C. Parent, personal
communication). Cells simulated with our current model
react to changes in the direction of externally applied cAMP
gradient in a manner similar to these immature amoeba, with
a reorientation of the internal PIP3 gradient. However, the
simulated reorientation is only partial and occurs more
slowly than that observed directly in live cells (XX, unpub-
lished data), again pointing to the need for a reworking of the
mechanisms that control the activity of PI3K at the leading
edge of a cell exposed to a gradient.
Many experimental biologists see no immediate need for

measuring in a highly quantitative manner either intracellular
molecular concentrations, their stimulus-induced changes, or
the corresponding reaction rates. One factor contributing to
this viewpoint is the limited availability of user-friendly
computational tools that would allow investigators to make
direct use of such data for detailed simulations that could
enhance their biological understanding. Simmune, the soft-
ware we developed and used here to investigate the mecha-
nisms behindDictyostelium’s chemosensing capabilities, enables
biologists lacking advanced mathematical or computer coding
expertise to conduct the type of simulations that make the
pursuit of quantitative experimental data a more useful
undertaking. The software provides a simple interface for
model building and parameter entry, provisions for automated
construction of complex molecular interaction networks from
the input of binarymolecular interactions, visual output of the
spatial distribution and number of specific molecules/molec-
ular complexes in model cells during a simulation, and the
capacity to view at varying levels of resolution the time-
dependent changes in component concentrations or higher-
order molecular complexes within a signaling pathway. It also
permits creating models across varying scales of biological
resolution, from intracellular molecular networks to individ-
ual cell behavior to the activity of groups of simulated cells.
Quantitative modeling is just beginning its foray into the

cell biology of intracellular signaling, and measurements of
the temporal behavior of the concentrations of most of the
relevant molecules are still missing. We hope that Simmune
will help encourage investigators in diverse fields of biological
research to fill these gaps by providing them with an easily
mastered yet powerful tool for translating biological knowl-
edge and data into models and simulations that can enhance
understanding of a complex biological system, as we show
here for chemosensing in Dictyostelium.

Materials and Methods

Cell lines, single-cell microscopy. Single-cell imaging of Dictyoste-
lium for analysis of the activation of trimeric G proteins, relocation of
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PH-GFP in response to changing PIP3 levels, and chemoattractant
concentrations at the membrane was performed as described in [15].
For the experiments with GFP-PTEN, cells from the D. discoideum cell
line expressing GFP-PTEN [21] were developed into the chemotactic
stage, then exposed to cAMP and imaged as described in [15]. The
cells were treated with latrunculin prior to the experiments to
suppress actin polymerization. This treatment immobilizes the cells,
thereby facilitating the quantitative analysis of changes in the local
concentration of PH-GFP. Furthermore, it eliminates any morpho-
logical prepolarization of the cells that otherwise might cause

different sensitivities toward chemotactic stimulation at their differ-
ent sides, and, finally, it decouples actin dynamics from the purely
biochemical network we wished to study.

Simulation software. We used the ‘‘Simmune’’ modeling and
simulation software, as described in the text and supplementary
material. Simmune runs on Linux, MacOS 10, and Windows XP.
Copies of Simmune (executables) can be requested by sending an e-
mail to software@simmune.org. Updated documentation and in-
formation about new releases and bug fixes are available through
http://www.simmune.org.

Obstacles and Solutions to Accessible, Biology-Faithful, Quantitative Computer Modeling and Simulation

Detailed modeling and simulation of complex biological systems remains

difficult because of both their inherent complexity and the limitations of

current tools available for assisting in such research. Even in a single cell,

signaling processes typically involve events on several hierarchical spatial

and organizational scales. Following a membrane receptor stimulus,

modifications of molecular interaction domains change association and

dissociation rates for receptor-proximal bimolecular interactions. These

changes, in turn, increase or decrease the availability of membrane-

proximal docking sites and/or enzymatic activities. The consequences on

the next higher spatial scale may be formation of macromolecular

signalosomes or redistribution of molecules among membrane

subdomains or between intracellular compartments [28]. Additional

complexity is introduced when considering the behavior of an entire cell

and of groups of cells that interact with each other, or the physiology of

complex tissues with both cellular and stromal elements that constrain

molecular diffusion or limit cell migration. In many modeling efforts,

modelers attempt to reduce this complexity by simplifying the system

using assumptions that biological experts would not accept as yielding a

faithful representation of known biology.

