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We thank Csu2rös for his thoughtful remarks about our
recent paper in PLoS Computational Biology [1,2]. Although
both our method [2] and that of Csu2rös [3] (the latter was
published when the former was under review) assume the
same model of intron evolution, and the results obtained by
both methods for the dataset in [4] are similar, the
implementation details are quite different. Csu2rös [3] used a
trial-and-error procedure for guessing the number of
unobserved intron sites, and used posterior probability
calculation to optimize the rates of intron gain and loss. In
contrast, in our method the number of unobserved intron
sites and rates of intron gain and loss are inferred at the same
time by maximizing a likelihood function. As pointed out by
Csu2rös [1], the recent result of Raible et al. in Science [5], which
indicated that about two-thirds of Platynereis dumerilii introns
are at the same positions as those in humans seems to support
the results in [2] and [3]. It is likely that the evolution of
introns in P. dumerilii was similar to that in humans, where
two-thirds of the introns were already present in the last
common ancestor and the remaining one-third was gained
late after divergence from this ancestor.

Csu2rös [1] commented that his algorithm is more efficient
in terms of running time compared with ours. This comment
is correct but with the stipulation that the number of
observed sites be less than 2N, where N is the number of
species. This condition does not hold for the dataset in [4]. In
practice, however, this condition often holds for large values
of N. In this case, some of the equations in our method [2] can
be rewritten to yield the same time complexity as the method
in [3].

Suppose that there are U observed intron sites that belong
to V (V � U) intron patterns. Denote ni (i ¼ 0..V) to be the
number of intron sites for pattern i. Note that n0, which is the
number of unobserved intron sites, is unknown. The log-
likelihood function in our method (Equation 7 in [2]) can be
now rewritten as:

logL ¼
XV

i¼0
nilogpi �

XV

i¼0
logðni!Þ þ logðP!Þ ð1Þ

where pi is the expected probability of intron sites of pattern i
and P¼Uþ n0 is the total number of sites. Although the time
to compute pi (Equation 5 in [2]) appears to grow
exponentially with N, in fact it can be computed in linear
time using the well-known ‘‘pruning’’ technique of
Felsenstein [6]. For each pattern i and each node x we
compute the two conditional likelihoods Lix

(0) and Lix
(1) for

states 0 (intron absence) and 1 (intron presence), respectively,
using the post-order tree traversal. After that we compute:

pi ¼ ð1� kÞLð0Þir þ kLð1Þir ð2Þ

where k is the probability of introns being present at the root
node and Lir

(0) and Lir
(1) are the two conditional likelihoods of

the root node for pattern i.
Since all the conditional likelihoods for every node are now

already known, the expected counts of intron gain and loss
for each intron pattern i along each branch k, gik, and lik, as
well as the expected intron counts at each node h, oih, can also
be computed in linear time with N using the pruning
technique, but this time with the pre-order tree traversal.
Finally, Equations 9 and 10 in [2] can be rewritten as:

gkjni ¼
XV

i¼0
gikni=n̂i

lkjni ¼
XV

i¼0
likni=n̂i ð3Þ

ohjni ¼
XV

i¼0
oihni=n̂i

where gkjni and lkjni are, respectively, the conditional expected
counts of intron gain and loss for each branch k given the
data; ohjni is the conditional expected intron count for each
node h given the data; and n̂i ¼ P 3 pi is the expected number
of sites for each intron pattern i. In this way, our algorithm
also has a linear time with N and V. In fact, the code that was
released together with our paper [2] has already been
implemented using the pruning technique.
Csu2rös [1] also commented that our Proposition 1 echoes

the Pulley Principle of Felsenstein [6] for ambiguous root
placement. The Pulley Principle, however, applies to only
reversible Markov processes whereas our model of intron
evolution is an irreversible one. Concerning our Proposition 2,
Csu2rös [1] is correct to comment that our method for finding
the most biologically meaningful solution, which is based on
the variance of intron gains and losses, is less efficient. Since
our algorithm is initialized with very small rates of intron gain
and loss, the algorithm almost always converges to the most
biologically meaningful solution (although there is no direct
proof for this). Thus, the step of finding the most biologically
meaningful solution was added to make the algorithm more
rigorous, and may be removed in practice.
Although the use of Equation 1 in [1] will lead to a unique

solution with the method of Csu2rös, the method may not
always find a solution with the maximum likelihood. This
happens when no solution among the 2N�2 optimal solutions
(see our Proposition 2 in [2]) satisfies the condition pe(0! 1)þ
pe(1! 0) , 1 in [1] (or akþbk , 1 in our terms, where ak and bk

are the probabilities of intron gain and loss along branch k,
respectively [2]). Let us consider the following example using
Figure S3 in [2]. Suppose that C and D are external nodes (i.e.,
they present the observed data) and oC¼ 420 and oD¼ 160,
where oX shows the number of introns at node X. We suppose
further that P¼ 1,000 and that one optimal solution for node
B has the following parameters: oB¼ 400, gy¼ 60, ly¼ 40, gz¼
120, and lz¼360. In this case, ay¼0.1, by¼0.1, az¼0.2, bz¼0.9,
and azþ bz . 1. According to our Protocol S2, the other
optimal solution for node B has the following parameters: oB¼
600, gy¼360, ly¼540, gz¼40, and lz¼480. In this case, ay¼0.9,
by¼0.9, az¼0.1, bz¼0.8, and ayþby . 1. That is, both optimal
solutions for node B violate the condition akþbk , 1, and the
method of Csu2rös may not find an optimal solution in this
case. Therefore, to always find the most biologically
meaningful solution in linear time using our method, we
propose to use a new definition: the most biologically
meaningful solution is the one that has the least total number
of intron gains and losses. Now we can compute the most
biologically meaningful solution from any arbitrary optimal
solutions by using the post-order tree traversal, and for each
internal node B choose the optimal solution for which the sum
gyþ lyþ gzþ lz is smaller (i.e., the case oB¼ 400 in the above
example). The algorithm clearly has a linear time with N.
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Csu2rös [3] stated that it was not possible to estimate n0 (i.e.,
the number of unobserved intron sites) by means of
likelihood. Therefore, a trial-and-error procedure, which
basically tries all possible values for n0, was used. Our method,
however, suggests that n0 can be optimized by means of
likelihood. The problem may be that the method in [3]
attempts to maximize a log-likelihood function similar to the
one in Equation 1 (in this reply) but without the last two terms.
When n0 is invariant, these two terms are constant and can be
omitted. However, they cannot be omitted when inferring
intron evolution (where n0 is unknown) if we want to optimize
n0 by means of likelihood. One advantage of using our log-
likelihood function is that we can use conventional methods
(such as the Brent algorithm) for optimizing n0, which are
more efficient than the trial-and-error method employed in
[3]. Another advantage of using our function is that different
trees can be compared on the basis of their likelihoods [2]. The
method in [3] does not allow such a comparison.

Our intent when comparing the number of possible
patterns with the number of intron sites in the dataset in [7]
was to show that the dataset may be insufficiently large for a
valid inference, i.e., other methods such as maximum
parsimony may perform better in this case. It was not our
intent to claim that the sample data must grow
proportionally with the number of possible patterns for a
statistical inference to be valid. Our recent simulations
(unpublished data) seem to support our speculations about
the dataset in [7]. &
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