Furthermore, most modeling tools for cellular signaling currently

focus on the ‘‘biochemistry scale,’’ translating signaling maps into sets of

ordinary differential equations that describe the dynamics of changing

concentrations of molecular complexes based on mass-action

relationships [29–31]. However, reducing a biological model into a

mass-action network ‘‘by hand’’ runs the risk that multicomponent

complexes critical to the operation of the pathway in question may be

ignored for the sake of computational simplicity or inadvertently

omitted. Moreover, such translation removes molecular details usually

considered important by most biologists, in particular, information about

the specific binding sites responsible for the formation of molecular

complexes or for membrane recruitment of signaling components.

New methods that are more automated and that adhere more

closely to the underlying biology/biochemistry would be a major boon in

this area of investigation. If possible, such tools should also free the user

from having to learn specialized coding rules to construct a model and

conduct simulations, so that the largest number of investigators can

employ these quantitative methods. Over the past several years, there

has been significant progress toward reaching these goals. Modeling

tools like BioNetGen or Moleculizer [32,33] now better reflect biology by

utilizing interactions between discrete binding sites as the elementary

units of a reaction scheme. However, those methods still require the user

to use a special syntax for writing definition files of molecular properties,

imposing a steep learning curve requirement that limits widespread

application.

In addition, although bimolecular interactions are the building

blocks for biochemical cellular signaling networks, many cellular

phenomena involve the processing of spatially inhomogeneous

extracellular stimuli and the formation of intracellular concentration

gradients. Such processes cannot be described properly by models that

assume well-stirred biochemistry [34]. For simulations of reaction-

diffusion systems that take the location of molecular species into

account, specialized mathematical descriptions of intracellular space

have been developed (see, e.g., [34,35]), but these methods do not

provide a general means of conducting such model building and

simulation. An important advance that addresses some of these latter

limitations is the ‘‘Virtual Cell’’ framework [30]. It offers a graphical

interface for the construction of spatially highly resolved simulations of

single cells, including a capacity for direct importation of microscopic

images into the modeling environment. Despite its sophistication,

however, the software still requires the user to define explicitly every

reaction in a signaling network and is limited to single-cell simulations.

Other tools that address the issue of spatial information in modeling (for

example, MCell [36]), while providing excellent capacity for high-

resolution model building, require the user to learn a new, complex

scripting language for their operation and/or can only operate with

models involving very few molecular components.

The modeling and simulation software Simmune that we used for

the development and quantitative exploration of our chemosensing

model was created as an effort to overcome many of these constraints.

In accord with the manner in which most biologists think about

signaling pathways, Simmune allows molecular interactions to be

defined directly at the level of binding events between molecular

domains using simple graphical representations of molecules and

molecular complexes. Like other approaches [29–33], Simmune can

create text files with sets of differential equations describing the

modeled molecular signaling networks that can be imported into

differential equation solvers. However, Simmune’s own, built-in, time

integration methods and its simulation interface have important

advantages over general differential equation solvers. For example,

they allow the modeler to select specific molecular complexes or

families of complexes that share common properties for a detailed

inspection of their spatiotemporal behavior during ongoing simulations.

Detailed information on the schemes used by Simmune to solve the

problem of translating graphical input into mathematical

representations of interactions between molecular species and of the

resulting complexes, as well as to allow these interactions and

complexes to be tracked in space and time during a simulated

process of reaction and diffusion, are provided in Texts S3, S4, S5, and

S6. Simmune can handle models involving tens or even hundreds of

individual molecular components, eliminating the need to neglect a

known component of a pathway due to computational complexity. The

major limitation becomes simulation speed as the model complexity

grows.

Bridging the scale gap between intracellular biochemistry and the

behavior of multicellular systems, Simmune can also create populations

of simulated ‘‘cells’’ with spatially resolved reaction-diffusion processes

taking place within the cytoplasm and on the plasma membrane. Each

cell is individually identifiable and situated in three-dimensional

representations of tissue culture vessels or tissues. Simulated cells can

be added by mouse click at user-defined positions and then exposed at

any desired point in the simulation to new ligands by the localized

introduction of molecules or other cells and by the definition of static or

dynamic molecular concentration fields. Each of these actions is readily

specified using simple screen commands in the graphical interface.

Individual cells can be selected by mouse click for detailed investigation

of the distribution of individual molecular species or molecular

complexes at any moment during the simulation. Graphs reporting

the relevant biochemical state of cytoplasmic or membrane subregions

of the cell over time then appear (Figure 4).
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Supporting Information

Figure S1. Automatically Constructed Visualization of the Enzymatic
Reaction Network of the Chemotactic Signaling Model

These screenshots of the network browser show the enzymatic
reaction network before (A) and after (B) stimulation with cAMP. (B)
Shows the response at the ‘‘front’’ (high cAMP concentration) of the
cell. Simmune uses the binary interaction possibilities defined by the
user to automatically construct the permitted network topology and
to generate a graphical view of the network with several user defined
outputs available for the display (binding interactions, enzymatic
reactions, and so on). Concentrations of enzymes and their (single-)
molecular substrates are represented in the color saturation of the
circles and ellipsoids representing the network components. The
concentration of each component is displayed relative to its
maximum concentration during a simulated experiment (darker ¼
greater concentration). Similarly, the (relative) reaction flow for
enzymatic transformations is encoded in the saturation level of the
blue lines representing the biochemical transformations. A line with
a circle represents the action of an enzyme on its substrate. A line
with an arrow indicates the transformation of the substrate into the
product of the reaction. Video S1 shows how concentrations and
flows in the front of a cell (high cAMP concentration) change during
the course of a stimulation of a model cell exposed to a gradient of
cAMP. Because concentrations and reaction flows are encoded in the
color saturation of the component symbols and their connecting
lines, some lines are almost invisible in the snapshots of the network
dynamics presented here.

Found at DOI: 10.1371/journal.pcbi.0020082.sg001 (101 KB PDF).

Figure S2. The Branch of the Signaling Network That Controls the
Activity of PI3K

A line with a circle represents the action of an enzyme on its
substrate. A line with an arrow indicates the transformation of the
substrate into the product of the reaction. The green lines represent
those passive binding possibilities that play important roles in
regulation of PI3K activity.
Gbc is assumed to recruit PI3K to the membrane where it then can
interact with Ras and become fully activated [7]. Ras itself becomes
activated through a GEF that in turn also depends on Gbc for its
activation [37]. In our model, we adopt this activation pathway for
PI3K but allow for a direct activation of Ras through Gbc. In
addition, Gbc activates RasGAP and the tyrosine phosphatase
‘‘PI3Ktp’’. Active Ras (‘‘Ras_act’’) activates PI3K. Activated RasGAP
(‘‘RasGAPopen’’) can attach itself to PIP2 and PIP3, which places it in
close proximity of its membrane-bound substrate, Ras_act. The
activated phosphatase PI3Ktp_act deactivates PI3K. It can attach
itself to the phosphorylated membrane-bound adaptor pPI3Kt-
p_anch (not shown) to localize near membrane-associated, active
PI3Kact. The receptor-mediated stimulus leads to a local higher
concentration of inhibitors of PI3K activity. Note: Unactivated
enzymes have a (low) basal affinity for/rate of action on their
substrates. Accordingly, even the unactivated enzyme states are
linked to their substrates by lines with dots.

Found at DOI: 10.1371/journal.pcbi.0020082.sg002 (31 KB PDF).

Figure S3. The Branch of the Signaling Network That Controls the
Activity of PTEN

A line with a circle represents the action of an enzyme on its
substrate. A line with an arrow indicates the transformation of the
substrate into the product of the reaction. The green lines represent
those passive binding possibilities that play important roles for the
regulation of PTEN activity.
PTEN is an interfacial enzyme, having a significantly higher
phosphatase activity when positioned in close proximity to its
membrane-embedded substrates like PIP3 [38]. Mammalian PTEN
contains two domains that contribute to recruitment of the
phosphatase to the membrane [39]. Both domains can lose their
membrane-binding ability upon phosphorylation of the phosphatase
at two specific sites in the C-terminus [40]. A recent report on the
role and mechanism of membrane recruitment of Dictyostelium PTEN
has shown that in this organism, the N-terminal region possesses a
PIP2 binding motif that is crucial for the membrane recruitment of
PTEN and its physiological activity [41]. Because PTEN leaves the
membrane of Dictyostelium after stimulation of the cells with chemo-
attractant and because the relatively high membrane abundance of
PIP2 is not likely to be substantially decreased upon chemotactic
stimulation, we assume in our model that the chemotactic signal leads

to phosphorylation of PTEN that interferes with its membrane
binding capabilities and its phosphatase activity. In mammalian cells,
PTEN phosphorylation has been shown to be mediated by Src [24], so
we assume in our signaling network a similar role for a Src-like kinase
that in turn is stimulated via active Gbc. Activation of Ga leads to
activation of ‘‘SrcAct,’’ the component that activates Src. Active Src
(‘‘Src_act’’) phosphorylates PTEN. Phosphorylated PTEN (‘‘pPTEN,’’
or membrane-bound: ‘‘pPTEN_bnd’’) has lost its phospholipid
phosphatase activity and rapidly dissociates from the membrane.
Csk deactivates Src_act. Csk is brought into close proximity with
membrane-bound Src through its capability to bind to phosphory-
lated paxillin (‘‘pPaxillin’’). SHP2 dephosphorylates pPaxillin, thereby
reducing the amount of membrane-proximal Csk. SHP2 is recruited
to the membrane by binding to Src-phosphorylated Gab1 (‘‘pGab1’’)
[42], which in turn binds to PIP3. The PIP3-dependent recruitment of
SHP2 and SrcAct thus represents a positive feedback for the
processes leading to phosphorylation (and deactivation) of PTEN;
the more PTEN becomes deactivated, the more PIP3 that can be
produced by PI3K. Increasing concentrations of PIP3 lead to
recruitment of more SHP2 and SrcAct and result in faster
deactivation of PTEN. This explains (in our model) the efficiency of
the stimulus-induced translocation of PTEN from the cell’s front to
its back.

Found at DOI: 10.1371/journal.pcbi.0020082.sg003 (49 KB PDF).

Figure S4. Predicted and Measured Dose Dependence of the Time
Tmax until the PIP3 Accumulation Reaches Its Maximum after
Homogeneous Stimulation with cAMP

With increasing concentrations of homogeneously applied cAMP, the
cells adapt more rapidly to the stimulus.

Found at DOI: 10.1371/journal.pcbi.0020082.sg004 (10 KB PDF).

Figure S5. Local Adaptation Processes, When Combined with
Diffusive Communication between the Different Sides of the Cell,
Can Explain the Intracellular Amplification of the External cAMP
Gradient

The primary signal (ligation of the receptor, activation of the G
proteins) is shown in light blue. Excitatory processes are shown in
orange, inhibitory processes in gray. The processes that are part of
the feedback mechanism establishing the intracellular polarization
are shown in yellow.

Found at DOI: 10.1371/journal.pcbi.0020082.sg005 (81 KB PDF).

Figure S6. Global Dataset of Changes in Membrane-Bound PH-GFP
in Cells Exposed to 2:1 Gradients of cAMP

Mean cAMP concentrations at the cell surface: (A) 1 lmol (15
datasets); (B) 100 nmol (18 datasets); (C) 10 nmol (25 datasets).
Due to the considerable variation in the responses of single cells, the
average behavior of membrane-bound PH-GFP shows less pro-
nounced ‘‘dips’’ in the cell front after the first peak than single-cell
responses. For the comparison with simulation results, we chose
single-cell responses that have their characteristic features (minima
and maxima) at approximately the same time points as the multi-cell
averages.

Found at DOI: 10.1371/journal.pcbi.0020082.sg006 (25 KB PDF).

Figure S7. Global Dataset of Changes in Membrane-Bound GFP-
PTEN in Cells Exposed to 2:1 Gradients of cAMP

Mean cAMP concentrations at cell surface: (A) 1 lmol (four datasets);
(B) 100 nmol (12 datasets); (C) 10 nmol (six datasets).
Due to the considerable variation in the responses of single cells, the
average behavior of membrane-bound GFP-PTEN shows less pro-
nounced minima in the front of the cell than single-cell responses.
For the comparison with simulation results, we chose single-cell
responses that have their characteristic features (minima and
maxima) at approximately the same time points as the multicell
averages.

Found at DOI: 10.1371/journal.pcbi.0020082.sg007 (25 KB PDF).

Figure S8. The Influence of Parameter Variation on the Signaling
Dynamics

This screenshot of Simmune shows the results of simulated exposure
to a 2:1 cAMP gradient (100 nmol mean concentration) with an
automated variation of the parameters determining the number of
Csk molecules per cell and the association rate for the activation by
Gbc of the phosphatase (PTENph) that dephosphorylates pPTEN. Csk
varies (vertical axis) from 80,000 (upper row) to 160,000 (lower row)
molecules per cell. The PTENph-Gbc association rate varies
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(horizontal axis) from 50,000 1/(mol*s) (left column) to 500,000 1/
(mol*s) (right column). While for all parameter sets the overall
behaviors of membrane-bound GFP-PH and PTEN show the
characteristic minima and maxima, their positions in terms of time
points and molecule amounts change significantly with varying
parameters. While the qualitative features are thus ‘‘robust’’ to the
examined range of parameter values, the quantitative details are
sensitive to these numerical changes. With parameter set (1), for
example, the second peak of the accumulation of GFP-PH at the high-
concentration side of the applied cAMP gradient (red) does not reach
the experimentally observed value. On the other hand, the increase in
PTEN at the low-concentration side of the cell (blue) for this set of
parameters is too strong. Set (3), with a high PTENph-Gbc association
rate and a high concentration of Csk, reaches the second peak in the
accumulation of GFP-PH at the side with high cAMP concentration
too late. The dynamics obtained with set (2) (which is the parameter
set chosen for all simulations reported here) correspond well to the
experimentally observed behavior of membrane-bound GFP-PH and
PTEN.
A comparison of the simulated behavior of membrane-bound PTEN
after homogeneous stimulation with 100 nmol cAMP: the curves (1),
(2), and (3) were obtained with the same parameter sets as the
correspondingly labeled simulation results in (A). Set (2), which shows
the correct behavior under homogeneous stimulation, also produces
quantitatively and qualitatively correct results for stimulation with a
cAMP gradient [see (A)]. See also Video 7 or Text S13.

Found at DOI: 10.1371/journal.pcbi.0020082.sg008 (138 KB PDF).

Figure S9. Modifications of PI3K Membrane Attachment Result in
Changed Behavior of PTEN

Stimulation with a homogeneous concentration of 100 nmol of cAMP
leads to a transient loss of membrane-bound PTEN. For this dose,
there is an 80% recovery of membrane-bound PTEN within 40 s. The
dashed curve shows the simulated behavior of membrane-bound
PTEN for a cell with membrane attachment of not only activated but
also nonactivated PI3K with basal enzymatic activity. In agreement
with previously reported data [7], PTEN shows a slower, only partial
return to the membrane.

Found at DOI: 10.1371/journal.pcbi.0020082.sg009 (11 KB PDF).

Figure S10. Behavior of PTEN with an Alternative Mechanism
Regulating PTEN Membrane Attachment

See Text S2, Section 3 for details.
(A) Loss and recovery of membrane-bound PTEN after stimulation
with a homogeneous concentration of 400 nmol (solid line) and 40
nmol (dashed line). For both concentrations, PTEN shows a
qualitatively correct behavior.
(B) Translocation of PTEN after stimulation with a linear gradient of
40 nmol in the ‘‘front’’ and 10 nmol in the ‘‘back’’ of the cell. The
applied gradient leads to a pronounced accumulation of PTEN in the
back and loss of PTEN in the front.
(C) Translocation of PTEN after stimulation with a linear gradient of
400 nmol in the ‘‘front’’ and 100 nmol in the ‘‘back’’ of the cell. The
mean concentration of the applied gradient is closer to the saturation
dose of the cAMP receptor. The receptor signal strengths in front and
back are not strongly different. Due to the lack of an amplifying
element, the applied gradient fails to induce a strong polarization of
membrane-bound PTEN across the cell diameter.

Found at DOI: 10.1371/journal.pcbi.0020082.sg010 (22 KB PDF).

Figure S11.Mechanisms of Cellular Behavior in Simmune (Composite
Screenshot)

Cells created in Simmune contain specified numbers of molecules
and molecular complexes in their cytosol and on their membrane,
based on the definition of their biochemistry by the modeler. The
molecules will then diffuse and react according to their diffusion
coefficients and reaction rates. Such intracellular reaction-diffusion
networks determine the low-level behavior of the cells. Simmune
offers a variety of possibilities for inspection of the intracellular
biochemistry of simulated cells (see Figures 4 and S1). The higher-
level behavior of cells in Simmune is defined by the stimulus-response
mechanisms they possess (see Text S4). In the example illustrated here,
the stimulus consists of the ligation of the receptor for the green
molecules. A second condition used in the simulation is the absence
of a suprathreshold amount of ligated receptors for the red
molecules. If both conditions are fulfilled, the cell secretes the blue
molecules. In the simulation screenshot which shows a two-dimen-
sional cut through a three-dimensional extracellular compartment, it

can be seen that only cells within regions of high concentration of the
green molecules and relatively low concentrations of the red
molecules secrete the blue molecules. The cells in the region
indicated by the white circle sense a sufficiently high concentration
of green molecules but also a high concentration of red molecules.
They do not respond.

Found at DOI: 10.1371/journal.pcbi.0020082.sg011 (240 KB PDF).

Figure S12. The ‘‘Complex Definition’’ Window of Simmune
(Composite Screenshot)

Molecule complexes consist of molecules that are connected through
interactions between their binding sites. During a simulation, the
program creates representations for all possible molecule complexes
(to an upper limit in the number of molecular components that can
be set by the user), based on the binding interactions defined for the
molecules in the model. The modeler does not have to define each
complex by hand.
Wherever the local biochemistry allows the formation of a complex in
some part of the simulated system, this complex will be taken into
account for the simulation of the molecular reactions. Importantly,
the set of (partial) differential equations that are processed during a
simulation only includes equations for such complexes that are
actually part of the local biochemistry. For example, the differential
equations describing the reactions and the diffusional exchange of
molecules for a cytosolic region of the cell never include components
that describe the reaction dynamics of plasma membrane receptors.
This minimizes computational cost.
Specific molecule complexes can be created for use in the definition
of cellular mechanisms (see Text S4) or for the definition of
enzymatic transformations (see Simmune Tutorial 3 in Video S4, or
Text S11). If the local concentrations of particular molecule
complexes are to be tracked during a simulation, these complexes
have to be defined first.
The structures in the left list of defined molecules within the
‘‘complexes’’ window can be used as building blocks to create
molecular complexes. Molecule names from the list can be dragged
and dropped into the white area of the ‘‘complex definition’’ part of
the window. The light gray squares in the area indicate different
possible positions of the molecules within a complex. Depending on
the properties of the molecule (whether it is a receptor or cytosolic
molecule) and the presence of other molecules that have already been
put into the complex definition field, some positions within the field
are possible/allowed while others are not. Simmune indicates the
possible positions by turning the allowed squares green while a
molecule is being dragged into the complex definition area. Once a
molecule has been dropped into an allowed square, the program will
indicate all possible binding interactions with the other molecules
within the ‘‘complex definition’’ field. Double-clicking the small gray
square attached to the potential connection between two molecular
binding sites establishes the connection. The binding sites involved in
the connection will snap together (see inset). Once all the connections
for the complex the modeler wishes to build have been defined, a
name can be specified and the complex saved. If the molecules are not
properly connected or if the complex is isomorphic to an already
existing complex, Simmune will issue an error message.

Found at DOI: 10.1371/journal.pcbi.0020082.sg012 (55 KB PDF).

Figure S13. Comparison of Simmune’s Diffusion with Analytical
Solution

See Text S7 for details.

Found at DOI: 10.1371/journal.pcbi.0020082.sg013 (55 KB PDF).

Table S1. Model Parameters

Found at DOI: 10.1371/journal.pcbi.0020082.st001 (48 KB XLS).

Text S1. Rationale for Model Building

Found at DOI: 10.1371/journal.pcbi.0020082.sd001 (21 KB PDF).

Text S2. Modular Analysis of the Chemosensing Signaling Network

Found at DOI: 10.1371/journal.pcbi.0020082.sd002 (32 KB PDF).

Text S3. Note on the Determination of Parameter Values for the
Chemosensing Model

Found at DOI: 10.1371/journal.pcbi.0020082.sd003 (16 KB PDF).

Text S4. From Molecular Interactions to Cellular Behavior—How
Simmune Works

Found at DOI: 10.1371/journal.pcbi.0020082.sd004 (32 KB PDF).
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Text S5. Simmune’s Internal Representation of Molecular Complexes

Found at DOI: 10.1371/journal.pcbi.0020082.sd005 (13 KB PDF).

Text S6. Automatic Creation of the Reaction Network

Found at DOI: 10.1371/journal.pcbi.0020082.sd006 (23 KB PDF).

Text S7. Discretization of Extracellular and Intracellular Space in
Simmune

Found at DOI: 10.1371/journal.pcbi.0020082.sd007 (35 KB PDF).

Text S8. Simmune Tutorial Part 1

Defining molecules, binding and debinding events, and allosteric
molecular modifications.

Found at DOI: 10.1371/journal.pcbi.0020082.sd008 (310 KB PDF).

Text S9. Simmune Tutorial Part 2

Defining transmembrane receptors and transmembrane signaling
events.

Found at DOI: 10.1371/journal.pcbi.0020082.sd009 (217 KB PDF).

Text S10. Simmune Tutorial Part 3

Defining specific molecular complexes and enzymatic transforma-
tions.

Found at DOI: 10.1371/journal.pcbi.0020082.sd010 (733 KB PDF).

Text S11. Simmune Tutorial Part 4

Defining cells and extracellular space; running simulations.

Found at DOI: 10.1371/journal.pcbi.0020082.sd011 (1.7 MB PDF).

Text S12. Simmune Tutorial Part 5

Simulating the Dictyostelium chemosensing model.

Found at DOI: 10.1371/journal.pcbi.0020082.sd012 (513 KB PDF).

Text S13. Simmune Tutorial Part 6

Automated parameter variation for the chemosensing model.

Found at DOI: 10.1371/journal.pcbi.0020082.sd013 (1.0 MB PDF).

Text S14. Simmune Tutorial Part 7

Building and simulating a simple model of cellular gradient sensing.

Found at DOI: 10.1371/journal.pcbi.0020082.sd014 (2.3 MB PDF).

Video S1. Simmune’s Display of Signaling Dynamics within the
Reaction Network

Found at DOI: 10.1371/journal.pcbi.0020082.sv001 (3.8 MB MOV).

Video S2. Simmune Tutorial Part 1

Defining molecules, binding and debinding events, and allosteric
molecular modifications.

Found at DOI: 10.1371/journal.pcbi.0020082.sv002 (2.8 MB MOV).

Video S3. Simmune Tutorial Part 2

Defining transmembrane receptors and transmembrane signaling
events.

Found at DOI: 10.1371/journal.pcbi.0020082.sv003 (2.3 MB MOV).

Video S4. Simmune Tutorial Part 3

Defining specific molecular complexes and enzymatic transforma-
tions.

Found at DOI: 10.1371/journal.pcbi.0020082.sv004 (5.8 MB MOV).

Video S5. Simmune Tutorial Part 4

Defining cells and extracellular space; running simulations.

Found at DOI: 10.1371/journal.pcbi.0020082.sv005 (6.8 MB MOV).

Video S6. Simulating the Dictyostelium Chemosensing Model
(Tutorial Part 5).

Found at DOI: 10.1371/journal.pcbi.0020082.sv006 (6.9 MB MOV).

Video S7. Automated Parameter Variation for the Chemosensing
Model (Tutorial Part 6).

Found at DOI: 10.1371/journal.pcbi.0020082.sv007 (6.9 MB MOV).
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